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ABSTRACT. The limitations of developing a technique to mea- 
sure cardiac output continuously are given. Logical explana- 
tions are provided for the economic, technical, and physio- 
logic benefits of a stochastic system identification technique 
for measuring cardiac output. Heat is supplied by a catheter- 
mounted filament driven according to a pseudorandom binary 
sequence. Volumetric fluid flow is derived by a cross- 
correlation algorithm written in the C language. In vitro vali- 
dation is performed with water in a flow bench. The com- 
puted flow (y) compared with the in-line-measured flow (x) 
yields the linear regression y = 1.024x - 0.157 (r = 0.99). 
The average coefficient of variation is less than 2% over a 
volumetric fluid flow range of 2 to 10 L/min. 

ItS' W011B8: Measurement techniques: cardiac output. 

THE PROBLEM 

Management of  critically ill patients is based on knowl-  
edge of  several fundamental variables, including blood 
pressure, blood oxygenation,  cardiac output, and tem- 
perature. Continuous measurement o f  these variables 
affords more information than do intermittent determi- 
nations, and frequently it is more accurate and involves 
less user frustration. Clinical continuous determination 
techniques are currently available for all these variables 
except cardiac output.  A unique, clinically useful tech- 
nique has been developed [1] and is described in this 
article. 

The development  o f  a continuous cardiac output  
technique is particularly difficult since several unique 
physiologic features render classic fluid flow techniques 
invalid. The most influential feature is the elastic nature 
of  the great vessels and the tremendous variation in 
cross-sectional area, particularly o f  the pulmonary ar- 
tery, that occurs with age, physical habitus, vascular 
volume status, body position, disease state, and drug 
administration. Because it is difficult to reliably estimate 
the cross-sectional areas o f  the great vessels, volumetric 
blood flow cannot be calculated with a measurement o f  
blood velocity.* A second influential feature is that the 
distribution o f  blood flow from the great vessels to the 
peripheral arteries varies greatly under varying physio- 
logic conditions. Determining volumetric  blood flow in 
a peripheral artery does not allow reliable interpolation 
o f  flow in the great vessels. A further complicating fac- 

From InterFlo Medical, 1101 Resource Dr, Suite 121, Piano, T X  
75074. 

* In classic fluid mechanics, volumetric flow is the product of cross- 
sectional area and mean fluid velocity. 
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tor is that cardiac output varies with ventilation, 
superimposing yet another source of variability. 

Numerous attempts have been made to develop tech- 
niques to measure cardiac output continuously. Veloc- 
ity may be measured directly by using ultrasound trans- 
ducers placed internal [2] or external [3] to the vessel. 
Velocity may be calculated indirectly by measuring the 
time of flight between two points [4] or by hot-wire 
anemometer methods [5]. For some applications, vessel 
cross section is measured [2,3] or estimated. If effort is 
given to measuring the geometry of  the vessel cross 
section, flow can be calculated from blood velocity and 
vessel geometry [6]. Techniques to estimate the cross- 
sectional area of  the great vessels are weakened because 
the vessel is not a circular cylinder and the cross- 
sectional area cannot be estimated reliably from a diam- 
eter. An alternate, noninvasive ultrasound approach, the 
attenuation-compensated volume flowmeter, uses two 
transducers to measure volumetric blood flow [7]. The 
performance of  some devices is very dependent on the 
user's ability. 

Among the various classic attempts to measure blood 
flow, indicator dilution techniques have gained clinical 
favor for intermittent determinations and have become 
the clinical standard for evaluation of other techniques 
[8]. Indicator techniques are based on conservation of 
mass or conservation of heat principles, measure true 
bulk mass movement, and are independent of the physi- 
cal dimensions of  the system of interest. The mathemat- 
ical derivation in Appendix B demonstrates this. Some 
of the abbreviations and equations used in Appendix B 
and elsewhere in this article are defined in Appendix A. 

