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S
ource separation models that make use of nonnegativity 
in their parameters have been gaining increasing popu-
larity in the last few years, spawning a significant number 
of publications on the topic. Although these techniques 
are conceptually similar to other matrix decompositions, 

they are surprisingly more effective in extracting percep-
tually meaningful sources from complex mix-
tures. In this article, we will examine the 
various methodologies and exten-
sions that make up this family of 
approaches and present them 
under a unified framework. 
We will begin with a short 
description of the basic con-
cepts and in the subsequent 
sections we will delve in 
more details and explore 
some of the latest extensions. 

Using nonnegative 
factorization  
models for separation
The basic model we will use to get started is a bilinear factor-
ization of a nonnegative input V  into two nonnegative matrices W  
and ,H  i.e., ,V WH.  where both of the two factor matrices can be 
of lower rank than .V  This is known as the nonnegative matrix fac-
torization (NMF) [1] model, and it is conceptually similar to other 
well-known matrix factorizations such as principal component ana-
lysis, independent component analysis, sparse linear models, or 
even vector quantization, which can all be expressed using the same 

equation [2]. What makes this model particularly interesting is the 
constraint that the matrices ,V  ,W  and H  are all nonnegative. This 
constraint ensures that the vectors making up the two factor matri-
ces W  and H  can be interpreted as constructive building blocks of 
the input. Such an interpretation often does not apply to decompo-

sitions that employ negative-valued entries; in such 
decompositions, the elements of W  and H  

can cancel each other out, obscuring the 
latent components’ perceptual 

meaningfulness [1]. When NMF 
is applied to data that was gen-

erated by mixing a number of 
nonnegative sources, the 
components NMF discovers 
often correspond remark-
ably well to those sources, 

and the decomposition is able 
to separate out the contribu-

tions of each source to the data. 
Since NMF can operate even without 

any prior information about the nature of 
the sources in the data, it is particularly well 

suited to unsupervised or blind source separation problems. 
Some examples of interpretable components discovered by NMF are 
presented in Figure 1. 

Sometimes it is more natural to represent complex sources 
using a linear combination of multiple latent components that 
collectively make up source dictionaries. In this case, we need one 
more level of hierarchy to group these components in terms of 
sources. Although in some cases this grouping could be obvious 
or analytically tractable, it is in principle not easy to compute. 
One can overcome this problem by using nonnegative factoriza-
tion models in a supervised manner and explicitly providing cues 

[Paris Smaragdis, Cédric Févotte, Gautham J. Mysore,  

Nasser Mohammadiha, and Matthew Hoffman]

[A unifed view]

Static and Dynamic  
Source Separation Using 

Nonnegative Factorizations

image licensed by  
ingram publishing



	 IEEE SIGNAL PROCESSING MAGAZINE  [67] ma y 2014

to the nature of the sources. This involves learning a dictionary for 
each target source by using the above model on clean training 
data that presents that source in isolation, and then identifying 
where in a mixture the dictionary elements associated with each 
source lie. If our data is not nonnegative already, to employ a non-
negative factorization we need to transform our inputs to an addi-
tive (or approximately additive) nonnegative representation. For 
many kinds of time series, such a domain can be a time-frequency 
localized energy measure computed 
via a harmonic decomposition such 
as the Gabor transform, or a wavelet 
decomposition. Since most natural 
signals tend to be sparse in the mag-
nitude or power, by using these 
transforms we can often guarantee 
with high probability that the trans-
form of the sum of two sources will 
be equal or approximately equal to 
the sum of the transforms of the two 
sources separately, which can satisfy the additivity constraint. As 
we show later, depending on the exact NMF model and the 
representation used, the additivity assumption can be one that is 
either weak or strong.

