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Estimtion is the process of extracting information from data - data which 
can be used to infer the desired information and niay contain errors. Modern 
estimation methods use known relationships to compute the deslred information 
from the measurements. taking account of measurement errors, the effects of 
disturbances and control actions on the system, and prior knowledge of the 
information. Diverse measurements car! be blended to form "best" estimates, 
and information which is unavailable for measurement can be approximated in 
an optimal fashion. The intent of this book is to enable readers to achieve a level 
of competence that will permit their participation in the des~gn and evaluation 
of practical estimators. Therefore, the text is oriented to the applied rather than 
theoretical aspects of optimal estimation. It is our intent throughout to provide 
a simple and interesting picture of the central issues underlying modern 
estimation theory and practice. Heuristic, rather than theoretically elegant, 
arguments are used extensively, with emphasis on physical insights and key 
questlons of practical importance. 

The text is organized into three principal parts. Part I introduces the subject 
matter and provides brief treatments of the underlying mathematics. Chapter 1 
presents a brief overview, including a historical perspectwe; Chapters 2 and 3 
treat the mathematics underlying random process theory and state-space 
characterization of linear dynam~c systems, both of which are essential 
prerequisites to understanding optimal estimation theory. Part 11 provides 
derivations, interpretations and examples pertinent to the theory of optimal 
estimation. Thus. Chapters 4 and 5 address optimal linear filtering and 



smoothing, respectively, while Chapter 6 addresses the subject of nonlinear 
fdtering and smoothing. Part 111 treats those practical issues which often mean 
the difference between success or failure of the implemented optimal estimator. 
The practical and often pivotal issues of suboptimal filtering, sensitivity analysis 
and implementation considerations are discussed a t  some length in Chapters 7 
and 8. Additional topics of practical value are presented in Chapter 9; these 
include refinements and other viewpoints of estimation theory, and the close 
connection of the mathematics which underly both optimal linear estimation 
theory and optimal linear control theory. 

Many illustrative examples have been interspersed throughout the text to 
assist in effective presentation of the theoretical material. Additionally, 
problems with "built-in" answers have been included at  the end of each chapter, 
t o  further enable self-study of the subject matter. 

This hook is the outgrowth of a course taught by The Analytic Sciences 
Corporation (TASC) at a number of US. Government facilities. The course 
notes were, in turn, based on the considerable practical experience of TASC in 
applying modern estimation theory t o  large-scale systems of diverse nature. 
Thus, virtually all Members of the Technical Staff of TASC have, at one time or 
another, contributed t o  the material contained herein. It is a pleasure to specif- 
ically acknowledge those current members of TASC who, in addition to the 
principal authors, have directly contributed t o  the writing of this hook. Bard S. 
Crawford provided a complete section; Julian L. Center, Jr., Joseph A. 
D'Appolito, and Ronald S. Warren contributed through providing text additions, 
technical comments and insights of a very diverse nature. Other individuals 
whose contributions are acknowledged are Robert G. Bellaire, Norman H. 
Josephy, William F. O'Halloran, Jr. and Bahar J. Uttam. William R. Sullivan and 
Vicky M. Koaerga created all the artwork. Renwick E. Curry, John J. Deyst, Jr. 
and Professor Wallace E. Vander Velde of M.I.T. contributed through technical 
discussions and by providing some problems for inclusion a t  the end of several 
chapters. Professor Charles E. Hutchinson, University of Massachusetts. con- 
tributed through his participation in early TASC work which set the stage for 
this book. Special acknowledgement is due Harry B. Silverman of TASC for his 
encouragement of the project from its inception. Finally, this most recent print- 
ing benefits considerably from the careful reading given earlier printings by those 
individuals who have provided us with comments and corrections. 

THE ANALYTIC SCIENCES CORPORATION 
Reading, Mauachusenr 

Arthur Gelb 
16 July 1979 
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1. INTRODUCTION 

HISTORICAL PERSPECTIVE 

The development of data processing methods for dealing with random 
variables can be traced to Gauss (circa 1800), who invented the technique of 
deterministic least-squares and employed it in a relatively simple orbit 
measurement problem (Ref. 1). The next significant contributian to  the broad 
subject of estimation theory occurred more than I00 years later when Fisher 
(circa 1910). working with probability density functions, introduced the 
approach of maximum likelihood estimation (Ref. 2). Utilizing random process 
theory, Wiener (circa 1940) set forth a procedure for the frequency domain 
design of statistically optimal filters (Refs. 3, 4). The technique addressed the 
continuous-time problem in terms of correlation functions and the continuous 
Glter impulse response. It was limited to statistically stationary processes and 
provided optimal estimates only in the steady-state regime. In the same time 
period, Kolmogorov treated the discrete-time problem (Ref. 5). During the next 
20 years, Wiener's work was extended - in a way which often required 
cumbersome calculations - to include nonstationary and multipart systems 
(Refs. 6.8). Kalman and others (circa 1960) advanced optimal recursive fdter 
techniques based on state-space, time domain formulations (Refs. 9-13). This 
approach, now known as the Kalman fdter, is ideally suited for digital computer 
implementation. Indeed, it is the very foundation for data mixing in modern 
multisensor systems. 

It 1s interesting to see the many similarities between Causd work and the 
more ''modern" approaches. As is pointed out in Ref. 14, Gauss notes the need 
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for redundant data to eliminate the influence of measurement errors; he raises 
the issue of dynamic modeling of the system under study; he refers to the 
inaccuracy of observations and thereby sets the stage for probabilistic 
considerations; he refers to the "suitable combination" of observations which 
will provide the most accurate estimates and thus touches upon the questions of 
estimator stmcture and performance criterion definition; he refers to  the 
number of observations that are absolutely required for determination of the 
unknown quantities and thus addresses the subject currently referred to as 
"observability" of the system. Other similarities can also be cited. In fact, it can 
be argued that the Kalman filter is, in essence, a recursive solution* to Gauss' 
original least-squares problem. 

It is also interesting to note two underlying differences between the classical 
and modem techniques; namely, the use of random process vs. deterministic 
signal descriptions and the use of high-speed digital computers to generate 
numerical solutions vs. the requirement for closed-form "pencil and paper" 
sdutions. The former consideration enables the modern mathematics to more 
closely characterize physical situations being treated; the latter tremendously 
broadens the range of problems which may be studied. 

OPTIMAL ESTIMATION 

An optimal estimator is a computational olgorirhm that processes measure- 
menh to deduce a minimum errorT estimate of the state of a system by 
utilizing.. knowledge of system and meosuremenr dynamics, assumed statistics of 
system noises and measurement errors, and initial condition infma4ion. Among 
the presumed advantages of this type of data processor are that it minimizes the 
estimation error in a well defined statistical sense and that it utilizes all 
measurement data plus prior knowledge about the system. The corresponding 
potential disadvantages are its sensitivity to  erroneous a priori models and 
statistics, and the inherent computational burden. The important concepts 
embodied in these statements are explored in the sequel. 

The three types of estimation problems of interest are depicted in Fig. 1.01. 
When the time at which an estimate is desired coincides with the last 
measurement point, the problem is referred to as filtering; when the time of 
interest falls within the span of available measurement data, the problem i. 
termed smoothing; and when the time of interest occurs after the last available 
measurement, the problem is called prediction. 

Probably the most common optimal filtering technique is that developed by 
Kalman (Ref. 10) for estimating the state of a linear system. This technique, 
depicted in Fig. 1.02, provides a convenient example with which to illustrate 
the capabilities and limitations of optimal estimators. For instance, given a linear 
system model and any measurements of its behavior, plus statistical models 
which characterize system and measurement errors, plus initial condition 
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information, the Kalman filter describes how to process the measurement data. 
However, the Kalman filter per se does not solve the problem of establishing an 
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APPLICATIONS OF OPTIMAL ESTIMATION THEORY 

The theory of optimal estimation has application to a tremendously broad 
range of problem areas. To cite a few, we have: tracer studies in nuclear 
medicine, statistical image enhancement, estimation of traffic densities, chemical 
process control, estimation of river flows, power system load forecasting, 
classification of vectorcardiograms, satellite orbit estimation and nuclear reactor 
parameter identification. 

The estimation problem may be posed in terms of a single sensor making 
measurements on a single process or, more generally, in terms of multiple sensors 
and multiple processes. The latter case is referred to as a muIrisensor system. 
Suppose there are P sensors, which provide measurements on m physical 
processes. Some of the sensors may measure the same quantity, in which case 
simple mdundant measurements are provided; others may measure quantities 
related only indirectly to  the processes of interest. The estimation problem, in 
the context of this multisensor system, is to process the sensor outputs such that 
"best" estimates of the processes of interest are obtained. A computer- 
implemented data processing algorithm operates on the sensor data to provide 
the desired estimates. These estimates may be used to drive displays and also to 
serve as control signals f a  the physical systems under observation, as illustrated 
in Fig. 1.133. In modern multisensor systems, the data processing algorithm is 
very often derived using optimal filter theory. 

NUMBER 

NUMBER I 
Figure 1.04 Modern Multkensor System 

Some outstanding examples of multisensor systems occur in the field of 
navigation. External measurements were originally used to update navigation 
variables in a deterministic manner; for example, system position indication was 
changed to agree with the results of an external position measurement. This 
approach ignored two important facts. First, external measurements themselves 

contain random errors that may be significant, when compared to the navigation 
system errors. Secondly, navigation system errors are primarily caused by 
random, time-varying navigation sensor errors. The optimal use of external 
measurements, together with thcse provided by the navigation system, can 
provide a resulting navigation accuracy which is better than that obtainable from 
either external measurements or the navigation system alone. 

Application of modern estimation techniques to multisensor navigation 
systems began in the mid-1960's, shortly after optimal recursive fdter theory was 
developed and published. Because the errors in a typical navigation system 
propagate in essentially a linear manner and linear combinations of these errors 
can be detected from external measurements, the Kalman fdter is ideally suited 
for their estimation. It also provides useful estimates of all system error sources 
with significant correlation times. In addition, the Kalman filter provides 
improved design and operational flexibility. As a time-varying filter, it can 
accommodate nonstationary error sources when their statistical behavior is 
known. Configuration changes in the navigation system are relatively easy to 
effect by programming changes. The Kalman fdter provides for optimal use of 
any number, combination, and sequence of external measurements. It is a 
technique for systematically employing all available external measurements, 
regardless of their errors, to  improve the accuracy of navigation systems. This 
application of the theory, among others, is often made in the following chapters. 

Perhaps the essential non-hardware issues in any practical application of 
optimal estimation are those of modeling and realistic performanceprojections. 
These issues are, of course, related and their proper treatment is a prerequisite to 
successful system operation in a real environment. Based upon this perspective, 
it becomes clear that a reasonable use of estimation theory in any operational 
system is: first - design and computer evaluation of the "optimal" system 
behavior; second - design of a suitable "suboptimal" system with cost con- 
straints, sensitivity characteristics, computational requirements, measurement 
schedules, etc., in mind; and third- construction and test of a prototype 
system, making final adjustments or changes as warranted. 

Example 1.0-1 

Consider a system mmplisd of two sensors, each making a single measurement, zi(i = 
1,2), of a constant but unknown quantity, x, in the presence of  ando om, independent, 
unbhed measurement errors, vi(i = 1.2). Design a data processing algorithm that mmbines 
the two measurements to produce an optimal estimate of x. 

The measurements are deseribd by 

z l = x + v i  and Z Z = X + V Z  (1.0-1) 

In the abrenee of m y  other information, we might seek an estimate of x which is a linear 
function of the rmsurements in the form (supersclipt"^" denotes estimate) 
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where kl and k, remain to be specifled. Defining the estimation error, 2, as 

. 
x = x - X  

we reek to minimize the mean square value of; as the criterion of optimality. Furthefmae, 
we require that our choice of kl and k2 be independent of the d u e  of x; thiscondition' 
will hold if the estimate i sunbind  -it, if 

E[j]  = E[kl(x +vl) + k2(x +v2) - XI  = 0 (1.03) 

where E denotes the ensemble expectationt a average. Performing the indicated 
expectation, with E[v,] = E[v2] = 0 and E[x] = x since x is "nonrandom", we obtain 

k, = 1 - k, (1.04) 

Comb- Eqs. (1.01) through (1.04), the mean square enor is mmputed in the form 

E[?] = k12a11 + (1 - kl)' 0%' 
(1.05) 

where a,' and a,' denote the variances of vl and v,, respstively. Differentiati% this 
quantity with respect to k1 and setting the result to zero yields 

The mnsponding minimum mcan square estimation e n a  is 

It can be ~ e s n  that the mean square stimation me. is sander than either of the mean 
square measurement erron The algorithm (Eq. (1.02)l 

makes sense in the various limits of intemt - ie., if o12 = oZ2, the measurements are 
averaged; if one measurement is perfect (o, or oz equal to zero) the other is rtjected; e tc  

In Example 1.01, the physical quantity of interest was a ralar  constant and 
only two Linear measurements of that constant were available. In general, we 
shall be interested in estimates of vector timeratying quantities where many 
measurements are provided. 

*This condition is imposed because x is unknown; hence, the gains kl  and k2 murr be 
indepenoent of x. 

tThe expectation o p a a t a  is discussed in Section 22. 

Physical systems and measurements can be categorized according to whether 
they are static or dynamic, continuous or discrete, and linew or nonlinear. 
Furthermore, we shall be interested in real-time data processing algorithms 
(filtering and prediction) and post-experiment algorithms (smoothingJ. Due to 
its notational simplicity and theoretical power, subsequent treatment of these 
physical systems and data processing algorithms is couched in terms of state 
space representation, using the mathematics of vectors and matrices and the 
notions of random process theory. These topics are discussed in Chapters 2 and 
3. 
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PROBLEMS 

Problem 1-1 

Repat Example 1.01 f a  the case where measurement e n a s  are correlated; that IS, 
E lv~vzl  =polo, where p is a correlation meflicimt ( IPI  < I). Show that 
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and 

for the optimal estimate. Physically interpret the meaning of E(?] = O f o l  p =  91. 

Problem 1-2 

Compute E[i2] from Eqs. (1.01) and (1.&2) 2)th the gains k I  and k, unrestricted. 
Show that values of the g a b  which minimize E[i2] are functions of x, using the fact that 
E[x] = xand ~ [ x ' ]  =x2 .  

Problem 1-3 
Consider a case similar to  Example 1.01, but in which three independent measurements 

are availabie instead of two. Argue why an estimatn should be sought in the form 

Develop optimum values f n  kl and k2 and use these to show that 

f n  the optimal estimate. 

Problem 1-4 

The concentration of a substance in solution decreases exponentially during an 
experiment. Noisy measurements of the mncentratian are made a t  t imu tl and t2. S U C ~  

that (i = 12) 

An estimate of the initial mncxntration, xo, is desired. Demonstrate that an unbiased 
estimator is given by 

where k, not yet specified, h a constant. Show that the value of k, which minimizes the 
mean square estimation erra,  is 

and that the corresponding mean square estimation enar is 

where o12 and 02' uemearurement error varinneu. 



2. REVIEW OF UNDERLYING 
MATHEMATICAL TECHNIQUES 

In this chapter, mathematical techniques utilized in the development and 
application of modern estimation theory are reviewed. These techniques include 
vector and matrix operations and their application to least-squares estimation. 
Also included is a presentation on probability, random variables and random 
process%. Of these, the latter is the most important for our work a n 4  
consequently, is given the greatest emphasis. The specific goal is to  provide the 
mathematical twls  necessary for development of state vector and covariance 
matrix methods and their subsequent application. 

Note that the material in this chapter is neither a complete discussion of the 
topics, nor mathematically rigorous. However, more detailed material is provided 
in the references cited. 

2.1 VECTORS, MATRICES, AND LEAST SQUARES 
This section contains pertinent definitions and operations for the application 

of vector and matrix methods in modern estimation. The reader requiring a more 
complete discussion is referred to Refs. 13. 

VECTOR OPERATIONS 

An array of elements, arranged in a column, is designated by a lowercase 
letter with an underbar and is referred to as a vector (more precisely, a column 
vector). The number of elements in the vector is its dimension. Thus, an 
n-dimensional vector & is: 

REVIEW OF UNDERLYING MATHEMATICAL TECHNMUES 11 

Vector Addition - Addition of two vectors is defined by 

Vector subtraction is defined in a similar manner. In both vector addition and 
subtraction, & and y must have the same dimension. 

Sulm Multiplication -A vector may be multiplied by a scalar, k, yielding 

Zero Vectu - The vector Q is defmed as the vector in which every element is 
the number 0. 

Vecto~ Tranrpo~ - The transpose of a vector is defined such that, if 5 is the 
cdumn vector 

its transpose is the row vector 

xT= [x,x2. . . % I  
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If zTy = 0, z and y are said to  be orthogonal. In addition, _xT& the squared 
length of the vector 8, is 

The length of the vec tnx  is denoted by 

Outer Product - The quantity zT is referred to as the outer product and 
yields the manix 

Similarly, we can form the ma t r ixsT  as 

=T = - 

X"X1 xnx1 . . . xna 

where uT is called the scatter matrix of the vector x. 

Vector Derivative - By using prenously defined operations, the derivative of 
a vector may be defined. For continuous vectors &(t) and ~ ( t  + At) we get 

Multiplying both sides by the scalar I/At and taking the limit as At + 0 yields 

which is the desired result. The integral of a vector is similarly described - i.e., 
in terms of the integrals of its elements. 

MATRIX OPERATIONS 

A matrix is an m X n rectangular array of elements in m rows and n cdumns, 
and will be designated by a capital letter. The matrix A, consisting of m rows 
and n columns, is denoted as: 

where ai, is the element in the ith row and jth column, for i = 1,2, . . . , m and j = 
1.2,. . . ,n. For example. if m = 2 and n = 3, A is a 2 X 3 matrix 

Note that a column vector may be thought of as a matrix of n rows and 1 
column; a row vector may be thought of as a matrix of 1 row and n columns; 
and a smiar may be thought of as a matrix of 1 row and 1 column. A matrix of n 
rows and n columns is square; a square matrix in which all elements off the main 
diagonal are zero is termed a diogomi matrix. The main diagonal starts in the 
upper left corner and ends in the lower right; its elements areal I ,  a,, , . . . , a,,,. 

Matrix Addition - Matrix addition is defined only when the two matrices to 
be added are of identical dimensions, i.e., they have the same number of rows 
and the same number of columns. Specifically. 

and form = 3 and n = 2: 
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Sdn Multiplication - The matrix A may be multiplied by a scalar k. Such 
scalar multiplication is denoted by kA where 

Thus, for matrix subtraction, A - B = A t (-1)B, that is, one simply subtracts 
correspmding elements. 

m i x  Multiplication - The product of two matrices, AB, read A times B, in 
that order, is defmed by the matrix 

The product AB is defined only when A and B are confornurble, that is, the 
number of columns of A is equal to  the number of rows of B. Where A ism X p 
and B is p X n, the product matrix [cijj nas m rows and n columns and cij is 
given by 

For example, with A and B as previously defined, AB is given by 

for m = 2, p = 3, n = 2. It is noted that two matrices are equal if, and only if, all 
of their corresponding elements are equal. Thus A = B implies ai, = bij for all i 
(1,2, . . . +) and all j (1,2, . . . ,n). For square matrices A and B of equal 
dimension, the products AB and BA are both defined, but in general AB Z 
BA - i.e., matrix multiplication is noncommutative. 

Vector-Matrix Product - If a vector and matrix A are conformable, the 
product 

is defined such that 

Matrix Derivative and Integral - Using the operations of addition and 
multiplication by a scalar, the derivative and integral of a matrix may be 
formulated. Analogous to the vector operations, we obtain 

Zero Matrix - The matrix 101, herein simply denoted 0, is defined as the 
matrix in which every element is the number 0. 

Identity Matrix - The identity matrix I is a square matrix with 1 located in 
each position down the main diagonal of the matrix and 0's elsewhere - i.e., 

where 6ij is the Kronecker delta defined by 

The result of multiplication by the identity matrix is A1 = IA = A, that is, no 
change. 

Matrix Determinant - The square matrix A has a determinant denoted by 
IAl. The determinant is a scalar defined by 

In each term the second subscripts i j ,  . . . , P are permutations of the numbers 
1,2, . . . ,n. Terms whose subscripts are even permutations are given plus signs, 
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and those with odd permutations are given minus signs. The determinant of the 
product AB is 

The determinant of the identity matrix is unity. One common use of the 
determinant is in solving a set of linear algebraic equations by means of Cramer's 
Rule (Ref. I). However, modern computer algorithms utilize other techniques, 
which do not rely on calculating the matrix determinant for solving linear 
equations. For present purposes, the matrix determinant is used as part of a 
criterion for matrix invertibility - a  subject which is discussed in subsequent 
paragraphs. 

The lnvene of r Matrix - In considering the inverse of a matrix we must 
restrict our discussion to square matrices. If A is a square matrix, its inverse is 
denoted by A-' such that 

That is, the multiplication of a matrix by its inverse iscommutative. For square 
matrices A and B of the same dimension, it is easily shown that 

It is noted that all square matrices do not have inverses - only those that are 
nonsingular have an inverse. For purposes of clarification, a nonsingular matrix 
may be defined as follows: 

No row (column) is a linear combination of other rows (columns) 

The determinant of the matrix is not zero - i.e., IA I #  0. 

If I A I = 0, two or more of the rows (columns) of A are linearly dependent. Use 
of the inverse matrix A-' can be illustrated by its role in solving the matrix 
equation 

where A A an n X n matrix, and x and y are n-row column vecton (n X 1). 
Premultiplication by A-' (assuming that it exists) yields 

which is the solution to Eq. (2.1-27). Computing inverses for large matrices is a 
time-consuming operation; however, it is suitable for computer solution. Results 
for 2 X 2 and 3 X 3 matrices are given below. If 

then 

where 

A =  [n ; i] 
then 

ei - fh ch - bi bf - ec 
gf - di ai - gc dc - af 
dh-ge gb-ah ae-bd 1 

where 

It can be shown that, in general, 

where IAl is the determinant of the square matrix A. and adjA (the adjoint of 
A) is the matrix formed by replacing each element with its cofactor and 
transposing the result [the cofactor of aij is the determinant of the submatrix 
formed by deleting from A the ith row and jth column, multiplied by (-l)i + J]. 
Clearly, hand computation of the inverse of a large matrix is tedious, since a 
number of successively smaller submatrices are obtained and the determinant for 
each of these must also be computed. 
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The Transpose of a Matrix - The transpose of a matrix is obtained by 
interchanging its rows and columns. For example, if 

then 

or, in general 

Thus, an m X n matrix has an n X m transpose. For square matrices, if A = AT, 
then A is said to  be symmetric. If AT = A-' , then A is said to be orthogod. The 
determinant of an orthogonal matrix is unity. If AT = -A, A is said to  be 
skew-symmemc. A property of a skew-symmetric matrix is that all elements on 
the main diagonal are zero. 

For matrices A and B, of appropriate dimension, it can be shown that 

If A is invertible then 

(A-' )T = (ATFl 

Tram - The trace of square matrix A is the scalar sum of its diagonal 
elements. Thus 

For square matrices A and B 

trace [AB] = trace [BA] (2.1 -39) 

Rank - The rank of matrix A is the dimension of the largest square matrix 
contained in A (formed by deleting rows and columns) which has a nonzero 

determinant. It follows from the discussion of invertibility that a nonsingular 
n X n matrix has rank n. 

Matrix Prudoimene - The matrix inverse is defined for square matrices 
only; it is used in the solution of sets of linear equations -of the form & = 1: - 
in which the number of equations is equal to  the number of unknowns. For 
nonsquare matrices used to describe systems of equations where the number of 
equations does not equal the number of unknowns, the equivalent operator is 
the pseudoinverse (Ref. 4). 

If a matrix A has more rows than columns, the pseudoinverse is defined as 

for nonsingular (ATA). In the solution of linear equations this is the so-called 
overdetemied case - where there are more equations than unknowns. The 
resulting solution, _x = A% is best in a least-squares sense. If A has more columns 
than rows, the pseudoinverse is defined as 

This corresponds to the wulerdetennined case - there are fewer equations than 
unknowns. Typically, such a situation leads to an infinite number of 
least-squares solutions (consider the least-squares fit of a straight line to  a single 
point). The solution resulting from the pseudoinverse is also best in a 
least-squares sense, and the vector _x = A% is the solution of minimum length. 

Several useful relations concerning the pseudoinverse are given below: 

Functions of Square Matricm -With A as a scalar variable, the equation 

is called the characteristic quation of the square matrix A. Values of A that 
satisfy this equation are the eigenvdues of the square matrix A. By expanding 
the determinant, it can be seen that 0) is a polynomial in A. The 
Cayley-Hunilton Theorem states that, for the same polynomial expression, 
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That is, every square matrix satisfies its own characteristic equation. 
It is possible to  define special polynomial functions of a square matrix A, two 

of which are: 

where 

A' = AAA etc. (2.1-51) 

The matrix exponential eA occurs in the study of constant coefficient matrix 
differential equations, and is utilized in Chapter 3. Coddington and Levinson 
(Ref. 5) provide a number of useful relations for the matrix exponential. Among 
them are: 

VECTOR-MATRIX OPERATIONS 

Vectors and matrices can be combined in mathematical expressions in various 
ways. Since a vector of dimension n can be thought of as an n X 1 matrix, the 
rules developed above f a  matrix operations can be readily applied. Several 
of the more common operations are briefly considered in the following 
discussion. 

Quadratic Form - An n X n symmetric matrix A and the n-dimensional 
vecta 2 can be used to define the scalar quantity 

This scalar expression is referred to as a quadmtic form. An orthogonal matrix Q 
can always be found such that (Ref. 1) 

is diagonal with = 4, where the X, are the eigenvalues of A. It can be shown 
that the quadratic form reduces to  

J = A , X ~ + A ~ X ~ ~ +  . . .+  Anx: 

where 

Dafinite Forms - The quadratic f a m  is further used to define properties of 
the matrix A: 

If xTA&> 0 for all real 8, A is said t o  be positive definite. 

If xT& > 0 for all real 2, A is said t o  be positive semi'definite. 

If zT& < 0 for all real 5, A is said t o  be ne~ative semidefinite. 

If &TA& < 0 for all real 2,  A is said t o  be negativedefinite. 

Norm - The matrix-associated quantity, analogous to the length of avector, 
is called the norm and is defined by 

With vector length as defined in Eq. (2.1-a), the norm is readily computed as 

IlAlI =fi (2.1-60) 

where XI is the maximum eigenvalue of the matrix product ATA (Ref. 6). 

Gradient Operations - Differentiation of vectormatrix expressions, with 
respect to  scalar quantities such as time, has been previcusly discussed. Rules for 
differentiation, with respect to  vector and matrix quantities, are given below. 
The grodient or derivative of a scalar function z, with respect to a vecta & is the 
vecta 
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with with 

Two scalar functions of special note are the matrix trace and determinant. A 
tabulation of gradient functions for the trace and determinant is provided in 
Ref. 7. Some of particular interest for square matrices A, B, and C are given 
below: 

A case of special importance is the vector gradient of the inner product. We have 

a 
gQTd = 41 

and 

& trace [BAC] = BTCT 

The second partial of a scalar z, with respect to a vector z, is a matrix denoted 
by 

with $ IBAC I = IBAC I (A-' )T (2.1-75) 

LEASTSQUARES TECHNIQUES 

The determinant of A is called the Hessian of 2. 

In general, the vector gradient of a vector is the matrix defined as 
Vector and matrix methods are particularly convenient in the application of 

least-squares estimation techniques. A specific example of least-squares estima- 
tion occurs in curve-fitting problems, where it is desired to obtain a functional 
form of some chosen order that best fits a given set of measurements. The 
criterion for goodness of fit is to minimize the sum of squares of differences 
between measurements and the "estimated" functional form or CUNe. 

The linear least-squares problem involves using a set of measurements, 4, 
which are linearly related to the unknown quantities 6 by the expression 

with 

If 2 and are of equal dimension, the determinant of A can be found and is 
celled the Jmobion of 2. The matrix gradient of a scalar z is defined by 

where 1 is a vector of measurement "noise." The goal is to find an estimnte 
of the unknown, denoted by g. In particular, given the vector difference 

we wish to find the 2 that minimizes the sum of the squares of the elements of 
2 -Hi. Recall that the vector inner product generates the sum of squares of a 
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vector. Thus, we wish to minimize the scalar cost function 1, where 

J = &-Hir)T @-Ha 

Minimization of a scalar, with respect to  a vector, is obtained when 

and the Hessian of 1 is positive semidef~ te  

Differentiating 1 and setting the result to  zero yields 

HTH;,= H T ~  

It is readily shown that the second derivative of 1, with respect to i , i s  positive 
semidefinite; and thus Eq. (2.1-80) does, indeed, define a minimum. When HTH 
possesses an inverse (i.e., when it has a nonzero determinant), the least-squares 
estimate is 

Note the correspondence between this result and that given in the discussion of 
the pseudoinverse. This derivation verifies the least-squares property of the 
pseudoinverse. 

Implied in the preceding discussion is that all available measurements are 
utilized together at one time - i.e., in a so-called batch processing scheme. 
Subsequent discussion of optimal filtering is based on the concept of recursive 
processing in which measurements are utilized sequentially, as they become 
available. 

2.2 PROBABI LlTY AND RANDOM PROCESSES* 
This section contains a brief summation of material on probability, random 

variables and random processes with particular emphasis on application to 
modern estimation. The reader desiring a more extensive treatment.of this 
material is referred to any one of the following excellent books on the subject: 
Davenport and Root (Ref. 9), Laning and Battin (Ref. 10) and Papoulis (Ref. 
1 I). 

*lhir material dordy follows a s i m h  prcsmtrtion in Appendix H of Ref. 8.  
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PROBABILIN 

Consider an event E, which is a possible outcome of a random experiment. 
We denote the probability of this event by Pa@) and intuitively think of it as the 
limit, as the number of trials becomes large, of the ratio of the number of times 
E occurred to the number of times the experiment was attempted. If all possible 
outcomes of the experiment are denoted by Ei, i=1,2, . . . p, then 

and 

prescribe the limits of the probability. 
The joint event that A and B and C, etc., occurred is denoted by ABC . . . , 

and the probability of this joint event, by R(ABC . . .). If the events A,B,C, etc., 
are mutually independent - which means that the oaunence of any one of 
them bean no relation to the occurrence of any other - the probability of the 
joint event is the product of the probabilities of the simple events. That is, 

if the events A,B,C, etc., are mutually independent. Actually, the mathematical 
definition of independence is the reverse of this statement, but the result of 
consequence is that independence of events and the multiplicative property of 
probabilities go together. 

The event that either A or B or C, etc., occurs is denoted by A+B+C and the 
probability of this event, by Pr(A+B+C). If these events are mutually exclusive - 
which means that the occurrence of one precludes the oaurrence of any other - 
the probability of the total event is the sum of the probabilities of the simple 
events. That is, 

if events A,B,C, etc., are mutually exclusive. If two events A and B are not 
mutually exclusive, then 

Clearly, if two events are mutually exclusive their joint probability P(AB) is 
Zero. 

For events which are not independent, the concept of conditwnalprohbiliry 
can provide added information. The probability of event A occurring, given that 
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event B has occurred, is denoted by Pr(A I B). Thls probability is defined by 

Pr(AB) 
Pr(AI B) = ---- 

P O )  

It is apparent that, if events A and B are independent, the conditional 
probabihty reduces to the simple probabil~ty Pr(A). Since A and B are 
interchangeable in Eq. (2.2-6). it fdlows that 

from which we reformulate Eq. (2.2-6) as 

Let us consider poss~ble outcomes Ai, i=1,2. ... ,n, given that B has occurred. 