When using dye, heat, cold, or another indicator, a 
known quantity of  indicator is injected into the proxi- 
mal vessel and its total appearance is measured at a distal 
point [9-12]. To develop an automated or continuous 
indicator-based technique to measure cardiac output, 
the natural extension would be to place a heating 
filament on a flow-directed pulmonary artery catheter. 
This has been done by several investigators who have 
used various signal-processing techniques. Khalil [13] 
applied indicator as a step function and measured the 
downstream DC change by using equation A1 from 
Appendix B. Normann et al [14] applied the indicator as 
an "impulse" and measured the area under the washout 
curve by using equation A2. Philip et al. [15] applied a 
sinusoidal input and measured downstream indicator at- 
tenuation by using a modification to equation A1. While 
all these techniques work, they may be severely com- 
promised because of  background thermal noise in the 
pulmonary artery [16-20] or limitations on maximum 
peak heat flux or temperatures [14]. 

THE PROPOSEU SOLUTION 

Fully understanding the physiologic, environmental, 
and technical limitations, the requirements for de- 
veloping a reliable, inexpensive, and clinically useful 
technique to measure cardiac output continuously are ob- 
vious: (1) an indicator dilution technique should be 
used; (2) heat is the most practical indicator; (3) for a 
catheter-mounted filament, the maximum deliverable 
heat flux is temperature limited [21], yielding a rela- 
tively small signal in flowing bloodt; and (4) most of  
all, the signal processing technique must be robust 
enough to perform in a noisy thermal environment. 

The combination of  thermal indicator dilution with 
stochastic system identification techniques satisfies these 
requirements. Stochastic techniques differ from classical 
deterministic techniques in that the statistical properties 
of the input and output signals are of  more interest than 
the instantaneous values of  the signals themselves. 
Many excellent books have been written over the de- 
cades on stochastic techniques [22-26]. Appendix C 
gives a summary of  the stochastic theory underlying the 
proposed method. 

Because the convolution equation (Equation C1) is 
difficult to invert, some simplifying techniques must be 
used. Note that the sum is simplified if the autocorrela- 
tion, ~bxx(i - kAt), is nonzero only when i = k (white 
noise). Then, the equation reduces to qbxy(kAt ) = C 
h(kAt), where C is a constant. A true white noise input 
is impossible to realize, so much effort has been devoted 
to developing input waveforms that yield an autocorre- 
lation similar to that of  white noise. Although there are 
numerous such waveforms [27], one particular class, 
known as pseudorandom binary codes, has particularly 
desirable characteristics. Appendix D gives a brief de- 
scription. 

Grasping a stochastic approach to measurement of  
cardiac output requires an understanding of  several ad- 
ditional key principles. Stochastic system identification, 
as exemplified in equation C1, is applied commonly to 
measure a system's impulse response. It must be realized 
that part of the indicator dilution technique involves 
measuring the vascular impulse response, for the 
"washout" curve is the scaled impulse response. In ad- 
dition, the system under investigation should be ap- 
proximately linear and time invariant over the measure- 
ment interval. Excellent research has been conducted in 
documenting that vascular beds fulfill these require- 
ments [28-34]. 

tThe  catheter filament temperature is a function of filament power, 
catheter surface area, and blood velocity. 
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To measure cardiac output, one must combine the 
stochastic system identification techniques with the 
equations governing conservation of  heat [1]. A rigor- 
ous derivation is given in Appendix E. Equation E6 is 
used to calculate flow: 

F = P(60)/4,180 , (E6) 

N ~ I  
2N 

(' N + 1 ) p c  ~b~aT(kAt) 
k=f} 

where 2N--01 ~baAT(kAt ) is the area under the input-output 
cross-correlation as explained in Appendix E and P is 
the heater power in the on state. 