To demonstrate the separation process with a tangible exam-
ple, let us look at a hydrophone mixture containing a whale 
song (target source) and sea clutter (background sources). We 

represent this mixture using a magnitude short-time Fourier 
transform (STFT), which is shown in Figure 2(c). To learn a target 
source dictionary we use a clean recording of whale songs 
[Figure 2(a)]. This is done by analyzing the matrix containing 
the STFT representation using any of the models that we detail 
in the remainder of this article. A learned dictionary is shown in 
Figure 2(b), and as one can see its elements represent salient 
spectral features that comprise the whale song recording. We 

can repeat this process for the sea 
clutter source to get components 
that describe it too. In practice, a 
few seconds of training data is usu-
ally enough to learn an adequate 
model of a source, although this 
can vary depending on the domain 
and source characteristics we are 
dealing with. The number of com-
ponents per dictionary determines 
how accurately we want to model 

the sources, with more components giving us more expressive 
power but at the cost of making a dictionary so rich that it 
could describe other sources as well. 

Given the approximate additivity assumption and a represen-
tative set training data, we can now hypothesize that the mixture 
recording will be explained by a linear combination of the ele-
ments in the source dictionaries, i.e., that ,X W W H1 2. 6 @  will 

[Fig1]  Extracted NMF components from various domains. (a) The analysis of handwritten digital data results in parts of penstrokes,  
(b) the analysis of chemometric data results in the spectral profiles of the three constituent components (oxylene, napthalene, 
dibenzothiophene), and (c) the analysis of music spectrograms results in spectra of musical notes.
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approximately hold, where X  contains the magnitude STFT of 
the mixture and W1  and W2  are the learned left factors from the 
training data of the two sounds. We thus only need to compute 
the matrix H. Given the ability to compute the full NMF model, 
the estimation of the H  matrix can be easily obtained by fixing 

,W W1 26 @ and only updating the estimate for .H  Once this is 
computed we can reconstruct the mixture using only the diction-
ary of one source at a time, which will produce in a time-fre-
quency representation of the two sources separately, which can 
then be inverted back to the time domain. The only assumption 
that needs to hold at this point is that the two source dictionaries 
are sufficiently different from each other so that they do not 
model the same elements in the mixture. Although there is no 
easy way of quantifying the required degree of dissimilarity in 
real-world examples, this is a process that works even in cases 
where the sources are very similar (e.g., two speakers of the same 
gender), and by incorporating the ideas in the remainder of this 
article we can even separate sources that share identical diction-
aries by making use of their temporal statistics. In this particular 
case, the dictionaries that characterize the two sources have min-
imal similarities and produce a very clean separation. The result 
of extracting the whale song from the hydrophone mixture is 
shown in Figure 2. The details of this process and its generaliza-
tion in the case where we might not have dictionaries for all the 
sources is described in [3]. 

This basic approach of supervised separation has spawned 
much subsequent research using varying approaches and method-
ologies, often seemingly incompatible with each other. In the fol-
lowing sections we will take a closer look at the details of various 
formulations of nonnegative factorization models, and will show a 
unified progression of techniques that spans from the simple static 
models (such as the ones shown above) to more complex dynamic 
approaches that incorporate more temporal information and can 
produce higher-quality results. We will predominantly focus on 
the statistical interpretation (and variation) within NMF algo-
rithms and then we will show how these can be extended to two 
kinds of useful temporal models: continuous state and discrete 
state models, which in turn can take advantage of temporal infor-
mation to improve the performance of source separation tasks. 

Static models

A probabilistic view of NMF
Traditionally NMF is applied by solving the optimization prob-
lem defined by 

	 ( | ) , ,min D 0 0s.tV WH W H
,W H

$ $ 	 (1)

where ,V  ,W  and H  are nonnegative matrices of size ,F T#  
,F K#  and ,K T#  respectively. The notation 0M $  denotes 

[Fig2]  Extracting a target source from a hydrophone ocean mixture using a nonnegative dictionary. The training data in (a) are 
isolated whale songs used to learn the dictionary shown in (b). Not shown are the equivalent plots for sea clutter sounds. These 
dictionaries are then used to extract their respective sources from a mixture that includes them, shown in (c). The extracted whale 
song is shown in (d).
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element-wise nonnegativity of M  (and not semidefinite positiv-
ity) and ( |D )V WH  is a separable measure of fit such that 

	 ( | ) ( | ) .D DV WH v Wh
t

T

t t
1

=
=

/ 	 (2)