Pr(A, IB) = 
Pr(B IAi)Pr(Ai) 

W B )  

But 

so that 

Equation (2.2-1 1) 1s a statement of Bayes' theorem. We shall have the occasion 
t o  utilize this result in subsequent chapters. 

Example 2.2-1 
The probability concepts defined above are best rllurtrated by using a family of slmple 

examples. In particular. the commonly used cxpcr~mcnt involving the roll of a dle is utilized. 

Probability . Experiment - roll a die 
Event - value of the die 

Possible valuer - 1 ,2 ,  3 , 4 , 5 , 6  
PMvalue = j; j = l , 2 , 3 , 4 , 5 , 6 )  = 116. 

Joint (Independent) Event . Expenment - rdl  two dice, A and B 
Events - value of A and value of B . Joint event - values of A and B 
Possible joint evellt values - (1.1). (1.21, . . . , (6,6) . Pdjoint event) "MAR) = 1/36 = R(A) Pr(B). 

Mutually Exclusive Events . Expenment - rd l  a die . Event - value is either 1 a 2 
Pr(1 + 2) = R(1) +R(Z) = 116 + 116 = 113. 

Non-Mutually Exclusive Events 
Experiment -roll two dice, A and B 
Event - value of eithex A or B is 1 
P r ( A = I o r B = l ) = R ( A = l ) + R ( B = l ) - P r ( ~ = l m d ~ = l )  

= 116 + 116 - 1/36 = 11/36. 

Conditional Probability 
Experiment - r d l  three dice A, B and C 
Event El - obtain exactly two 1's 

E 2 - A = l , B a n d C a n y v a l u c  

R ( E , ) = R ( A = l ) . R ( B = l ) . R ( C + l )  
+ R ( A + l ) . R ( B = I ) - P r ( C = I )  
+ R ( A = I ) . R ( B #  I ) . P I ( C = l )  

= 3(1/6 X 116 X 516) = 5/72 

P1(E2) = 116 X 1 X 1 = 116 

R ( E , E , ) = m A = l ) . R ( B = l ) . R ( C + 1 )  
+ P r ( A = l ) - R ( B + I ) . R ( C = l )  - 2(1/6 X 116 X 516) = 51108 

Thus, &en that A = 1, the probability of E, occurring is four tuna grater. 

RANDOM VARIABLES 

A random var~able X is, In simplest terms, a variable which takes on values at 
random; and may be thought of as a function of the outcomes of some random 
experiment. The manner of specifying the probability with which different 
values are taken by the random variable is by the pmbability disrriburiun 
function F(x), which is defined by 
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or by the probability density fincrion f(x), which is defmed by 

The inverse of the defining relationship for the probability density function is 

An evident characteristic of any probability distribution or density function is 

From the dehition, the interpretation of f(x) as the density of probability 
of the event that X takes a value in the vicinity of x is clear: 

f(x) = lim 
F(x + dx) - F(x) 

d x 4  dx 

= lim Pr(x < X C x + dx) (2.2-16) 
d x 4  dx 

This function is finite if the probability that X takes a value in the infinitesimal 
interval between x and x + dx (the interval closed on the right) is an infmitesimal 
of order dx. This is usually true of random variables which take values over a 
continuous range. If, however, X takes a set of discrete values xi - with nonzero 
probabilities pi - f(x) is infinite at these values of x. This is expressed as a series 
of Dirac delta functions weighted by the appropriate probabilities: 

An example of such a random variable is the outcome of the roll of a die. A 
suitable definition of the delta function, 6(x), for the present purpose is a 
function which is zero everywhere except at x = 0, where it is infinite in such a 
way that the integral of the function across the singularity is unity. An 
important property of the delta function, which follows from this definition, is 

if G(x) is a finitevalued function which is continuous at x = x,. 
A random variable may take values over a continuous range and, in addition, 

take a discrete set of values with nonzero probability. The resulting probability 
density function includes both a finite function of x and an additive set of 
probability-weighted delta functions; such a distribution is called mixed. 

The simultaneous consideration of more than one random variable is often 
necessary or useful. In the case of two, the probability of the occurrence of pairs 
of values in a given range is prescribed by the joint probability distribution 
function 

F,(x,y)= Pr(X < x and Y 4 y) (2.2-19) 

where X and Y are the two random variables under consideration. The 
corresponding joinr probability density function is 

It is dear that the individual probability distribution and density functions for X 
and Y can be derived from the joint distribution and density functions. For the 
distribution of X, 

Corresponding relations give the distribution of Y. These concepts extend 
directly to  the description of the joint behavior of more than two random 
variables. 

If X and Y are independent, the event (X < x) is independent of the event (Y 
4 y); thus the probability for the joint occurrence of these events is the product 
Of the probabilities for the individual events. Equation (2.2-19) then gives 

F,(x,y)=R(X<xandY C y )  
=Pr(X<x)prcl'<y) 

= Fx(x)FYCY) 

From Eq. (2.2-20) the joint probability density function is. then, 

f2(x9y) = fx(x)fy 0.1 (2.2-24) 
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Subscripts X and Y are used to emphasize the fact that the distributions are 
different functions of different random variables. 

Expectations and Statistics of Random Variables - The expectation of a 
random variable is defmed as the sum of all values the random variable may take, 
each weighted by the probability with which the value is taken. For a random 
variable that takes values over a continuous range, the summation is done by 
integration. The probability, in the limit as d x 4 ,  that X takes a value in the 
infinitesimal interval of width dx near x is given by Eq. (2.2-16) as f(x) dx. Thus, 
the expectation of X, which we denote by E[X] is 

This is also called the menn value of X, the mean of the distribution of X, or the 
first moment of X. This is a precisely defined number toward which the average 
of a number of observations of X tends, in the probabilistic sense, as the number 
of observations increases. Equation (2.2-25) is the analytic definition of the 
expectation, or mean, of a random variable. This expression is valid for random 
variables having a continuous, dixrete, or mixed distribution if the set of 
discrete values that the random variable takes is represented by impulses in f(x) 
according to Eq. (2.2-17). 

It is frequently necessary to find the expectation of a function of a random 
variable. If Y is defined as some function of the random variable X - e.g., 
Y=g(X) - then Y is itself a random variable with a distribution derivable from 
the distribution of X. The expectation of Y is defined by Eq. (2.2-25) where the 
probability density function f n  Y would be used in the integral. Fortunately, 
this procedure can be abtneviated. The expectation of any function of X can be 
calculated directly from the distribution of X by the integral 

An important statistical parameter descriptive of the distribution of X is its 
mean squared value. Using Eq. (2.2-26), the expectation of the square of X is 
written 

The quantity E[X2] is also called the second moment of X. The root-mean- 
squared (m) value of X is the square root of E[X2]. The variance of a random 
variable is the mean squared deviation of the random variable from its mean; it is 
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denoted by 02 where 

The square r w t  of the variance, or 0, is the standard deviation of the random 
variable. The m s  value and standard deviation are equal only for a zero-mean 
random variable. 

Other functions whose expectations are of interest are sums and products of 
random variables. It is easily shown that the expectation of the sum of random 
variables is equal t o  the sum of the expectations, 

whether or not the variables are independent, and that the expectation of the 
product of random variables is equal to the product of the expectations, 

if the variables are independent. It is also true that the variance of the sum of 
random variables is equal to the sum of the variances if the variables are 
independent - i.e., if 

then, for independent Xi, 

A very important concept is that of statistical correlation between random 
variables. A partial indication of the degree to  which one variable is related to 
another is given by the covariance, which is the expectation of the product of 
the deviations of two random variables from their means. 
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In the expression, the term E[XY] is the second moment of X and Y. The 
covariance, normalized by the standard deviations of X and Y, is called the 
correlation coefficient, and is expressed as 

The correlation coefficient is a measure of the degree of linear dependence 
between X and Y. If X and Y are  independent,^ is zero (the inverse is not true); 
if Y is a linear function of X, p is f 1. If an attempt is made to approximate Y 
by some linear function of X, the minimum possible mean-squared error in the 
approximation is oyZ  (1 - p'). This provides another interpretation of p as a 
measure of the degree of linear dependence between random variables. 

One additional quantity associated with the distribution of a random variable 
is the characteristic function. It is defined by 

A property of the characteristic function that largely explains its value is that 
the characteristic function of a random variable which is the sum of independent 
random variables is the product of the characteristic functions of the individual 
variables. If the characteristic function of a random variable is known, the 
probability density function can be determined from 

Notice that Eqs. (2.2-34) and (2.2-35) are in the form of a Fourier transform 
pair. Another useful relation is 

Thus, the moments of x can be generated directly from the derivatives of the 
characteristic function. 

The Unifam and Normal Probability Distributions -Two important specific 
forms of probability distribution are the uniform and normal distributions. The 
uniform dism'bution is characterized by a uniform (constant) probability 
density, over some finite interval. The magnitude of the density function in this 

interval is the reciprocal of the interval width as required to make the integral of 
the function unity. This function is shown in Fig. 2.2-1. The n d p r o h b i l i t y  
density function, shown in Fig. 2.2-2, has the analytic form 

where the two parameters that define the distribution are m, the mean, and o, 
the standard deviation. The integral of the function, or area under the curve, is 
unity. The area within the f l o  bounds centered about the mean is approx- 
imately 0.68. Within the f20  bounds the area is 0.95. As an interpretation of 
the meaning of these values, the probability that a normally distributed random 
value is outside f 20 is approximately 0.05. 

Figure l2-1 Uniform Robability Density Function 

P i  22-2 Nomd Probability Density Function 
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By calculating the characteristic function for a normally distributed random 
variable, one can immediately show that the distribution of the sum of 
independent normally distributed variables is also normal. Actually, this 
remarkable property of preserving the distribution form is true of the sum of 
normally distributed random variables, whether they are independent or not. 
Even more remarkable is the fact that under certain circumstances the 
distribution of the sum of independent random variables, each having an 
arbitmry distribution, tends toward the normal distribution as the number of 
variables in the sum tends toward infinity. This statement, together with the 
conditions under which the result can be proved, is known as the central limit 
theorem. The conditions are rarely tested in practical situations, but the 
empirically observed fact is that a great many random variables display a 
distribution which closely approximates the normal. The reason for the common 
occurrence of normally distributed random variables is certainly stated in the 
central limit theorem and the fact that superposition is common in nature. 

We are often interested in two random variables which possess a bivariote 
normal dism.bution. The form of the joint probability density function for 
zero-mean variables, written in terms of statistical parameters previously defined, 
IS 

For n random variables, the multidimensional or multivariate normal dic 
m'bution is 

with 

The quantities 

and 

are the mean and covariance of the vector x, respectively. Vector and matrix 
functions of random variables adhere to the operational definitions and rules 
established in Section 2.1. Thus. the expected value of a vector (matrix) is the 
vector (matrix) containing expected values of the respective elements. 

RANDOM PROCESSES 

A random process may be thought of as a collection, or ensemble, of 
functions of time, any one of which might be observed on any trial of an 
experiment. The ensemble may include a finite number, acountable i n f ~ t y ,  or 
a nonconntable infmity of such. functions. We shall denote the ensemble of 
functions by (x(t)), and any observed member of the ensemble by x(t). The 
value of the obserwd member of the ensemble at a particular time, say t l ,  as 
s h o w  in Fig. 2.2-3, is a random variable. On repeated trials of the experiment, 
x(tl) takes different values at random. The probability that x(tl) takes values in 
a certain range is given by the probability distribution function, as it is for any 
random variable. In this case the dependence on the time of observation is 
shown explicitly in the notation, viz.: 

The corresponding probability density function is 

These functions are adequate to define, in a probabilistic sense, the range of 
amplitudes which the random process displays. To gain a sense of how quickly 
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members of the ensemble are likely to vary, one has to observe the same member 
function at more than one time. The probability for the occurrence of a pair of 
values in certain ranges is given by the second-order joint probability distribution 
function 

and the corresponding joint probability density function 

Higherardered joint distribution and density functions can be defined following 
this pattern, but only rarely d o e  one attempt to deal with more than the 
second-order statistics of random processes. 

If two random processes are under consideration, the simplest distribution 
and density functions that provide some indication of their joint statistical 
characteristics are the secondarder functions 

Correlation Functions - Actually, the characterization of random procmes, 
in practice, is usually limited to even less information than that given by the 
second-order distribution or density functions. Only the first moments of these 
distributions are commonly measured. These moments are called autocorrelation 
and cross-correlation functions. The autocovelntion function is defied as 

and the cross-correlation function as 

In the case where E[x(t,)], E[x(t,)], and E[y(t2)] are all zero, these 
correlation functions are the covariances of the indicated random variables. If 
they are then normalized by the corresponding standard deviations, according to 
Eq. (2.2-33). they become conelation coefficients which measure on a scale 
from -1 to +I the degree of linear dependence between the variable. 

SUtionarity - A stationary random process is one whose statistical properties 
are invariant in time. This implies that the first probability density function for 
the process, f(x,,t,), is independent of the time of observation t,. Thenall the 
moments of this distribution, such as E[x(t,)] and E[x2(t,)], are also 
independent of time - they are constants. The second probability density 
function is not in this case dependent on the absolute times of observation, t, 
and t,, but still depends on the difference between them. So if t2 is written as 

f2(x1,tl;x2.t2) becomes f2(xl,tl;x2,t, + 7). which is independent o f t , ,  but still 
a function of r. The correlation functions are then functions only of the single 
variable r ,  viz.: 

We note the following properties of these correlation functions: 

' ~ ~ ~ ( 0 )  = E[xZ1 (2.2-52) 

Ergodicity - One further concept associated with stationary random 
processes is the ergodic hypothesis. This hypothesis claims that any statistic 
calculated by averaging over all members of an ergodic ensemble at a fixed time 
can also be calculated by averaging over all time on a single representative 
member of the ensemble. The key to this notion is the word "representative." If 
a particular member of the ensemble is to be statistically representative of all, it 
must display at various points in time the full range of amplitude, rate of change 
of amplitude, etc., which are to  be found among all the members of the 
ensemble. A classic example of a stationary ensemble which is not ergodic is the 
ensemble of functions which are constant in time. The failing in this case is that 
no member of the ensemble is representative of all. 

In practice, almost all empirical results for stationary processes are derived 
from tests on a single function, under the assumption that the ergodic 
hypothesis holds. In this case, the common statistics associated with a random 
process are written 
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E [x] = lim iT x(t) dt 
T+.. 2T 

qx,(r) = lim I /T  X(t) X(t + T) dt 
T + .. 2T -T 

Example 2.2-2 
An example of a stationary ergodic random process is the ensemble of sinusoids, of @"en 

amplitude and frequency, with a uniform distribution of phase. The member functions of 
this ensemble are all of the form 

x(t) = A s n  (wt + 8) 

where R iv a random wiable, uniformly distributed over the interval (0,Zn) radians. Any 
avezage taken over the members of this ensemble at any fued  time would fmd all phase 
angles rcprsented with equal probability density. But the same is true of an average over all 
time on any one member. For this process, then, all members of the ensemble qualify as 
"representative." Note that any distribution of the phase an& R other than the uniform 
distribution over an i n t e p l  number of cycles would define a nonergodie process. The 
relevant calculations are given below. For the ensemble nveroge autocorrelation function 
(f(@ = 1/2n for 0 6 R < 2 4  wegct (Eq. (2247)) 

while the time average autoeonelation function is (Eq. (22-58)) 
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AZ 
= y cos wr  

The two rsults  are equivalent and, thus, x(t) is an example of an ergodic process. 

Gaussian Pro- -. A gaussian processis one characterized by the property 
that its joint probability distribution functions of all orden are multidimensional 
normal distributions. For a gaussian process, then, the distribution of x(t) for 
any time t is the normal distribution, for which the density function is expressed 

by 

The joint distribution of x(tl) and x(t2) is the bivariate normal distribution; 
higher-order joint distributions are given by the multivariate normal distribution. 
If ~ ( t )  is an n-dimensional gaussian vector then the distribution of ~ ( t )  is the 
normal distribution expressed by 

AU the statistical properties of a gaussian random prccess are defined by the f is t  
and second moments of the distribution. Equivalently, the statistics of the 
process are all contained in the autocomelation function of the process. Clearly, 
this property is a great boon to  analytic operations. Additionally, the output of 
a linear system whose input is gaussian is also gaussian. 

As a consequence of the central limit theorem, gaussian processes are those 
most frequently encountered in actual systems; as a consequence of their 
analytic convenience, they are also most frequently encountered in system 
analysis. It is, therefore, appropriate to  introduce a shorthand notation to 
contain the information in Eq. (2.261). The notation, which is used extensively 
in the sequel, is 

which indicates that 2 is a gaussian (normal) random vector with mean and 
covariance P. By way of example, for a one-dimensional random process x with 
mean m and standard deviation a, we would write 
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Pomr Spectral Density Functimr - The input-output relation for a linear 
system may be written (Ref. 11, also, Section 3.3 herein) 

where x(t) is the input function, y(t) is the output. and w(t,r) is the system 
weighringfunction, the raponse at time t to a unit impulse input at time 7. If 
the system is time-invariant, this superposition integrnl reduces to 

This expression is also referred to as the mnvolution integral. Using Eq. (2.2.65), 
the statistics of the output process can be written in terms of those of the input. 
If the input process is stationary, the output process is also stationary in the 
steady state. Manipulation of Eq. (2.245) in this instance leads to several 
expressions for the relationships between the moments of x(t) and y(t), 

Analytic operations on linear time-invariant systems are facilitated by the use 
of integral transforms which transform the convolution input-output relation of 
Eq. (2.2-65) into the algebraic operation of multiplication. Since membem of 
stationary random ensembles must necessarily be visualized as existing for all 
negative and positive time, the two-sided Fourier transform is the appropriate 
transformation to employ. The Fourier transforms of the correlation functions 
defmed above then appear quite naturally in analyses. The Fourier transform of 
the autocorrelation function 

is called the power spectml density function, or power density spectrum of the 
random process (x(t)). The term "power" is here used in a generalized sense, 
indicating the expected squared value of the members of the ensemble. @,,(a) 
is indeed the spectral distribution of power density for (x(t) in that integration a of @,,(w) over frequencies in the band from w,  to  w2 yiel the mean-squared 

value of the process whose autoconelation function consists only of those 
harmonic components of q (r) that lie between w l  and wa. In particular, the 
mean-squared value of (x(tyitself is given by integration of the power density 
spectrum for the random process over the full range of w. This last result is seen 
as a specialization of the inverse transform relation corresponding to Eq. 
(2.2-70), namely 

The Fourier transform of the cross-correlation function is called the cross power 
specnnl density function 

The desired input-output algebraic relationships corresponding to Eqs. (2.248) 
and (2.249) are 

@ (w) = W(jw) a&) 
XY 

and 

where W is the system transfer function, defined as the Laplace transform of the 
system weighting function (with s = jw, see Ref. 13) 
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White Noise - A particularly simple form for the power density spectrum is a 
Constant, O,,(w) =Oo. This implies that power is distributed uniformly over all 
frequency components in the full infinite range. By analogy with the 
corresponding situation in the case of white light, such a random process, usually 
a noise, is called a white noise. The autocorrelation function for white noise is a 
delta function 

We recall the definition of the Dirac delta 6(7) and note that the 
mean-squared value of white noise, q,,(O) = OpS(0), is infiite. Thus the process 
is not physically realizable. White noise is an idealized concept which does, 
however, serve as a very useful opproximnrwn to situations in which a disturbing 
noise is wideband compared with the bandwidth of a system. A familiar physical 
process closely approximated by white noise is the shot effect which is a 
mathematical description of vacuum-tube circuit output fluctuation. 

White noise is also quite useful in analytic operations; integration properties 
of the Dirac delta 6(7) can many times be used to advantage. Additionally, a 
number of random processes can be generated by passing white noise through a 
suitable filter. Illustrations of the autocorrelation functions and power spectral 
density functions for several common random processes are shown in Fig. 2.24. 
Applications of such random processes will be considered in subsequent 

I chapters. 

Gauss-Markov Processes - A special class of random processes which can be 
generated by passing white noise through simple filters is the family of 
gauss-markov processes. A continuous process x(t) is first-order morkov if for 
every k and 

That is, the probability distribution for the process x(tk) is dependent only on 
the value at one point immediately in the past, ~ ( t ~ . ~ ) .  If the continuous process 
x(t) is fint-order markov, it can be associated with the differential equation 

PROCESS AUTOCORRELATION FUNCTION Y-T- POWER SPECTRAL DENSITY 

Piwe 2.2-4 Desaiptions of Common Random Recesses 

probability density functions of w and consequently x also are gaussian, the 
process x(t) is a gouss-mnrkov process. The statistics of a stationary gauss-markov 
process are completely described by the autocorrelation function 

The so-called correhtwn rime (l/e point) is l /P1 .  The spectral density of the 
White noise, w, which generates the rocess described by Eq. (2.2-80) is given in 
terms of the variance of x as '2~3 3. The autocorrelations of many physical 
phenomena are well-described by Eq. (2.2-80). 

where w is white noise (for a discrete first-order markov process, the associated 
relation is a fint-order difference equation). If we add the restriction that the 
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A continuous process x(t) is second-order markov, if for every k and 

it is true that 

Equivalently, the probability distribution of x(tk) is dependent only on the 
conditions at two points immediately in the past. An associated differential 
equation is 

If the density function of w is gaussian, the process x(t) is second-order 
gauss-markov. If x(t) has mean m and is stationary, its autocorrelation function 
has the form 

process. 

TABLE 2.2-1 CHARACI'ERISTICS OF STATIONARY MARKOV PROCFSSES* 

The correlation time of this process is approximately 2.146/P2; the spectral 
density of the white noise w is defined as W2'026(r). For the second-order 
gauss-markov process the derivative of p,,(r) is zero at r e ;  this characteristic is 
appealing for many physical phenomena (see Example 3.8-1). 

Definition of an nth-order gauss-markov process proceeds directly from the 
above. The characteristics of such processes are given in Table 2.2-1 and Fig. 
2.2-5. For the nth order gauss-markov process as n+-,  the result is a bias. 
Heuristically, white noise can be thought of as a "zeroth-order'' gauss-markov 

Power Spectral 
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PROBLEMS 

Problem 2-1 
Show that k1 = -rl k1 

Problem 2-2 
For the matrlx 

show that the eigenvalucr are 

A, = 2, A2 = -4, h )  = 5. 

Problem 2-3 
Show that A is positivedefinite f, and only if, all of the dgcnvalucs of A arc positive. 

Problem 2 4  
If R(t) is a time-varying orihagonal matrix, and 

show ihat S(t) must be skew-symmetric. 

Problem 2 6  
Consider the matrix A 

(a) Ur ihecayley-Hamilton theorem toshow ihat 

What are the eigcnvalua (Al,Al) of A? (b) Use the result in (a) and ihe matrix exponential 
scda expansion to  show that 

(c) Collecting terms in ihe expression in (b) yields 

Closed form values for the two series al(t) and a2(t) are not immediately apparent. 
However, the Caylcy-Hamilton theorem can be uped to obtain c l o d  form expredom. 
Demonstrate that these solutions are of the form' 

Problem 2-6 
l f r i s  a ihree-dimensional position vector, the l o a s  of points for which 

ITF1'< 1 

where E is a positive definite symmetric matrix defines an ellipsoid. Show that thevolume 
of this ellipsoid is 
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Problem 2-7 

The least-rquam derivation in Section 2.1 is bared on the assumption that all 
measurements f are of equal quality. If, in fact, it is kwwn that ~t is reasonable to apply 
different weights to the various measurements mmprinng & the least-wluare~ sstimator 
should be appropriately modified If the ith measurement zi has a relative weight of wi, it is 
~Usomble to construct a matrix 

with which to define a weighted cost function 

J = ~ - H ~ ~ W @ - H ~  

Show that the weighted Icast-squares estimate is 

i = (HTW j' H T W ~  

ProMern 2 8  

For an arbitrary random process x(t), show that the crowcorrelation between x(t) and 
its derivative f(t) is 

Problem 2-9 

If X, Y, and Z are independent random variables each uniformly distributed in the 
interval (-1,1), show that the probability density function f a  the variable w = (X + Y + 
Z)/3 is 

Sketch p,(w) and mmmcnt on its shape. 

Problem 2-10 

The Poisson or exponentid mndom pmess is frequently used to describe random arrival 
rates, or random service tima in queueing problems If p is the average number of arrivals, 
the probability density function describing the probability of x successes is 

Find the Poiwon probability distdbution function FW. If the averqe arrival rate is 
Ol/minute, show that the probability of exactly 4 arrivals in 10 minutes is 0.195 and the 
probability of no more than four arrivals in ten minutes is 0.629. 

Problem 2-1 1 

If x and v are indcocndent normal random variaMes with zero mcan and equal variance 
02, show that the variable 

*=m 
has probability dcruity described by 

, z > O  

f ( ~ )  = 

The random variable z is called a Rnyleigh process. Show that its mean and variance are 

Problem 2-12 

The probability density for the acceleration of a particular maneuvering vehicle is a 
combination of disfrete and continuous functions The probability of no aeeeleration is Po. 
The orobabilitv of aeecluation at a maximum rate Amax(-Amax) is Pma. For all other 
acee&ion values, acceleration probability is desaibed by a &formdensity function. 
Sketch the combined probability density function Show that the magnitude of the uniform 
density function is 

and that thevariance of the acceleration is (Ref. 12) 

Problem 2-13 

Find the mean, mean square and variance of a random variable uniformly distributed in 
the intewal [a,b]. 

Problem 2-14 

If x l  and x2 are veromun gaussh random variables wiUl a joint probability density 
function given by Eq. (2.2-38), show that their mm z = x, + xz is gaussian Note that this 
result holds even though XI and x.2 are depandcnt. 



3. LINEAR DYNAMIC SYSTEMS 

In Section 2.2 it is noted ihat white noise is physically unrealizable. However, ~t is often 
said that a fit-order g~usrmarkov process 

with 

is a physidy realizable proeess. S m e  a physically realizable process cannot have a 
derivative with infmits varianw, show thal x(t) is just as physically unrealizable as white 
noise. 

Thus, it is suggested ihat none of the continuous stochastic proceues treated in this 
book are physically realable. However, as noted in Ref. 14, this fact merely serves to 
emphasize the point that mathematical models are approximate but highly wful  
representations of ihe real world. 

Application of optimal estimation is predicated on the description of a 
physical system under consideration by means of differential equations. In this 
chapter, store-spoce notation is introduced to provide a convenient formulation 
for the required mathematical description, and techniques for solving the resul- 
tant vector-matrix differential equation are also presented. Although the initial 
discussion is concerned with continuous physical systems, results are extended 
to the discrete case in which information is available or desired only at specified 
time intervals. Controlkzbility and observobiliry, two properties based on system 
contiguration and dynamics, are defined and illustrated. Equations for time 
propagation of system error state covorionce are obtained for both discrete and 
continuous systems. Anumber of models for noise sources that affect the system 
error state covariance are discussed, with special attention given to  their 
statistical properties and the manner in which they can be described in 
state-space notation. Finally, some considerations for empirical determination of 
error models are presented. 

3.1 STATE-SPACE NOTATION 
Early work in control and estimation theory involved system description and 

analysis in the frequency domain. In contrast to these efforts, most of the recent 
advances - work by Pontryagin, Bellman, Lyapunov, Kalman and others - have 
involved system descriptions in the time domain. The formulation used employs 
state-space notation which offers the advantage of mathematical and notational 
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convenience. Moreover, this approach to system description is closer to physical 
reality than any of the frequencyaiented transform techniques. It is particu- 
larly useful in providing statistical descriptions of system behavior. 

The dynamics of linear, lumped parameter systems can be represented by the 
firstader vector-matrix differential equation 

where ~ ( t )  is the system state vector, y(t) is a rondom forcingfunction, g(t) is a 
deterministic (control) input, and F(t), G(t), L(t) are matrices arising in the 
formulation. This is the continuous form ordinarily employed in modern 
estimation and control theory. Figure 3.1-1 illustrates the equation. The state 
vector for a dynamic system is composed of any set of quantities sufficient to 
completely describe the unforced motion of that system. Given the state vector 
at a particular point in time and a description of the system forcing and control 
functions from that point in time forward, the state at any other time can be 
computed. The state vector is not a unique set of variables; any other set ~ ' ( t )  
related to ~ ( t )  by a nonsingular transformation 

fulfills the above requirement. 

F i r e  3.1-1 Block Diagram of Continuous Representation of 
Linear Dynamics Equation 

Given an nth-order linear differential equation 

[Dn + a,,.,(t)Dn-I + . . . al(t)D + ao(t)] y(t)= w(t) (3.1-3) 

where D = dldt, we can defme a set of state variablesx,(t), . . . , x,(t) by 

x1( t )y ( t )  

x2(t) i l ( t )  

x,,(t) 4 n,.,(t) (3.1-4) 

These relations can be written as a set of n first-order linear differential 
equations: 

k ( t )  = x2(0 

h ( t )  = xAt) 

The first n-1 of these equations follow from the state variable definitions; the 
last is obtained using the definitions and Eq. (3.1-3). Expressing the equations in 
vector-matrix form as in Eq. (3.1-1) yields 

This is called the companion form of Eq. (3.1.3). The system dynamicsmatrix F 
is square with dimension n, corresponding to the order of the original 
differential equation. Equation (3.1-6) is illustrated in block diagram form in 
Fig. 3.1-2; note that in this formulation the state variables are the outputs of 
integrators. 

In many linear systems of interest the forcing and control functions are 
multivariabh - i.e., d t )  and y(t) in Eq. (3.1-1) are composed of several nonzero 
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F i r e  3.1-2 Block Diagram Representation of Eq. (3.1-6) 

functions. Also, the individual elements of yy(t) and ~ ( t )  may drive several state 
variables simultaneously, causing G(t) and L(t) to be matrices with significant 
elements at locations other than those on the main diagonal. Ordinarily, system 
dynamics are determined directly from the physics of the problem. A blodt 
diagram of the physical system may be sketched and the first-order vector- 
matrix differential equation determined by inspection. The outputs of each of 
the various integrators would constitute a convenient set of state variables. The 
system dynamics equations can be written in the form of Eq. (3.1-1) as 

The functions yy and g need not be of dimension n; in the equation shown the 
dimension of yy is r and that of y is s. However, it is required that products Gyy 
and Lu be of dimension n. Reference 1 further demonstrates the steps required 
to convert a high-order differential equation into a set of state variables driven 

by a multivariable forcing function. Several examples of the application of 
state-space notation to physical systems are given below. 

Example 3.1-1 
Consider the mass m shown in Fig. 3.1-3; it is connected to the left wall by a spring with 

spring constant k and a damper with damping coefficient c. F~ictionlesn wheels are assumed. 
Displacement x is measured (positive-left) between the indicators; the entire container is 
subpct to acceleration w(t) which is positive to the right. This is a onedimensional 
translation-motion-only system and, consequently, displacement x and velocity i are 
suitable state variables. 

F i r e  3.1-3 SewndOrder Physical System 

The equation of motion of the system is obtained frdm Newton's second law 

The forces acting are Zf, = -kx - e i  eorrespnding to the sp"g and damper. Total 
acceleratton is a = k' - w(t) w that 

If the state vector is defined as 

the appmpnate equation for the system dynamics is 
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Example 3.1-2 
Application of state-space notation when the syrtem is described by a block diagnm is 

illustrated using Fig. 3.1-4, which is a single-axis inertial navigation syrtem Schuler loop 
error diagram (Ref. 2). The following definitions apply: 9 is the platform tilt angle (rad), 6v 
is the system velocity error (fps), 6p is the system position error (it), R is earth radius (it), g 
is local gravity (ips2), cg is gyro random drift rate (radl~ec), and ra is accelerometer 
uncertainty (ips2). The system state variables are cho~en as the outputs of the three 
integrators so that the state vector is 

(3.1-12) 

Figure 3.1-4 SingleAxis Schuler Loop Error Diagram 

No control p i s  applied and, therefore, the rystem dynamics equation can be written by 
inspeetion as 

An equivalent form for the random forcing function is 

As previousl~ noted the only requirement is that the product Gyy has the same dimension as 
the vector &. 