Figure 1 is a block diagram that demonstrates the 
procedure used in a physiologic preparation. A flow- 
directed pulmonary artery catheter is positioned such 
that the heating filament is in the right ventricle and the 
distal thermistor in the pulmonary artery. A clock (1) is 
used to generate the pseudorandom binary sequence 
with a clock state duration of  At (here set to 1 second) 
and a code of  length fifteen. The binary code generator 
(2) turns the analog filament driver (3) on or off, causing 
the filament to deliver either no heat or approximately 
15 W of heat. The analog thermistor reader (4) measures 
the pulmonary temperature. Both the binary code and 

Cross Cormlator 
(S) 
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Fig 1. A block diagram of a catheter-mounted filament driven ac- 
cording to a pseudorandom binary sequence. Cardiac output is cal- 
culated by a cross-ton'elation algorithm. (See text for elaboration.) 

the corresponding measured temperature are stored in 
ensemble buffers (5a, 5b). Once sufficient ensembles 
have been collected, usually approximately ten, the 
cross-correlation is computed. The cross-correlator (6) 
yields the indicator washout curve from which the flow 
is computed (7) by using equation E6. 

The Algorithm 

The heart of  the algorithm is the cross-correlation. The 
following program, written in C language, is used. 

/ . . . . . . . . . . . . . . . . .  BEGIN . . . . . . . . . . . .  / 
/*Cross-correlation Algorithm 
**Mark Yelderman 
*/ 

#include <stdio.h> 
#include <math.h> 

main() 
{ 
int icod[15]; 
float cross_cor[15]; 
float tempdbuf[150]; 
float x._in,y_out;  
float area,flow; 
float pow; 
float dt; 
int index,idat; 
int i,j,k; 
int irun; 
/*Subroutines are listed next*/ 
float sys_lO0; 
float wait(); 

/*pseudorandom binary code*/ 
/* cross-correlation function*/ 
/*stores detected temperature */ 
/*system input and output*/ 

/*pow is filament power*/ 
/*dt is the real-time state duration*/ 

/* loop counters*/ 
/*irun is number of runs of code*/ 

/*the general I/O subroutine*/ 
/*system real-time clock call*/ 
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/*The first step is to select a binary code. */ 

/*a code of length 15 wil l  be used. */ 
icod(0) = 1 ; 
icod(1) = - 1 ;  
icod(2) = 1 ; 
icod(3) = 1 ; 
icod(4) = 1 ; 
icod(5) = 1 ; 
icod(6) -- - 1 ;  
icod(7) = - 1 ;  
icod(8) = - 1 ;  
icod(9) = 1 ; 
icod(10) = - 1 ; 
icod(11) = - 1 ;  
icod(12) = 1 ; 
icod(13) = 1 ; 
icod(14) = - 1; 

pow = 15.0; 
dt = 1.0; 

/*The system must be ' loaded'  with one run before start ing*/ 
f o r ( i  = 0 ; i < =  14; i + + )  

{ 
i f ( i cod[ i ]=  = 1) x .~ in  = pow; 

else L i n  = 0.; 
y__out = s y s _ _ l O ( L i n ) ;  
wait(dt);  
c ross_cor ( i )  = 0.; 
} 

/ *now start the actual test*/ 
irun = 8; 

idat = 0; 
f o r ( j  = 0 ; j  < =  irun-1; j +  + )  
{ 
for  (i = 0; i < =  14; i +  + )  

{ 
i f ( icod[i ]  = = 1) L i n  = pow; 

else L i n  = 0.; 
y__out = s y s - - I O ( L i n ) ;  
t e m p _ b u f [ i d a t +  + ]  = y _ o u t ;  
wait(dt);  
} 

} 

/* The cross-corre lat ion is per formed for the irun runs*/ 
idat = 0; 
fo r ( j  = 0 ; j < =  i r u n -  1 ; j + + )  
{ 
f o r ( i  -- 0 ; i < =  1 4 ; i + + )  

{ 
f o r ( k  = 0 ; k < - -  1 4 ; k + + )  
{ 
i n d e x - -  i - k ;  
i f ( index < 0) index + = 15; 

i f ( icod[ index]  = = 1) c ross_co r [ k ]  + = t e m p _ b u f [ i d a t +  + ] ;  
else c r o s L c o r [ k ]  - = t e m p _ b u f [ i d a t +  + ] ;  

} 
} 

} 
/*scale cross-corre lat ion;  see equat ion E6*/ 
for (i = 0;I < =  14 ; i+  + ) c r o s s - - c o r [ i ] / =  (irun*15)*2*15/16; 

