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10 years ago to the day ...
€3

2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 19-22, 2003, New Paltz, NY
DINNER 6:00PM-7:20PM
SESSION N: RESYNTHESIS AND CROSS-SYNTHESIS 7:20PM-8:20PM

7:20pm  Rejection Phenomena in Inter-Signal Voice Transplantations
Werner Verhelst and Henk Brouckxon, Vrije Universiteit Brussel, Brussels, Belgium
7:40pm  Discrimination of Sustained Musical Instrument Sounds Resynthesized With Randomly Altered
Harmonic Amplitudes
Andrew B. Homner, Hong Kong University of Science and Technology, Kowloon, Hong Kong
James W. Beauchamp, University of Illinois at Urbana-Champaign, Urbana, IL, USA
8:00pm  Time-Scale Modification of Music Using a Subband Approach Based on the Bark Scale
David Dorran, Dublin Institute of Technology, Dublin, Ireland
Robert Lawlor, National University of Ireland, Maynooth, Ireland

SESSION O: MUSIC SIGNAL PROCESSING - MUSIC TRANSCRIPTION 8:20PM-9:20PM

Paris Smaragdis, Mitsubishi Electric Research Lab, Cambridge, MA, USA
Judith C. Brown, Wellesley College, Wellesley, MA, USA

8:40pm Generative Model Based Polyphonic Music Transcription
Ali Taylan Cemgil and Bert Kappen, University of Nijmegen, The Netherlands
David Barber, Edinburgh University, UK

[ 8:20pm  Non-Negative Matrix Factorization for Polyphonic Music Transcription ]
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What is this talk about?
£
e What are all these “non-negative” papers?

e What is special about this approach?

e What can we do with it?
@ And why should we bother?




Traditional signal processing
€13
e Axiom 1: “Thou shall love the Gaussian”
@ Why? It makes the math easy

e Gave rise to least squares models:

ylt) = x(t)+nlt)
/ \ Gaussian nois

What we get What we want




A misunderstood model
€3
® Abusing the noise model
t) = x(t t
ylt) = x(t) + nlt)

Target sound “Other sounds”

® Other sounds are not Gaussian noise!

@ In fact neither is your target sound




And the impending revolution
® mid-go’s: The ICA community

@ Sources are not really Gaussian

® mid-2000’s: Compressive Sensing

@ Data is sparse in the right domain

® mid-2000’s: Non-Negative Models

@ We only care about positive-valued quantities
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Picking a meaningful domain

A
e Waveforms are not that intuitive, we instead

use spectrograms to examine audio signals
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Decomposing spectrograms
® What are the building blocks of spectrograms?

@ Standard question in machine learning

® The low-rank matrix factorization:

X~W- -H

2




The usual suspect
-

® Principal Component Analysis: X =W -H
? ™~

orthonormal decorrelated
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Why is this result meaningless?
® This least-squares/Gaussian model is

counter-intuitive for sound

@ Makes use of cross-cancellation

® We perceive scenes additively

@ We need an additive decomposition!
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Non-Negative Matrix Factorization

e All factors are positive-valued: X~ W -H

@ Resulting reconstruction is additive
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Why is this a better model?
® 1) It allows us to intuitively model sounds

@ All quantities mean something

® 2) The model parameters are additive

@ This also means we are invariant to mixtures

® We can easily redefine previous work
@ And reap the benefits!
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Wiener filtering / Spectral subtraction
-
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® Learn “noise” spectrum, and filter/subtract
@ And it doesn’t work with complex noises ...
@ Extra complications due to negative values

ABOUT THIS NON-NEGATIVE BUSINESS




19.617939


The non-negative version
£33
® Learning a sound model

@ An additive dictionary instead of a spectrum

X~W.-H
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Denoising

® Explain a mixture with the existing model

@ Add new elements to explain the rest of the signal

Learned bases Input mixture data
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Reconstruction

® Parts-wise reconstruction:

X=X, +X,~W, -H, +W,_H,

| |
Spectrogram Spectrogram
of unknown target of known “noise”
Extracted target / Extracted "noise"
M.\:‘AM
pan S T
ity A ¢ VL o Ep— T TR e - e TR o P Lt

ABOUT THIS NON-NEGATIVE BUSINESS




8.646549


Why bother?
® Better statistical fit for the data

@ Results in better sounding outputs

® Flexible learning of “noise” model

@ No need to simply temporally segment
@ Spatial guidance, user guidance, TF guidance, ...