3.2 TRANSITION MATRIX 
Having provided a mathematical formulation for the description of physical 

systems, we next seek techniques for solution of the system dynamics equation. 
The first step involves solving the equation when the forcing function yy and 
control function y are not present. 

The homogeneous unforced matrix differential equation corresponding to Eq. 
(3.1-1) is 

Suppose that at some time, to, all but one of the outputs of the system 
integrators are set to zero and no inputs are present. Also, assume that the 
nonzero integrator output isgiven a magnitude of one. The behavior of the state 
vector for all times t, where t > to, can be expressed in terms of a time-varying 
"solution vector," fi(t,to), where the subscript refers to the integrator whose 
output is initially nonzero 

If the initial condition on the ith integrator is something other than unity - a 
scale factor c, for example - we find from the linear behavior of the system 

Now, due to the superposition principle, if integrators i and j both have nonzero 
outputs ci and cJ at time to, the system response is the sum of the individual 
response vectors, viz: 

But this can be written as a product of the matrix 

and the vector 
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In general, every integrator can have a nonzero vnh~e at tn: these values 
comprise the state ~ ( b ) .  The time history of the state is tne sum or the 
individual effects, 

which for compactness is written as 

The matrix 8(t,to) is called the transition matrix for the system of Eq. (3.2-1). 
The transition matrix allows calculation of the state vector at some time t, given 
complete knowledge of the state vector at to, in the absence of forcing 
functions 

Returnme to Eq. (3.2-2), it can be seen that the solution vectors obey the 
differential equation 

where 

Similarly, the transition matrix, composed of the vectorsi, obeys the equations 

Figure 3.2-1 illustrates the time history of a state vector. The transition 
matrix O(t,, to) describes the influence of  to) on ~((tl): 

Also, 

F i r e  3 . t l  Conceptual Nustration of the Time Evolution of a State Vector 
(n + I)-Dimensional Space 

Therefore, 

which is a general property of the state transition matrix, independent of the 
order of to, t , ,  and t,. Since for any t 

premultiplying by Q1(t,to) provides the useful relationship 

Since the inverse ofO(t,to) must exist, it necessarily follows that 
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Other relationships involving the determinant of the transition matrix are 

and 

Trrnsition Matrix for Stationary Systems - For a stationary system, the F 
matrix is time-invariant and the transition matrix depends only on the time 
internal considered, viz: 

This is easily shown by expanding ~ ( t )  in a Taylor's series about some time, to, 

But from Eq. (3.2-1) 

etc. 

Substituting, the expansion becomes 

In Chapter 2, the matrix exponential is defined as 

e A = I + A + I l f + g +  . . .  
2! 3! 

(3.2-21) 

Consequently, the transition matrix for the stationary system can be identified 
from Eq. (3.2-20) as 

which depends only on the stationary system dynamics F and the interval t - t,,. 
Examples of the transition matrices for several simple physical systems are 
illustrated below. 

Exampk 3.2.1 
Consider the circuit shown in Fig. 3.2-2, which is composed of a voltage source, v, a 

resistor, R, and an inductor, L. Kirchhoffs voltage law yields 

Figure 3.2-2 Elementary Electrical Circuit 

We assume i=io at t=to and v=O for all time, which yrelds 

(3.2-24) 

The system dynamics matrix F is merely the scalar quantity - RIL. Elementary differential 
equation solution techniques yield 

as the solution to Eq. (3.2-24). From the solutron we identify the transition matnx as 

Wt,to) = e 

Roperties of the transition matrix .we readily verified. For timer to, t , ,  t2, we write 
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-%t, -to) 
ec t , . t o )=c  

SO that 

- L , t 2 - t , )  -+o) 
wt2 . t , ) e ( t1 . to )=  e e 

- % - t o )  
= e  L 

' O(t2,to) (3.2-28) 

Example 3.2-2 

The \ystem shown ~n Fig. 3.2-3 13 used as r r cond  example of transition matrlx 
computation. Inteerator outputs x ,  m d  x 2  are convenient state wriablcs: the system 
dynamwr equation is obtained by inrpectlon a* 

Matrix multrphertion yields 

~A{T+' 

Figure 3.2-3 Second-Order Oscillatory System 
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Y, that 

& = I + F I +  L F ? ? +  2!  IF^^^ 3! . . .  

We identify the two sedes in Eq. (3.2-31) as trigonometric functions: 

Figure 3.2-3 IS, in fact, a representation of a second-order oscillator; thrs !dentitication is 
borne out by the oscillatory nature of the transition matrix. 

3.3 MATRIX SUPERPOSITION INTEGRAL 

Having computed the homogeneous solution, we now seek the differential 
equation particular solution. Consider first the linear system including forcing 
function inputs: 

Referring to Fig. 3.3-1, we see that the effect of the input to the i'h integrator 
of Fig. 3.1-2 over a small interval (r - Ar, r)  can be represented as an impulse 
whose area is the i th row of the term L(r)g(r) times the interval AT. This impulse 
produces a small change in the output of the integrator, 

Axi(r) = (Yr)ll(r)) Ar (3.3-2) 

The change in the entire state vector can be expressed as 

The effect of this smaU change in the staie at any subsequent point in time is 
given by 

M i )  [given an impulsive input L(r)~(r) Ar] = @(t,r)L(r)ll(r)Ar (3.3-4) 
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Pire 3.11 Representation of the Input to the ith 
Integrator asan Impulse 

Because the system is linear, the response to an input can be viewed as the sum 
of individual responses to the impulses comprising the input. In the limit as 
AT + 0 the effect of the input on the state at some time, t, is given by 

If the state at some time, to, is known, it is only necessary to observe the input 
after to, by utilizing Eq. (3.2-6): 

Equation (3.3-6) is often called the matrix superposition integral. Of course, 
differentiation of Eq. (3.3-6) can be shown to result in Eq. (3.3-1). An alternate 
derivation of the matrix superposition integral is shown in Example 3.3-1 and its 
application to a physical system is illustrated in Example 3.3-2. 

Example 3.31 
The solution to the homogeneous equation is 

X(t) = w,to)a(to) 

we seek a solution of a rimtlar nature, which also lncluder the effect of the fordng functmn. 
The assumed form is 

r ( t )  = Wt.toK(0 (3.3-8) 

Substitution tn Eq. (3.3-1) yields 

Substttuting this result in Eq. (3.3-8) yields 

Butl(to) = &(to) so that the desired solution lo Eq. (3.3-1) IS 

Example 3.32 
The electrical circuit of Fig. 3.2-2 is now subject to a nonzero input voltage, v. We 

amme initial condition i=io at tine 1-0. Pnor to t=O, the voltage v is zero; for tM I is 
constant at v=V. The system equation is (t>O) 

Recall that the transition matrix is 
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Substituting in Eq (3.3-6), we obtain 

The solution of the dynamics equation, when a random input is 
proceeds in an analogous fashion. Thus, corresponding to 

i ( t )  = Wt) x(0 + W )  + W )  L@) 

we directly find 

present, 

(3.3-16) 

3.4 DISCRETE FORMULATION 
If interest is focussed on the system state at discrete points in time, tk, 

k=1,2,. . . ,the resultingdifference equation is, from Eq. (3.3-17), 

where 

In general, Eqs. (3.4-3) and (3.4-4) provide unique definitions of only the 
products rksk and Akuk and not the individual terms r k ,  x k ,  At and yk. In 
the following discussion, care is taken to make this distinction clear. Notice that 
~f ~ ( t )  is a vector of random processes, p and r k y k  will be vectors of random 
processes. Equation (3.4-1) is illustrated in Fig. 3.4-I.* 

Figure 3.4-1 Ulurtration of Discrete Representation 
of Linear Dynaznifs Equation 

It is important to note that, in subsequent discussions, we do not deal with all 
discrete systems, but rather, onry those that can be derived from continuous 
systems. Without this restriction there could be extensive computational 
difficulty - e.g., in the discrete system whose transition matrix ek is not 
invertible. By considering only the subset of discrete systems noted above, the 
invertibility of Qlk is assured. 

3 5  SYSTEM OBSERVABI LITY AND CONTROLLABILITY 

A discussion of observability requires that the concept of a measurement be 
employed. Measurements are brlefly discussed tn Sectton 2.1 wlth regard to 
least-squares estimation and further discussion is given in Chapter 4. At this 
point it suftices to say that measurements can indeed he made. They are denoted 
by y, and are assumed linearly related to the discrete system state y by the 
observation matrix Hk, as 

'In the sequel, the case of r k =  I and& = pa treated qulte often. 
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where is the measurement noise. Given a sequence of measurements zo ,  
Z, , . . . .a, the observobiliry condition defines our ability to determine 
xo.&,. . . ak from the measurements. 

Consider the discrete deterministic, constant nth-order system* (Ref. 3) 

with n scalar noise-free measurements 

so that H is a constant, n-dimensional row vector. We may write 

If xo is to be determined uniquely, the m a t r i x 3  (or equivalently Z) must have 
an inverse - i.e., be nonsingular. Thus, the obsewability condition is that the 
matrix 

( 3 . 5 4  

be of rank n. The same condition will apply when measurements are a  vector,^ 
extension to continuous systems is straightforward. 

More complete statements of obsewability and the obsewability condition 
for continuous systems follow: 

A system is observable at time t,>., if ~t 1s possible to determine the state 
x(to) by observing ~ ( t )  in the interval (to, t ,).  If all states ~ ( t )  
correspondmg to all ~ ( t )  are observable. the system is completely 
observable. 

A continuous deterministic nth-order, constant coefficient. linear dynamic 
system is observable if, and only if, the matrix 

has rank n 

Example 3.5-1 
Consider the thixd-order system m Fig. 3.5-1 dercrrbed by: 

If measurements can be made only at the output of the frnal mtegrator, then 

m that 

We compute 

SYSTEM MEASUREMENT 

! 

*A time-invariant discrete system is denoted by Ok = O, Ak = A, etc. F i r e  3.5-1 Third-Order System with Output Obrrvatron Only 
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and t o m  the matrix ==I: i !] (3.5-11) 

A square n X n matrix has rank n if it has a nonzero determinant. Thedeterminant o f l  is 
zero so that the matrix has rank less than 3; thus, the system is not observable. The physical 
interpretation of this result is that it is impossible to distinguish between the spectrally 
iden t ld  statesx, and x l  when the only available measurement is their sum. 

CONTROLLABILITY 

We now concem ourselves with determining conditions such that it is possible 
to control the state of a deterministic linear dynamic system - i.e., to select an 
input so that the state takes any desired value after n stages. A simple derivation 
of controllability for the case of a discrete system driven by a scalar control is 
analogous to the derivation of observability; it is left as an exercise for the 
reader. The condition is that the matrix 

T i  I I 1 

be of rank n. We proceed directly to the statements of controllability and the 
controllability condition for a continuous system: 

8 A system is controllable at time t,>to if there exists a control ~ ( t )  such 
that any arbitrary state &(to) =6 can be driven to another arbitrary state 
&,)=I .  

8 A continuous deterministic nth-order, constant coefficient, linear dynamic 
system is controllable if, and only if, the matrix 

r 1 1  I I  i 

has rank n. 

Example 3.5-2 
Consider the system m Fig. 3.5-2. We wish to find conditions on a and 0 such that the 

system is controllable. The system is xcond-order and described by: 

Figure 3.5-2 Parallelfht-Order Systems with a Common Control Input 

so that 

To determine therank of 0, we compute its determmant 

The controllability conditmn requires a nonzero determinant for Q 

The interpretation of this result is quite straightforward. If m and B are equal, the two 
Lst-order systems are identical and there is no way that an input u could, by itself, produce 
different values of x l  and x l .  The controllability condition requires that XI and xz can be 
driven to any arbitrary valuer: with n = 0 the condition cannot be met and, therefore, the 
system is uncontrollable. It is imoortant to note that the test avolied to the matrix Q onlv . ~ 

establ'shes controllability; it does not provide a means to determine the input u required to 
control the system. Thrs latter task can be quite difficult. 

Nonuniqueness of Model - Having introduced the concept of a measurement, 
we have completed the basic state-space structure of a linear system. For a 
continuous linear system, the general state-space model is 
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For a discrete linear system, the model is 

These models are not unique; given the pertinent system input and output 
quantities - i.e., J(O), ~ ( t )  and Z(t) in the continuous case - there are many 
different sets of F(t), G(t) and H(t) which will yield the same overall 
input-output behavior. As noted in Ref. 4, choosing a particular set of F, G and 
H corresponds to the choice of a coordinate system. This choice can have 
considerable impact in numerical analyses as well as affecting system observa- 
bility and controllability as described above. 

3.6 COVARIANCE MATRIX 
In the following discussions both the system state and forcing function are 

vectors whose elements are random v a ~ b l e s .  The state vector obeys a 
relationship of the form of Eq. (3.1-I), while the forcing function g is, in 
p e t a l ,  assumed to be uncorrelated in time (white noise). In the discrete 
formulation, the forcing function gk will be assumed uncorrelated from 
observation time to observation time (white sequence). For the remainder of this 
chapter, we restrict consideration to those systems for which the control input g 
is zero. 

It is generally assumed that random variables have zero ensemble average 
values - is.,  they are unbiased. The fact that a variable is known t o  be biased 
implies knowledge of the biasvalue. Consequently, a new quantity with the bias 
removed (i.e., subtracted) can be defined. This does not suggest that certain 
constant state variables cannot be considered; as long as their distribution over 
the ensemble of possible values is unbiased, constant state variables are 
admissible. It should be pointed out that if the state at some time to isunbiased, 
the state will remain unbiased. This can be illustrated by taking the ensemble 
average of both sides of Eq. (3.4-1) where sk = 9: 

E k k + l l  =E[*k6k ' r k ~ k l  

=*kE[?(kl ' rkE[Wkl 

= 0 

The random state and forcing function vectors are frequently described in 
terms of their covariance matrices. Tine croswovariance matrix of two vectors1 
andpis defined in terms of the outer products: 

When r = & Eq. (3.6-2) defines the c o v a ~ n c e  of l; it is simply a matrix whose 
elements are the second moments of the random components r l ,  s, . . . ,I,,. In 
the sequel, we define the error in the estimate of a state vector to be the 
difference between the estimated 6) and actual (9 values: 

The covariance of a, designated P, is then given by 

It provides a statistical measure of the uncertainty in J. The notation permits us 
to discuss the properties of the covariance matrix independently of the mean 
value of the state. 

Some features of the covariance matrix can be seen by treating the error in 
knowledge of two random system state variables, 

The covariance matrix of & is 

Notice that the covariance matrix of an n-state vector is an n X n symmemc 
matrix; this fact will be used repeatedly in subsequent chapters. The diagonal 
elements of this covariance matrix are the mean square errors in knowledge of 
the state variables. Also, the trace of P is the mean square length ot the vector 
1. The off-diagonal terms of P are indicators of cross-correlation between the 
elements of 8. Specifically, they are related to the linear correlation coefficient 
~ ( h ,  %)by 
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where a indicates standard deviation. 
The random forcing functions are also described in terms of their covariance 

matrices. In the continuous formulation, the covariance matrix for the white 
noise random forcing function, G!, is given by 

where the operator S is the Dirac delta function. The corresponding covariance 
matrix of the uncorrelated random sequence ryyk in the discrete formulation is 

The noise covariance matrix is computed using the definition of r k y k  given in 
Eq. (3.4-3), viz: 

yielding 

The expectation operator may be taken inside the integral since, loosely 
speaking, the expectation of a sum is the sum of the expectations and an integral 
may he thought of as an infinite series. We obtain 

The properties of the Dirac delta function, S(7 - a), are used to the 
integration over a ,  yielding 

which is the result sought. 
There is an important distinction to he made between the matrices Q(t) and 

Qk. The former is a spectral density matrix, whereas the latter is a covariance 
matrix. A spctral density matrix may be converted to a covariance matrix 
through multiplication by the Dirac delta function, S(t - r); since the delta 
function has units of Ittime, it follows that the units of the two matrices Q(t) 
and Qk are different. This subject is again discussed in Chapter 4, when the 
continuous optimal fdter is derived from the discrete formulation. 

The above discussion concerns covariance matrices formed between vectors of 
equal dimension n. The matrices generated are square and .I X n. Covariance 
matrices can also be formed between two vectors of unlike dimension; an 
example of this situation arises in Chapter 7. 

3.7 PROPAGATION OF ERRORS 
Consider the problem of estimating the state of a dynamic system in which 

the state vector 2 is known at some time tk with an uncertainty expressed by 
the error covariance matrix 

where the error vector, Ak, is the difference between the true state.ak, and the 
estimate, fk; 

It is desired to obtain an estimate at a later point in time, tb l .  which will 
have an unbinsed error , ik+l .  TO form the estimate (i.e., the predictable portion 
of ik+l given i k )  the known state transition matrix Qk of Eq. (3.4-1) is used, 
resulting in 

To show that the error in the estimate at tk+l is unbiased, subtract Eq. (3.4-1) 
from Eq. (3.7-3) to obtain 



76 APPLIED OPTIMAL ESTIMATION LINEAR DYNAMICSYSTEMS 77 

The expected value of the error is 

Thus, under the assumptions that gk and y k  are unbiased, it can be seen that 
Eq. (3.7-3) permits extrapolation of the state vector estimate without 
introducing a bias. 

If a known input was provided to the system during the interval (tk.tk+l) this 
would appear as the additional term, A k a .  in Eq. (3.4-I), 

Since the input is known, an identical quantity is added to the estimate of Eq. 
(3.7-3) and thus, the estimation error would be unchanged. 

Equation (3.74) can be used to develop a relationship for projecting the error 
covariance matrix P from time tk to tk+l. The error covariance matrix Pk+l is 

From Eq. (3.74) 

Taking the expected value of the terms of Eq. (3.7-8) and using the fact that the 
estimation error at tk and the noise r k y k  are uncorrelated (a consequence of 
the fact that r k y k  is a white sequence), namely 

the equation for projecting the error covariance is found to be 

From Eq. (3.7-10) it can be seen that the size of the random system 
disturbance (i.e., the "size" of rkQkPkT) has a direct bearing on the magnitude 
of the error covariance at any point in time. Less obvious is the effect of 
dynamic system stability, as reflected in the transition matrix, on covariance 
behavior. In broad terms, a very stable system* will cause the first term in Eq. 
(3.7-10) to be smaller than the covariance Pk. No restrictions regarding the 
stability of the system were made in the development above and the error 
covariance of an unstable system will grow unbounded in the absence of 

measurements taken on the state. A system with neutral stability* will also 
an unbounded error growth if appropriate process noise is present. 

The expression for covariance propagation in the continuous system 
formulation is obtained through use of limiting arguments applied to Eq. 
(3.7-10). The noise covariance is: 

For tk+l - tk = At + 0, this is replaced by 

rkQkrkT -+ GQGT ~t 

where terms of order At2 have been dropped. The differential equation for the 
transition matrix is 

as At + 0. Rearranging terms we deduce that, for At + 0, 

Substituting in Eq. (3.7-lo), we have 

This equation can be rearranged in the form 

As At -+ 0, the equation becomes 

&t)= ~ ( t ) ~ ( t )  + p(t)~T(t) + ~ ( t ) a t )  cT(t) 

*That is, one whose F-matrix only has elgenvalues with large, megatwe real parts 
'That is, one whore Pmatrix has aome purely maginary eigenvalue pairs. 
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which is the continuous form of *e covariance propagation equation. This is the 
stalled linear variance equation. 

38 MODELING AND STATE VECTOR AUGMENTATION 

The error propagation equations obtained in Section 3.7 are developed under 
the assumption that the system random disturbances ( d t )  or g k )  are not 
correlated in time. Suppose, however, that important time correlation does exist. 
The characterization of system disturbances which have significant time 
correlation may be accomplished by means of "state vector augmentation." That 
is, the dimension of the state vector is increased by including the correlated 
disturbances as well as a description of system dynamic behavior in appropriate 
rows of an enlarged F (or 0) matrix. In this manner, correlated random noises 
are taken to be state variables of a fictitious linear dynamic system which is itself 
excited by white noise. This model serves two purposes; it provides proper 
autocorrelation characteristics through specification of the linear system and the 
strength of the driving noise and, in addition, the random nature of the signal 
follows from the random excitation. Most correlated system disturbances can be 
described to a good approximation by a combination of one or more of the 
several types of models described in this section. The problem of correlated 
disturbances is treated for both continuous and discrete formulations. 

State Vector Augmentation - The augmentation of the state vector to 
account for correlated disturbances is done using Eq. (3.1-1): 

Suppose y is composed of correlated quantities g, and uncorrelated quantities 
W2 

If g, can be modeled by a differential equation 

where g3 is a vector composed of uncorrelated noises, then the augmented 
state vector j is given by 

We now consider a number of specific correlation models for system 
disturbances, in each instance scalar descriptions are presented. 

Random Constant - The random constant is a non-dynamic quantity with a 
iixed, albeit random, amplitude. The continuous random constant is described 
by the state vector differential equation 

The corresponding discrete process is described by 

The random constant can be thought of as the output of an integrator which has 
no input but has a random initial condition [see Fig. 3.8-l(a)l. 

Random Walk - The random walk process results when uncorrelated signals 
are integrated. It derives its name from the example of a man who takes 
fixed-length steps in arbitrary directions. In the limit, when the dumber of steps 
is large and the individual steps are short in length, the distance travelled in a 
particular direction resembles the random walk process. The state variable 
differential equation for the random walk process is 

where E[w(t)w(r)] = q(t) 6(t-7). A block diagram representation of this 
equation is shown in Fig. 3.8-l(b). The equivalent discrete process is 

where the noise covariance is [Eq. (3.6-13)l qk = q(tk+l-tk). The scalar version 
of the continuous linear variance equation 

is used to determine the time behavior of the random walk variable. For f=O, 
gel, we obtain 

and the augmented state differential equation, driven only by uncorrelated 
disturbances, is 
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( 0 )  RANDOM CONSTANT 

( b)  RANDOM WALK 

x (01 

[ c )  RANDOM WALK and 
RANDOM CONSTANT 

Pivre 3.8-1 Block Diagrams for Random Constant and 
Random Walk Rocerses 

so that 

A combination of the random walk and random constant can be represented by 
the use of only one state variable. This is illustrated in Fig. 3.8-l(c). 

Random Ramp - Frequently, random errors which exhibit a definite 
time-growing behavior are present. The random ramp, a function which grows 
linearly with time, can often be used to describe them. The growth rate of the 
random ramp is a random quantity with a given probability density. Two state 
elements are necessaly to describe the random ramp: 

The state x l  is the random ramp process; x2 is an auxilialy variable whose initial 
condition provides the slope of the ramp. This initial condition is exhibited in 
the form of a mean square slope, E[X~~(O)] .  From the solution of Eqs (3.8-12) 
the mean square value of xl is seen to grow parabolically with time, viz: 

A combination of a random ramp, random walk and random constant can be 
represented by the use of only two state variables as illustrated in Fig. 3.8-2. The 
equivalent discrete version of the random ramp is defined by the two variables 

RANDOM CONSTANT 
+RANDOM WALK 

RANDOM RAMP 

Figure 3.8-2 Generation of Three Random Characteristics by the 
Addition of Only Two State Variables 

Exparentidly Correlated Random Var*ble - A random quantity whose 
autocorrelation function is a decreasing exponential 

is frequently a useful representation of random system disturbances. Recall from 
Chapter 2 that this autocorrelation function is representative of a first-order 
gauss-markov process. This quantity is often used to provide an approximation 
for a band-limited signal, whose spectral density is flat over a finite bandwidth. 
The exponentially correlated random variable is generated by passing an 
uncorrelated signal through a linear first-order feedback system as shown in Fig. 
3.8-3. The differential equation of the state variable is 
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A summaly of the continuous models described above is given in Fig. 3.8-3. 
The discrete models which have been presented are summarized in Fig. 3.8-4. 
Occasionally, other more complex random error models arise. For example, Ref. 
6 discusses a time and distance correlated error whose autocorrelation function 
is given by 

-171 IT -Id1 ID 
&,d) = oZe  e (3.8-24) 

where T and D are the first-order correlation time and first-order correlation 
distance, respectively. This correlation also occasionally appears when consider- 
ing geophysical phenomena (e.g., Ref. 7). However, the majority of system 
measurement errors and disturbances can be described by some combination of 
the random variable relations summarized in Fig. 3.8-3. 

3.9 EMPIRICAL MODEL IDENTIFICATION 

Subsequent discussions assume that any random process under study has been 
modeled as a linear system driven by gaussian white noise. In this section, 
methods for determining the best linear-gaussian model to fit an observed 
sequence of data are discussed. As illustrated in Fig. 3.9-1, a model for the 
process is produced by combining empirical data and prior knowledge of 
underlying physical mechanisms. The derived model and the data are then used 
in an estimation process as described in succeeding chapters. 

It is assumed that the available data are a sequence of scalar observations, 

A time-invariant, discrete linear system of fhe form 

is used to fit the data. It can be shown that this type of model is general enough 
to fit any sequence of observations generated by a stable, time-invariant linear 
system driven by gaussian noise. Here rk, referred to as the residual at time tt, is 
the difference between the observation at time tk and the output the model 
would produce based on inputs up to but not including time tk. The residuals 
reflect the degree to which the model fits the data. 

Model identification typically proceeds in the following way. Once data are 
acquired, a preliminaly model for the random process is chosen. An optimal 
smoothing algorithm (see Chapter 5) is used to determine the initial state and 
the inputs most likely to have produced the observed data. Next, residuals are 
examined to determine how well the model fits the data. A new model is 
selected if the residuals do not display the desired characteristics, and the 
procedure is repeated. 
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Fi&aue 3.84 Discrete Version of Error Modeb 
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Example 3.9-1 PRIOR 
KNOWLEDGE 

EMPIRICAL 
MODEL 

DATA 
lDENTlFlCATlON 

TECHINQUES 

OPTIMAL 
t ESTIMATION -+ ESTIMATES 

ALGORITHM 

Figure 3.9-1 Empirical Model Identification 

AUTOCOR RELATION TECHNIQUES 

Since certain of the models considered here can produce stationary gaussian 
random processes, it is natural to give primary consideration to the sample mean 
and sample autocorrelation function for the data when attempting model 
identification. Given a string of data zi, i = 1 $2, . . . , N, taken at constant 
intervals, At, the sample mean and sample autocorrelation function are 
determined as 

If the process being rneasured is known to be zero mean, then 

A preliminary model for the process can be obtained by choosing one whose 
mean and autocorrelation function closely approximate the sample mean and 
sample autocorrelation function. Although seemingly straightforward, the 
procedure is often complicated by the fact that data might not be taken over a 
sufficient period of time or at sufficiently frequent intervals. It is, of course, 
necessary to apply physical insight to  the problem in order to  correctly interpret 
calculated statistical quantities. The following example provides an illustration. 

Deflections of the vertical are angular deviations of the true gravity vector from the 
direction postulated by the regular model called the reference ellipsoid (Ref. 8). Consider 
the data sample shown in Fig. 3.9-2; it consists of measurements of one component of the 
deflection of the vertical, t ,  taken at  12.5 nm intervals across the 35th parallel in the United 
States (Ref. 9). 

125 120 115 110 105 100 95 90 85 80 75 

WEST LONGITUDE (deg)  

Figure 3.9-2 Meridian Component, Vertical Deflections of Gravity - 
35th Parallel, United States (Ref. 9) 

We are concerned with spatial rather than temporal correlation so that the shift 
parameter in the autocorrelation function is distance. The sample autocorrelation function 
calculated according to Eq. 13.9-4) is shown in Fig. 3.9-3. The formula is evaluated only out 
to 12 shifts, i.e., 150 nm; k y o n d  that point two effects cloud the validity of the results. 
First, as the number of shifts Q increases, the number of terms N - Q in the summation 
decreases, and confidence in the derived values is reduced. Secondly, calculated autocorrela- 
tion values at shifts greater than 150 nm are sufficiently small that any measurement noise 
present tends to dominate. 

Vertical deflection autocorrelation values are seen to fall off exponentially. A first-order 
model least-squares curve-fit results in the empirical autocorrelation function shown in Fig. 
3.9-3. It has the form 

where the standard deviation is determined as 

the mean is found to be 

the correlation distance is 
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0 ACTUAL DATA - FITTED FIRST-OCtX k MOW 
--- FITTED SECOND -ORDER MODEL 

0 25 50 75 100 125 150 

DISTANCE SHIFT , nm 

Figwe 3.93 Vertical Deflection Sample Autocorrelation Function - 
35 th Parallel U.S. 

and d is the distance shift parameter. As described in Ref. 10, the fitted function from 
which Eq. (3.9-5) is obtained is derived using techniques which compensate for finite data. 
Thus, it is not unnatural that the function is negative at large distance shifts. In this example 
the correlation distance D is approximately twice the data interval. The structure of the 
actual autoconelation function cannot be accurately determined for small distance shifts - 
e.g.. less than 12.5 nm. 

An exponential (first-order gauss-markov) autocorrelation function describes a process 
whose conelation falls off exponentially at all distance shifts, including d = 0. Equivalently, 
the derivative of the autocorrelation function is nonzero at zero distance shift, 

This result is not physically appealing since vertical deflections are caused by nonuniform 
mass distributions in the earth, which are not likely to change instantaneously i i  distance as 
would be implied by a nonzero derivative. Thus, consideration is given to the second-order 
gausbmarkov process, whose autoconelation function does have a zero derivative at zero 
shift. The form of the function is 

and by least-squares curve fitting the characteristic distance is determined to be 

The empirically determined quantities o and mt are unchanged. Details of applying the F 
second-order gauss-markov model to gravlty phenomena are given in Ref. 11. Comparisons 
of the fust- and second-order processes with the empirical autoconelation values are given in 
Fig. 3.9-3. 

Finite data length implies an inability to determine the form of an 
autocorrelation function at large shifts, whereas finite data spacing implies an 
inability to determine the form at small shifts. Together, the two correspond to 
a limited quantity of data, thus resulting in classical statistical limitations in 
estimating autocorrelation fpnction parameters. These factors are treated 
analytically in Refs. 12 and 13; brief summaries are given here. 

Consider a zero mean random process whose statistics are described by the 
autocorrelation function 

A sequence of measurements taken at intervals At over a period T is used to 
obtain an empirical autocorrelation function 

N-Q 

where N = T/At. In Fig. 3.9-4, expected values of the normalized empirical 
autocorrelation function are plotted for various values of TITo. The case of 
TITo + 00 corresponds to the actual function, Eq. (3.9-8). Clearly, for small 
values of TITo, empirically derived autocorrelation functions may be quite 
different from the function corresponding to the underlying physical model. 