/* set catheter  f i lament  power  in watts*/  
/*set real-t ime c lock durat ion in seconds*/  

/*if the code is 1, f i lament  is tu rned on*/  
/*if the code is 0, f i lament  is turned off*/ 
/*for this state, the system I/O is accessed*/ 
/*wait  for  next  clock*/. 
/*zero for next  loop*/  

/* this may be set to any value less than 10 
** o therwise temp-buf  wi l l  over f low*/  
/* idat is the buffer index */ 

/*detected tempera tu re  stored in t e m p _ b u f * /  
/*wai t  for  next*/ 

/*reini t ia l ize the buffer index counter* /  

/* index is the offset for  the cross-corre la t ion 
/* Because the code repeats, the */ 
/*same code is used over*/  
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/* calculate cardiac outpu t  or  f low*/ 
area = 0.; 
for  (i = O; i < =  14 ; i+  + )  

area + = cross_cor[i]; 
flow = (pow/4180.)*60J(.87*1.05*area); 
return(O); 
} 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

/* system I/0 subrout ine fo l lows */ 
/*this is a general subroutine which interfaces to the 

system being tested*/ 
float s y L l O ( L i n )  
float x__in, y _ o u t ;  
int err; 
( 
err = f i l_dr iver (x__in) ;  
y _ o u t =  t e m p _ d r i v e r ;  
retu rn (y_ou t ) ;  
} 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

/*system wait subroutine follows*/ 
float wai t  (dt) 
float dt; 
{ 
/* use system real time clock calls*/ 
} 
return(O); 
/ . . . . . . . . . . . . . . . . .  END . . . . . . . . . . . .  / 

/*See equation E6*/ 

/*call to f i lament  driver*/ 
/*call to temperature  driver*/ 

Constraints 

The use of stochastic processes for system identification 
is complex and requires the researchers to select and 
apply numerous constraints appropriately. The length 
of the pseudorandom binary code is important. A 
shorter code provides greater signal strength at each fre- 
quency, but provides less resolution in the final cross- 
correlation. For this application, the best selection is a 
code of  length fifteen. Regardless of the code length, the 
duration of the code run must be greater than the time 
of a washout curve; in addition, at least one run must be 
made prior to the initialization of the cross-correlation 
to "load" the system. The number of runs used in the 
cross-correlation is a function of the signal-to-noise 
ratio. In the absence of  noise, the cross-correlation con- 
verges in one run, but as the thermal noise of the system 
increases, more runs are required. This reflects the com- 
bined effects of  signal power, system thermal noise, and 
the observation interval or run time in influencing the 
accuracy of the final calculation. An ensemble length of 
ten runs in this application provides a final result in 5 
minutes with an error of less than 1%. 

The analog-to-digital (A/D) conversion rate must ex- 
ceed the pseudorandom binary state rate and be at least 
twice as fast as any noise components. Using an appro- 
priate low-pass filter before the A/D converter and sam- 
pling at five to ten times the pseudorandom binary state 

rate is appropriate. With such a high sample rate, the 
cross-correlation may be done by first averaging the 
sampled values for each binary state and then cross- 
correlating, or cross-correlating the entire observation 
buffer, that is, pseudorandom binary code times the 
number of runs times the samples of each code state. 
The C-language algorithm uses only one sample per 
pseudorandom binary state for simplicity. The cross- 
correlation in Figure 2 is obtained by cross-correlating 
the entire observation buffer, which contains ten sam- 
ples per code state. 
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Fig 2. The cross-correlation of ihe two traces of Figures 3 and 4. 
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Fig 3. Input power. Two cycles of a pseudorandom binary code of 
length fifteen. 