( | )D x y  is a divergence between vectors x  and ,y  i.e., a non-
negative function of y RF! +  given ,x RF! +  with a single minimum 
(zero) for .x y=  For convenience we will use the same notation 
( | )D $$  to denote the divergence between vectors or matrices, with 

the convention that in the matrix case the divergences between col-
umns simply add up as in (2). Common divergences used in NMF 
include the squared Euclidean distance (see [46]), variants of the 
Kullback–Leibler (KL) divergence [1], 
and the Itakura–Saito (IS) divergence 
[4]. More general families of diver-
gences considered for NMF include 
alpha-beta [5] and Bregman diver-
gences [6]. A comprehensive review of 
divergences and algorithms used for 
NMF can be found in [7]. 

In many cases divergences are 
likelihoods in disguise (and are as 
such sometimes referred to as pseu-
dolikelihoods) in the sense that they underlie a probabilistic gener-
ative model of the data. The correspondence is such that there 
exists a probability density function (pdf) ( | , )p V W H  that satisfies 

	 ( | ) ( | ) ,logp a D bV WH V WH- = + 	 (3)

where a  and b  are constants with respect to .WH  Some examples 
of correspondences are given in Table 1. Note that this correspond-
ence does not automatically imply a coherent generative model for 
nonnegative real-valued data; e.g., although the generalized KL 
divergence is a valid measure of fit on the whole positive orthant, 
the corresponding Poisson likelihood is only a true likelihood on 
the nonnegative integers, and in the large-variance setting the 
additive Gaussian model could generate negative data. However, 
these theoretical issues can usually be resolved; see, e.g., [8]. 

In this article we focus on two probabilistic NMF models that 
have been widely used in source separation: probabilistic latent com-
ponent analysis (PLCA), which is closely related to NMF with the KL 
divergence [9], and the Gaussian composite model (GCM), which is 
closely related to NMF with the IS divergence [4]. A common feature 
of these models, shared by the models in Table 1 as well, is that the 
conditional expectation of V  is WH  (i.e., | ),V WH WHE =6 @  and 
that the data points are conditionally independent given WH  [i.e.,
( | ) ( | )] .pp V WH v Wh

t t t= %  These simple factorization models 
are “static” in the sense that data points (columns of V ) could be 
exchanged without any effect on the estimates other than a permu-
tation of .H  Dynamic, nonexchangeable models will be introduced 
later in the article using temporal priors on .H  

Probabilistic Latent Component Analysis
PLCA is an extension of probabilistic latent semantic indexing 
(PLSI) for signal processing applications [9]. PLSI is a method 

for text analysis based on word counts from documents [10]. In 
PLCA, the input matrix V  is a magnitude spectrogram 

| | ,v xft ft=  where xft  is the complex-valued STFT of some time-
domain data. PLCA interprets the entries of each column vt  of 
V  as a sort of histogram of independent identically distributed 
(i.i.d.) frequency “quanta” { , , }f F1 f!  in each time frame .t  
The data distribution in PLCA is therefore 

	 ~ ( | , ),Multv v v vt t t t1 t 	 (4)

where || | | vv ff1 =/  is the 1,  norm, ,v Wht t=t  and ( , )NMult p  
denotes the multinomial distribution. In PLCA it is imposed that 

,1w hk t1 1= =  which in turn implies that .1vt 1 =t  A draw 
from ( , )NMult p  returns an integer-
valued vector of dimension F  whose 
entries sum to .N  The fth entry of 
this vector corresponds to the num-
ber of times event f  was sampled in 
N  independent draws from the dis-
crete distribution defined by .p  
Although usual inputs in source sep-
aration problems are not integer val-
ued, the negative log-likelihood of the 
data and parameters in PLCA provides 

a valid divergence for nonnegative real-valued data. Specifically, 
under (4) and introducing the normalized data / ,v v vt t t 1=r  the 
negative log-likelihood is given by 

	 ( | ) ( | ) ,logp DV V v v cstvt t t
t

1 KL- = +t r t/ 	 (5)

where “cst” denotes terms constant with respect to Vt  and 
( | )D x yKL = ( / )logx x y

f f f f/  is the KL divergence between dis-
crete distributions. As such, PLCA essentially minimizes a 
weighted KL divergence between the normalized input and its fac-
torized approximation, where every data point is given a weight 
equal to its sum. 