Data limitations, expressed as a finite value for N, lead to an uncertainty in 
the estimation of autocorrelation function parameters. If the actual process 

2 variance is uz2 and the empirically derived estimate is oz , the uncertainty in the 
estimate is expressed by 

If the actual process correlation time is To and the empirically derived estimate 
a 

is To, the uncertainty in the estimate is expressed by 

This relationship is illustrated in Fig. 3.9-5; the ideal situation corresponds to T 
large and At small, relative to To. 
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1 :DATA LENGTH 

-o0- 

NORMALIZED TlME SHIFT. rlTo 

Fip le  3.94 Expectation of Measured Autocorrelation Function Tor 
Vx~ying Sample Lengths 

TlME SERIES ANALYSIS 

In Ref. 14, Box and Jenkins present techniques for fitting a model to 
empirical scalar time series data. Instead of using a state variable fonnulation for 
the linear system, the equivalent difference equation formulation is used, 

Here zk is the observation of the time series at time tk and rkr  called the 
residual at time tk, is an uncorrelated gaussian random variable. The summation 
limits p and q as well as the parameters bi and ci are adjusted to fit the data. It is 
assumed that the data have been detrended; that is, a linear system has been 
found which adequately models the mean value of the data. For example, the 
random bias and random ramp models discussed previously can be used. The 
detrended data sequence is assumed to have stationary statistics. 

A t l l ,  
NORMALlZED DATA SPACING 

Filplle 3.M Variance of Estimated Correlation Time of Exponential 
Autocorrehtion Function 

A state variable representation of this model has the states 
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represents the prediction of zk based on the model and on knowledge of the 
infinite number of z's prior to time tk. It is easy to see that 

Therefore the state variable model is 

To gain insight into how the characteristics of the time series model are 
affected by the coefficients of the difference equation, the general form of Eq. 
(3.9-1 2) is specialized to several particular cases. The characteristics of these 
forms are reflected in their autocorrelation functions. Therefore, by studying 
these specialized forms, it is easier to identify a model that matches the observed 
time series and also has a minimum number of parameters to be determined. 

Autoregressive (AR) Process - If it is assumed that the present observation is 
a linear combination of past observations plus a gaussian random variable, Eq. 
(3.9- 1 2) becomes 

This type of time series is called an autoregressive (AR) process. Note that the 
residual rk is the only portion of the measurement zk which cannot be predicted 
from previous measurements. I t  is assumed that the coefficients of this 
difference equation have been chosen so that the linear system is stable, thus 
making the autoregressive process stationary. The characteristic nature of this 
process is reflected in its au tocorrelation function. Mu1 tiplying both sides of Eq. 
(3.9- 17) by delayed zk and taking the ensemble expectation of the result,we find 

Thus, the autocorrelation function of an AR process obeys the homogeneous 
difference equation for the process. For a stationary AR process, the solution to 
the homogeneous difference equation is given by linear combinations of damped 
sinusoids and exponen tials. 

I t  is desirable to express the difference equation coefficients in terms of the 
autocorrelation function values; estimates of the coefficients can then be 
obtained by using the sample autocorrelation function. Evaluation of Eq. 
(3.9- 19) for p successive shifts results in a set of p linear equations which can be 
written as 

This set of linear equations, called the Yule-Walker equations, can be solved for 
the correlation matrix values and correlation vector using estimates of the 
autocorrelation function. The state variable representation of an autoregressive 
process has only the p states, 
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Moving Average (MA) Pmceu - If the time series is assumed to be generated 
by a finite linear combination of past and present inputs only, the process is 
called a moving average (MA) process. Under this assumption, the time series is 
generated by the difference equation 

This model always produces a stationary process It is assumed that the 
coefficients are chosen so that model is also invertible - i.e., the input sequence 
can be completely determined from knowledge of the observed output sequence. 
Under the assumption that the covariance of the input sequence is 

E[rkra] =a,' for l = k  

= 0 for P Z k  

the corresponding autocorrelation function of the observations is 

= 0 for k > q  

Thus, the autocorrelation function for an MA process has a finite number of 
non-zero values, and cuts off at the order of the process. 

Mixed Autoregmuive Moving Average (ARMA) Processes - A more general 
stationary time series can be generated by combining the AR and MA processes 
to get a mixed autowgressive moving average (ARMA) process. The difference 
equation model for the process takes the general form of Eq. (3.9-12), but the 
allowable range of coefficients is restricted so that the processis stationary and 
the model is invertible. The process autocorrelation function is identical to the 
pure AR process after (q - p) shifts. Thus, the autocorrelation function is given 
by 

with p initial conditions q,(q), q,,(q-I), . . . , v,,(q-p+l). If q < p, the 
autocorrelation function will consist of damped exponentials and sinusoids 
determined by the difference equation coefficients and initial conditions. If 
p < q, there will be (q-p+l) initial values which do nor follow the general 
pattern. An example is given by the first-order mixed ARMA process, 

~ ~ = b l z k _ l + r ~ - c l ' k - l  

The autocorrelation function for this process is 

qZz(k)= b, &(k-I) for k 2 2  

Note that v,,(O) and qz,(I) depend upon both the autoregressive and moving 
average parameters. The autocorrelation function is exponential except for 
q,,(O), which does not follow the exponential pattern. 

Autoregressive Integrated Moving Average (ARIMA) Processes - If the 
measurements do not exhibit stationary statistics, the AR, MA and ARMA 
models cannot be used directly. In certain situations this difficulty can be 
overcome by differencing the data. For example, suppose the differences 

are found to have stationary statistics. Then an ARMA process can be used to 
model these differences and the measurements can be modeled as the sum of 
the differences plus an initial wndition. Such a process is called an autoregressive 
integrated moving average (ARIMA) process; the term "integrated" refers to the 
summation of the differences. Note that the random walk process discussed in 
Section 3.8 is the simplest form of an ARIMA process. 

Fan Fourier Transforms - In 1965 Cooley and Tukey (Ref. IS) described a 
computationally efficient algorithm for obtaining Fourier coefficients. The fast 
Fourier transform EFT)  is a method for computing the discrete Fourier 
transform of a time series of discrete data samples. Such time series result when 
digital analysis techniques are used for analyzing a continuous waveform. The 
time series will represent completely the continuous waveform, provided the 
waveform is frequency band-limited and the samples are taken at a rate at 
least twice the highest frequency present. The discrete Fourier transform of the 
time series is closely related to the Fourier integral transform of the continuous 
waveform. 

The FFT has applicability in the generation of statistical elror models from 
series of test data. The algorithm can be modified to compute the autocornla- 
tion function of a onedimensional real sequence or the cross-comelation 
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function and convolution of two one-dimensional real sequences. It can also be 
used to estimate the power spectraldensity of a one-dimensional real continuous 
waveform from a sequence of evenly-spaced samples. The considerable efficiency 
of the FFT, relative t o  conventional analysis techniques, and the availability of 
outputs from which statistical error models are readily obtained, suggest that the 
FFT will be of considerable utility in practical applications of linear system 
techniques. Computational aspects of applying the FFT as noted above are 
discussed in Ref. 16. 

REFERENCES 

1. IkRusro, D M ,  ROY, R.I., and Close, CM, State Vmioblesfw Engineers, John Wiley & 
Sons, I n r ,  New York, 1966. 

2. Leondes, C.T. ed., Guidance and Control of Aerospace Vehicles, Mffiraw-Hiii Book 
Co., Inc., NewYork, 1963. 

3. Lee, R.C.K., Optimal Esfimtion, Identifinrtion. md Control, M.I.T. Pless, Cambridge, 
Mass., 1964. 

4. Schmppe, F.C., Uncertain Dynamic Sysrems, Rentice-Hall, Engtewood Cliffs, N.J., 
1973. 

5. Fitzgerald, R.I., "Filtering Horizon - Sensor Measurements for Orbital Navigation," 
AIAA Cuidonce and Contrd Conference Proceedings, August 1966, pp. 500-509. 

6. Wilcox, LC., "Self-contained Orbital Navigation Systems w t h  Correlated Measurement 
Errors," AIAA/ION Guidance and Connol Conference Proceedings, August 1965, pp. 
231-247. 

7. D'AppoEto, J.A. and Kasper, I.F., Ir., "Predicted Performance of an Integrated 
OMEGAIlnertial Navigation System," Prm. N~otional Aerospace Elecnonics Confer- 
ence, May 1971. 

8. He i shen ,  W.A. and Moritz, H., F7zysieol Geodesy. W.H. Freeman, San Francisco, 
1967. 

9. Rice, D.A., "A Geaidal Section in the United States," Bull. Geal., Vol. 65, 1962. 

10. Levine, S.A. and Gelb, A,, "Effect of Deflections of the Vertical on the Perfomance of 
a Terrestrial inertial Na j a t i o n  System," I. Spleenoft md Rockets, Vol. 6, No. 9, 
September 1969. 

I I. Kasper, I.F., 11.. "A SecondOrder Markov Granty Anomaly Model," 3. Geophys Res., 
VoL 76, No. 32, November 1971. 

12. Bendat, J.S. and Piersol, AG., Measurement and Analysis of Rnndom Doto, John Wilcy 
&Sons, Inc,  New York, 1966. 

13. Weinstock, H., "The Description of Stationary Random Rate Roeews," M.I.T. 
Instrumentation Laboratory, E1377, July 1963. 

14. Box, G.E.P., and Jenkins, G.M., T i m  Mes Analysis, Foreeostiw md Control, 
Holden-Day, San Francisco, 1970. 

IS. Cooiey, J.W. and Tukey, J.W., "An Algorithm for the Machine Calculation of Compkx 
Fourier Series," Morh. of Cornput., VoL 19, pp. 297-301, April 1965. 

16. Cochran, W.T., er. 111.. "What is the Fsst Fourier Transform?",Pme. of the IEEE, Vol. 
55, No. 10, pp. 1664-1674, October 1967. 

LINEAR DVNAMIC SYSTEMS 97 

PROBLEMS 

PmMem 3-1 
Show that 

r. the solution of the linear variance equation 

Pmblem 3.2 

Use the solutiongives in Problem I to show that the solution to 

where F and Q me constant matrices 

Pmblem 3-3 
Extensive analysis of certain geophysical data yields the following temporal autocormla- 

tion function 

where w is earth angular rate (2n124 h i 1 )  and r is time shift. Denve a set of state vector 
equations to describe this random process. 

Problem 3-4 
For the system shown in Fig. 3-1, where the autocorrelation function is 

VXZX'(7) = .'e-blrl 

show that 

for the state vector t a k e n a s l =  1x1 x l l T  
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Problem 3.5 

Consider the single-rxls Error model fur an incrtial nrvigation system shown tn l'& 3-2. 

F i r e  3-2 

In this simpliiicd model, gyro drift ratc errors are ignored. It 3s desmd  to estimate the 
vertical dellemon process, et .  Consider the system state vector consisting of the four states: 

(a) For position measurements only (2, not avaitable), set up the observability matrix and 
determine whether this system is observable. (b) Now assume we have both posntion and 
velocity measurements Is this system observable? (c) Now assume epb = 0 and can be 
eliminated from the state error model. Is this system observable with po~it ion measurements 
only? 

Pmblem 36 
For the linear system whose dynamics are described by 

Show that for small eT, the state transition matrix is 

Problem 3.7 
For the constant discrete nthorder deterministic system driven by a scalar control 

Show that thecontrolhbility cntermn is that the rank of 

[ 
I I  I 

Q =  h l9h l . .  .( e n - l ~  

I l l  

u,, . . ., ""-1 and powers of @.) 

I 
be n where &,, &, and the u, are given. (Hint: Describe the vector &, - Qn& in termsof 

Problem 3.8 

Show that for the stationary Linear system described in Fig. 3-3, the state transition 
matrix is (At Z 0) 

[.-:PI : A . -Atpi  -.-At- 
= - - - 1- 2-3- - - - - - - 

e-AtP,  , 4 
Problem 3.9 

For the system illustrated in Fig. 3-4, show that 

EL , ' ( t ; l=q , t  

where the white noise mputs wi have spectral densities qp(t). 
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P i n  3-4 

Problem 3 1 0  
F~~ the second-order system shown in Fi. 3-5, use the linear d a n c e  equation to obtain 

urnere the white noise input w has spectral density qa(t), m the sterdy strlc 

Fin 3-5 

Problem 3 1  1 

For the first-order system shown in Fig. 3-6, choose the gain K to minunize the mean 
square error between the command input r(t) and the pystem output c(t). Define a state 
vector &T = [[c r l  and obtain the steady-state solution of the linear variance equation, Pw 
Define the quantity e(t) = c(t) - r(t) and compute its steady-siate mean qua= value as 
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oeZ=[l -IIPs 

For 0' - 8 = 1.0 and N = 0.5, show that K = 1.0. 
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The preceding chapters dlscuss a number of properties of random processes 
and develop state-vector models of randomly excited linear systems. Now, we 
are ready to take up the principal topic of the book - namely, the estimation of 
a state vector from measurement data corrupted by noise. Optimal estimates 
that minimize the estimation error, in a well-defined statistical sense, are of  
particular interest. This chapter is devoted to the subject of optimal filtering for 
linear systems. Fdrenng refers to estimating the state vector at the current time, 
based upon all past measurements. Predicriot~ refers to estimating the state at a 
future tune; we shall see that prediction and filtering are closely related. Chapter 
5 discusses smoothmng, which means estimating the value of the state at some 
prlor time, based on all measurements taken up to the current time. 

Our approach to development of the optlmal linear filter is to argue theform 
it should take, to specify a su~table crirerion of oprimalir). and to proceed 
directly to optimization of the assumed form. Before embarking upon this 
course, however, we briefl.v pprv~de some background on the subjects of 
desirable chararrerisrics of estimators in general, alrernarive approaches to 
optimal estimation and motivation for optimal linear estimators. 

An estimate, 2 .  IS the computed value of a quantity, x, based upon a set of 
measurements, 2 .  An unbiased estimate is one whose expected value is the same 
as that of the quantity being estimated. A minimum vanonce (unbiased) estimate 
has the property that its error variance is less than or equal to that of any other 
unbiased estimate. A consisrenr estimate IS one which converges to the true value 
of x, as the number of measurements increases. Thus, we shall look for unbiased, 
minimum variance, consistent estimators. 

Let us assume that the set of P measurements, 2, can be expressed as a linear 
combination of the n elements of a constant vector plus a random, add~tive 
measurement error, v. That is, the measurement process is modeled as 

where 2 is an P X 1 vector,?! is an n X I vector, H is an P X n matrix and y is an P 
X I vector. For P > n the measurement set contains redundant information. In 
least-squares estimation, one chooses a s i  that value w h ~ c h  minimizes the sum of 
squares of the deviations, zi - ii ; i.e., minimizes the quantity 

The resulting least-squares estimate (P > n), found by setting a J / a i  = (Sec. 
2.1). is 

If, instead, one seeks to minimize the weighted sum of squares of deviations, 

J = & - H ~ ) ~  K' &- ~ i )  (4.0-4) 

where R-I is an P X  P symmetric, positive definite weighting matrix, the 
weighted-leasr-squares estimate 

is obtained. These results have no direct probabilistic interpretation; they were 
derived through deterministic argument only. Consequently, the least-squares 
estimates may be preferred t o  other estimates when there is no  basis for 
assigning probability density functions to a n d z .  Alternatively, one may use 
the m i m u m  likelihood philosophy, which is to take as i that value which 
maximizes the probability of the measurements2 that actually occurred, taking 
into account known statistical properties of r. There is still no statistical model 
assumed for the variable 5. In the simple example above, the conditional 
probability density function for z, conditioned on a given value forx ,  isjust the 
density for centered around Hz. With y taken as a zero mean, gaussian 
distributed observation with covariance matrix R, we have 

To maximize pel& we min~mize the exponent in brackets. This is equivalent to 
minimizing the cost function in Eq. (4.0-4). although now a probabil~stic bass  
for choosing R exlsts. The result, of course, is as given in Eq. (4.0-5). Still 
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another approach is Bayesian estimat~on, where statistical models are available 
for both ?( and 5, and one seeks the a posteriori conditional density function, 
p(xl3, since it contains all the statistical information of interest. In general, 
p(x@ is evaluated as(Bayes' theorem) 

where p(xJ IS the a priori probabdity density function of x, and p@ is the 
probability density function of the measurements. Depending upon the criterion 
of optimality, one can compute i from &&). For example, if the object is to 
maximize the probability that i = &, the solution is i = mode* of PO. When 
the apnori density function is uniform (which implies no knowledge of?( 
between its allowable limits), this estimate is equal to the maximum likelihood 
estimate. If the object is to find a generalized minimum variance Bayes' estimate, 
that is, to minimize the cost functional 

where S is an arbitrary, positive semidefiiite matrix, we simply set a J / a i =  Q to 
find, independent of S, that 

which is the conditional mean estimate. Equation (4.0-8) has the charactenstic 
Structure 

where La) isa scalar "loss function" of the estimation error 

The result given in Eq. (4.0-9) holds for a wide variety of loss functions In 
addition to that used in Eq. (4.0-8), with some mild restrictions on the form of 
p&); in all these cases the minimum variance Bayes' estimate (conditional 
mean) is also the optimal Bayes' estimate (Ref. I). Assuming gaussian 
distributions for 5 and!, the result of evaluating E[&l in Eq. (4.0-9) IS 

'The penk value of phu) ,  

where Po is the a priori covariance matrix of&. 
In comparing the various estimation methods just discussed, we note that if 

there is little or no a priori information, PC1 is very small and Eq. (4.0.12) 
becomes Eq. (4.0-5). And if we argue that all measurement errors are 
unconelated (i.e., R is a diagonal matnx) and all errors have equal variance 
(i.e., R = a21), Eq. (4.0-5) reducer to Eq. (4.0-3). In his important work, 
K h a n  (Ref. 2) formulated and solved the Wiener problem for gauss-markov 
sequences through use of state-space representation and the viewpoint of 
conditional distributions and expectations. His results also reduce to those given 
above. Therefore, the important conclusion is reached that for gaussian random 
variables, identical results are obtained by all these methods as long os the 
assumptions are the same in each case (Ref. 3). This property motivates us to 
consider primarily Bayesian minimum variance estimators. 

Now we observe that 8 in Eq. (4.0-12) is a linear operation on the 
measurement data. Furthermore, it is proven elsewhere (Ref. 4) that, for a 
gaussian timerarying signal, the optimal (minimum mean square error) predictor 
is a linear predictor. Additionally, as a practical fact, most often all we know 
about the characterization of a given random process is its autocorrelation 
function. But there always exists a gaussian random process possessing the same 
autocorrelation function; we therefore might as well assume that the given 
rsndom process is itself gaussian. That is, the two processes are indistinguishable 
from the standpoint of the amount of knowledge postulated. On the basis of 
these observations we are led to consider the optimal estimator as a linear 
operator in most applications 

Henceforth, unless stated otherwise, the term optimal estimator refers to one 
which minimizes the mean square estimation error. Next, we consider the 
recursive form of the linear estimator, which applies to gaussian random 
sequences. The discrete time problem is considered first; the continuous time 
equivalent is then obtained through a simple limiting procedure. Intuitive 
concepts, situations of special interest and examples comprise the remainder of 
the chapter. 

4.1 RECURSIVE FILTERS 
A recursive fdter is one in which there is no need to store past measurements 

for the purpose of computing present estimates. This concept is best demon- 
strated by the following example. 

Example 4.1.1 

Consider the problem of estimating a sealar nonrandom' constant, x, basad on k 
noireeorrupted measurements, zi, where zi = x + vi (i = I ,  2 , .  . . k). Here vi rcprernts the 

*x is unknown and has no defined statistical properties. 
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measurement noise, which we assume to be a white sequence. An unbiased, minimum 
variance estimate ik results from overwing the measurements (this can be shown from Eq. 
(4.0-3)); thus, we choose 

When an addi t io~l  measurement becomes avahble we ha% as the new estmate 

This expression can be manipulated to evidence the prior estimate, viz: 

Hence, by employing Eq. (4.1-3) rather than Eq. (4.1-2) to compute x^k+l. the need to store 
past measurements is eliminated -all previous information is embodied I" the prior 
estimate (plus the measurement index, k) -and we have arecursive, bear  estimator Note 
that Eq. (4.1-3) can be written in the alternative recursive form 

m which the new estimate is given by the prm estimate plus an appropriately weighted 
difference between the new measurement and its expected value, @en by the prior 
estimate. The quantity zk+l - x̂ k is meu the measurement resraual. 

In the example we dealt with scalar quantities: generalization of the concept 
t o  vector quantities proceeds directly. Consider a discrete system whose state at 
time tk is denoted by a(tk) or simply xk, where vlk is a zero mean, white 
sequence of covariance Qk, 

Measurements are taken as linear combinations of the system state variables, 
corrupted by uncorrelated noise. The measurement equation is written in 
vector-matrix notation as I 

where pk  is the set of P measurements at time tk, namely, z l k ,  zzk , .  . . , zpk. 
arranged in vector form 
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FZI k l  

Hk is the measurement matrix at time tk ;  it describes the linear combinations of 
state variables which comprise & in the absence of noise. The dimension of the 
measurement matrix is P X n, corresponding to P-dimensioned measurements of 
an n-dimensioned state. The term 3 is a vector of random noise quantities(zero 
mean, covariance Rk) corrupting the measurements. 

Given a prior estimate of the system state at time tk, denoted&(-), we seek 
an updated estimate, ik(+), based on use of the measurement, pk .  In order t o  
avoid a growing memory filter, this estimate is sought in the linear, recursive 
form' 

where K; and Kk are timevarying weighting matrices, as ye t  unspecified. 
Although the following derivation is for an assumed recursive, single-stage filter, 
the result has been shown t o  be the solution for amore  general problem. If E ~ ,  
p are gaussian, the filter we will find is the optimal multi-stage filter; a 
nonlinear filter cannot d o  better (Ref. 2). In other cases we will simply have 
determined the optimal linem filter. 

4.2 DISCRETE KALMAN FILTER 
I t  is possible t o  derive the Kalman filter by optimizing the assumed form of 

the linear estimator. An equation for the estimation error after incorporation of 
the measurement can be obtained from Eq. (4.1-7) through substitution of the 
measurement equation [Eq. (4.1-5)] and the defining relations (tilde denotes 
estimation error) 

By definition E L ]  = Q. Also, if Ekk(-)] = Q, this estimator will be unbiased 
(i.e., E&(+)] = 9) for any given state vector xk only if the term in square 
brackets is zero. Thus, we require 

'Throughout the text, (-) and (+) are used to denote the times immediately before and 
immediately offer a disnete measurement, respectively. 
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and the estimator takes the form 

$(+) =(I - KkHk)Zk(-) + K& 

or alternatively, 

ik(+) = &(-) + Kk kk- H&k(-)J (4.2-5) 

The corresponding estimation error is, from Eqs. (4.1-5), (4.2-1) and (4.2-5), 

Error Covariance Update - Using Eq. (4.2-6) the expression for the change in 
xhe error covariance matrix when a measurement is employed can be derived. 
From the definition 

Eq. (4.2-6) gives 

By definition, 

E[&(-)&-)~] = Pk(-) (4.2-9) 

Ek,.&T1 = Rk (4.2- 10) 

and, as a result of measurement errors being uncorrelated, 

El&-)%Tl = E h  %&)TI = O  (4.2.11) 

Thus 

pk (+) = (1 - KkHk) Pk (-)(I - K ~ H , ) ~  + K ~ R ~ K ~ T  (4.2-12) 

Optimum Choice of Kk - The criterion for choosing Kk is to minimize a 
weighted scalar sum of the diagonal elements of the error covariance matrix 
Pk(+). Thus, for the cost function we choose 

where S is any positive semidefinite matrix. As demonstrated in Eq. (4.09), the 
optimal estimate is independent of S; hence, we may as well choose S = I, 
yielding 

Jk = trace [Pk(+)] (4.2-14) 

This is equivalent to minimizing the length of the estimation error vector. To 
find the value of Kk which provides a minimum, it is necessaly to take the 
prtial derivative of Jk with respect to Kk and equate it to zero. Use ismade of 
the relation for the partial derivative of the trace of the product of two matrices 
A and B (with B symmetric), 

a 
; j ~ i  [trace (ABAT)] = ZAB 

From Eqs. (4.2-12) and (4.2-13) the result is 

-2 (1 - KkHk) Pk (-) HkT + 2 KkRk = 0 

Solving for Kk, 

which is referred to as the Kalman gain matrix. Examination of the Hessian of Ik 
reveals that thisvalue of Kk does indeed minimize Jk [Eq. (2.1-79)]. 

Substitution of Eq. (4.2-15) into Eq. (4.2-12) gives, after some manipulation, 

which is the optimized value of the updated estimation error covariance 
matrix. 

Thus far we have described the discontinuous state estimate and error 
covariance matrix behavior across a measurement. The extrapolation of these 
quantities between measurements is(Section 3.7) 

See Fig. 4.2-1 for a "timing diagram" of the various quantities involved in the 
discrete optimal filter equations. The equations of the discrete Kalman filter are 
summarized in Table 4.2-1. 
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P i  42-1 Discrete Kalmm Filter Timing Diagram 

Figure 4.2-2 illustrates these equations in block diagram form. The Kalman 
filter to be implemented appears outside the dashed-line box. That appearing 
inside the box is simply a mathematical abstraction - a model of what we think 
the system and measurement processes are. Of course, the Kalman fdter we 
implement is based upon this model. Chapters 7 and 8 dwell on the practical 
consequences of this fact. It is often said that the Kalman fdter generates its own 
enor mlysis .  Clearly, this refers to the computation of Pk, which provides an 
indication of the accuracy of the estimate. Again, Chapters 7 and 8 explore the 
practical meaning of Pk in view of modeling errors and other unavoidable 
factors. 

In the linear, discrete Kalman fdter, calculations at the covariance level 
ultimately serve to  provide Kk, which is then used in the calculation of mean 
values (i.e., the estimate zk). There is no feedback from the state equations to  

TABLE 4.2-1 SUMMARY OF DISCRETE KALMANFILTER EQUATIONS 

P i e  4.2.2 System Model and Discrete Kalman Filter 

the covariance equations. This is illustrated in Fig. 4.2-3, which is essentially a 
simplified computer flow diagram of the discrete Kalman fdter. 

Fgum 4.2-3 Discrete Kalman Filter Information Flow Diagram 

A Simpler Form for Kk - There is a matrix inversion relationship which 
states that, for Pk(+) as given in Eq. (4.2-16a), PC1(+) is expressible as: 
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This relationship can easily be verified by showing that Pk(+) PCi(+) = I. We 
use this result to manipulate Kk as follows, 

KL = [pk(+) PCY+)I pk(-) H~~ [ H ~ P ~ ( - ) H ~ ~  + ~ ~ 1 - l  

= Pk(+)[pCi(-) + HkTRCi Hk] Pk(-)HkT [HkPk(-)HkT + Rkl 

Expanding and collecting terms yields 

Kk = Pk(+)HkT [I + RLi  HkPk(-)HkT] [ H ~ P ~ ( - ) H ~ ~  + Rk]-' 

= P ~ ( + ) H ~ ~  R ~ - '  (4.2-20) 

which is the simpler form sought. 

A Properfy of the Optimal Estimator - We may verify by direct calculation 
that 

That is, the optimal estimate and its error are uncorrelated (orthogonal). The 
state and itsestimate at time tI(+) are 

61 = *OXO +Yo 

and 

respectively, where the measurement equation, 3, = H i a i  i a has been 
employed. Subtracting Eq. (4.2-22) from Eq. (4.2-23) yields an equation in - .  xi - 1.e.. 

Since EEofoT] = 0, we directly calculate the quantity of interest as 

E I i ~ ( + k i ( + ) ~ l  = ~ { I * o i o  +Kt  (-H~*oio + H ~ Y O  +&)I  
koT(*o -KIH,*O)~ +YoT(K1H, - I)T + & T ~ ~ T ] )  

= - K ~ H , ~ , P ~ ( ~ ~ T - ~ ~ ~ H , T K ~ T ) + K ~ H , Q ~ ~ , T K , ~ - I )  

+ K , R , K ~ T  

where use has been made of Eq. (4.2-20). We may now repeat the profess for 
~ E j ( + ) i 2 ( + ) ~ ]  and, by induction, verify Eq. (4.2-21). 

Kalman Filter Examples - Several applications of optimal filtering are 
presented in this section. Since analytic results are sought, only relatively 
low-order systems are considered. However, it is well to note that, in practice, 
K h a n  optimal filters for SOth order systems (and even higher) have been 
considered, and loth and 20th order Kalman filters are relatively common. With 
increasing availability of mall, powerful digital computers, the main factors 
which limit the size of implemented K h a n  fdters are no longer computer 
limitationsper se, but rather modeling errors and associated sensitivi0' problems. 
These are discussed in Chapters 7 and 8. 

Example 4.2-1 
Estimate the value of a constant x, given discrete measurements of x corrupted by an 

uncorrekted gauuian noise sequenffi with zero mean and vvimee ro. 
The r u l a r  equations des'ribing this situation are 

x = x System 

zk = xk + vk Measurement 

where 

that is, v); is an uncorrelated gaussian noise scquenee with zero man and varianffi ro. For 
this probkm, vo(tk.t,) = h = I and qk = 0 yielding the variance propagation equation 

PL+I(-) ' pk(+) 

and single-stage optiml update equation 
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This difference equation can be rolved, starting with po(+) = PO. by noting that 

The dixrete optimal filter for this example problem is 

For sufficiently l a r p  k, ;k+l = ck = ; 1s new measurements provide essentially no new 
information, 

Example 4.2-2 
Consider two unknown but correlnted constants, x, and x2. We wi* to determine the 

improvement in knowledge of x, which is possible through processing a single noisy 
measurement of x2. 

The vector and matrix quantities of interest in this example u e :  

where 4 - 1  is the covariance matrix dexribing the uncertainty in& before the measurement, 
that is, oL2 is the initial mean square error in knowledge of x,, 02' is the initial mean 
square eno! in knowledge of x2, and o12' measures the corresponding crowonelation. 
Computing theupdared covariance matrix, P(+), according to Eq. (4.2-16). yields 

where r2 denotes the measurement noise covariance, and p IS the conelation coefficient 
defined by (Eq. (3.6-711 

A few timiting caws are worth examining. First, in the case where the measurement is 
perfect (i.e., r2 = 0). the final uncertainty in the estimate of x2, p22(+), is, of course, zero. 
Also, when p = 0, the final uncertainty in the estimate of x ,  is, as expected. equal to the 
initlal uncertainty; nothing can be learned from the measurement in this rase. Finally, in the 
case where p = t I ,  the final uncertainty in the estimate of x, is given by 

and the amount of information gained [i.e., the reduction in p t  depends upon the ratio 
of initial m a n  square error in knowledge of x2 to  the mean square error in measurement of 
x2. AU of there results are intuitively satisfying. 

Example 4.2-3 
Omega is 1 world-wide navigation system, utilizing phase campuiwn of 10.2 kHz 

continuous-wave radio signals. The user employs a propagation correction, designed to 
account for globrrlly predictable phenomena (diurnal effects, earth conductivity variations, 
etc.), to bring theoretical phase values into agreement with observed phase measurements. 
The residual Omega phase errors are known to exhibit correlation over large distances (e.g., 
> I000 nm). Design a data processor that, operating in a limited geographic area, can 
process error data gathered at two measurement sites and infer best estimates of phase error 
at other locations nearby. 

In the absence of other information, assume that the phase errors u e  wellmodeled 1 5  a 
zero-mean markov process in space, with variance o$. Further assume that the phase error 
Process is isotropic - i.e., it posse8se8 the same mtistics in all directions, and that the 
measurement error is very small 

We may now proceed in the usual way. First, denote by p, and 93 the two phase error 
measurements, and by y, the phase error to be estimated. Then we can f o r m x m d ~ n r  

w h e m  it follows that 

h, by definition 
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where q ia the d~rtance between sites i and j. and d 3s the correlation distance of the phase 
error random proce?~. The best estimator (in the sense of mmimum mean square error) is 
@"en by 

since&) = & K I S  given by 

The first equation shows that GI is computed as a weighted sum of the perfect 
measurements. The last two equatnonr are, of course, a direct consequence of the assumed 
perfect measurements. 