Evaluation of  Performance 

The method can be applied to any indicator dilution 
technique and can be evaluated in a bench model. For 
our purposes, at constant temperature, a constant flow 
of  water is directed through a test chamber. The test 
chamber has a volume comparable to that of  a heart and 
a volumetric flow rate that is adjustable from 2 to 10 L/ 
rain. A thermal transducer or heating filament is placed 
at the entrance to the chamber and a thermistor is placed 
at the exit o f  the chamber. The true flow rate is mea- 
sured by an in-line electronic flowmeter with a docu- 
mented accuracy and stability error less than 1% over 
the range of flows of  interest. Careful attention is given 
to analog circuitry, namely, amplifier gain, heater resis- 
tance, and thermistor gain. A sample of  two filament 
power runs of  length fifteen is shown in Figure 3, and 
the resultant temperature profile seen at the thermistor 
is shown in Figure 4. 

These two curves are cross-correlated according to 
the classic equation derived in Appendix E, namely, 

N - I  

1 ~ AT(iAt)a(i + kAt) = ~av(kAt). 
N 

i = 0  

o 0.04 
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Fig 4. Output temperature. The distal temperature detected as a 
result of a proximal input ofi5 W of peak power applied accord- 
ing to the pseudorandom code of Figure 3. 
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Fig 5. Linear regression of data obtained in a water model. True 
flow (abscissa) is measured with an in-line flow transducer and the 
compared flow (ordinate) is determined by using the algorithm in 
the text. 

The resulting cross-correlation, gbaAT(kAt), is the 
usual indicator dilution curve (see Fig 2). The area under 
the indicator dilution washout, cross-correlation func- 
tion ~baAT(kAt), is computed and the flow equation eval- 
uated. 

The system was evaluated with a peak thermal trans- 
ducer power (P) of  15 W and a total observation interval 
of  ten runs o f  the pseudorandom binary code. Linear 
regression of  the data (Fig 5) yielded y = 1.024x - 
0.157 (r = 0.99). The standard error o f  the estimate o f y  
on x (Sxy) is 0.13. The average coefficient of  variation is 
less than 2%. 

DISCUSSION 

The technique of  measuring volumetric fluid flow is 
derived from both conservation of  mass and stochastic 
system identification principles. The technique is 
straightforward to implement, measures true vol- 
umetric flow, requires no user calibration, and is inde- 
pendent of  the physical geometry o f  the system. The 
required devices can be mounted on a pulmonary artery 
catheter and used clinically to measure cardiac output 
continuously and with minimal user effort. 

The stochastic system identification principles pro- 
vide two other advantages. Because the pseudorandom 
sequence iiavolves a duty cycle o f  approximately 50%, 
heat is supplied to the fluid without  requiring high peak 
power or temperature levels. The actual filament fluid 
boundary temperature is a function of  power heat d e n -  
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sity, f i lament  surface area, and fluid velocity;  howeve r ,  
for  this conf igura t ion ,  b o u n d a r y  surface tempera tures  
are a p p r o x i m a t e l y  50C above  ambien t  fluid t empera tu re  
at 6 L /min ,  

This  s tochast ic  sys t em identification technique was 
evaluated in a wa te r  bench  model ,  wh ich  has little ther-  
mal  b a c k g r o u n d  noise and is found to be accurate and 
precise o v e r  a wide  range  o f  flows. When  the technique 
is evaluated in in v ivo  prepara t ions ,  a greater  challenge 
is present  because o f  the the rmal  b a c k g r o u n d  noise. T h e  
ability o f  this technique to funct ion in a the rmal ly  noisy 
e n v i r o n m e n t  has been addressed [35]. 

APPENDIX A 

Some of  the abbreviations and equations used in this article are 
defined here. 

APPENDIX D 

The thermal dilution equation to calculate average flow is 
based on the conservation of  heat equation. Known as the first 
law of  thermodynamics [36,37], total energy entering a con- 
trol volume must be equal to the sum of the increase of  energy 
in the control volume and the energy leaving the control vol- 
ume. Assuming that indicator mixing is both instantaneous 
and complete and that at steady state indicator does not ac- 
cumulate in the mixing chamber, the basic indicator dilution 
equation, stated in terms of  differentials, is dl(t) = c(t) x F(t) 
• dt, where the various quantities have the following mean- 
ings and units: Indicator amount = (indicator amount/ml 
blood) x (ml blood/s) • (second). 