IS-NMF and the Gaussian Composite Model  
Underlying IS-NMF is a multiplicative noise model of the form 

. ,v vfn fn fne= t  where fne  has a Gamma distribution with 

[Table 1] Common divergences and their correspond-
ing probabilistic generative models. We define 

,v Wht t=t  whose coefficients are denoted .vftt  All 
three models verify .[ | ]E v v vt t t=t t

Divergence 
( | )D v vt tt

Latent generative model 
( | )p v vt tt

Squared Euclidean distance 

( )v v
2
1

f ft ft2
2

v
- t/

Additive Gaussian 
( | , )v vN

f ft ft
2vt%

Generalized KL divergence

( )logv v
v v v

f ft
ft

ft
ft ft- +t
t/

Poisson
( | )v vP

f ft ftt%

IS divergence

logv
v

v
v 1

f ft

ft

ft

ft- -t tc m/
Multiplicative Gamma

( | , / )G v v
f ft fta a t%

When NMF is applied to  
data that was generated  

by mixing a number of 
nonnegative sources, the 

discovered components often 
correspond remarkably  
well to those sources.
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expectation one. The resulting data distribution is given in 
Table 1 and the negative log-likelihood is such that 

	 ( | ) ( | ) ,logp DV V V cstV ISa- = +t t 	 (6)

where ( | )DIS $ $  is the IS divergence defined in Table 1. 
When ,1a =  i.e., when the multiplicative noise has an expo-

nential distribution, the multiplicative noise model can be related to 
a generative model of real- or complex-valued data coined Gaussian 
composite model (GCM) [4]. The model is in particular a valid prob-
abilistic model of STFTs. Let xft  be the complex-valued STFT of 
some time-domain signal. The GCM is defined by cx fktkft =/  and 

~ ( , ),c w h0Nfkt c fk kt  where ( , )0Nc m  refers to the circular complex 
Gaussian distribution with zero mean. 
A random variable has distribution 

( , )0Nc m  if its real and imaginary 
parts are independent centered Gauss-
ian variables with variance / .2m  In 
other words, the GCM models the 
STFT as a sum of uncorrelated cen-
tered Gaussian components struc-
tured through their variance. The variance of the kth component is 
characterized by the spectral pattern ,wk  amplitude-modulated in 
time by the coefficients { } .hkt t  The centered assumption reflects an 
equivalent assumption in the time domain, which holds for many 
signals (in particular audio signals). The latent components cfkt  can 
trivially be marginalized from the generative model, yielding 

~ , .x w h0N
kft c fk kt` j/  It follows that the power spectrogram 

| |v xft ft
2=  of xft  is exponentially distributed with mean 

,v w h
kft fk kt=t /  and can thus be written as a special case of the 

multiplicative Gamma model given in Table 1 with .1a =  Under 
this model, minimum mean squares estimate (MMSE) of the com-
ponents can be obtained by Wiener filtering and given by 

[( ) / ] .c w h v xfkt fk kt ft ft=t t

Which model to use?
An important feature of the GCM is that the phase of the original 
complex-valued data is preserved in the generative model 

(though it is modeled in an uninformative way, owing to the cir-
cular assumption) rather than discarded, as in PLCA. Addition-
ally, the additivity assumption holds strongly in the original 
STFT domain. The IS divergence turns out to be a scale-invariant 
measure, i.e., ( | ) ( | ),d x y d x yIS ISm m =  where ,x  ,y  and m  are 
positive scalars. This makes it well suited to audio spectrograms 
and their widely varying ranges of magnitudes; a more detailed 
discussion is in [4]. In contrast, PLCA will rely more heavily on 
data vectors with large norms, as can been seen from the diver-
gence expression in (5). Whether this is a desirable property or 
not depends on the data and specific task. A downside of the IS 
divergence with respect to the weighted KL divergence of PLCA 

is its lack of convexity with respect 
to its second argument, which leads 
more often to local solutions in 
practice, as explained in the next 
section. PLCA and IS-NMF were 
benchmarked in [11] for speech sep-
aration and audio interpolation 
tasks. However, a consensus did not 

clearly emerge from the experiments as to which method is best, 
and the conclusions were often data or task dependent. 