This lechntque has been ~uccessfully employed with actual Omega data; see Fig. 4.24. 

GREENWICH MEAN TIME (hrsl 

F i r e  4.2-4 Phase Estimation Error - Kings Point, N.Y. (Ref. 14) 

Example 4.2-4 
Study the design of an optimal data praerrtng scheme by which an Inertial Navigdtion 

System (INS), in a balloon launched ionospheric probe, can be initialized in early flight 
using radio position updates. 

In view of the intended application, it is appropriate to choose a model of INS error 
dynamics valid only over a several minute period. Takmg singleaxis errors Into 
consideration, we may w l t e  

where 6p(0), 6v(0) and 6a(0) represent initial valuer of podtion, velocity and acceleration 
errors, and higher-order terms have been t opped .  Thus, we may write, as the state 
e.quetions for this system 

or, equivalently, 

 he radio position error is indicated by ep(t), see Fig. 4.2-5. 

F i r e  4-14 System and Dimete Measurement Model 

The transition matrix for this time-invariant system is readily computed as 

For any initial estimate&^) of the system state vector, we may compute the expccted value 
of i ( ~ - ) ,  just prior to Ule f is t  fix, as follows: 
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Also, corresponding to  an initially diagonal covariance matrix P(O), the value of PC-) h 
wmputed according to  (overbar denotes cnremble expectation) 

which is symmerrie, but not dL?gonal. That is, position error is now correlated with velocity 
and acceleration errors. 

The. scalar position measurement is obtained by forming the difference between 
radioindicated and incrtially-indicated positions, viz: 

where the indicated quantities, pind, have been described in terms of their true value, pt, 
plus error componentr This is equivalent to  writing 

which enables identification of H and the measurement error. Let us assume that the radio 
position errors are stationary.and~ncor~clated from f i  to fix. The effect of a fix at timeT 
is computed according to  ( o ~ '  = epz): 

The upper left corner element of P ( m  is, for example, 

the a88Umption PI t(T-) > op2. Thur, the first position fix reduen the INS position 
,,or to appoximately the fix error (actually, somewhat bdow it). Similar ca l~ la t ions  

that the velocity and acceleration errors are essentially unchanged. The next position 
fa reduces the INS velocity error. The Kalman gain at time lk for this syslcrn is 

I" the optimal filer, illustrated in F ig  4.24, the sampler h understood to  represent an 
impulse mdulator. Note the model of the system imbedded in the Kalman fdter. 

Figure 4.26 Optimal Fil ta Configuration 

Fire 4.2-7 shows the result of aeomputer simulation of the complete system. The first 
6x o a r s  at t = 0, the second at t = 0.5 min and the third at 1 = 1.0 min. In this system the 
initial errors were p, , (0) = (1 nun)', p22 (0) = (7.3 kts)', p3,(0) = 0 and op = 30 fL Hiher  
order terms were included but, as indicated earlier, there u e  not of primary importance 
here. Thur, the results are largely predicted by the analysis herein. 

4.3 CONTINUOUS KALMAN FILTER 
The transition from the discrete to  the continuous formulation of the Kalman 

fdter is readily accomplished. First, in order to go from the discrete system and 
measurement models [Eqs. (4.14,5)] to  the continuous models* 

'Throughout the remainder of the text, time dependence of all continuous time quanlilier 
will often be $uppressed for notational convenience. For example, x ( 0  and Q(t) will be 
denotcd by x and Q, ete. 
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Figure 4.2-7 Optimal Use of Position Fixes in an Ionospheric Robe 
Inertial Navigation System 

where yy, yare zero mean white noise processes with spectral density matrices Q 
and R, respectively, it is necessary to observe the following equivalences, valid in 
the hmit as tk - tk-l =At + 0: 

The first two of these relationships were derived in Section 3.7. What now 
remains is to establish the equivalence between the discrete white noise sequence 
yk and the (non-physically realizable) continuous white noise process v. Note 
that, whereas Rk = E b T ]  is a covariance matrix, R(t) defmed by 
~[y(t)yT(~)]  = R(t)G(t - T )  is a spectral density matrix (the Dirac function 6(t - 
7) has units of l/time). The covariance matrix R(t)G(t - r)  has infinite-valued 
elements. The discrete white noise sequence can be made to approximate the 
continuous white noise process by shrinking the pulse lengths (At) and increasing 
their amplitude, such that Rk + R/At. That is, in the limit as At + 0, the discrete 
none sequence tends to one of infinite-valued pulses of zero duration, such that 
the area under the "impulse" autocorrelation function is RkAt, equal to the area 
R under the continuous white noise impulse autocorrelation function. 

Using these expressions, our approach is simply one of writing the 
appropriate difference equations and observing their behavior in the limit as At-* 
0. The notation will be kept as simple as possible and, in keeping with the rest of 
the presentation, the derivations are heuristic and to the point. The reader 
interested in a more rigorous derivation is referred to Kalman and Bucy (Ref. 5). 
For present purposes it shall be assumed that R is non-singular - i.e., R-' exists. 
In addition, it is assumed that yy and y are uncorrelated. 

CONTINUOUS PROPAGATION OF COVARIANCE 

In discrete farm, the state error covariance matrix was shown to propagate 
according to 

Pk+ I(-) @kPk(+)*kT + Qk (43-3) 

This is now rewritten as 

Pk+1(-)= [I + FAt]Pk(+)[I + FAt]T + CQGT At (4.34) 

Expansion yields 

where 0(At2) denotes "terms of the order AtZ." As a consequence of optlmal 
use of a measurement, Pk(+) can be expressed as [Eq. (4.2-16b)j 

Inserting this expression into the equation for Pk+l(-) and rearranging terms 
yields 
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Examining the term l/At Kt, we note that [Eq. (4.2-15)J 

= P~(-)H,T[H,P,(-)H~TA~ + Rk~t1-I  (4.3-6) 

= P ~ ( - ) H ~ T  [HkPk(-)HkTAt + R]" 

Thus, in the l i t  as At t 0 we get 

lim 1 Kk = PHTR-' 
At* At 

and, simultaneously, 

Tracing the development of the terms on the right-side of this equation, it is 
clear that FP + PFT results from behavior of the homogeneous (unforced) 
system without measurements, GQGT accounts for the increase of uncertainty 
due to process noise (this term is positive semidefinite) and -PHTR-'HP 
accounts for the decrease of uncertainty as a result of measurements. Equation 
(4.3-8) is nonlinear in P; it is referred to as the matrix Riccati equation. In the 
absence of measurements we get 

P=FP+PFT+GQGT (4.3-9) 

which is the I i n w  variance equation previously derived in Section 3.7. 

CWTINUOUS KALMAN FILTER 

The discrete form of the Kalman fdter may be written as [Eq. (4.2-5)] 

&(+)=%-I%-I(+)+ K k k  - Hk*k-l%-l(+)I (4.3-10) 

where we haw made the substitution 

OPTIMAL LINEAR FILTERING 19 

F i e  4.3-1 System Model and Continuous lWman Pika 

Replacing ek-1 by I + FAt and Kk by PHTK' At and rearranging terms yields 

which is the continuous Kalman filter, and in whichP is computed according to 
Eq. (4.3-8); see Fig. 4.3-1. The continuous Kalman fdter equations are 
summarized in Table 4.3-1. 

TABLE 4.31 SUMMARY OF LnNTINL'OUS KALMAN FILTER EQUATIONS 
(WHITE MEASUREMENT NOISE) 

systm Model 

Measurement Model 

I Other Asrumptions 

State Estimate 

Enor Covariance Ropagation 

i 

E[a(O)l =io,  E[O;(O) -&) O;(O) -&)TI =Po 

K1(t) exists 

i(t) = F(t)&t) + K(t)ldt) - ~( t ) i ( t ) l ,  i(0) =& 
i(t) = ~ ( t ) ~ ( t )  + p(t)~T(t) + ~ ( t ) ~ ( t ) c T ( t )  

-K(~)R(~)KT(~), P(O) = PO 

K(t) = P(~)HT(QR-'(~) when ~[x(t)yT(,)] = 0 

= [Rt)HT(t) + G(t)C(t)] R-I (1) 

when E[y(t)yT(r)] =C(t)6(t - 7).  
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The differential equation for 2 can be obtained by subtracting Eq. (4.3-1) 
from Eq. (43-12) and employing Eq. (43-2). Recalling that a = I + 8, this 
results in (K = PHTR-I) 

Analogous to the case of the discrete estimator, it can be shown that 

CORRELATED PROCESS AND MEASUREMENT NOISES 

It is useful to obtain results for the case where the process and measurement 
noises are correlated, viz: 

One approach is to  convert this new problem to an equivalent problem with no 
correlation between procas and measurement noises. To do this, add zero to the 
right-side of Eq. (4.3-1). in the form* 

where D = GCR-' . The fdtering problem now under consideration is 

x=(F-DH)s+Dz+Gy-Dy (4.3-17) 

z = b + y  

where in Eq. (4.3-17) DL is treated as a known input (Section 4.4) and (Gy - 
hJ is treated as a process noise. By the choice of D specified above, E[(GE - 
Dy)yT] = 0, and thus the measurement and process noises in this equivalent 
problem are indeed uncorrelated. Applying previously derived results to  this 
reformulated problem, it is easily verified that the solution is as given in Table 
4.3-1, with the Kalman gain matrix specified by 

K = [ P C  + GC] R-I . (4.3-18) 

This method can also be used to derive results for the corresponding discrete 
time problem. 

Example 4.51 

Estimate the value of a constant x, given a continuous mclsurement of x corrupted by a 
gauuian &ite mire pr-J with zero mean and spcctral density r. 

The & equatiom descdbing this siaution sle 

;= 0 System 

r = x + v Masurrment 

where 

v - N(0, I) 

Fjre 4.3-2 depicts the system and mearvrement models 

P i e  4.3-2 System and Measurement Madela 

For Ulis problem, f = g = q = 0 and h = I; thus yielding the lfalar Riccati equation 

b = -pa,. 

Intepating this equatim by wanting variables, we get 

Note that through the definition, ro = r/T, we see that this mult is idenrial to that 
obilined in Example 4.2-1 at the instants t = kT (k = 0,1,2,. . . 1, as it should be. 

The mntinuour Kalman gain is 

F w e  4.3-3 iUustrates the fdter which, acting on 2, produns an optimal estimate of x, viz: 

'Methodattributed to Y.C. no. 
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L 
P i p e  4.3-3 Optimal Filter Design 

Notice Ulat, as t - -, k(t) - 0 and thus ;(t) tends to  aconstant, a8 indeed it should. 

Example 4.33 
A speecrafi is falling radially away f r m  the earth at an almost constant speed, and is 

subject to small, random, high-frequency dirturbnce accderationr of spectral density q. 
Determine the accuracy to which vehicle vdocity can be estimated, using ground-based 
doppler r adu  with an error of spsctml density r. Assume poor initial mndition information 

Let x denote the deviation from the predicted nominal spacecraft velocity, using 
available gravitational models. We then have 

and consequently (f = 0, g = h = I) 

i = q-pZh. ~ ( 0 )  = po 

Employing the identity 

In the care of poor iniljal condition information, p, is large and thus p(t) reduces to 

p(t) P m mth Bt 

In the steady state, p(t) - m regardless of initial conditionr;see Fig. 4.34. The Kalman futn 
for this problem looks like that illustrated in Fig. 4.3-3, with k(t) now given by 

In the limit of large 1, k(t) f B and not zero as in the prwiour example. New measurements 
are always processed in this fare - 1 direct consequence of the noise term driving the 
system model. 

P ( t l  

\ a  coth pt 

B t 
Fiure 4.34 Tracking Error Versus Time 

4.4 INTUITIVE CONCEPTS 

Covariance Matrix - Inspection of the equations describing the behavlor of 
the error covariance matrix reveals several observations which confirm our 
intuition about the operation of the filter. The effect of system disturbances on 
error covariance growth 1s the same as that observed when measurements were 
not available. The larger the statistical parameters of the disturbances as 
reflected in the "size" of the Q-matrix, and the more pronounced the effect of 
the disturbances as reflected in the "sne" of the G-matrix, the more rapldly the 
error covariance increases. 

The effect of measurement nolse on the error covariance of the discrete fdter 
is obsewed best in the expression 

Large measurement noise (Rk-l is small) provides only a small increase in the 
inverse of  the error covariance (a small decrease in the error covariance) when 
the measurement is used; the associated measurements contribute little to 
reduction in estimation errors. On the other hand, small measurement errors 
(large RC') cause the error covariance to decrease considerably whenever a 
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measurement is utilized. When measurement noise is absent, Eq. (4.2-16a) must 
be used because R c l  does not exist. 

The effect of measurement noise on the abillty of the continuous Kalman 
fdter to provide accurate estimates of the state, appears in the fourth term on 
the right side of Eq. (4.3-8). If noise occurs in every element of the 
measurement, Rand K 1  are positlve definlte matrices. The term 

is also posltive definite and the negative of this will always cause a decrease in 
the "size" of a nonzero error covariance matrix P. The magnitude of this term is 
inversely proportional to statistical parameters of the measurement noise. Larger 
measurement noise will cause the error covariance to diminish less rapidly or to 
increase, depending on the system dynamics, disturbances and the initial value of 
P. Smaller noise will cause the fdter estimates to converge on the true values 
more rapidly. The effects of system disturbances and measurement noises of 
different magnitudes can be described graphically by considering the standard 
deviation of the error in the estimate of a representative state variable. This is 
presented in Fig. 4.4-1 for a hypothetical system whlch reaches statistical 
"steady state." 

Kalman Gain Matrix - The optimality of the Kalman fdter iscontained in its 
structure and in the specification of the gain matrices. There is an intuitive logic 
behind the equations for the Kalman gain matrix. It can be seen from the forms 

To better observe the meaning of the expressions, assume that H is the Identity 
matrix. In this case, both P and R-I are nxn matrices. If K 1  is a diagonal matrix 
(no crosscorrelation between nose terms), K results from multiplying each 
column of the error covariance matrix by the appropriate inverse of mean square 
measurement noise. Each element of the filter gain matrix is essentially the ratio 
between statistical measures of the uncertainty in the state estimate and the 
uncertainty in a measurement. 

Thus, the gain matrlx is "proportional" to the uncertainty in the estimate, 
and "inversely proportional" to the measurement noise. lf measurement noise is 
large and state estimate errors are small, the quantityi in Rgs. 4.2-2 and 4.3-1 is 
due chiefly to the noise and only small changes in the state estimates should be 
made. On the other hand, small measurement noise and large uncertnnty in the 
state estimates suggest that contains considerable information about errors in 

' 

the estimates. Therefore, the difference between the actual and the predicted 
measurement will be used as a basis for strong corrections to the estimates. 
Hence, the fdter gain matrlx a specified in a way which agrees with an intuitive 
approach to improving the estimate. 
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Fivn 4.4-1 Behavior of the RMS Error in the Kalman Filter Estimate of a Par- 
ticular State Variable 

Optimal Prediction - Optimal prediction can be thought of, quite simply, ln 
terms of optimal fdtenng in the absence of measurements. This, in turn, is 
equivalent to  optimal filtering with arbitrarily large measurement errors (thus 
K 1  -* 0 and hence K + 0). Therefore, if measurements are unavailable beyond 
some time, to, the optimal prediction of ~ ( t )  for @to given i(t,) must be 
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obtained from [Eqs. (4.3-10) and (4.3-12)] : 

S(t) = @(t,to)sto) discrete (4.44) 

The corresponding equations for uncertainty in the optimal predictions, given 
P(to), are Eq. (4.3-3) for a single tune stage in the discrete case and Eq. (4.3-9) 
in the continuous case. 

Note that both the discrete and continuous Kalman filters contain an exact 
model of the system in their formulation (i.e., the F or matrices). This 
provides the mechanism by which past information is extrapolated into the 
future for the purpose of prediction. 

System Model Contains Deterministic Inputs - When the system under 
observation is excited by a deterministic timevarying input, U, whether due to a 
control being intentionally applied or a deterministic disturbance which occurs, 
these known inputs must be accounted for by the optimal estimator. It is easy to 
see that the modification shown in Table 4.41 must be made in order for the 
estimators to remain unbiased. By subtracting 3 from 5 in both discrete and 
continuous cases, it is observed that the resultant equations for j, are precisely 
those obtained before. Hence, the procedures for computing P, K, etc., remain 
unchanged. 

TABLE 4.4-1 MODIFICATION TO ACCOUNT FOR KNOWN INPUTS &-I ORi(t))  

I System Model 1 Estimator 1 
Discrete A+) = *k-I&- l (+ )+~k-I&-1  I 
rn =*k-IAk-1 + = - I  +"k-I&-1 + Kkkk - ~k*k- l&- l (+ )  

&=WAk+Yk H k A x -  1x1-11 

Stochastic Controllability - In the absence of measurements and with perfect 
a priori information, the continuous system matrix Riccati equation is 

for which the solution is* 

where @(t,~) is the transition matrix corresponding to F. If the integral is 
positive definite for some t > 0, then P(t) > 0 - i.e., the process noise excites all 
the states in the system. The system is said to be uniformly completely 
contmllable when the integral is positive de fh te  and bounded for some t > 0. 
The property of stochastic controllability is important for establishing stability 
of the fdter equations and for obtaining a unique steady-state value of P. When 
the system is stationary, and if Q is positive definite, this criterion of complete 
controllability can be expressed algebraically; the result is exactly that discussed 
in Section 3.5. 

In the case of discrete systems, the condition for complete controllability is 
expressed as 

for some value of N > 0, where f l ,  > 0 and 0, > 0. 

Stochastic Obse~ability - In the absence of process noise and a priori 
information, the continuous system matrix Riccati equation is given by 

This can be rewritten as 

= F - FTF' + HTR-* H, P-'(O) = o (4.4-1 0) 

using the matrix identity, P1 = - F ' k l .  The solution to this linear equation in 
F' is 

'This is easily v e r i f i i  by substitution into Eq. ( 4 . 4 6  using Leibniz' rule 
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where q t , r )  is the transition matrix corresponding to F. If the integral is 
positive definite for some t > 0, then P-'(t) > 0, and it follows that 0 <P(t) < - - i.e., through processing measurements it is possible to acquire information 
(decrease the estimation error variance) about states that are initially completely 
unknown (Ref. 6). The system is said to be uniformly completely observable 
when the integral is positive definite and bounded for some t > 0. When the 
linear system is stationary, this criterion of complete obsewability can be 
expressed algebraically; the result is exactly that discussed in Section 3.5 (Ref. 
8). 

In the case of discrete systems, the condition for uniform complete 
observability is 

for some value of N > 0, where al > 0 and an > 0. 

Stability - One consideration of both practical and theoretical interest is the 
stability of the Kalman fdter. Stability refers to the behavior of state estimates 
when measurements are suppressed. For example, in the continuous case, the 
"unforced" fdter equation takes the form 

It is desirable that the solution of Eq. (4.4-13) be asymptotically stable:- i.e., 
loosely speaking, i ( t )  -t Q as t + -, for any initial condition SO). This will 
insure that any unwanted component o f f  caused by disturbances driving Eq. 
(4.4-13) -such as computational errors arising from finite word length in a 
digital computer - are bounded. 

Optimality of the Kalman fdter does not guarantee its stability. However, one 
key result exists which assures both stability (more precisely, uniform 
asymptotic stability) of the filter and uniqueness of the behavior of P(t) for large 
t, independently of P(Q). It requires stochastic uniform complete observability, 
stochastic uniform complete controllability, bounded Q and R (from above and 
below), and bounded F (from above). References 1 and 5 provide details of this 
theorem and other related mathematical facts. It is important to note that 
complete obsewability and controllability requirements are quite restrictive and, 
in many cases of practical significance, these conditions are not fulfilled; but 
Kalman fdters, designed in the normal way, operate satisfactorily. 'This is 
attributed to the fact that the solution to Eq. (4.4-13) frequently tends toward 
zero over a finite time interval of interest, even though it may not be 
asymptotically stable in the strict sense of the defmition. Perhaps, from a 
practical viewpoint, the key issues pertaining to various forms of instability are 
those associated with modeling errors and implementation considerations. These 
are discussed in Chapters 7 and 8. 

4.5 CORRELATED MEASUREMENT ERRORS 

Measurements may contain errors whose correlation times are significant. Let 
us assume that, through the use of a shaping fdter, these measurement errors are 
described as the output of a first-order vector differential equation forced by 
white noise. One might argue that the technique of state vector augmentation 
could then be used to recast this problem into a form where the solution has 
already been obtained; but it is readily demonstrated (Refs. 9-12) that this is not 
the case in continuous-time systems, and undesirable in the case of discrete-time 
systems. 

STATE VECTOR AUGMENTATION 

Consider the continuous system and measurement described by 

where 

The augmented state vector x'T = [ x  y 1 satisfies the differential equation 

and the measurement equation becomes 

In this reformulated problem, the equivalent measurement noise is zero. 
Correspondingly, the equivalent R matrix is singular and thus the Kalman gain 
matnx, K = PHTK', required for the optimal state estimator, does not exist. 

CONTINUOUS TIME, R SINGULAR 

There is another approach to this problem which avoids both the difficulty of 
singular R and the undesirability of working with a higher order (i.e., aug- 
mented) system. From Eq. (4.5-3). where we see that i - Ey is a white noise 
process, we are led to consider the derived measurement I , ,  
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where the definitions of HI and y, are apparent. For this derived measurement, 
the noise y, is indeed white; it is also correlated with the process noise y. The 
corresponding quantities R, and Cl are directly obtained as ( E [ y y , ( t ) ~ ~ ( ~ ) l  = 

0) 

and thus the Kalman g i n  matrix for this equivalent problem, from Table 4.3-1, 
is 

K, = [PH,T +GC,]R[l 

= [P(H + HF - EH)T + GQGTHT] [HGWTHT + Q ,  I-' (4.5-9) 

The equations for i ( t )  and P(t) are 

There remain two aspects of this solution which warrant further discussion; 
namely, the need for differenriation in the derived measurerne?t and appropriate 
initial values of S i t )  and Kt). Assuming K,(t) exists and K,(t) is piecewise 
continuous, use of the identity 

enables rewriting Eq. (4.5-10) In the form 

In this manner, the need to differentiate the measurements is avoided. Figure 
4.5-1 is a block diagram of the corresponding optimal estimator. Regarding the 
initial estimate and error covariance matrix, note that the Instant after 
measurement data are available (t = 0+), the following disconrinuities occur, 

where Ely(O)yT(O)] = R(0). The initial condition on the fdter in Fig. 4.5-1 is 
dependent upon the initial measurement and cannot be determined a priori, viz: 

initial condition = 2 (0+) - KI (O)L(O) (4.5-16) 

For additional details, including the treatment of general situations, see Refs. 9 
mil 1 1. 

P i i r e  4.5-1 Correlated Noise Optimal Filter, Continuous Time 

DISCRETE TIME, Rk SINGULAR 

State vector augmentation can be employed in the discrete-time problem with 
Correlated noise to arrive at an equivalent measurement-noise-free problem, as m 
Eqs. (4.54) and (4.5-5). Let us suppose that the equivalent problem is described 
by 

Although the measurement noise is zero (hence, Rk = 0 and RCt does not 
exist), apparently there is no difficulty because the discrete Kalman gain matrix 
does not explicitly involve RC'. However, consider the expression for updating 
the enor covariance matrix (Table 4.2-I), 
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It is easy to see from this expression that 

Pk(+) must be singular, of course, since certain linear combinations of the state 
vector elements are known exactly. Error covariance extrapolation is performed 
according to (Table 4.2-1) 

Therefore it follows that if % - I (i.e., as it would be, in a continuous system 
which is sampled at points close in time relative to the system time constants) 
and if Qk is small, the covariance update may become ill-conditioned [i.e., 
Pk+l(-) = Pk(+)]. To alleviate this problem. measurement differencing may be 
employed, which is analogous to measurement differentiation previously 
discussed. Details of this procedure are available in Ref. 12. 

4.6 SOLUTION OF THE RlCCATl EQUATION 

The optimal filtering covariance equations can only be solved analytically for 
simple problems. Various numerical techniques are avadable for more com- 
plicated problems. Numerical integration is the direct method of approach for 
time-varying systems (i.e., when the matrix Riccati equation has time-varying 
coefficients). For an nth order system, there are n(n+1)/2 variables involved [the 
distinct elements of the n X n symmetric matrix P(t)] . 

Systems for which the matrix Riccati equation has constant (or piecewise- 
constant) coefficients, or can be approximated as such, can be treated as 
follows. For the nonhnear equatlon 

P = FP + PFT + GQGT - PHTK' HP, P(to) given (4.6-1) 

the transformations (Ref. 5) 

and 

result in a system of linear differential equations. Using the above, we compute 

Therefore 
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(4.6-5) 

and the equivalent linear system equations arc: 

By denoting the transition matrix for this linear system as 4 (namely, qt.+.r,to) 
= @(r) = eMr), we can write 

where @(r) is shown partitioned into square n X n matrices. Writing out the 
expressions for y ( toh )  and Mto+r) and employing Eq. (4.6-2) yields 

Thus, the original nonlinear matrix Riccati equation has been converted to an 
equivalent, albeit linear, matrix equation and solved. Once O(T) is computed, 
P may be generated as a function of time by repeated use of Eq(4.6-8). The 
solution to  the Riccati equation is obtained without any truncation errors, and is 
subject only to roundoff errors in computing O. Note the Importance of 
periodically replacing P with its symmetric part, (P + PT)/2, to avoid errors due 
to asymmetry. This method is often faster than direct numerical integration. 
Although this technique is equally applicable to general timevarying systems, M 
= M(t); thus, 9 is a function of both to and T in these cases. The added difficulty 
in computing @(to+r,to) is usually not justifiable when compared to  other 
numerical methods of solution. 

Solution of the linear variance equation 

6 = FP + PFT + GQCT , P(to) given (4.6-9) 

is easily obtained by noting that HTR-lH = 0 in this case and thus Oyy(r) = 
( e - ' ~ ) ~ ,  OAA(r) = eF7, and OyA(r) = 0. The desired result, obtained from Eq. 
(4.6-8). is 

P(to + r ) = * ~ ~ ( r ) * ~ ~ ~ ( 7 )  + OAh(r)P(to)OhAT(r) (4.6-10) 
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and when all the eigenvalues of F have negative real parts, the unique steady 
state solution of the linear variance equation is 

Example 4.61 

For a certain chu of integrating gyroscopes all units have a constant but a priai  
unknown drift rate, e, once thermally stabilized. The gyroscopes are instrumented to 
stabilize a singleaxis test table. Continuous indications of table angle, a, which is a direct 
measure of the integrated gyroscope drift rate, are available. The table angle readout has an 
enor, e, which is well dexribed by an exponential autoforrelation function model of 
standud deviation o (gc) and short correlation time T (m). Deign an efficient real-time 
drift rate test data p t o a w r .  

The equation of motion of the test table, ncglsting w o  mors, is 

and the measurement is dexzibed by 

with 

where w is a white noise of zero mean and spectral density q = 20'1~ (Zii2/see). 
Then are two ways to  formulate the data prorrssor. One is to augment the two 

differential equations implied by Eq. (4.6-12) with Eq. (4.6-14). resulting in a thirdader 
system (threerow state vector). and to  proceed as usual. Another is to aDDmximote the 
rekttvely hrgh frequency correlated noise by s whte noise pocerr rnd thus delete t q .  
(4.614). rcrulung in a necondadrr system In this case the spectral denrtty of the nor- 
(now drreclly reprnrntlng r )  Is r = 2 0 ' ~  (&rce). Wz proceed ustng the httcr  approach. 

The differential equations corresponding to Eq. (4.6-12) me: 

and the measurement is expressed as 

(see Fig. 4.6-1). Four methods of attack now w e s t  themselves 

P i e  4.6-1 Mcdd of the System and Measurement 

M n h d  1 - Having identified the system and measurement equations, the Riccab 
equation 

must be sdved for P(t). Note the absence of the term GQGT in t h ~ s  case. With F and H as 
given in Eqs (4.6-15) and (4.6-16), the Riccati equation becomes 

which is a set of coupled nonlinear differential equations. While this set of equations can be 
sdved directly (albeit, with considerable difficulty), there are better methcds of approach. 

Method 2 - Followinn Eq. (4.6-6). form the matrix M toobtain 
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The transition matrix corresponding to M is computed next. In this case the matrix 
exponential serics is Bite,  truncating after four turn% with the result 

The partitioned matriffis ayy, ayh. Ohy and 0x1 are readily identifed. With b = 0 and r = 
1, and assuming P(0) is diagonal, 

(4.617) 

Eq. (4.6-8) yields 

where 

This is the complete answer for P(t). K(t) can now be computed and the optimal f i t n  has 
thus bem detamined, In the case where there is no o prim' infmmation, p,,(O) = 
pll(0)- OD and the limit of the above result yields 

The Knlmsn gain is thur given by 

and the optimal lilter is as illustrated in Fig  4.62. 
In the limit as t--, cur theory says that K ( t M  corresponding to the cowiance matrix 

limit PO)- 0. This steady state would not be one of ideal knowledp if there were any other 
error sources driving JLq. (4.615). Although we have not mdeled any such enas, it is 
certain that they will indeed exist and hence intlumce the drift rate ta t .  Therefore. the 
thunetical prediction P(t)-+O should be viewed as unrcllistically optimistic, and should in 
practice be adjusted to account f a  other expected noise terms. 

F i e  4.6-2 Optimal Filter Conf ia t ion  

Method 3 - Notice that there is no noise term driving the slate vector differential 
equation In this m e  the nonlimr R i a t i  equation in P is identical to the following linear 
differential equation in P-' 

Equivalence is readily shown by ~rwnulti lying and posunultiplying both sides of this 
equation by P and noting the rdationship f= -P~-'P. Denoting the elements dF1 by ad. 
.we write 

Equivalently, 
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which, upon i n v e n i o ~  yields Eq. (4.6-18). 

Method 4 - It has been mentioned that the ehoicc of state variables is not unique. The 
present example serves well for exploration of this point. S u m s  we u s ,  as an alternative 
system state veclor, 

Briefly, it follows that 

and consequently that 

Intematii and inverting, assuming noopriori infamation (i.e., P'(0) = 0). yields 

This result mn be neonfiled with Eq. (4.619). The procedure is left as an exerase fox the 
reader. 

4.7 STATISTICAL STEADY STATE-THE WIENER FILTER 
In the case where system and measurement dynamics are linear, constant 

coefficient equations (F, G, H are not functions of time) and the driving noise 
statistics are stationary (Q, R are not functions of time), the fdtering process 
may reach a "steady state" wherein P 1s constant. Complere observability has 
been shown (Ref. 5) to be a sufficient condition for the existence of a 
sieady-state solution. Compl~re controllability will assure that the steady-state 
solution is unique. Thus, for P = 0, we have 

FP, t PJT + GQGT - P ~ T R - '  HP_ = 0 (4.7-1) 

where P_ denotes the steady-state value of P. In this steady state, the rate at 
which uncertainty builds (GQCT) is just balanced by (a) the rate at which new 

information enters the system @&TIC1 HPJ, and (b) the system dissipation due 
to damping (expressed in F) (Ref. 6). 