When heat is the indicator, dI(t) is written dQ(t), and the 
indicator concentration function, c(t) (in cal/ml blood), is 
defined as c(t) = p cAT(t) [37], where p is the density of  blood 
(in g/ml), c is the specific heat of  blood (in cal/~ �9 g), and 
AT(t) is the associated temperature rise (in ~ as a function of 
time t. Substitution of the appropriate expressions for dI(t) 
and c(t) yields the differential form of  the thermal dilution 
equation*: 

m 

P 

AT 
F 
Q 

q 
Heat capacity 

C 

X 

Y 
h 

a 

6=(k~t)  

~(kAt) 

At 
N 
P 

mass (g) 
density (g/ml) (a value of  1.05 for blood 

[18], a value of  1.00 for water) 
change in temperature (~ 
volumetric flow (ml/s or L/rain) 
heat infusion (calories) 
heat bolus (calories) 
heat (cal)/temperature change (*C) = AQ/ 

AT 
specific heat = heat capacity/mass = 

AQ(cal)/ATm(~ (for blood, a specific 
heat (c) of  0.87 is acceptable [18]). 

input (flow) to the two-port  system 
output (flow) from the two-port  system 
system impulse response 
pseudorandom binary code with states of  1, 

0 
pseudorandom binary code with states of  1, 

-1 
N - I  

1 
E x(iAt) x(i + kAt) 

N i = 0 (autocorrelation) 

1 N-1 
E x(iAt) y(i + kAt) 

N 
i = 0 (cross-correlation); 

~bxy(kAt) is the cross-correlation between 
the input binary code (x) and the system 
output (y) 

duration of  a state (seconds) 
period of  pseudorandom binary sequence 
peak fdament power (watts) 

dQ(t) = p cAT(t)F(t)dt. (A1) 

If a bolus of  heat is introduced following time zero, equation 
A1 may be integrated to obtain the following: 

~J~3dQ(t) = pc  ISAT(t)F(t)dt. (A2) 

If the flow rate is a constant F and if the total heat in the bolus 
is q = J~dQ(t), then the foregoing may be solved for the 
constant flow, yielding the thermal dilution equation for bolus 
injection [39-41]: 

r = q (^3) 
m 

p cJi AT(t)dt 

If, instead of  using a heat bolus, heat is pumped into the sys- 
tem at a varying rate, (dQ/dt) = Q(t), then equation A1 
becomes 

(~(t) = p cAT(0F(t). (A4) 

* Mixing is not instantaneous and can be incomplete. At certain low 
flow rates and rapidly changing heat infusion rates, the mixing cham- 
ber capacitance may have an effect. The heat balance equation be- 
c o m e s  

dAT(t) 
dQ(t) _ pcF(t)A T(t) + pcV 

dt dt 

where V is the effective mixing volume. A more detailed discussion is 
given by Rubin [38] and Philip et al [15]. 
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This form of  the thermal dilution equation is central to the 
present method and is basic to the development of  the funda- 
mental equation in Appendix E. 

Equation A4, in its simple form, can be used to measure flow. 
If a constant heat infusion is used, call it (~(t) = (~, and the 
flow rate is a constant F, then solving equation A4 for the flow 
yields the thermal dilution equation for constant heat infusion: 

0 caT " (A5) 

Since heat infusion rate and flow rate are constant, the temper- 
ature rise is also a constant. This method has been used suc- 
cessfully in laboratory bench and animal studies [13,42,43]. 

APPENDIX C 

desired, the shifted function y(]-T-kAt) is multiplied by x(iAt) 
for each time and the products averaged. 

Once these relatioriships are developed, the system impulse 
response is defined by a different convolution equation, 
namely: 

N - - I  

qbxy(kAt) = X h(iAt) ~bx~(i - kAt). (C1) 
i ~ 0  

This equation implies that one need only observe the input and 
output of  a system regardless of  what they are, t until the 
autocorrelation and cross-correlation cori~verge. Then, the sys- 
tem impulse response can be determined by the convolution 
summation. 