Estimation
We now discuss estimation in PLCA and IS-NMF, i.e., the opti-
mization of the objective functions (5) and (6) with respect to W  
and .H  Like virtually all NMF algorithms, PLCA and IS-NMF rely 
on a block-coordinate descent structure that alternates between 
updating W  holding H  fixed and updating H  holding W  fixed. It 
is easy to see that the updates of W  and H  are essentially the 
same by transposition ( ) .V WH V H WT T T+. .  Each update 
can be carried out by majorization-minimization (MM) [12]. MM 
consists in upper bounding the objective function with an auxil-
iary function that is tight at the current estimate and that can 
be minimized in closed form. The principle of MM is illustrated 
in Figure 3. Details of the algorithms can be found in [9] for 
PLCA and in [13] for IS-NMF. The resulting updates are given in 
Table 2. Their multiplicative structure automatically ensures 
the nonnegativity of the updates given positive initialization. 

It should be pointed out that in every NMF problem the 
objective function ( | )D V WH  is not jointly convex with respect 
to W  and .H  When the divergence ( | )D x y  is convex with 
respect to its second argument ,y  like in PLCA, the problem is at 
least convex with respect to H  given W  and vice versa. However 
it is never convex with respect to both. This means that the block-
coordinate approach may converge to local solutions that will 
depend on initialization. Some recent work (e.g., [14] and [15]) 
has explored alternate estimation algorithms that avoid formulat-
ing NMF as a nonconvex optimization and thereby sidestep the 
local-optima problem. The guarantees associated with these algo-
rithms are dependent on separability and/or sparsity assumptions 
that may be more appropriate for extremely high-dimensional 
data like document word counts than for moderately high-dimen-
sional data like audio spectra. However, as shown in [16], separ-
ability is not necessary for uniqueness in NMF, and such a 

[Fig3]  An illustration of the MM principle on a unidimensional 
problem. Given a current estimate of ,W  the blue curve acts as 
the objective function ( ) ( )H V WHC D |=  to be minimized with 
respect to .H  The MM approach relies on the iterative 
minimization of tight upper bounds (dashed red curves). The 
algorithm is initialized at ,H( )0  at which the first upper bound is 
minimized during the first iteration to yield ,H( )1  and so on until 
convergence.

h(*) h(3) h(2) h(1) h(0)

A more flexible approach  
for modeling temporal statistics 
is to impose constraints on the 

model activations.



	 IEEE SIGNAL PROCESSING MAGAZINE  [71] ma y 2014

constraint can be too restrictive when using convex formulations. 
Regardless, for our purposes, the block-coordinate approach is 
practical and effective on a wide range of problems, despite its 
lack of theoretical guarantees. 

So far we have presented a basic version of NMF in which the 
data is approximated as V WH.  without any structural priors 
(aside from nonnegativity) on either W  or .H  However, in many 
cases one is expecting the latent factors to have a certain structure, 
such as smoothness or sparsity. As such, a large part of the NMF 
literature has concentrated on penalized variants of NMF, in which 
penalty functions of either W  or H  are added to the divergence 
( | ) .D V WH  In our probabilistic setting, this can be viewed as set-

ting prior distributions for the latent factors. In particular, the next 
section will review temporal priors ( )p H  that have been used in 
the literature. In most cases, penalized NMF can be handled with 
MM, by simply adding the penalty term, or a local majorization of 
the latter, to the auxiliary function obtained in the static case. 