The corresponding steady-state optimal fdter is given by 

where K_ is constant (K_ =P_HTK'). This equation may be rewritten 

i(t) - (F - KH) i 0 )  = q a t )  (4.7-3) 

Laplace transforming both sides and neglecting initial conditions yields 

where s is the Laplace transform variable. Thus, 

The quantity in brackets (representing the transfer function), which operates 
on ~ ( s )  to produce i(s), is the Wiener oprimal filrer. For example, in the scalar 
case, Eq. (4.7:s) may be written 

which is the optimum fdter in conventional transfer function form. 
Underlying Wiener flter design (Ref. 13), is the so-called Wiener-Hopf 

(integral) equarion, its solution through spectral factorization and the pmcticol 
problem of synthesizing the theoretically optimal filter from its impulse 
response. The contribution of Kalman and Bucy was recognition of the fact that 
the integral equation could be converted into a nonlinear differential equation, 
whose solution contains all the necessary information for design of the optimal 
fdter. The problem of spectral factorization in the Wiener fdter is analogous to 
the requirement for solving n(n+l)/2 coupled nonlinear algebraic equations in 
the Kalman fdter [Eq. (4.7-I)]. 
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PROBLEMS 
Problem 4-1 

Repeat Example 1.01 by ueating the two measurements (a) sequentially and (b) 
simultaneously, within the framework of Kalman fdtering. A m m e  noo pimi information 

Problem 4 2  
Um the matrix inversion lemma lo uri ly sdve Roblems 1-1 and 1-3 in a minimum 

number of steps 

Problem 4-3 

Repeat Problem 1-4 by reformulating it as a K h a n  filer problem and conridering (a) 
simultaneous and (b) sequential measurement procasing. A m m e  no a priai information 
about xo 

Suppose an add i t iod  m u r u m m t  set, 3 bsomes available. Defining the fdlowing 
nutrices for the complete mesrlurnnent s e t  

the new estimate. i(+), can be found as 

i(+) =(H,TR;' H,).' H ~ T R ; ~ ~ ,  

Using the definitions for HI. R 1 , 3  above, show that i(+) can be b e p u l a t e d  into me form 
(f '(-1 = H ~ T R ~ I H ~ ) :  

and directly obtain the recursve, weighted-least-squared estimator, 

;(+) =i(-)  + P(+)HTR? L-H~(-)] 

fl(+) = f1(-) + kITKLH 

Problem 4-6 
For the particulnr linear vector measurement equation, =HE+& where y - N@R) is 

independent o f 3  the conditional probability p4&l can be written as 

Demonstrate that the estimate, & which maximizes p z l g  h e ,  the maximum likelihood 
estimate) is found by minimizing the expredon @-H3kR-1 ;:Ha. Show that 

State the recursive fotm of thu estimate 
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Problem 4-7 

Consider a gaussian vector 5 where - N&), P(-)), and a linear measurement, 2 = 
Hx+l, where the gaurrian measurement noiselis  independent o f 2  and:- NQR). 

a) Show t h a t z  - N(H~(-) ,  Hp(-)HT+R) 

b) Show that the o posteriori density function o f 2  is given by (Ref. 16) 

where c is a constant. 

d) Complete the quare in the expression in bracer to obtain the form 

and thus, identify as the Bayesian maxtmwn likelihood estimate (maximuma posterion' 
estimate) 

Problem 4-8 

For the system and measurement equations, 

i = F z + G x ,  w-N@Q) 

2=tc+l. y-N@,R) 

consider a linear filter dercribed by 

2 = K' i  + Kz 

where K' and K are to be chosen to optimize the estimate, i. First, by requiring that the 
estimate be unbiased, show that K' = F - KH, and thus obtain 

Next, show that the eovariana equation of the estimation ma is 

Finally, choose K to yield a m i m u m  rate of decrease of enor by minimizing the scalar 
cost function, I=trace[P], and Cid the result: 

Problem 4-9 

a) Can a Kalman fit- separate two biases in the absence of o priai information? Given o 
piM idinmation? 

b) Can a Kalman fiter separate two sinvsoids of frequency wo even no a priori 
information? Given a priwi information about amplitnds andlor phase? 

C) Can a Kalman f i t n  separate two markov processes with correlation time r given no a 
primM information? Given a priai information? 

Problem 4-10 

A random variable, x, may a k e  on any values in the range -- to -. Bared on a sample 
of k values, xi, i=l.2,. . . , k, we wish to  compute the sample mean, Ink, and sample 
variance, ;k2, as estimates of the population mean, m, and variance, 02. Show that unbiosed 
estimators fox these quantities are: 

and reeast these expre~sionr in recursive form. 

Problem 4-11 

A simple dynamicel system and measurement are given by 

Show that the optimal Citn enor v~rlanee isgiven by 

where 

Demonstrate that the steady-state value of p(t) is given by 

independent of PO. Draw a block d h m m  of the optimal filer and discuss its stcady-state 
behavior. 
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Problem 4 1 2  

A secondor& m t e m  and scalar measurement are illustrated in Fig. 4-1, where 
w - N(0.q). Draw a block diagram of the Kalman optimal Bter for this system, and show 
that the steady-state Kalman gain matrix is 

Repeat the calculation for the case where simultaneous measurements of XI and x l  are 
made. Assume uncorrelated measurement morr 

Figure 4-1 Example Second-Orda System 

Problem 4-13 

Show that the optimal Bter for detecting a sine wave in while noise, based upon the 
measurement 

where u - N(O,r), is as shown in Fig. 4-2, where (Ref. I)  

F i e  4-2 Optimal Sine Wave Estimator 

Problem 4-14 

The mtput of an integrator driven by while noise w [where w - N(O,q)] is sampled 
every A seconds (where A=tk+l-tk = constant), in the presence of a memrement noise, vk 
[where vk - N(O,ro)]. AJovme that there is no a pion' information. Calculate pk(+) and 
pk+l(-) for k = O,I,2, c tc  and thus, demonstrate that, fordl  k, 

and 

Sketch and phyrically interpret mor vPrianD curves for each of these eases. 

Problem 4-15 

Reformulate Example 4.2-4 using the altemate ptate veetor xa = [6p(O) W 0 )  61(0)lT. 
Make appropriate arguments about initial conditions and employ the matrix inversion 
lemma to arrive at the following result: 

Palm: I I 1 

where 

and pll(0) = E [ ~ P ~ ( o ) ] ,  pn2(o) = ~ [ s v ~ ( o ) ] ,  p3,(0) = ~[sa?0) ] .  Reconcile this result 
with the u#ct  venion of Eq. (4.2-25). 

Problem 4-16 

By m e w i n g  the line of night to 1 star, a spacaraft s t e lk  navigation Wstem ean 
measure two oi the three angles mm rising 2, the navigation mrdinatc frame misaligw 
m a t .  Fore = (8, 8, e,lT, P(0) = demonstrate the h e  of a "singlestar fix" (i.e., a 
measurement of 8,  and e2). Then, -me another measurement on a different star (i.e., a 
measurement of el and e,), and ihus, demonstrate the value of a "tw~star fu." A w m e  
that each mmponent o f 2  is observed with an uncorrclated measmemcnt mor, v u .  (i=l, 2 
or 3) 

Specifically, show that (oi2< o2 for i = 1,2,3) 
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and 

A polynomid m c k i w  fdfer is designed to optimally a t m a t e  the slate of the system 
described by :(t) = 0, &en scalar measurements z - x + v, v - N(0,r). Asrumins noa prion' 
information and measurements spaced r time units apprt, show that (k = 1.2,. . .) 

and 

(Hint: It may prove useful to employ the rdationship P ( o ~ '  = lim el, and to solve by 
induction) e - 0  

Problem 418  

A system and measurement are given as, 

Show that the optimol differentintor associated with a particular output of the system, 

r = e  
is 

f = ( M + M F ) ~  - 
Why is it incorrect to  compute4 by f o r m i n g i = ~ i a n d  then Werentiating the result? 

Pmblem 4 1 9  

Manipulate the disaete covariance matrix update equation into the form 

and thus show that, when Hk is square and nonsingular, 

This formula for updating the determinant of the eovadancc matrix has been shown to be 
valid independent of whether Hk is square (Ref. 17). 

Problem 4-20 

Observations of a constant parameter x are made through a digital instrument with 
quantization levels d width q. A reasonable approach for "mall" q is to  model the 
quantizer as a noise source whose distibution is uniform over (-q/2, q/2), and which is 
unconelated wlth x - I.<. 

z = x + v, v is uniform over (- f , 4 ) 
Find the optimal linear estimator for x, given that 

Problem 4-21 

Obsemtionr z of the constant parametu. x are corrupted by multiplicative noise - ie., a 
scale factor error, v, 

where 

(a) Find the optimal Linear estimate of x based on a measurement z(; = b). (b) What is the 
mean square enor in the estimate? 

Problem 4 2 2  

Design an optimal linear Rter to separate a noise n(t) from a signal ~ ( t )  when the 
spectral densities for the signal and noise are given by: 

(Hint: this problem in Wiener ffltedng can be solved ar the steady-state portion of a Kalman 
filtering problem). 

Pmblem 423  

Consider a satellite in space which is spinnlng at a constant, bur unknown, rate. The 
angular position is measured every T second$, viz.: 

where ek is the an& positlon at t = kT, and Q is the measwment error. The 
uncertainties in initial conditlonr are described by 
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Write the system state equations and then the linear fdter eguat i0~ to Five an opt~mal 
estimate of the position and velocity aft- each observation. 

Problem 4 2 4  

An RC Tdln wth ume coruunt r a exetled by whtc nom. and the oulpll umeasumd 
wery T seconds. The autplt st the sample tmes obeys the equatron 

The measurements are described by 

zk=xk+vk,  k = 1 , 2 ,  . . .  

where v): is a white sequence and has the following probability density function: 

Find the b e t  linear atimate (a) of x, based on z,, and (b) xz based on z, and z2;when 
z, = 1.5 and z2 = 3.0. 

Problem 4 2 5  

Design a data processor to determine the posibon of a ship st  sea. Examine one 
dimemiod motion (rg., NorUrSouth) under the following assumptions: the ship's velocity 
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relative to the watu is mnstant, but unknown with mean ms and variance oS2; the current 
has a wnstant mean value m,. The mndom component of current can be modeled s 
integrated white noise of spectral density q, and initial variance oe2; position measurements 
me made every T hours by radio or sextant methods, The e n n s  in thac madine are 
independent of each other and have mean zero and variance o~~ (miles)2; the initial 
position stinute (T hours before the lint meuurrment) is x,,, with uncertainty ooZ. 

a) Set up the sfate equations f n  this system. Show clwly what differential equations 
are netded 

b) Set up the mter equations to give s continuous estimate of ~osition and the enor 
in this s t h a t e .  Be sure 
initial conditions 

to specify the matrices and vectors, and all 

Problem 4 2 6  

The differential equation for the altitude hold mode of an airplane autopilot isgiven by 

wfiere h represents altitude md he is commanded altitude. The altitude mmmand hc is 
modelled as a constant hy plus grusian white noise 6hdt) in the mmmand channel 

l k  constant he, isa n o r d  andom variable with statistics 

m a n =  10,00(l ft 
variance = 250,000 ft2 

Noise in the commmd channel has the following statistie 

and 6 k  is independent of all other variables. 
Discrete measurements of altitude are available every 10 seconds and we wish to process 

them to obtain the minimum vuiance estimate of altitude. The altitude measurements 
contain random errors 

where z(tk) is measured altitude and %(tk) is a white sequence of measurement errors, 

Determine the difference equations ddning the minimum variance estimator of MI). 
Write thac equations out in fcrm. 

Problem 4 2 7  

Consider the circuit in Fig. 4-4. It has been constructed and sealed into the prwerbial 
black box. Capacitor CI has a very low voltage rstrng and it IS desired to monitor the voltage 
across C, to determine when it exceeds the capacitor I h t .  
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The only meamement that cm be made on this system is the output voltage, eo. However, 
t h m k s  to  an exceedi@y gmdvoltmeter, perfect meaourements can IX made of Ulisvoltage 
a t  diserete timer In order to  at imate the voltage a a o s  CI, assume that "(1) can be 
described as 

Determine an expression for the optimal estimate of the voltage across CI. Assume that 
the system starts up with no charge in the capacitors. Plot the vviance of the erra in the 
estimate as a function of time, t a k i i  measurements every half second for two semnds 

Pmblem 4-28 

The motion of s unit mas, in an invex  w a r e  law f a c e  field, isgoverned by a pair of 
semndorder equations jn the radius rand the angle 0.  

If we assume that the unit mass has the capability of thrusting in the radial dimtian with a 
thrust uj and In the tangential direction with a thrust " 2 ,  then we have 

where R~ w 2  = Go - ie., circular orbm are possible. Let XI, x n ,  xs, and x4 be given by the 
relationships 

and show that the lineanred equations of motion about the nominally circular ~olutmn are 

Note that there is no proms noise included in the abwe  state equations. 
It is desired to measure these small orbtsl  dwjations from obrervst~onr on theground. 

Two proposals are presented (a) In an effort to keep the measurement stations rather 
simple and inexpensive, only d e  (xs) measurements will be made. However, the designer 
realizes the very likely possibility of measunment errors and includes an optimal fdter in his 
proposal for estimating the states The measurement may be represented as 

(b) The second design proposes to use measurements of range (x,). In this ease 

It is your task to determine which of these propasals is superior. 

Problem 429 

Consider the scalar moving average time-series model, 

where {rr\ is a ,unit-variance, white gsussian sequence. Show that the optimal on-step 
predictor or thls model is (assume Po = 1) 

(Hint: use the state-space formulation of Section 3.4) 



5. OPTIMAL LINEAR SMOOTHING 

Smoothing is a non-real-time data processing scheme that uses all measure- 
ments between 0 and T to estimate the state of a system at a certain time t, 
where 0 < t < T. The smoothed estimate of ~ ( t )  based on all the measurements 
between 0 and T is denoted by i(tlT). An optimal smoother can be thought of 
as a suitable combination of two optimal fdten. One of the filters, called a 
"forward fdter," operates on all the data before time t and produces the 
estimate i(t); the other fdter, called a "backward fdter," operates on all the data 
after time t and produces the estimategb(t). Together these two filters utilize all 
the available information; see Fig. 5.01. The two estimates they provide have 

B A C K W A R D  FILTER 

4-Pb 

8--+ 
F O R W A R D  FILTER 

F i e  5 . M  Relationship of Foruard and Backward Filters 
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uncorrelated errors, since process and measurement noises are assumed white. 
This suggests that the optimal combination of 3 t )  and ib(t) will, indeed, yield 
the optimal smoother;proof of this assertion can be found in Ref. 1. 

Three types of smoothing are of interest. In fwd-inferval smoofhing, the 
initial and final times 0 and Tare fixed and the estimate i(tlT) is sought, where t 
varies from 0 to  T. In fured-poinf smcufhing, t is fixed and i(tlT) is sought as T 
increases. In fured-log smoothing, $-AlT) is sought as T increases, with A 
held fixed. 

In this chapter the two-fdter form of optimal smoother is used as a point of 
departure. Fixed-interval, fued-point and fued-lag smoothers are derived for the 
continuous-time case, with corresponding results presented for the discrete-time 
case, and several examples are discussed. 

5.1 FORM OF THE OPTIMAL SMOOTHER 
Following the lead of the previous chapter, we seek the optimal smoother in 

the form 
I 

where A and A' are weighting matrices to  be determined. Replacing each of the 
estimates in this expression by the corresponding true value plus an estimation 
error, we obtain 

For unbiased fdtering errors, g(t) and ib(t), we wish to obtain an unbiased 
smoothing error, E(tlT); thus, we set the expression in brackets to zero. This 
yields 

and, consequently, 

Z(tIT) = Agt )  + (I - A) &(t) 

Computing the smoother error covariance, we find 

where product terms involving Z(t) and ib( t )  do not appear. P(tlT) denotes the 
smoother error covariance matrix, while P(t) and Pb(t) denote forward and 
backward optimal fdter error covariance matrices, respectively. 
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OPTIMIZATION OF THE SMOOTHER 

Once a w n ,  following the previous chapter, we choose that value of A which 
minimizes the trace of P(tlT). Forming this quantity, differentiating with 
respect to A and setting the result to  zero, we find 

and, correspondingly 

Inserting these results into Eq. (5.1-5), we obtain 

P(tlT) =PbQ + Pbr1P(P + Pb)-'Pb + P(P + Pb)-' Pb(P + Pb)-'P (5.1-9) 

By systematically combining factors in each of the two right-side terms of this 
equation, we arrive at a far more compact result. The algebraic steps are 
sketched below, 

~ ( t l ' Q  = P,(P+P~)-'P (I + P<' P ~ I  + P(P + p b r l p b  (P-'P~ +I)-' 

=Pb(P+PbT1 (F1 +P<')-' +P(P+Pbrl (P-I + P C ' )  

(5.1-10) 

FL(tlT) = F1 (t) + PCL(t) (5.1-11) 

From Eq. (5.1-ll), P(tlT) < Pft), which means that the smoothed estimate of 
~ ( t )  is always better than or equal to ~ t s  filtered estimate. This is shown graph- 
ically in Fig. 5.1-1. Performing similar manipulations on Eq. (5.1-I), we find 

i(tlT) = G(t) + (I - A) gb(t) 

= P ~ ( P  + PbT1 g(t) + P(P + pbyl gb(t) 

= (F' + P<')-' F 1 i ( t )  + (F' +pdl)- '  PbWLib(t) 

= P(tlT) [F' (t) i ( t )  + P<' (t) ib(t)] (5.1.12) 

Equations (5.1-1 1) and (5.1-12) are the results of interest. 

FORWARD - FILTERING 

SMOOTHING P(tlT) 

I 1 
TIME & 

F i p  5.1-1 Advantage of Performing Optimal Srnwthii  

REINTERPRETATION OF PREVIOUS RESULTS 

It is interesting to note that we could have arrived at these expressions by 
interpretation of optimal fdter relationships. In the subsequent analogy, 
estimates ib from the backward filter will be thought of as providing 
"measurements" with which to  update the forward filter. In the corresponding 
"measurement eqdation," H = I ,  as the total state vector is estimated by the 
backward fdter. Clearly, the "measurement error" covariance matrix is then 
represented by Pb. From Eq (4.2-19). in which PC'(-) and Pi1(+)  are now 
interpreted asF1(t)  and F1(tlT), respectively, we o b t m  

Equations (4.2-16b) and (4.2-20) provide the relationships 

which, when inserted in Eq. (4.2-5) yield the result 

where &(-) and &(+) have been interpreted as i ( t )  and g(tlT), respectively. 
Thus, we arrive at the same expressions for the optimal smoother and its error 
covariance matrix as obtained previously. 
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5.2 OPTIMAL FIXED-INTERVAL SMOOTHER 
The forward-backward fdter approach provides a particularly simple mech- 

anism for arriving at a set of optimal smoother equations. Other formulations are 
also possible, one of which is also presented in this section. For the moment, we 
restrict our attention to timeinvariant systems. 

FORWARD-BACKWARD FILTER FORMULATION OF THE 
OPTIMAL SMOOTHER 

For a system and measurement given by 

the equations defining the forward fdter are, as usual, 

The equations defining the backward fdter are quite similar. Since this filter runs 
backward in time, it is convenient to  set r = T - t. Writing Eq. (5.2-1) in terms 
of r, gives* 

for 0 < r < T. By analogy with the forward fdter, the equations for the 
backward fdter can be written changing F to -F and G to  -G. This results in 

At time t = T, the smoothed estimate must be the same as the forward fdter 
estimate. Therefore, %g(TIT) = i(T) and P(T1T) = Pp).  The latter result, in 
combination with Eq. (5.1-1 l), yields the boundary condition on PC'. 

*In this chapter, s dot denotes differentiation with respect to (forward) time t. Differerr 
tiation with respect to bstward time is denoted by dldr. 

but the boundary condition on ib(T) is yet unknown. One way of avoiding this 
problem is to  transform Eq. (5.2-6) by defining the new variable 

where, since ib(T) is finite, it follows that 

Computational considerations regarding the equations above lead us to  their 
reformulation in terms of PC'. Using the relationship 

Eq. (5.2-7) can be written as 

for which Eq. (5.2-8) is the appropriate boundary condition. Differentiating Eq. 
(5.2-9) with respect to r and employing Eqs. (5.2-6) and (5.2-12) and 
manipulating, yields 

for which Eq. (5.2-10) is the appropriate boundary condition. Equations 
(5.1-1 1, 12) and(5.2-2,3, 12, 13) define the optimal smoother. See Table 5.2-1, 
in which alternate expressions for i(tlT) and P(tlT), which obviate the need for 
unnecessary matrix inversions, are also presented (Ref. 1). These can be verified 
by algebraic manipulation. The results presented in Table 5.2-1 are for the 
general, time-varying case. 

ANOTHER FORM OF THE EQUATIONS 

Several other forms of the smoothing equations may also be derived. One is 
the Rauch-TungStriebel form (Ref. 3). which we utilize in the sequel. This 
form, which does not involve backward fdtering per se, can be obtained by 
differentiating Eqs. (5.1-11) and (5.1-12) and using Eq. (5.2-12). I t  is given by 
Eqs. (5.2-2) and (5.2-3) and* 

*From this point on, all discussion pertains to the general timevarying case unless stated 
o t h d .  However, for m t a t i o d  convenience, explicit dependence of F, G, H, Q, R 
upon t nuy not bs shown 
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TABLE 5.2-1 SUMMARY OF CONTINUOUS, FIXIDINTERVAL OPTIMAL 
LINEAR SMOOTHER EQUATIONS. TWO-FILTIR FORM 

System Model 

Measurement 
Model 

lnitml Condnion 

Other 
Assumptions 

Forward Filter 

Error Covariance 
Ropagatlon 

Backward Filter 
(T = T-t) 

Error Covariance 
Ropagation 

(T = T-t) 

Optimal 
Smoother 

Error Covariance 
Ropagatmn 

Equations (5.2-14) and (5.2-15) are integrated backwards from t = T to t = 0, 
with starting conditions given by Z(TIT) = i(T) and P(TIT)= P(T). Figure 5.2-1 
is a block diagram of the optimal smoother. Note that the operation which 
produces the smoothed state estimate does not involve the processing of actual 
measurement data. It does utilize the complete filtering solution, however, so 
that problem must be solved first. Thus, fixed-interval smoothing cannot be 
done real-time, on-line. lt  must be done after all the measurement data are 
collected. Note also-that P(tlT) is a continuous time function even where P(t) 
may be discontinuous, as can be seen from Eq. (5.2-15). 
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Figure 5.2-1 Diagram of Rauch-Tung-Striebel Fixed-Interval Continuous 
Optimal Smoother (t C T) 

All smoothing algorithms depend, in some way, on the forward fdtering 
solution. Therefore, accurate filtering is prerequisite to accurate smoothing. 
Since fixed-interval smoothing is done off-line, after the data record has been 
obtained, computation speed is not usually an important factor. However, since 
it is often necessary to  process long data records involvmg many measurements, 
computation error due to  computer roundoff is an important factor. Hence, it is 
desirable to have recursion formulas that are relatively insensitive to computer 
roundoff errors. These are discussed in Chapter 8 in connection with optimal 
fdtering; the extension to optimal smoothing is straightforward (Ref. 1). 

The continuous-time and corresponding discrete-time (Ref. 3) fixed-interval 
Rauch-Tung-Striebel optimal smoother equations are summarized in Table 5.2-2. 
In the discrete-time case the intermediate time variable is k, with fnal time 
denoted by N. P k l ~  corresponds to  P(tlT), ikIN corresponds to z(tlT) and the 
single subscripted quantities ik and PI, refer to the discrete optimal filter 
solution. Another, equivalent fixed-interval smoother is gjven in Ref. 4 and the 
case of correlated measurement noise is treated in Ref. 5. 

A state is said to  be smoothable if an optimal smoother provides a state 
estimate superior to  that obtained when the final optimal filter estimate is 
extrapolated backwards in time. In Ref. 2, it is shown that only those states 
which are controllnble by the noise driving the system state vector ore 
smoothable. Thus. constant states are not smoothable, whereas randomly 
time-varying states are smoothable. This smoothability condition is explored 
below. 

Consider the case where there are no system disturbances. From Eq. (5.2-14). 
we find (Q = 0) 
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TABLE 5.2-2 SUMMARY OF RAUCH-TUNGmRIEBEL FIXEDINTERVAL 
OPTIMAL SMOOTHER EQUATIONS 

Error Covariance 
Matrix Propagation 

(See Table 4.3.1 for the required continuous optimal filter terms) 

where P U T )  = P(T) I 

smoothed State 
Estimate 

(See Table 4.2-1 for the rewired discrete optimal filter terms) 

&T)= F(~):(~IT) +c(t)~(t)cT(t)~-'(t)[i(tl~) 

where T is fixed, t < T. and ;(TIT) = &T). 

Smoothed State 
Estmate 

Error Covariance 
Matrix Propagation 

where 

Ak = &(+#kT&+ jl(-). f N I N  = iN(+) for k N - I. 

&IN= &(+) + Ak [ & + L I N  - PL+I(-)~ AkT 

wherePNIN = PN(+) for k = N - I 

The solution is (i(TIT) = i(T)) 

Thus, the optimal jired-interval smoother estimate, when Q = 0, is the fino1 
optimal filter estimate extrapolated backwards in time. The corresponding 
smoothed state error covariance matrix behavior is governed by 

for which the solution is [P(TIT) = 

If, in addition, F = 0, it follows that O(tT) = I and hence, that 

and 

for all t < T. That is, smoothing offers no improvement overfiltering when F =  
Q = 0. This corresponds to the case in which a constant vector is being estimated 
with no process noise present. Identical results clearly apply to the m constant 
states of an nth order system (n > m): hence, the validity of the smoothability 
condition. 

Example 5.2-1 
This spacecraft tracking problem was treated before in Example 4.3-2. The underlying 

equations are: 

i = w, w - N(0.q) 

and the rteady-state optimal filter solution war shown to be p(t) = u, where a = A. 
Examine the rteady-state, fixed-interval optimal smoother both in terms of (1) forward- 
backward optimal filters, and (2) Rauch-Tung-Striebel form. 

P n t  1 - The forward filter Riccati equation is (f=O, g=h=l) 

which, in the steady state (&o), yields p = 6 =a. The backward filter Riccati equation is 
from Eq. (5.2-7) 

which has the steady rtate pb = A= a. Thus, we find, for the smoothed covarianEe 

which is half the optimal Cdter covariance. Consequently, 

The smoothed estimate of x is the overqe of forward plus backward estimates, in 
steady state. 

P-1 2 - In Rauch-Tung-Striebel form, the rtcady-state smoothed covariance matrix 
differential equation (Table 5.2-2, T fixed, t =z T) is 
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tor whlch the d u t m n  8s (q/a = p, PITIT) = e) 

This result is plotted in Fig. 5.2-2 For T-1 suffictently large (i.e., T-1 > 210). the 
backward sweep a tn steady state In thls case, we obtam p(tlT) = o/2. as before. The 
correspondmg dlfferenttal equruon for the smoothed state erllmate, from Table 5.2-2, is 

This cm be shown to be ~denlical to Eq. (5.2-22) by dlfferentrauon of the latter wllh 
respect lo time and manipulatton of the rerultmg equation. 

Figure 5.2-2 Optlmrl bdter and Smoother C0varwm.s tor Example 5.2-1 

Example 5.2-2 

Thm example describe5 an mvestlptlon of  the applieabihty of  lixed-mterval optmrl  
smoolhlng lo  gyroscope lertmg. In the test conudered, r gyroscope is mounted on r servoed 
turntable and smple r  of the table mgle, which 8s a measure of  the mtegrsted gyroscope 
drift rate, r ,  are recorded The gyroscope d r ~ f t  rate 1s assumed to be r lmear combinrlion of  
a random blar b, a random walk, r random ramp (slope m), and a f i rrmrdrr  mrrkov process; 
this is shown in block diagram form 10 Fig. 5.2-3. The rvallable measurements are the 
samples. Bk, corrupted by a nolse xquence, vk. and merrurement data are to be batch 
processed after the test. 

Figure 5.2-3 Block Diagram of Gyroscope Drift Rate Model and Test Measurement 

Consider the aspects of observdbility and smoothrbility. The equations governing this 
system are 

and 

rx 

The test for obrervabilily ~nvolves detrmrnation of the rank of the matrix B (Sectlon 3.5), 
where in this care 

It is easily shown that the rank o f ?  IS four, equal t o  the dtmension of the system: hence, 
the system is completely observable Performmg the test for obscrvabdlty, as dluslrated 
above, can lend migh t  Into the problem at  hand and can help avoid attempting imposstble 
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tasks. For example, it Is tempting to add another integrator (state variable) to the system 
shown m Fig. 5.2-3, in order to separate the bias Lnd random walk components, with the 
hope of separately ndentifymg them through filtering and smoothing. When such a 
fivedimensional system is formulated, and the appmpnate F(5 X 5) and H(I X 5)  are 
considered, the resulting E (5 X 5) matrix has rank four. TIm fivedimensional system is not 
completely obsrvable because two state variables have the same dynamic relationship to the 
measured quantity; ~t is unporsible to distinguish between the bias drift and the initial 
andit ion of the random walk component. Thus, t h e r  two components should be 
mmbined at  one integrator, as in Fig. 5.23, where no such distinction IS made. In this 
example, the randomly varying states x, ,  x3, and x4 are smoothable; the constant state, xl, 
is not. 

Figure 5.24 shows normahzed estimation errors for the drift rate r over a ZOhour 
period, based upon dnft rate smples taken once per hour. Results are shown for the 
comvlete system and for a simvler three-dimensional rvstetn which does not include the . . 
markov process companent of gyroscope drift rate. In the latter ease, state x3 is the entire 
drift rate, which is the sum of a ramp, a bias, and a random walk. The filtered estimate of x l  
19 much improved over that in the four-dimensional situation, and reaches equilibrium after 
approximately four hours. The estimate at each point is evidently based primarily on the 
current measurement and the four previous measurements. The fixed-interval smoothed 
ertmate reduces the rms error by almost half, bemg largely based on the current 
measurement, the preceding four measurements, and the subsequent four measurements. 

A numerical example based on simulated real data is presented in order to graphically 
illustrate the difference between a set of filtered and smoothed estimates of gyroscope drift 
measurements. The example corresponds to the threedimenrional'n~~markov-process a. 
A set of "real" data is generated by simulating thm three-dimensional linear system and 
using a random number generator to produce initlal conditions and two white noise 

Error in Filtered and Smoothed Estimates Wlth and Wthout the 
Markov Process (Ref 7) 

sequences, one represntmg the random walk input and one representing the sequence of 
measurement errors Figure 5.2-5 compares a sample of a "real" time history of state x3 
(which in this case is r ,  the entire drift rate) with filtered and smoothed estimates. The solid 
Lne connects the "real" hourly values of  x3. The dashed line indicates the real biasdrift b 
(the initial value) and the ramp dope m (the slope of the dashed line). The departure from 
the dashed line is due to the random walk component. Each filtered estimate of x3 IS based 
on the partial set of measurements (z ,  to zk). Each smoothed estimate of x3 is b a r d  on the 
full s t  of  measurements ( 2 ,  to ZN). 
TIE relative advantage of the smoother ismost apparent in the first two hours, where the 

filter has only one or two data points to work with. The smoother is also more accurate 
generally, throughout the 2Bhour time span due lo its ability to ''look ahead.' at the 
subsequent data polnts. The example also shows that the filter tends to lag the real data 
whenever it takes a major "swing" up or down. The smoother does not exhibit this type of 
behavior. 