Because this equation is difficult to solve, numerous simpli- 
fying techniques are used. The most obvious one is to use 
broad-band white noise as the input. Because white noise is 
completely uncorrelated with itself, its autocorrelation is non- 
zero at only one point, namely, i = k. In this case, the cross- 
correlation is proportional to the system impulse response: 
dpxy(kAt) = C h(kAt). C a constant. 

Stochastic Signal Processing Techniques 

Engineers are familiar with the discrete system impulse re- 
sponse or convolution sum, 

N - !  

y(kAt) = ~ h(iAt) x(i --W-kAt), 
i = 0  

where x(kAt) is the input to the system, y(kAt) is the output, 
and h(kAt) is the characteristic system impulse function. Be- 
cause the convolution equation is difficult to invert reliably in 
practice, numerous techniques are used to measure the system 
impulse response. For example, if the classic unit impulse is 
used, x(i - kAt) has a value only when i = k, and the output 
is the system impulse response y(kAt) = h(kAt). 

An alternative to using deterministic signals is to use ran- 
dom signals and determine the properties of  the input and 
output signals of  a system. For example, the input to the 
system could be a random process. If  the input is x(iAt), then it 
is useful to define the autocorrelation of  the input as follows: 

~ x(iAt) x(i + kAt), 1 ~x(kAt) = 
i=O  

where x(iAt) is the input, x(i"+ kAt) is a delayed version o f  the 
input, and N is the observation interval. 

The method of  evaluating this function is straightforward. 
The function x(iAt) is duplicated but shifted by an amount k. 
Then, for each value o f  k desired, the two functions of  x(iAt) 
are multiplied together for each time and the products av- 
eraged. 

In a similar fashion, it is useful to define the relationship 
between the input and the output o f  a system. This relation- 
ship, known as the cross-correlation, is defined as follows: 

1 x(iAt) y(i + kAt), ,bxy(kat) = 
i = 0  

where y(i + kAt) is a delayed version o f  the output. 
Evaluation o f  this function is straightforward. The function 

y(iAt) is shifted by an amount k. Then, for each value of  k 

APPENDIX D 

Pseudorandom Binary Codes 

A full development of  pseudorandom binary codes is beyond 
our scope and is available elsewhere [27]. Pseudorandom bi- 
nary codes are so named because, even though they are binary 
sequences with deterministic properties and are periodic, the 
autocorrelation of  such codes closely resembles that of  random 
or white noise processes. Several essential properties are o f  
interest. The pseudorandom binary codes can be physically 
realized with n-stage shift registers with appropriate feedback 
loops. Each stage has a unique binary state, for example, - 1 
and 1, and the periodicity o f  the last stage (the output) can be 
equal to N = 2" - 1, where n is the number of  stages. This 
results in codes of  total length N = 7, 15, 31, 63, etc. Two 
periods o f  a sample code o f  length seven are shown in Figure 
6. The duration o f  each state (At) is arbitrary and in this ex- 
ample equals 1 second. The only limitation is that the total 
period, (AtN), must be longer than the total impulse response 
time of  the system being measured, h(k). Also note that there 
is one more high than low state. 

The Fourier series o f  the binary code reveals the frequency 
content. The series involves N frequencies, (1/AtN), (2/AtN), 
. . . .  (N/ATN), each with an amplitude, [sin(2qrj/AtN)]/(2~rj/ 
AtN). A normalized power-density spectrum is shown in Fig- 
ure 7. 

Our interest is in the autocorrelation properties o f  the 
pseudorandom binary sequence. As an example, consider a 
code of  length seven, namely, - 1 ,  1, 1, 1, - 1 ,  1, - 1 .  The 
autocorrelation is given by the discrete equation: 

N - I  

1 E x(i) x(i + kAt). ~bx~(kAt) = ~- i=o 

tThere are some limitations, the main one being that the bandwidth 
of the input signal must be broader than the bandwidth of the system 
response. 
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._> A t , . _  , N A t  �9 

Fig 6. Two rims of a pseudorandom binary code of length seven. 
At = state_duration (seconds); N = period of pseudorandom bi- 
nary sequence. 