Dynamic models
Temporal continuity is one of the most important features of 
time-series data. Our aim here is to present some of the basic as 
well as advanced ideas to make use of this information by mode-
ling time dependencies in NMF. These dependencies between 
consecutive columns of V  can be imposed either on the basis 
matrix W  or on the activations .H  The former case is known as 
the convolutive NMF [17]–[19]. In these approaches, the repeat-
ing patterns within data are represented with multidimensional 
bases which are not vectors anymore, but functions that can span 
an arbitrary number of dimensions (e.g., both frequency and time 
in examples like the previous one). These models can be seen as a 
deterministic way to model temporal dependencies. Although 
they are useful in extracting temporal components, they most 
often result in very structured representations that do not gener-
alize well enough to be successfully employed for source separ-
ation. A more flexible approach for modeling temporal statistics is 
to impose constraints on the model activations. Such methods 
are very much in line with traditional dynamic models that have 
been studied extensively in signal processing, and in this section 
we will turn our attention to these. 

Most models considered in the literature are special cases of 
the general dynamic model given by 

	 ~ | , ,ph h ht t t 1 i-^ h 	 (7)
	 ~ | .pv v Wht t t^ h 	 (8)

We assume that (8) defines a probabilistic NMF observation model 
such that | .V WH WHE =6 @  As such, it may refer to any of the 
static models discussed in the previous section. Equation (7) intro-
duces temporal dynamics by assuming a Markov structure for the 
activation coefficients. i  denotes the prior parameters. The aim of 
this section is to describe the general concepts of dynamic NMF 
and provide references for specific instantiations related to given 
probabilistic NMF models (PLCA, IS-NMF, generalized KL-NMF, 
etc.). Two broad classes of models are discussed next, continuous 
and discrete models. 

Continuous Models

Smooth NMF
A straightforward approach to use temporal continuity is to 
apply some constraints that reduce fluctuations in each individ-
ual row of .H  This corresponds to assuming that different rows 
of H  are independent. 

In these approaches, the general equation (7) can be written as 

	 ~ | , .p h hh ( )t
k

K

kt k t
1

1 i
=

-^ h% 	 (9)

A natural choice for | ,p h h ( )kt k t 1 i-^ h is a pdf that either takes its 
mode at h ( )k t 1-  or is such that .| ,h h hE ( ) ( )kt k t k t1 1i =- -6 @  Vari-
ous papers have dealt with smooth NMF and they typically differ 
by the choice of observation models and priors (or in nonproba-
bilistic settings, penalty term) that is used [4], [20]–[27]. Gauss-
ian priors (or equivalently, squared differences) of the form 
( | ) ( | , )p h h h hN( ) ( )kt k t kt k t1 1

2v=- -  are used in [20], [21], and 
[26]. Nonnegativity-preserving Gamma or inverse-Gamma Markov 
chains are considered in [4], [23], [25], and [27]–[30] and Markov 
random fields in [31]. 

[Table 2] PLCA and IS-NMF for the GCM summarized. In the update rules, wfku  and hkt
u  denote current parameter 

values. vftu  denotes the current data approximation, i.e., w hfkk kt
u/  in the update of H  and w hfkk ktu/  in the 

update of .W
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Nonnegative state-space models
Smooth NMF does not capture the full extent of frame-to-frame 
dependencies in its input. In practice we will observe various tem-
poral correlations between adjacent 
time frames that will be more 
nuanced than the continuity that 
smooth NMF implies. In other words, 
there is correlation both within 
(smoothness) and between (transi-
tions) the time frames of the coeffi-
cients of .H  For real-valued time series, this type of structure can 
be handled with the classical linear dynamical system, using 
dynamics of the form ,h Aht t t1 e= +-  where te  is a centered 
Gaussian innovation. This model is not natural in the NMF setting 
because it may not maintain nonnegativity in the activations. 
However it is possible to design alternative dynamic models that 
maintain nonnegativity while preserving 

	 | .h Ah AhE t t t1 1=- -6 @ 	 (10)

The statistical models considered in the section “Static Models” 
are good candidates by exchanging vt  for ht  and vtt  for .ht 1-  
Following that idea, a nonnegative dynamical system (NDS) 
with multiplicative Gamma innovations was proposed in [32], in 
conjunction with multiplicative Gamma noise for the observa-
tion (IS-NMF model). Note that in the case of the Gaussian lin-
ear dynamical system, integration of the activation coefficients 
from the joint likelihood ( , | )p V H W  is feasible using the Kal-
man filter. Such computations are unfortunately intractable 
with NDS, and a MAP approach based on an MM algorithm is 
pursued in [32]. 