S M O O T H E D  ESTIMATE 
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Figure 5.2-5 Comparison of Real Data Wlth Flltered and Smoothed 
Estmates (Ref. 7) 

A STEADY-STATE, FIXED-INTERVAL SMOOTHER SOLUTION 

The backward filter Riccati equations ((5.2-7) and (5.2-12)] can be solved by 
transforming the n X n nonlinear matrix differential equations to 2n X 2n linear 
matrix differential equations, precisely as was done in Section 4.6. Therefore, 
this approach warrants no further discussion here. The linear smoother 
uwariance equation given in Eq. (5.2-15) can also be treated in a manner similar 
to that used in Section 4.6; this is briefly treated below. Defining the 
transformations 
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Since the boundary condition for the smoothing process is specified at t = T, we 
let 

and user as the independent variable in Eq. (5.2-24). Thus, we obtain 

An expression similar to Eq. (4.6-8) may, in principle, be written for the 
recursive solution to the smoothing covariance equation. As before, this 
formulation of the solution is only of practical value when all elements of the 
square matrix in Eq. (5.2-26) are constant. However, if the system is observable 
and time-invariant, Kt)  tends to a stationary limit, and the constant value of 
P(t), denoted P,, can be employed in Eq. (5.2-26). If the time interval under 
consideration is sufficiently large and if P, is employed in Eq. (5.2-26), the 
latter would also have a stationary solution. In many cases of practical interest it 
is precisely the stationary filtering and smoothing solutions which are sought; in 
these cases the solution to Eq. (5.2-26) is obtained in the form of Eq. (4.6-8) by 
iterating until changes in the diagonal elements of P(tlT) are sufficiently small. 

5.3 OPTIMAL FIXED-POINT SMOOTHER 
When the smoothing solution is sought only for a specific time of interest, it 

is more efficient to reformulate the smoother equations to perform the task than 
to accomplish it through use of the fixed-interval smoother. To do this, we first 
write Eq. (5.2-14) in the form 

for which the solution is [%(TIT) =%p)1 

where O,(t,r) is the transition matrix corresponding to F + GQGTP-'(t), that is, 

Equation (5.3-2) is readily verified as the solution to Eq. (5.3.1) by 
differentiation with respect to  t and use of leibniz' rule.* 

Now consider t fixed, and let T increase. Differentiating Eq. (5.3-2). making 
use of Leibniz* rule, we obtain 

where we have used the known optimal fdter differential equation for %(T), and 
the relationship (T > t) 

-)= -9,(t,T)[F(T) + G(T)Q(T)G~(T)F' (T)] , O,(t,t) = I 

(5.3-5) 

The latter is easily shown by differentiating the expression Q,(t,T)Q,(T,t) = I 
with respect t o t  and usingEq. (5.3-3). 

TO establish the fixed-point, optimal smoother covariance matrix differential 
equation, write the solution to Eq. (5.2-15) as [P(TIT) = KT)] 
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This, too, may be verified directly by differentiation. As before, we now 
consider t fixed and differentiate with respect to T to  obtain 

which ultimately simplifies to 

In applications, the fured-point optimal smoother is perhaps most often used 
to estimate the initial state of a dynamic system or process - i.e., orbit injection 
conditions for a spacecraft. The continuous-time and corresponding discrete- 
time (Ref. 6) optimal fixed-point smoother equations are summarized in Table 
5.3-1. 

TABLE 5.3-1 SUMMARY OF FIXEDPOINT OPTIMAL SMOOTHER EQUATIONS 

Continuous-Time 

(See Table 4.3-1 for the required continuous optimal filter terms) 

Smoothed State ikiN = i k l N - l  + B N [ ~ N ( + )  - ~N(- ) I  
Estimate where I 

Error Covariance 
Matrix Ropagation 

Example 5.31 

Determine the steady-state behavior of the fixedpoint optimal smoother for the system 
considered in Example 5.2-1. The transition matrix required for the fixed-point optimal 
moother isgoverned (Table 5.3-1, t fixed, T > t) by 

-= d::T) - Q~(~,T)P(T)H~(T)~~(T)H(T)P(T)o~T(~,T) 

where P(tlt) = P(t) 

Thus, 

Dismete-Time 

(See Table 4.2-1 for the rewired mwrete opttmal filter terms) 

Using this result in the equation for fixed-point optimal smoother covariance propagation 
(Table 5.3-I), we find 

for which the solution, 

is obtained directly by integration. This equation is identical to that plotted in Fig. 5.2-2. 
but the interpretation differs in that now t is tixed and T is increasing. When examining a 
paint sufficiently far in the past (i.e., T - t Z 21~0, the fixed-point optimal moother error is 
in the steady slate desmibed by p(tlT) = 4 2 ,  T > t + 218. The differential equation for the 
fixed-point optimal smwther state estimate Cable 5.3-1) ia 

for which the solution is computed forward in time from t until the present, T. 

5.4 OPTIMAL FIXED-LAG SMOOTHER 
In cases where a running smoothing solution that lags the most recent 

measurement by a constant time delay, A, is sought, the fixed-lag smoother is 
used. The derivation closely follows that of Section 5.3. From Eq. (5.3-2). with t 
=T-A,wege t  

Differentiation with respect to T and combining terms, yields 

Bror Covariance 
Matrix Ropagation 

% I N = % I N - I  + B ~ [ p k ( + )  - p k ( - ) l B ~ ~  

when %1k = ~k(+) 
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I(T-AIT) - ,(,-A) + G(T-A)Q(T-A)CT(T-A)P-' (T-A)] 5(T-AIT) -- 
dT 

where the relationship MaL(O, A) = 0,(0, A)] 

has been used (T > A). This is easily verified by differentiation of the expression 

*LQ-A, T ) =  *,(T-A, tP,(t ,T) 

with respect t o  T. The initial condition for S(T-AIT) is the fixed-point 
solution, g(01A). When measurements are received they are processed by a iixed- 
point algorithm until T = A, at which point the fixed-lag algorithm is initialized 
and subsequently takes over. The filtering solution, of course, is canied 
throughout. The corresponding solution for the fixed-lag smoother covariance 
matrix is 

+ P(T-A!T)[F(T-A) + C(T-A)Q(T-A)CTQ-A)F' (T-A)] T 

- *L(T-A,T)P(T)HT(T)~-l(~)~(~~~pLT(~-~,~) 

- G(T-A)Q(T-A)GT(T-A) (5.4-4) 

for which the initial condition is P(OIA), the optimal fixed-point smoothing error 
covariance matrix evaluated at T = A. 

In practice, the fixed-lag optimal smoother is used as a "refined," albeit 
delayed, optimal fdter. Applications in communications and telemet~y, among 
others, are suggested. The continuous-time and corresponding discrete-time (Ref. 
6) fixed-lag smoother equations are summarized in Table 5.4-1. 

Example 5.4-1 

Determine the steady-state behavior of the fixed-lag optimal smoother for the system 
considered m Example 5.2-1. The transtion matrix requtred for the fixed-lag optimal 
smoother (Table 5.4-1, T - t = A 1s fixed, T > A) is 

TABLE 5.4-1 SUMMARY OF FIXEDLAG OPTIMAL SMOOTHER EQUATIONS 

Continuous-Time 

(See Table 4.3-1 for the required conttnuous optimal filter terms) 

1 Smoothed 
State ! Estimate 

Error 
Covariance 
Matrix 
Propagat~on 

where T > A, A fixed, and i(01A) 1s the initial condit~on obtained from 
the opt~mal fixed-pomt smoother, and 

where mL(0.A) = s,(O,A) 

dP(T-AlT) _ -. dT IF(T-A)+c(T-A)Q(T-A)GT(T-A)F'(T-A)IP(T-AIT) 

+ P(T-AIT)[F(T-A) + C(T-A)Q(T-A)CT(T-A)P-'(T-A)~~ 

- s L ( ~ - a , ~ ) p ( ~ ) ~ T ( ~ ) ~ - '  (T)H(T)P(T) ~LT(T-A,T) 

- G(T-A)Q(T-A)GT(T-A) 

where ~ ( O I A )  is the inttial condition obtained from the optimal 
fixed-point smoother. 

Discrete-Time 

(See Table 4.2-1 for the reauired d~screte ootimal filter terms) 

i Smoothed j i k + i l k + l + ~  = @k&k i N  + Qk(@kT)-I P k - ' ( + ) ~ l k ~ k + ~  - i k ( + ) ~  I State 
1 Estimate + ~ k + l + ~ ~ k + l + ~ [ & k + l + ~ - ~ k + l + ~ @ k + ~ ~ k + ~ ( + ) l  

/ k=O, 1, 2, . . andi(01N) is the initial condition 

where the initial condition is P(O1N). 
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under the asrumptmn that p(T - A) = p(T) = a. The solution, a constant, is given by the 
initial cond~tion obtamed from fixed-point smoothing [Eq. (5.3-9)1, 

VL(T-A, T) = e d A  

The fixed-lag smoother covariance matrix, therefore. behaves according to (Table 5.4-1) 

Employing the initial condition p(01A) obtained from the fixedpoint solution, Eq. (5.3-10). 
we find 

Thus, for A sufficiently large (i.e., A > 2/8), the delayed esttmate of the state has the 
accuracy of the steady-state smoother. This, of course, is the reason for its utility. The 
corresponding delayed state estimate (Table 5.4-1) s given ey 

subject to the inttlal condition, G(OIA), whtch ir obtained from the optimal fixed-point 
moother. 
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PROBLEMS 

Problem 5-1 

Choose x to mmimize the scalar low function 

and directly obtain the forward-backward filter form of the optimal smoother, 

Problem 5-2 
Derive the Rauch-Tung-Striebel smoother eqvatmns [Eqs. (5.2-14) and (5.2-15)l by 

following the steps outlined in the text. 

Problem 5.3 
For the variable b(t), defined by 

show that 

where 

and A(T) = 0. There are the Bryron-Frarier smoother equations (Ref. 4). 

Problem 5 4  
A scalar system and measurement are described by 

(a) Show that the foruard mter steady-state error covariance, obtained from the Riccati 
equation by setting h(t) = 0, is , -\ 
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(b) Next, obtain the rteady-state fixed-interval smoother error covariance [denoted 
p,(tIT)] by setting b(tlT)= 0. as 

(c) Show that this result can be written in the alteruate form (.rZ = bZq/a2r r 0) 

In this form it is apparent that the smoother error variance isnlwcryr less than half the 
filter error variance. 

Problem 5-5 

It a d  f lcl  l h ~ t  smoothed cuvdrrmccs areno1 ncecsunly rymmcrnr about the mtdputnt 
01 thc urnphng rnlervdl lrec, for  c~dmple.  Kef 8 )  A rmple tllurtrrtron of rhrs p a n t  can be 
made vlth the sccondordn syrlcm of Fng 5 1, where w - N(O.ZO') Assume lhdt the 
system is in steady state, and that at  t=O a perfect measurement of x, is made. Show that, 
while El; 12(t)l b wmmetric with respect to t=O, E[CZa(t)l isnot  symmetric with respect 
to t=o, viz: 

(Hint. It may prove simplest to seek estimates in the form ;,(t) = k,(t) x,(O), ;'(t) = 
kz(t)xz(O). and to choose kt( t)  and kz(t) to minimize E[i12(t)]  and ~ [ ; ~ ' ( t ) l ,  
respectively.) 

Figure 5- I 

[where vk - N(O,ro)l. Assume that three measurements are made, corresponding to k = 
0, 1, 2. Further assume that there is no 0 priori information. 

a) Show that afixed-hterval opttmal smoother yields (7 = q Alro) 

b) Check these results by formulating the optimal smoother in terms of a continuous 
optimal foxward fdter updated at the measuremsnt times by a continuous optimal 
backward Citer. and sketch the rdtering and smoothing eovariancer 

C) Show that afixed-point optimal smoother for the inltial condition ytelds 

Problem 5-7 
Design an optimal Itnear smoother to separate a noise n(t) from a signal s(t) when the 

spectral densities for the signal and none are given by: 

(Hinc This problem in Wiener smoothing an be solved as the steady-state portton of a n  
optimal linear moothing problem.) 

Problem 5-6 

The output of an integrator driven by white noise w [where w - N(0,q)I is sampled 
every A seconds (where A = tk+l-tk = constant) in the presence of a measurement noise vk 
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This chapter extends the discussion of optimal estimation for linear systems 
t o  the more general case described by the nonlinear stochastic differential 
equation 

The vector f is a nonlinear function of the state and y(t) is zero mean gaussian 
noise having spectral density matrix Q(t). We shall investigate the problem of 
estimatingr(t) from sampled nonlinear measurements of the form 

where hk depends upon both the index k and the state at each sampling time, 
and yk IS a white random sequence of z e ~ o  mean gaussian random variables I \ ' .  with associated covariance matrices {R~}. This constitutes a class of estimation 
problems for nonlinear systems having continuous dynamics and discrete-time 
measurements. 

For several reasons, the problem of fdtering and smoothing for nonlinear 
systems is considerably more difficult and admits a wider variety of solutions 
than does the linear estimation problem. First of all, in the linear gaussian case 
the optimal estimate of ~ ( t )  for most reasonable Bayesian optimization criteria is 
the conditional mean defined in Eq. (4.0-9). Furthermore, the gaussian property 
implies that the conditional mean can be computed from a unique linear 

operation on the measurement data - e.g., the Kalman filter algorithm. 
Consequently, there is little theoretical justification for using a different data 
processing technique, unless a nonBayesian optimization criterion is preferred. 
By contrast, in the nonlinear problem ~ ( t )  is generally not gaussian; hence, many 
Bayesian criteria lead to estimates that are different from the conditional mean. 
In addition, optimal estimation algorithms for nonlinear systems often cannot be 
expressed in closed form, requiring methods for approximating optimal 
nonlinear fdters. 

One further complication associated with general nonlinear estimation 
problems arises in the structure of the system nonlinearities. Theoretical 
treatments of this subject often deal with a more general version of Eq. (6.01), 
namely 

where G&(t),t) is a nonlinear matrix function of ~ ( t ) ,  and y(t) is again 
(formally) a vector white noise process. In this case a theory for estimatinga(1) 
cannot be developed within the traditional framework of mean square stochastic 
calculus because the right side of Eq. (6.03) is not integrable in the mean square 
sense, owing to the statistical properties of the term %(t),tMt). This 
difficulty is overcome by formulating the nonlinear filtering problem within the 
context of Ito calculus (Refs. 1 and 2) which provides consistent mathematical 
rules for integrating Eq. (6.0-3). However, a theoretical discussion of the latter 
topic is beyond the scope of this book. 

The main goal of this chapter is to  provide insight into principles of nonlinear 
estimation theory which will be useful fm most practical problems. In this spirit, 
we circumvent the mathematical issues raised by Eq. (6.03) using the following 
argument. Most physical nonlinear systems can be represented by a differential 
equation of the form 

where &(t) is a bandlimited (nonwhite) random forcing function having 
bounded rms value - i.e., there is no such thing as white noise in nature. We 
shall model &(t) as a gaussian random process generated by the linear system 

where y2(t) is gaussian white noise. Combining Eqs. (6.04) and (6.05) and 
defining 
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we obtain the augmented equations of motion 

&t)= - - -  = - - - - - - -  + - -  [::::I ] [e(d (6.0-6) 

having the same form as Eq. (6.0-1). Because the white noise term in Eq. (6.0-6) 
is independent of ~ ( t ) ,  the manipulations associated with mean square stochastic 
calculus can be applied. A more detailed discussion of this point is provided in 
Ref. 1. 

Within the framework of the model in Eqs. (6.0-1) and (6.0-Z), this chapter 
considers some estimation criteria that lead to practical techniques for 
estimating the state of a nonlinear system. Sections 6.1 and 6.2 discuss atering 
and smoothing algorithms for minimum voriance estimators - i.e., those which 
calculate the conditional mean of ~ ( t ) .  In Section 6.1 emphasis is placed on 
Taylor series approximation methods for computing the estimate. Section 6.2 
describes the use of statistical linearization approximations. Section 6.3 briefly 
treats the topic of nonlinecu.least-squares estimation, a technique that avoids the 
need to specify statistical models for the noise processes, ~ ( t )  and &, in Eqs. 
(6.0-1) and (6.02). Finally, Section 6.4 discusses a practical analytical technique 
for analyzing nonlinear stochastic systems, based upon statistical linearization 
arguments. 

6.1 NONLINEAR MINIMUM VARIANCE ESTIMATION 
THE EXTENDED KALMAN FILTER 

Given the equations of motion and measurement data in Eqs. (6.0-1) and 
(6.0-2), we seek algorithms for calculating the minimum variance estimate of 
d t )  as a function of time and the accumulated measurement data. Recall from 
Chapter 4 that the minimum variance estimate is always the conditional mean of 
the state vector, regardless of its probability density function. Now suppose that 
the measurement at time P- has just been processed and the corresponding 
value i ( tk-  ,) of the conditional mean is known. Between times tk- 1 and tk, no 
measurements are taken and the state propagates according to Eq. (6.0-1). By 
formally integrating the latter, we obtain 

Taking the expectation of both sides of Eq. (6.1-1) conditioned on all the 
measurements taken up until time tk- ,, interchanging the order of expectation 
and integration, and differentiating produces 

with the initial condition 

Therefore, on the interval tk_ 1 C t < p, the conditional mean of &(t) is the 
solution to Eq. (6.1-2), which can be written more compactly as 

where the caret (3 denotes the expectation operation. Similarly, a differential 
equation for the esiimation error covariance matrix 

PO) E E(t) - &)I KO) - xW1 [ (6.1-4) 

is derived by substituting for d t )  in Eq. (6.1-4) from Eq. (6.1-I), interchanging 
the order of expectation and integration, and differentiating. The result is 

. A A 
P ( t ) = x p  -@ + ~ X T  - I T  + ~ ( t ) ,  tk-1 c t < tk (6.1-5) 

where the dependence of upon 1, and f upon 5 and t, is suppressed for 
notational convenience. 

Equations (6.1-3) and (6.1-5) are generalizations of the propagation equations 
for the linear estimation problem. If %(t) and P(t) can be calculated, they will 
provide both an estimate of the state vector between measurement times and a 
measure of the estimation accuracy. Now observe that the differential equations 
for s t )  and P(t) depend upon the entire probability density function* p@,t) for 
~ ( t ) .  Recall that for linear systems f(li(t), 1) = F(t) ~ ( t )  so that Eq. (6.1-3) 
reduces to  

That is, i ( t )  depends only upon F(t) and i(t); similarly, by substituting the 
linear form for f into Eq. (6.1-5) it follows that ~ ( t )  depends only upon F(t), 
P(t), and Q(t).** Therefore. the differential equations for the estimate and its 
covariance matrix can be readily integrated. However, in the more general 
nonlinear case 

* The symbol ~d&t,t) is used to denote the probability density function in this chapter to 
distinguish it from the dynamic nonlinearities,f& t). 

**See Roblem 6-2. 
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Thus, in order to  computef(&t), &,t) must be known. 
To obtain practical estimation algorithms, methods of computing the mean 

and covariance matrix which do not depend upon knowing &,t) are needed. A 
method often used to achieve this goal is to expand f in a Taylor series about a 
known vector X(t) that is close to ~ ( t ) .  In particular, iff is expanded about the 
current estimate (conditional mean) of the state vector, then S = 2 and 

where it is assumed the required partial derivatives exist. Taking the expectation 
of both sides of Eq. (6.1-6) produces 

The first-order approximation to &t), t) is obtained by dropping all but the 
first term of the power series for l a n d  substituting the result into Eq. (6.1-3); 
this produces* 

Similarly, an approximate differential equation for the estimation error 
covariance matrix is obtained by substituting the first two terms of the 
expansion for f into Eq. (6.1-5). carrying out the indicated expectation 
operations, and combining terms; the result is 

where FG(t), t) is the matrix whose ijth element is given by 

Equations (6.1-7) and (6.1-8) are approximate expressions for propagating 
the conditional mean of the state and its associated covariance matrix. Being 
linearized about i(t), they have a structure similar to the Kalman fdter 
propagation equations for linear systems. Consequently they are referred to as 
the extended Kalman filter propagation equations. Higher-order, more exact 
approximations to the optimal nonlinear filter can be achieved using more terms 
in the Taylor series expansion for the nonlinearities, and by deriving recursive 
relations for the higher moments of 8. Methods of this type are discussed 

*Up to this point 2 has denoted the exact conditional mean; henceforth,i denotes any 
e t h t e o f  the state that is an approximation to theconditional mean. 
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subsequently. Other techniques that depend upon finding functional approxima- 
tions to  the conditional probability density function of a, and which are not 
treated here, are discussed in Refs. 19 and 20. 

To obtain a complete filtering algorithm, update equations which account for 
measurement data are needed. To develop update equations, assume that the 
estimate of d t )  and its associated covariance matrix have been propagated using 
Eqs. (6.1-7) and (6.1-8). and denote the solutions at time tk by &(-) and 
Pk(-). When the measurement i& is taken, an improved estimate of the state is 
sought. Motivated by the linear estimation problem discussed in Chapter 4, we 
require that the updated estimate be a linearfunction of the measurement - i.e., 

where the vector and the "gain" matrix Kk are to be determined. Roceeding 
with arguments similar to  those used in Section 4.2, we define the estimation 
errors just before and just after update, ik(-) and Pk(+), respectively, by 

Then Eqs. (6.1-9) and (6.1-10) are combined with Eq. (6.0-2) to produce the 
following expression for the estimation error: 

One condition required is that the estimate be unbiased - i.e., E[ik(+)] =Q. 
This is consistent with the fact that the desired estimate is an approximation to 
the conditional mean. Applying the latter requirement to Eq. (6.1-11) and 
recognizing that 

we obtain 

ilk + ~ k i i k 6 k )  - &(-)= (6.1-12) 

Solving Eq. (6.1-12) f o r g  and substituting the result into Eq. (6.1-9) yields 

In addition, Eqs. (6.1-11) and (6.1-12) can be combined to express the 
estimation error in the form 
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To determine the optimal gain matrix Kk, the same procedure used for the 
linear estimation problem in Section 4.2 is employed. First an expression is 
obtained for the estimation error covariance matrix Pk(+) in terms of Kk; then 
Kk is chosen to minimize an appropriate function of Pk(+). Applying the 
d e f ~ t i o n  

to Eq. (6.1-14), recognizing that 3 is uncorrelated with gk(-) and p ,  using 
the relations 

and assuming that Pk(t) is independent o f p ,  we obtain 

The estimate being sought - the approximate conditional mean of ~ ( t )  - is a 
minimum variance estimate; that is, it minimizes the class of functions 

j k  = E tik(+)' sgk(+( 

for any positive semidefinite matrix S. Consequently, we can choose S = I ,  and 
write 

Taking the trace of both sides of Eq. (6.1-19, substituting the result into 
(6.1-1 6) and solving the equation 

for Kk yields the desired optimal gain matrix, 

Substituting Eq. (6.1-17) into Eq. (6.1-15) produces, after some manipulation, 

Pd*) = h( - )  TI* Kk E [hkW - i k k k ) ]  &(-)TI (6.1-18) 

Equations (6.1 -U), (6.1-17), and (6.1 -18) together provide updating algor- 
ithms for the estimate when a measurement is taken. However, they are 
impractical to  implement in this form because they depend upon the probability 
density function for ~ ( t )  to  calculate ik. To simplify the computation, expand 
_hLkk) in a power series about ik(-) as follows: 

where 

Truncating the above series after the first two terms, substituting the resulting 
approximation for bk&) into Eqs. (6.1-13), (6.1-17), and (6.1-IS), and 
carrying out the indicated expectation operations produces the extended 
Kalmon filrer measurement update equations 

ik(+) =ik(-) + Kkkk - hk&-))l 

Kk =pk(-) HkT6k(-)) k k & - ) )  pk(-) HkT@k(-)) + ~ k 1 - l  

Pr(+)' [I - KkHk(3k(-))l pk(-) (6.1-21) 

Equations (6.1-7), (6.1-8), and (6.1-21) constitute the extended Kalman 
fdtering algorithm for nonlinear systems with discrete measurements. A 
summary of the mathematical model and the fdter equations is given in Table 
6.1-1; the extension of these results to the case of continuous measurements is 
given in Table 6.1-2. A comparison of these results with the conventional 
Kalman fdter discussed in Section 4.2 indicates an important difference; the 
gains Kk in Eq. (6.1-21) are actually random variables depending upon the 
estimate z(t) through the matrices FG(t), t) and Hk&(-)). This results from 
the fact that we have chosen to linearize l a n d  hk about the current estimate of 
&(t). Hence, the sequence { Kk } must be computed in real time; it cannot be 
precomputed before the measurements are collected and stored in a computer 
memory. Furthermore, the sequence of (approximate) estimation enor covari- 
ance matrices { P k  } is also random, depending upon the time-history of 
i ( t )  - i.e., the estimation accuracy achieved is trajectory dependent. The reader 
can verify that when the syskm dynamics and measurements are linear, the 
extended Kalmn fdter reduces to  the conventional Kalman fdter. 
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TABLE 6.1-1 SUMMARY OF COKTINUOUSDISCRETE 
EXTENDED KAIAIAN FILTER 

I  nit^ conditions 1 ~ ( 0 )  - NL, p0) I 

TABLE 6.1-2 SUMMARY OF CONTINUOUS EXTENDED KALMAN FILTER 

State EstimsteUpdate 

Enor Cowisnce 
Updste 

Gain Matrix 

Othn Assumptiom E fw(t) vT(~)] = 0 for all t and all r 

State Estimate Equation &t) =~&t) , t )  + K(t) ~ t ) -h&t) , t ) l  

kt)=&(-) + Kkk-hk&(-))I 

W+)= [I-Kk Hk&-))l Pk(-) 

Kk = w - )  H k ~ h - ) )  rHk&(-)) W-) H~T&(-)) + ~ k 1 - l  

Enor Cwariance Equation i(t)  = F&(t),t) P(t) + P(t) ~ ~ & t ) , t )  + Wt) 

- 4 t )  HT&t),t) K' (t) H&t).t) P(t) 

Gain Equation K(t) = P(t) HT&t),t) R-'(t) 

Definitions 

I t  should be noted that a linealired Kalman filteringalgorithm, for which the 
fdter gains can be precalculated is developed if the nonlinear functions f and hk 
in Eqs. (6.0-1) and (6.0-2) are linearized about a vector x(t) which is specified 
prior t o  processing the measurement data. If the stages in the extended Kalman 
fdter derivation are repeated, with X substituted for throughout, the fdtering 
algorithm given in Table 6.1-3 is obtained. Generally speaking, this procedure 
yields less fdtering accuracy than the extended Kalman fdter because X(t) is 
usually not as close t o  the actual trajectory as is i(t). However, i t  offers the 
computational advantage that the gains ( K ~ )  can be computed off-line and 
stored in a computer, since Mt) is known a priori. 

TABLE 6.1-3 SUMMARY OF CONTINUOUSDISCRETE 
LINEARIZED KALMAN FILTER 

System Model 

Measurement Model 

Initial Conditions 

Other A~~umptiom 

State Estimate 
Ropagation 

Error Covaianee 
Propgation 

State Estimate 
Update 

Enor Covariance 
Update 

Gain Matrix 

Because the matrix Pk in Eq. (6.1-21) is only an approximation t o  the true 
covariance matrix, actual fdter performance must be verified by monte carlo 
simulation. There is no  guarantee that the actual estimate obtained will be close 
t o  the truly optimal estimate. Fortunately, the extended Kalman filter has been 
found t o  yield accurate estimates in a number of important practical 
applications. Because of this experience and its similarity t o  the conventional 
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Kalman filter, it  is usually one of the first methods to be tried for any nonlinear 
filtering problem. 

HIGHER-ORDER FILTERS 

The Taylor series expansion method for treating the nonlinear fdtering 
problem, outlined in the preceding section, can be extended to obtain 
higher-order nonlinear filters. One method of accomplishing this is to  write the 
estimate,&(+) in Eq. (6.1-9), as a higherader power series in&. Another more 
commonly used approach is to include more terms in the expansions f0rfh.t) 
and h k b k )  in EL,.. (6.1-6) and (6.1-19). These methods differ in that the latter 
seeks better approximations to the optimal fdter whose structure is constrained 
by Eq. (6.1-9) - i.e., the measurement appears linearly; the former allows a 
more general dependence of the estimate upon the measurement data. If both 
techniques are applied simultaneously, a more general nonlinear filter will result 
than from either method alone. The discussion here is restricted to  the case 
where the estimate is constrained to be linear i n p .  

The Iterated Extended Kalman Flter -One method by which the estimate 
dk(+) given in Eq. (6.1-21) can be improved is by repeatedly calculatingZk(+), 
Kk, and Pk(+), each time linearizing about the most recent estimate. To develop 
this algorithm, denote the ith estimate of zk(+) by &,i(+). i = 0, 1, . . ., with 

and expandhk&k) in Eqs. (6.1-13)and (6.1-17) in the form 

Observe that Eq. (6.1-22) reduces to Eq. (6.1-19) when i = 0. Truncating the 
series in Eq. (6.1-22) after the second term, substituting the result into Eqs. 
(6.1-13). (6.1-17), and (6.1-18), performing the indicated expectation opera- 
tions, and observing that* E b k ]  = zk(-), produces the following iterative 
expressions for the updated estimate: 

'This is true because the expectation ik is conditmned on all the measurements up to, but 
not including, time tk. 

As many calculations of ik,,(+) in Eq. (6.1-23), over the index i, can be 
performed as are necessary to reach the point where little further improvement 
is realized from additional iterations. However, it should be recognized that each 
iteration of Eq. (6.1-23) contributes to the computation time required to 
mechan~ze the filter. 

A stmilar procedure can be devised for Iterating over the nonllnear dynamics 
in Eq. (6.1-7); for details the reader is referred to Ref. 1. It has been found that 
such iteration techniques can significantly reduce that part of the extended 
Kalman filter estlmation error which 1s caused by system nonlinearitles (Ref. 5). 

A Second-Order Filter - Another type of higher-order approximation to the 
minlmum variance estlmate 1s achieved by including secondader terms in the 
expansions for hk(xk) and t) in Eqs. (6.1-6) and (6.1-19) Thus, we write 

where the operator Pa(I.B). for any function &t) and any matrix B, is a vector 
whose 11" element is defined by 

6 trace [%I 
( ax, ax, 

The bracketed quantity in Eq. (6.1-25) is a matrix whose pqth element is the 
quantity a2f,/axpaxq. Truncating the series in Eq. (6.1-24) after the thlrd 
term, substituting the resulting approximations for f and hk into Eqs. (6.1-3), 
(6.1-5). (6.1-13). (6.1.17). and (6.1.18). and carrying out the indicated 
expectation operations produces, after some manipulation,* 

*An asaumptmn used in de~ivmg Eq. (6.1-26) is that third-order moments of fk(-) are 
nediglble - i.e., the probability density for &(-) la assumed to be symmetric about the 
mean. 
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The matrix Ak is defined by the relation 

The ijth element of Ak is given approximately by 

where hi denotes the ith element of hk and the dependence of _h and _x on the 
time index k is suppressed for convenience. 

Equation (6.1.28) is derived from the gaussian approximation 

iq %, %,I = Ppq Pmn + Ppm Pqn + Ppn Pqm 

where xi and pi, denote the i th and ijth elements of gk(-) and Pk(-), 
respectively. For this reason, Eq. (6.1-26) is sometimes referred to as agausian 
second-order filter (Ref. 1). It has a structure similar to the extended Kalman 
fdter described in Table 6.1-1; however, there are additional terms to account 
for the effect of the nonlinearitia. Consequently the improved performance is 
achieved at the expense of an increased computational burden. 

EXAMPLES OF NONLINEAR FILTERING 

In this section a number of examples are discussed which illustrate the 
comparative performance of various nonlinear fdters. The first is a geometric 

example of a hypothetical navigation application; the second and third present 
computer simulation results of linearized and nonlinear filters applied to a 
tracking problem. 