® Demo timel!
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Layer editing options

Original drum loop | Extracted layers
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So what?
® We can resolve mixtures well

@ But what's the use of that?
@ My mantra: “Separation is useless”

e What matters is the additivity of the model

@ Allows us to not care about mixing

H, y~H, ., +H,,

(t)+yl(t
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Sound classification/detection
® Machine learning approaches are a poor fit

@ Can’t use winner-takes-all classification

® The real question: How active is each class?
@ Not whether it exists
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A challenging example
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The non-negative treatment
® Decompose as:
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® Energies in h express

presence of each sound
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“Additive” sound recognition

We can now find simultaneous sound classes
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Adding the temporal dimension
® To be serious we should use Markov models
@ The non-negative HMM:

QQM @(JJU:




Advantages over GMM HMMs
® No need for factorial models

@ Sum of models = model of sum of sounds
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Speaker separation challenge
® WER doesn’t drop drastically with maskers
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Parameter estimation in mixtures
® Estimate parameters of only one sound in mix
@ Usually hard due to mixing

® Associate components with parameter
@ Learn on tagged data

® Explain new input with model

@ Use component / parameter association
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Fxample: Pitch tracking
|
e Works fine on clean sounds

@ Fails miserably on dense mixtures ...

20000 F
12000

6000 |-
)

T 3500
> e e o s
S 2000 de-gme w0

>
o

1000 = Frme o
o

500

100

=
[T

Time (sec)

600

500

400

300

200

T THIS NON-NEGATIVE BUSINESS




5.041644


The non-negative pitch tracker

£
® Learn model from tagged data:
X, — P, 78888
x, ~W-h, . :

® Associate components & pitch:
P<Wi - pt) X hi,t/Z h,

® Associate pitch to new inputs:
Y, =~ W ht

P(B’t — pt) X Zhi,tpi/z hi,t
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Result
A
e Sharp pitch probabilities on mixture

Estimated P (a) P“(q) with C=0.0015
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@ And also works for phonemes, sound class,
loudness, and other parameters
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And | could go on and on ...
® Echo-cancellation, dereverberation,
multi-modal processing, missing data,

convolutive models, tensor versions, ...

® Rich literature on non-negative models
@ Lots of WASPAA/ICASSP papers
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So what is coming up next?
® Theory:
@ Problem definition, parameter estimation,
convergence properties, variations and
generative models, dynamical systems, ...

® Practical directions:
@ Multi-channel data formulations
@ Alternative TF front-ends
@ Efficient formulations for big data
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Rethinking the array

We can re-conceptualize beamforming

@ Example case: Lots of cell phones in concert
@ All recordings will be bad and non-synced
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A non-negative take

Joint component analysis
@ Common components are of interest
@ Non-common components are noise

@ Optional priors from reference recordings
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Fxample case

20000 T T
12000

8
Time (sec)
Highpass & interference
20000 T T T T T T T
12000

Time (sec)

20000 T

12000

6000

Frequency (Hz)

et

Time (sec)

Bandpass & clipping

-
T T
12000

Frequency (Hz)

Time (sec)

ABOUT THIS NON-NEGATIVE BUSINESS




15.046456



15.046456



15.046456


Recovered signal

® Recovery of full bandwidth >
@ Suppression of uncommon elements
@ Not sensitive to non-linearities/synchronization

Original input Recovered signal
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Alternative TF front ends
® The STFT has poor frequency resolution

@ We can do better with other transforms
o Constant-Q, reassigned spectra, sinusoidal models, ...

® But that data is not in a matrix format!!
@ Reformulate NMF as a function approximation
@ Allows us to use arbitrary TF representations
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Sinusoidal model example

Sinusoidal Modeling
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Reassigned spectra example

Long FFT window
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NMF for big data
® How do we analyze huge recordings?

@ Operate on landmark space instead
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To conclude
® The wild west is in non-negative models

@ Can they be the new Gaussian?

® A more perceptual take on analysis

@ Still on unclear math ground though

® Thanks!
@ And many thanks to Nick Bryan, Minje Kim,
Gautham Mysore, Madhu Shashanka
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