Dynamic filtering of the activation coefficients in the PLCA 
model has also been considered [33], [34], where the proposed 
algorithms use Kalman-like prediction strategies. 

The technique in [34] considers a more general multistep pre-
dictor such that ,h A h

jt j t j. -/  and describes an approach for 
both the smoothing (which relies on both past and future data) 
and causal filtering (which relies only on the past data) problems. 

Discrete models
Time-series data often has hidden structure in which each time 
frame corresponds to a discrete hidden state .qt  Moreover, there is 
typically a relationship between the hidden states at different time 
frames, in the form of temporal dynamics. For example, each time 
frame of a speech signal corresponds to a subunit of speech such 
as a phoneme, which can be modeled as a distinct state. The subu-
nits evolve over time as governed by temporal dynamics. Hidden 
Markov models (HMMs) [35] have been used extensively to model 
such data. They model temporal dynamics with a transition matrix 
defined by the distribution ( | ) .p q qt t 1-  There has been a recent 
thread of literature [36]–[40] that combines these ideas with NMF 
to model nonnegative data with such structure. 

The notion of a state is incorporated in the NMF framework by 
associating distinct dictionary elements with each state. This is 
done by allowing each state to determine a different support of 

the activations, which we express with the distribution ( | ) .p qht t  
This is to say that given a state, the model allows only certain dic-
tionary elements to be active. Some techniques [36], [39] define 

the support of each state to be a sin-
gle dictionary element, while other 
techniques [37], [38], [40], called 
nonnegative HMMs (N-HMMs), 
allow the support of each state to be 
a number of dictionary elements. 
Since only a subset of the dictionary 

elements are active at each time frame (as determined by the 
state at that time frame), we can interpret these models as impos-
ing block sparsity on the dictionary elements [41]. 

As in (7), there is a dependency between ht  and .ht 1-  How-
ever, unlike the continuous models, this dependency is only 
through the hidden states, which are in turn related through 
the temporal dynamics. Therefore ht  is conditionally independ-
ent of ht 1-  given qt  or .qt 1-  In the case of discrete models, we 
can therefore replace (7) with 

	 ~ ,|q p q qt t t 1-^ h 	 (11)
	 ~ .|p qh ht t t^ h 	 (12)

Since these models incorporate an HMM structure into an 
NMF framework, one can make use of the vast theory of Mar-
kov chains to extend these models in various ways. For exam-
ple, one can incorporate high-level knowledge of a particular 
class of signals into the model, use higher-order Markov 
chains, or use various natural language processing techniques. 
Language models were recently incorporated in this frame-
work [42] as typically done in the speech recognition litera-
ture [35]. Similarly, one can incorporate other types of 
temporal structure like music theory rules when dealing with 
music signals. 

The above techniques discuss how to model a single source 
using an HMM structure. However, to perform source separ-
ation, we need to model mixtures. This is typically done by com-
bining the individual source models into a factorial HMM [28], 
[36]–[38], [40], which allows each source to be governed by a 
distinct pattern of temporal dynamics. One issue with this strat-
egy is that the computational complexity of inference is expo-
nential in the number of sources. This can be circumvented 
using approximate inference techniques such as variational 
inference [43], which makes the complexity linear in the num-
ber of sources. 

The use of dynamic models  
in source separation
To demonstrate the utility of dynamic models in context, we will 
once again use a real-world source separation example. This time 
it will be an acoustic mixture of speech mixed with background 
noise from a factory (using the TIMIT [47] and NOISEX-92 [48]
databases). The mixture is shown using a magnitude STFT 
representation in Figure 4. This particular case is interesting 
because of the statistics of speech. We note that human speech 

Temporal continuity is one  
of the most important features 

 of time-series data.
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tends to have a smooth acoustic trajectory, which means that 
there is a strong temporal correlation between adjacent time 
frames. On the other hand, we also know that speech has a strong 
discrete hidden structure that is associated with the sequence of 
spoken phonemes. These properties make this example a good 
candidate for demonstrating the differences between the methods 
discussed so far and their effects on source separation. 