1 . 0  
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Fig 7. The frequency content of a pseudorandom binary code of 
length fifteen. N = period of pseudorandom binary sequence; At 
= state duration (seconds). 
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Fig 8. The cross-con'elation of pseudorandom binary codes a (I, 
- 1 )  and ~ (1, O) of length seven�9 N = period of pseudorandom 
binary sequence; At = state duration (seconds). 

For the case o f  a delay equal to zero, k = 0, the code is - I, 
+1,  +1,  +1,  - 1 ,  +1,  - 1 .  Then, from the definition, the 
zero-lag autocorrelation is calculated as 

1 [ ( -  1 ) . ( -  1) + (1).(1) + (1)'(1) + (1).(1)] 
4,.~(o) = TL + ( -  1). ( -  1) + (1)- (I) + ( -  1) - ( -  1) ] 

= 1. 

For the case of  a delay equal to one, k = 1, the unshifted code 
is multiplied by the code shifted by one time interval. The 
unshifted code remains - 1, + 1, + 1, + 1, - 1, + 1, - 1. 
The one-shifted code is - 1, - 1, + 1, + 1, + 1, - 1, + 1. 
Hence, the one-lag autocorrelation is 

~bx.(1) = + [ ( -  1 ) . ( -  1 )+  ( 1 ) . ( - 1 )  + (1)-(1) + (1).(1)] 
+ ( -  1). (1) + ( 1 ) - ( -  1) + ( -  1). (1) 

1 

7" 
The process is continued for other values of  k, both positive 
and negative. It can be demonstrated for the general case that, 

for a code having amplitudes --z-1: 

dpxx(kAt) = + 1 for k = 0, N, 2N . . . .  

1 
- - -  otherwise. 

N 

For our purposes, the input sequence used has the two states 1 
or O. However, in Appendix E, cross-correlation is performed 
by using a code with states 1 or - 1 .  The cross-correlation 
between a and ~ has these values [27]: 

N + I  ~=~(kAt) = 2-----~ for k = 0, N, 2N . . . .  (DI) 

= 0 otherwise. 

This cross-correlation, ~b,a(kAt), is shown in Figure 8. Note 
that it has a nonzero value only at k = 0, N, 2N, . . . and is 
central to the calculation in Appendix E. 

APPENDIX E 

Conservation o f  Heat  and Stochastic Processes 

When a stochastic process is used to determine the system 
impulse response, it is necessary to derive the conservation of  
heat equation that will allow the calculation o f  volumetric 
flow. Recall the basic heat infusion equation (A4): 

(~(t) = pcAT(t)F(t). (A4) 

This can be written in the discrete form: 

(~(iAt) = pcAT(iAt)F(iAt). (El) 

Assuming the flow is a constant F and thermal power is sup- 
plied with amplitude H(iAt),  where P is in watts and ~(iAt) is 
the pseudorandom binary code of  amplitude 1 or 0, then, 
making the relevant substitutions (and converting from cal/s 
to watts) yields 

P~(iAt) = 4.18pcAT(iAt)F. (E2) 

Multiplying both sides of  equation E2 by 1/Na(i + kAt) and 
summing on i from zero to N - 1 yields 

N - I  
l P ~  E ~(iAt)a(i + kAt) (E3) 

i ~ O  

i = O  

Now,  the lefthand side is just  P ~ ( k A t ) .  The brace on the 
righthand side is d~AT(kAt). Hence, equation E3 may be 
simplified to 

P~b~(kAt) = 4.18pcFd~=aT(kAt). (E4) 

Both sides of  equation E4 are summed on k. Using equation 
D1, namely, that d~(kAt) equals N + 1/2N when k = 0 and is 
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zero for k = 1, 2 . . . . .  N - 1, equation E4 reduces to 

p ( N + I /  N-, 
\ ~ /  = 4.18pcF ~ ~baaT(kAt). 

k=O 
(E5) 

IfF is to be measured in L/min rather than ml/s, multiply F by 
1,000/60 and solve for F: 

F = P(60/4,180) (E6) 

OC ~b~aT(kAt) 
k=0 
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