We performed source separation using the three main 
approaches that we covered in this 
article. These include a static PLCA 
model [44], a dynamic PLCA model 
[34], and an N-HMM [37]. In all 
three cases, we trained a model for 
speech and a model for background 
noise from training data. The dic-
tionary size for the noise was fixed 
to 30 elements, whereas the speech 
model had 60 dictionary elements 
for PLCA and dynamic PLCA, and 
40 states with ten dictionary ele-
ments each for the N-HMM. For the dynamic models, we 
learned the temporal statistics as well. To separate a mixture 
of test data of the sources, we fixed the learned W  matrices for 
both the speech and noise models and estimated their respect-
ive activations H  using the context of each model. In Figure 4, 
we show the reconstruction of speech using each model. We 
also show a set of objective metrics that evaluate the quality of 
separation in each case. These include the source-to-distortion 
ratio (SDR), the source-to-interference ratio (SIR), and the 
source-to-artifacts ratio (SAR) as defined in [45]. These results 
are averaged over 20 different speakers to reduce biasing and 
initialization effects. 

For the static PLCA model, we see that there is a detectable 
amount of visible suppression of the background noise, which 
amounts to a modest SIR of about 5 dB. The dynamic PLCA 
model on the other hand, by taking advantage of the temporal 
statistics of speech, does a much better job resulting in more 
than double the SIR. Note however that in the process of adher-
ing to the expected statistics, it introduces artifacts, which 
result in a lower SAR as compared to the static model. The 

N-HMM results in an even higher 
SIR and a better SAR than the 
dynamic PLCA model. This is 
because the specific signal we are 
modeling has a temporal structure 
that is well described by a discrete 
dynamic model as we transition 
from phoneme to phoneme. By 
constraining our model to only use 
a small dictionary at each discrete 
state, we obtain a cleaner estimate 
of the source. An example of that 

can be seen when comparing the separation results in Figure 4, 
where unwanted artifacts between the harmonics of speech in 
the dynamic PLCA example are not present in the N-HMM 
example since the dictionary elements within a state cannot 
produce such complex spectra. 

Which model to use?
Now, in addition to pondering on which divergence function is 
the most appropriate to employ, we also have a decision to make 
on which model is best fo,r a source separation approach. As 
always, the answer depends on the nature of the sources in the 
mixture. In general, the static model has found success 

[Fig4]  An example of dynamic models for source separation. (a) The four spectrograms show the mixture and the extracted speech for 
three different approaches. (b) A quantitative evaluation of the separation performance of each approach.
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in a variety of areas but does not take advantage of temporal 
correlations. In domains where we do not expect a high degree 
of correlations across time (e.g., short, burstlike sources) this 
model works well, but in cases where we expect a strong sense 
of continuity (e.g., a smooth source like a whale song), then a 
continuous dynamic model would work better. Furthermore, if 
we know that a source exhibits a behavior of switching through 
different states, each with its own unique character (e.g., 
speech), then a model like the N-HMM is more appropriate 
since it will eliminate the concurrent use of elements that 
belong at different states and produce a more plausible recon-
struction. Of course, by using the generalized formulation we 
present in this article, there is nothing that limits us from 
employing different models concurrently. It is entirely plausible 
to design a source separation system where one source is mod-
eled by a static model and other by a dynamic one, or even have 
both being described by different kinds of dynamic models. 
Doing so usually requires a relatively straightforward applica-
tion of the estimation process that we outlined earlier. 

Closing thoughts
In this article we presented a unifying look at source separation 
approaches that employ nonnegative factorizations, and showed 
how they can be easily extended to temporal models that are 
either continuous or discrete. Using this methodology one can 
come up with many more alternative formulations, e.g., factorial 
HMMs, switching models, etc. and incorporate even more com-
plex priors to better model sources in mixtures. We hope that by 
presenting this streamlined formulation we can help readers to 
experiment with the many other possibilities in formulating 
dynamic source separation algorithms and to help highlight rela-
tionships between a family of approaches that can initially seem 
divergent despite their common roots. 
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