Example 6.1-1 
The extended Kalman fdter is a popular method for treating nonlinur estimation 

problems (e.g., sse Ref. 18). However, if nonlinearities are sufficiently important, the 
estimation mor can be significantly reduced through use of a higher-order estimation 
tcehnique. As a specific illustration, consider an aircraft whose estimated location in x. y 
coordinates is in Fa.  6.1-1, with agaussian distribution p(x,y) in position uncertainty 
whose shape is indicated by the narrow shaded elliptical area; the value of p(x,y) is constant 
on the circumference of the ellipse.. Now suppose the aircraft measures its range to a 
transponder that has a know position in x.y coordinates Furthermore. assume that the 
range measurement morr are vexy mall. If the nonlinear relationship af  range to x, y 
porntion were taken into aecwnt exactiy, a new estimate of position would bs deduced 
approximately, as follow: Awming the range measurement, rm, is perfect, the aircraft lies 
somewhae on the circle of radius rm shown in Fii. 6.1-1. Given theopriori distribution of 
x and y denoted by the shaded ellipse, the new minimum variance estimates, and of x 
and y will lie d o s  to the peak value of p(x.y) evaluated along the nnge circle. Hence, ;I 
and will lie approximately at the point indicated in Fig. 6.1-1. 

LOCUS OF LINEARIZED - - - - - - - POSITIONS ---- 

TRANSPONDER 

Fin 6.1-1 An Illustration of the Difference Between Linearized Estimates 
(?I, ?I) and Nonlinear Estimates (GI. 

T h e  elliptical contour is obtained by setting the magnitude of the exponent of the gaudan 
dcnsty function a u a l  to a constant: that i s  on the contour x and v ratillv 
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By contrast, if the range measurement is linearired as in an extended Kalman fdter, the 
argument proceeds as follows: In terms of the initial range estimate i, in Fig. 6.1-1, rm is 
approximately expressed 81 

where r is the range to the transponder as a function of x and y. In other words 

where pr(G,,;,,ŷ ,) is the gradient of r with respect to x and y evaluated at ;,. The direction 
of the gradient is along the radius vector from the transponder. Equation (6.1-30) stater that 
the new values of x and y deduced from rm must lie along the straight dashed line shown in 
Fig. 6.1-1, which b normal to ~r(;,,y^,). Choosing the new estimate of position at the 
maximwn of o(x.v) alann the rtraipht line. linearized estimates, ;' and ;'a. are obtoned at . .  - . . 
the polnt mdrcated m Ihe lieure Dependrngupon the range ncwracy drrard, Ule ddfrrrnse 
bctw-en the nonheu erlrmrte (;,.y',) and (x , y' ,) may be significant 

This exomple illustmtes rhe point that nonlineonfy can hove an important effect On 
estimtion accumcy. The degree of importance depends upon the estimation accuracy 
desired, the amount of nonlinearity, the shape of the density function p(x,y) and the 
strength of the measurement mire. 

Example 6.1-2 
In thir example, we consider the problem of tracking a body falling freely through the 

atmosphere. The motion is modeled in one dimension by assuming the body falls in a 
straight line, directly toward a tracking radar, as illustrated in Fig. 6.1-2. The state variables 
for thir problem are designated 81 

where P is the no-called ballistic coefficient of the failing body and x i s  its height above the 
earth. 

The equations of motion for the body are given by 

where d b drag deceleration, g is acceleration of gravity, p is atmospheric density (with po 
the atmospheric density at sea level) and kp is a decay constant. The differential equation 

d 
/FALLING BODY 

RADAR 

Figure 6.1-2 Geometry of the OnaD~mensianal Tracking Problem 

for velocity, xz, is nonlinear through the dependence of drag on velocity, air density and 
ballistic coeftinent. Linur measurements are assumed available in the continuous form 

where v(t) - N(0.r). Initial values of the state variables are assumed to have mean,& and a 
covariance matrix of the form po=klo p:ao : ] (6.1-34) 

0 P33, 

The problem of estimating all the state variables may be solved using both the extended 
and linearized Kalman fdters discussed in Section 6.1. Recall that the extended Kalman 
mter is linearized about the current estimate of the state, whereas the general linearized 
filter utilizes a precomputed ~ m i n a l  trajectory x(t). The latter is derived for thisexample 
by rolvlng the differential equation 

Comparative performance results from the two different filters are displayed in Figs. 
6.1-3 and 6.14, which show the estimation errors achieved from a single monte carlotrial. 
The simulation parameter valuer are given below. 
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TIME (sec) 

(a) POSITION ERROR 
TIME (uc) 

(b) VELOCITY ERROR 

TlME (sec) 
( c )  BALLISTIC COEFFICIENT ERROR 

F i i  6.1-3 Performance of the Extended Kalman Filter 

TIME (sec) 

(a) POSITION ERROR 

TlME ( sec) 

( c )  BALLISTIC COEFFICIENT ERROR 

TlME (sec) 

(b) VELOCITY ERROR 

Figure 6.1-4 Performance of the Linearized Kalman Filter 
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PARAMETER VALUES FOR THE 0NE.DIMENSIONAL 
TRACKING PROBLEM 

p, = 3.4 x 16) Ib sec'/ft4 x(0) - ~ ( 1 0 '  ft, 500 ft2)  

g =  32.2ft/sec2 i(0) - N(G6000 ftlsec, 2 x lo4 ft2/sec') 

kp = 22000 f t  p,  lo = 500 ft2 

r = 100 ft2/Hz P220 = 2 x lo4 ft21sec2 

6 -  N(2000 1b/ft2, 2.5 X 10' 1b2/ft4) P330'2.5 X los lb2/ft4 

Directing our attention to the errors in estimating the ballistic coefficient, we note that 
neither Titer backs 8 aaurately early in the trajectory. Physically. this is due to the fact 
that the thin atmosphere at high altitude produces a small drag force on the body; 
consequentlv. the measurements contain little information about O. After the body enters . . 
the thicker atmoqhrre, the ~nnenscd ddrag kra enables buth Tdtm lo achneve rubrtanl~al 
reductton in the 0 ertimatton error: however, the extended Kalman Tdur (Fig. 6.1-34 glver 
appreciably better performance. Conwuentiy, the latter also giver better estimates of 
wsition and velocitv as the bod" enters den= atmowhere. The actual Performance . ~ 

obrwed  for the extended Kalman Titer is consistent with the behavior of its associated 
covariance matrix, computed from the algorithm in Table 6.1-2. This is demonstrated by the 
fact that the estimated states in Fig. 6.1-3 tend to  remain between the smooth lines which 
are the square roots of the corresponding diagonal elements in the computed P matrix. In 
contrast, the estimates for the linearized filter in Fig. 6.14 tend to have larger errors than 
predicted by the P matrix. 

This example illustrates the fact that the extended Kalman fiter generally performs 
better than a Titer linearized about a precomputed nominal trajectory. However, the reader 
must nmember that the lptter is more easily mechanized because fiter gains can be 
precomputed and stored. Consequently, there is a trade-off between fiter complexity and 
estimation accuracy. 

Example 6.1-3 

As a further comparison of the types of nonlinear filters discussed in Section 6.1, we 
include a twdimensional tracking p r o b l ~ n  in which the range measurement is made along 
the linwf-sight illustrated in Fig. 6.1-5. This example is taken from Ret  5. The equations 
of motion are the same as in the one-dimnsional tracking problem except that the thud 
state variable is identifled as 110. Range measurements, taken at one second intervals, rre 
now nonlinear function of altitude given by 

*=\I-+Vk 

vk I N(0.r) (6.1-36) 

The problem of estimating the three state variables was salved using the extended Kalman 
tiller, a second-order Bter, and an iterated filter. Monte carlo computer simulations were 
performed using the following parameter values: 

PARAMETER VALUES FOR THE TWO-DIMENSIONAL 
TRACKING PROBLEM 

Pipre  6.1-5 Geometry of the Two-Dimensional Tracking Problem 

The rms errors incurred in estimating altitude and the inverse ballistic coefficient, 110, using 
the three Titers are &om, in Fig. 6.16. These results have been obtained by mmputing the 
rms enors over 100 monte carlo runs. 

0 6 12 D 24 30 
TIME Ircrl 

Figure 6.16 Comparative Performance of Several Tracking Algorithms (Ref. 5) 
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Near the beginning of the trajectory. dl fdterr yield the =me perfomanrr becalue they 
have the same initial estimation errors. Evidently, the hiier-ordn methods - the 
second-order and iterated fdters - yield substantially better estimate as the body falls into 
the earth's denoer atmosphere. This occurs beenurn both the measurement and dynamic 
nonlinearitiea beeome stronger as the altitude decreases 

This example also clearly demonstrates the trade-off between estimation accuracy and 
filter complexity. In terms of the* criteria, the filters are ranked in the order of both 
increasing amracy and complexity as follows: extended Kalman filter, second-order fdter, 
iterated filter. Thus, better fdt= performance is achieved at the expense of a greater 
c~mputational burden 

NONLINEAR SMOOTHING 

The purpose of this section is to briefly indicate how smoothing algorithms 
for nonlinear systems can be derived using linearization techniques. The 
philosophy of smoothing for nonlinear systems is the same as for the linear case 
discussed in Chapter 5; namely, the filtered estimate of ~ ( t )  can be improved if 
future, as well as past, measurement data are processed. The associated 
estimation problem can be formulated as one of fixed-interval, fixed-point, or 
fixed-lag smoothing. The discussion here is confined to fixed-interval smoothing. 
Linear and second-order algorithms for the fixed-point and fixed-lag cases are 
described in Refs. 22 and 23. For a more theoretical treatment of this subject 
the reader is referred to Ref. 4. 

Recall from Section 5.1 that the smoothed estimate %(tlT) for a linear 
system, with a given data record ending at time T, can be expressed as 

where i(t) and &(t) are estimates provided by forward and backward filters, 
respectively, and P(t) and Pb(t) are their corresponding covariance matrices. 
If the same approach is taken in the nonlinear case - i.e., if it is assumed that 
the smoothed estimate is a linear combination of i(t) and zb(t) - then Eq. 
(6.1-37) still holds (Ref. 3). The quantities i(t) and P(t), associated with the 
forward filter, can be obtained by any of the filtering algorithms given in the 
preceding sections. The subsequent discussion treats appropriate expressions for 
the backward filter. 

The backward filter operates recursively on the measurement data, beginning 
at the terminal time and proceeding toward the desired smoothing point. 
Consequently, it is useful to redefine the equations of motion and the 
measurements in Eqs. (6.01) and (6.02) by making the change of variable 
r = T-t, resulting in 

where 

Using Eq. (6.1-38) as the model for the system dynamia, the linearization 
=tho& discussed in previous sections can be applied to obtain a backward 
Utering algorithm. In particular, it is convenient to assume that the forward 
extended Kalman Uter, described in Table 6.1-1, is first applied to all the data; 
then the backward fdter is derived by linearizing Eq. (6.1-38) about the forward 
Uter estimate. This procedure results in a backwardfilter having the form given 
in Table 6.1-3, where the nominal trajectory XI) is taken to be i(t) = S T  - 7). 
The resulting expressions for ib(r) and Pb(r) are as follows: 

MEASUREMENT UPOATE EQUATIONS 

(&k(-)-%N-k 

where bN-k and HN-k are obtained from the forward filter. The quantities 
&, (-) and Pbk(-) are the solutions to Eq. (6.1-39) evaluated at time rk, just 
b e ) o r e ~ ~ - ~  is processed. 

The problem of obtaining initial conditions for the backward fdter is 
circumvented by deriving algorithms for PL1(t) anddt)  PG1(t)&,(t), both of 
which are initialized at zero, just as in the case of the linear smoother discussed 
in Chapter 5. Using Eqs. (6.1-39) and (6.140) and the matrix identities 

and making the assumption that RN-); has an inverse, the following, more 
convenient expressions for the backward fdter are obtained: 
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PROPAGATION EQUATIONS 

& ~ ( r )  = ( F T  P<'(r)Q(T-r)I ~ ( 7 )  - P<l(r) II- FiV-r)l 

d , P<l(r) = P<'(r) F+FTP<'(T) -P<'(r)Q(T-r)P<l(r) 

MEASUREMENT UPDATE EQUATIONS 

& ( + ) = & ( - ) + H N - ~ ~ R ~ - < '  k ~ - k  - h ~ - k  + HN-k&l 

pb;l(+) = P ~ ; ' ( - ) + H ~ - ~ ~  RN-LIHN-k 

Pba1(-)=O, so(-)=Q, k=O, I , .  . . , N-l 

where F and f are understood to be functions of Z(T - r)  and (T - r). 
Substituting HI) into Eq. (6.1-37). the smoothed estimate is obtained in the 
form 

Again by analogy with linear systems, another form of the fixed-interval 
smoother is the Raucb-TungStnebel algorithm which expresses i(tklT) and 
P(tklT), denoted by ikIN and PkIN,  in terms of a forward filter estimate and the 
smoothed estimate at stage k + 1. This is more convenient to mechanize than the 
forward-backward filter inasmuch as it does not require inverting a covariance 
matrix. The relat~ons for the smoothed estimate at successive measurement times 
are stated below without proof: 

where Pk and ik are obtained from a forward filter and PklN is (approximately) 
the error covariance matrix associated with &.IN. The quant~ty is the solut~on 
to the different~al equatlon 

k t )  = FE(t), t) b(t) +iE(t) ,  t )  - FE(t), t)&(t) 

Ktk) = Q (6.146) 

at time tk+l;  ak is the trans~tion mat~ix from time t to tkcl assoc~ated with 
the homogeneous differential equation 

x(t) = FG(t),t)&(t) (6.1 47)  
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and Qk is given by 

Observe that the initial conditions for Eq. (6.145) are the filter outputs iN and 
PN; clearly the latter are identical with the corresponding smoothed quantities at 
the data endpoint. When the system dynamics and measurements are linear, bk = 
Q and Eq. (6.145) reduces to the form given in Ref. 1. 

6.2 NONLINEAR ESTIMATION BY STATISTICAL 
LINEARIZATION 

In Section 6.1, a number of approximately optimal nonlinear filters have 
been derived using truncated Taylor series expansions to represent the system 
nonlinearities. An alternative approach, and one that is generally more accurate 
than the Taylor series expansion method, is referred to as statistical approxi- 
mation (Refs. 6, 8, and 9). The basic principle of this technique is conveniently 
illustrated for a scalar function, f(x), of a random variable x. 

Consider that f(x) is to be approximated by a series expansion of the form 

The problem of determining appropriate coefficients nk is similar to the 
estimation problem where an estimate of a random variable is sought from given 
measurement data. Analogous to the concept of estimation error, we define a 
function representation error, e, of the form 

It is desirable that the nk's be chosen so that e is small in some "average" sense; 
any procedure that is used to accomplish this goal, which is based upon the 
statistical properties of x, can be thought of as a statistical approximation 
technique. 

The most frequently used method for choosing the coefficients in Eq. (6.2-1) 
is to minimize the mean square value of e, E[eZ]. This is accomplished by 
forming 

and setting the partial derivatives of this quantity with respect to  each nk equal 
to zero. The result is a set of algebraic equations, linear in the nk's, that can be 
solved in terms of the moments and cross-moments of x and f(x). Without 
carrying out the details of this procedure, we can see one distinct advantage that 
statistical approximation has over the Taylor series expansion; it does not 
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require the existence of derivatives off .  Thus, a large number of nonlinearities - 
relay, wturation, threshold, etc. - can be treated by this method without having 
to approximate discontinuities or corners in f(x) by smooth functions. On the 
other hand, because of the expectation operation in Eq. (6.2-2), an apparent 
disadvantage of the method is that the probability density function for x must 
be known in order to compute the coefficients nk, a requirement that does not 
exist when f(x) is expanded irr a Taylor series about its mean value. However, it 
turns out that approximations can often be made for the probability density 
function used to calculate the coefficients, such that the resulting expansion for 
f(x) is considerably more accurate than the Taylor series, from a statistical point 
of view. Thus, statistical approximations for nonlinearities have potential 
performance advantages for designing nonlinear fdters. 

This section discusses the calculation of the first two terms in a series, having 
the form of Eq. (6.2-I), for a vector function -G). This provides a statistical 
linearization o f f  that can be used to construct filter algorithms analogous to 
those provided in Section 6.1. An example is given that illustrates the 
comparative accuracy of the nonlinear fdter algorithms derived from both the 
Taylor series and the statistical linearization approximations. 

STATISTICAL LINEARIZATION 

We seek a linear approximation for a vector functionfk) of a vector random 
variable 3, having probability density function pk). Following the statistical 
approximation technique outlined in the introduction, we propose to approxi- 
mate&) by the linear expression 

-Q) =a + Nf5 (6.23) 

where a and Nf are a vector and a matrix to be determined. Defining the error 

e b i @ ) - a - ~ g  (6.24) 

we desire to choose a and Nf so that the quantity 

J = E L T W  (6.2-5) 

is minimized for some symmetric positive semidefinite matrix A. Substituting 
Eq. (6.24) into Eq. (6.23) and setting the partial derivative of J with respect to 
the elements of a equal to zero, we obtain 

Therefore, a is given by 

2 '33)  - Nf2 

where the caret (3 denotes the expectation operation. Substituting 1 from Eq. 
(62-7) into I and taking the partial derivative with respect to  the elements 
of NB we obtain 

i = i - 5  

Solving Eq. (6.2-8) produces 

where P is the conventional covariance matrix for 6. Observe that bothaand Nf, 
as given by Eqs. (6.2-7) and (6.2-9). are independent of the weighting matrix A; 
hence, they provide a generalized minimum mean square error approximation to 
- 

Equation (6.2-9) has an important connection with describing function 
theory (Ref. 7) for approximating nonlinearities. In particular, if both f and _x 
are scalars and their mean values are zero, Nf becomes the scalar quantity 

which is the describing function gain for an odd-function nonlinearity whose 
input is a zero mean random variable (e.g., see Fig. 6.2-1). The use of describing 
functions to approximate nonlinearities has found wide application in analyzing 
nonlinear control systems. Tables of expressions for nf have been computed for 
many common types of nonlinearities having gaussian inputs. 

P i  6 . t l  The Describing Function Approximation for a Scalar Odd Nonlinearity 
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At this point, it is worthwhile to note why statistical linearization tends to be 
more accurate than the Taylor series approximation method. Consider the 
example of the saturation nonlinearity in '4. 6.2-1. If f(x) for this case is 
expanded in a Taylor series of any order about the origin (2 = 0). we obtain 

The effect of the saturation is completely lost because of the discontinuity in 
the f i s t  derivative off. By contrast, if statistical linearization is used, we have 

where nf is the describing function gain defined by 

and p(x) is the probability density function for x. If we now assume that x is a 
gaussian random variable, then 

Substituting Eq. (6.2-14) into Eq. (6.2-13) and evaluating nf for the saturation 
function shown in Fig. 6.2-1, we obtain (from Ref. 7) the result shown in Fig. 
6.2-2. Evidently, nf is a function of the linear part of f(x), the point 6 at which 

(a) Saturating Nonlinearity (b) Describing Function 

P i  6.24 The Describing Function for a Saturation Nonlinearity (Ref. 7) 

saturation occurs, and the standard deviation of x. The essential feature of the 
describing function is that it takes into account the probability that x can lie 
within the saturation region. 

For values of 0 which are small relative to 6, Be probability of saturation is 
low and nf is approximately equal to one - i.e., f is approximately equal to the 
Taylor series given in Eq. (6.2-11). For larger values of o, nf is significantly 
smaller than one because there is a higher probability of saturation. Thus, for a 
given saturation function, statistical linearization provides a series of o- 
dependent linearizations illustrated in Fig. 6.2-3. In subsequent sections the 
usefulness of this approximation for designing nonlinear fdters and analyzing 
nonlinear system performance is demonstrated. 

Pi- 6.M Illustration of Statistical Linearization as a o-Dependent Gain 

DESIGN OF NONLINEAR FILTERS 

The approximation of a nonlinear function f(xJ by a statistically optimized 
power series can be combined with results obtained in Section 6.1 to derive 
approximate minimum variance filtering algorithms. In particular, by substi- 
tuting Eq. (6.2-7) into Eq. (6.2-3), we obtain 

Because of the aforementioned connection with describing function theory, we 
shall refer to Nf as the describingfuncrion gain matrix. We now can identify f 
with the nonlinear function in the equations of motion [Eq. (6.01)] for a 
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nonlinear stochastic system. The latter is in general a function of time as well, in 
which case Nf as ~omputed from Eq. (6.2-9) is also time-dependent. Introducing 
the notation NAt) to denote the describing function gain matrix for -Q.t), we 
write 

Using similar notation for the measurement nonlinearity in Eq. (6.0-2) produces 

NOIK the issue of computing2ik, Np and Nh arises. Each of these quantities 
depends upon the probability density function for 1, a quantity that is generally 
not readily available. In fact, the absence of the latter is the entire motivation 
for seeking power series expansions for f and _hk. Consequently, an approxi- 
mation is needed for p&) that permits the above quantities to be calculated. For 

TABLE 6.2-1 SUMMARY OF THE STATISTICALLY LINEARIZED FILTER 

this purpose, it is most frequently assumed that is g a d a n .  Since the 
probability density function for a gaussian random variable is completely 
defined by its mean 2 and its covariance matrix P, both of which are part of the 
computation in any fdtering algorithm, it will be possible to compute all the 
averages in Eqs. (6.2-15) and (6.2-16). 

Assuming that the right sides of Eqs. (6.2-15) and (62-16)are calculated by 
making the gaussian approximation for x, the statistical linearizatidn for f and 
bk can be substituted into Eqs. (6.13). (6.1-5), (6.1-13), (6.1-17). and (6.1-18) 
for the nonlinear tilter. Making this substitution and canying out the indicated 
expectation operations produces the fdter equations given in Table 6.2-1. 
Observe that the structure of the latter is similar to the extended Kalman fdter 
in Table 6.1-1; however. Nf and Nh have replaced F and Hk. The computational 
requirements of the statistically linearized fdter may be greater than for filters 
derived from Tay!or series expansions of the nonlinearities because the 
expectations - f, hk. etc. - must be performed over the assumed gaussian 
density for &. However, as demonstrated below, the performance advantages 
offered by statistical linearization may make the additional computation 
worthwhile. 

Example 62.1 
To compare the filtering algorithm in Table 6.2-1 with thox derived in Section 6.1 the 

following rslsr example, due to Phaneuf (Ref. 6). is presented. The equation of motion is 

i(t)  = -dn(x(t)) + w(t) 

NO) - N(O,p0), w(t) - N(0.q) (6.2-17) 

The unforced solution (w(t) = 0) to Eq. (6.2-17) is of interest, and is dirplayed in Fig. 6.2-4 
for menl different initial v.luel of x. Obrrve that x(t) approaches a steadystate Limit that 
depends upon the "due of the initial condition. 
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State Estimate Update 

Error Cwariance 
Update 

Cab Matrix Calculation 

DerribiW Function 
Calculations 

Definitions 
TIME (sec) 

F i 6 . M  Unforced Solutions to Eq. (6.2-17) 

A 
 fit) = L T  -LT] P ( t )  

&(+I =&(-) + K~&-&&)I 

&(+) = [I-KkNh(k)I %(-) 

Kk =h(- )Nh (k)T [N~&)P~(-)NI,TW + R k r l  - 
N ~ & )  = h&(-))=T(-) -&&(-))&T(-)] PC'(-) 

A 
h T , i  are expectations cdmlated assuming ?( - N&P) 

n &,&(-) and&sT(-) are expectations calculated urumiw 

arc-, - N&(-), Pk(-)I 
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A nonlinear discrete-time measurement equation of the form 

is assumed. 
The dynamics of this example are sufficiently simple so that a variety of nonlinear filters 

can be constructed for estimating x(t). Algorithms were derived for the extended Kalman 
Titer, for higher-order Titers using second., third-. and fourth-order Taylor series expansions 
of the nonlinearittes, and for the statistidly linearized (quasi-linear) fiter discussed in this 
sectton. The results of monte u r lo  runs, performed with identical noise sequences for each 
of the above five filters, are compared in Fig. 6.2-5. Evidently the error associated with 
statistical linearization is much smaller than for the filters derived from Taylor series ex- 
pansions, even up to fourth-xder, during the transient period. This is explained on the basis 
that Taylor mries expansions are least accurate when the estimation enor is large. 

I MEAS NOISE r : 002 

TIME(sec) 

F i e  6 . tS  Estim~tion Errors for Five Filters met. 6) 

In the vector case, the statistically linearized filter requires computation of 
the matrices Nf and Nh in Eqs. (6.2-15) and (6.2-16). This, in general, involves 
the evaluation in real-time of multidimensional expectation integrals having the 
form 

Similar expressions must be evaluated for the components of  h. The quantity Cij 
denotes the ijth element of the matrlx hv in Eq. (6.2-9) and p(a) 1s the 
assumed joint gaussian density function for ~ ( t ) ,  

where c is the app-ropriate normalizing constant. The degree of difficulty in 
calculating Eij and fi is an tmportant consideration In judging whether to use 
statistical linearization for a particular application. The computational effort 
required is, of course, dependent upon the specific type of nonlinearity. Some 
systematic procedures for evaluating the expectation integrals are dixussed next. 

COMPUTATIONAL CONSIDERATIONS 

Both integrals in Eq. (6.2-19) can be represented by the general expression 

where g&) is a nonlinear function. In general, will be difficult to evaluate; 
however, its computation can be facilitated by making a change of variables 
which simplifies the exponential term in Eq. (6.2-21) (Ref. 6). First, we define 

r = a - 8  (6.2-22) 

so that i becomes 

Next, recognizing that P-I is a symmetric matrix, we can find a nonsingular 
transformation matrix, T, such that 
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where D is a diagonal matrix whose diagonal elements are the eigenvalues of F1 
(Ref. 10). Now, if we define 

it follows from the properties of T that g can be written in the form* 

or alternatively, 

where di is the ith diagonal element of D. Consequently, i can be evaluated from 
Eq. (6.2-27) by successively computing integrals of the form 

where 

The task of waluating from Eq. (6.2-27) may still be difficult; however, 
formulating the solution as a sequence of integrals of the form given in Eq. 
(6.2-28) permits the systematic application of approximate integration tech- 
niques, such as gaussian quadrature formulae. Other methods are suggested in 
Ref. 7. 

Turning now to some important special cases of Eq. (6.2-21). we note that if 
g(&) has the form 

'In putieulsr, T is an orthogonal rnaVix whose dstermmmt is one. ConquenUy, d w r  
changing variables of integration f rom~w)  g îr @en by Eg. (6.2-26). 

then g can be expressed analytically in terms of the first and second moments of 
a, assuming the latter is gaussian. For example, if a has zero mean and 

then it can be shown (Ref. 24) that 

Product nonlinearities are an important class of functions because they can often 
be used to approximate more general nonlinearities. 

A second special case of practical interest arises when the nonlinear part of 
the system dynamics is a function of only a few of the total number of state 
variables. For example, there may be a single saturation nonlinearity of the type 
shown in Fig. 6.2-1 embedded in a dynamical system which is otherwise linear. 
In this case, the system equation of motion could be expressed as 

where fi(xj) is a nonlinear function of only one state variable. It is demonstrated 
below that this type of structure generally simplifies the computational effort 
involved in computing the describing function gain matrix Nf in Eq. (6.2-9). 

Consider the ijth element of Nf which requires calculating the quantity gij in 
Eq. (6.2-19). When the nonlinearities are functions of a limited number of state 
variables, there will be some elements of Nf that depend upon values of gij of the 
form 

where & is a subset of the wctor & which excludes xj. If it is further assumed 
that x is a gaussian random variable, then with some manipulation the expression 
for Eij in Eq. (6.2-33) can be simplified as follows*: 

'This derivation war suggested by Rof. W a l k  8. Vandcr Vcldc, Department of Affo- 
nautics and Astromuticr, Mwachurctts Institute of 'l'.fhnology. Une Ulrec of Eq. 
(6.2-34) ia obtained fmm line two by substituting the yussian form for p&+j) and PO. 
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where 

A & = E[(xj - 'Lj) bs - is)]  (6.2-35) 

and 4i is the describing function vector for fi&). defined by 

A si = E[fi(l(& @[bs  - is& - is)T] )-' (6.2-36) 

The last equality in Eq. (6.2-34) verifies that Fij in Eq. (6.2-33) can be calculated 
by first linearizing fib,) independently of 3, viz: 

and then carrying out the indicated expectation operation. This result simplifies 
the statistical linearization computations considerably, when nonlinearities are 
functions of only a few state variables. 

SUMMARY 

This section demonstrates a method of deriving approximately optimal 
nonlinear fdten using statistical linearization. In many instances, this technique 
yields superior performance to fdten developed from Taylor series expansion of 
the nonlinearities. The fact that practical application of the fdter algorithm 
requires that a form be assumed for the density function of the state is not 
overly restrictive, since the same assumption is implicit in many of the existing 
Taylor series-type fdten. The decision as to which of the several types of fdters 
discussed in Sections 6.1 and 6.2 should be employed in a particular application 
ultimately depends upon their computational complexity and relative per- 
formance as obsewed from realistic computer simulations. 

6.3 NONLINEAR LEAST-SQUARES ESTIMATION 

As an alternative to the minimum variance estimation criterion employed 
throughout Sections 6.1 and 6.2, we briefly mention the subject ofleast-squares 
estimation. This approach requires no statistical assumptions about the sources 
of uncertainty in the problem, because the estimate of the state is chosen to 

provide a "best" fit to  the obse~edmeasurement data in a deterministic, rather 
than a statistical sense. To illustrate, for the case with no process noise - i.e., 

a weighted least-squares estimate of the state at stage k, $, is one whichmini- 
mizes the deterministic performance index 

where {wi[ is a sequence of weighting matrices. Since Eq. (6.3-1) is unforced, 
~ ( t )  is determined for all time by its initial value s o ;  hence, the estimation 
problem is equivalent to determining the value of xo which minimizes Jk. The 
kth estimate of the initial condition, Sot. can in principle be obtained by solving 
the familiar necessary conditions for the minimum of a function, 

where & in Eq. (6.3-3) is expressed in terms of iok through the solution to Eq. 
(6.3.1). 

The above formulation of the estimation problem is in the format of a 
classical parameter optimization problem, where J ,  the function to be 
minimized, is subject to the equality constraint conditions imposed by the 
solutions to Eq. (6.3-1) at the measurement times The latter can be expressed as 
a nonlinear difference equation 

Consequently, the estimate iOk at each stage is typically determined as the 
solution to a two-point boundary problem (e.g., see Ref. 17). For general 
nonlinear functions hk andL the boundary value problem cannot be solved in 
closed form; thus, approximate solution techniques must be employed to obtain 
practical algorithms. To obtain smoothed estimates of &, after a fixed number 
of measurements have been collected, various iterative techniques that have been 
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developed specifically for solving optimization problems can be employed - e.g., 
steepest descent (Ref. 17). conjugate gradient (Ref. 11) and quasi-linearization 
(Refs. 12 and 13). To obtain recursive estimates at each measurement 
stage - i.e., to  mechanize a filter - the sequence of functions, I , ,  J,, . . . , 
defined in Eq. (6.3-3). must be minimized. Approximate recursive solutions have 
been obtained using both the invariant embedding (Ref. 14) and quasi- 
linearization methods. Extensions of the least-squares method to cases where @. 
(6.3-1) includes a driving noise term, and where the measurements are 
continuous are given in Refs. 15 and 16. 

The above discussion presents a very brief summary of the philosophy of 
least-squares estimation. It is a useful alternative to minimum variance estima- 
tion in situations where the statistics of uncertainquantities are not well defined. 
To obtain specific least-squares data processing algorithms, the reader is referred 
to the cited works. 

6.4 DIRECT STATISTICAL ANALYSISOF NONLINEAR 
SYSTEMS - CADETM 

One often encounters systems, for which the statistical behavior is sought, in 
which significant nonlinearities exist. These problems may include filters, linear 
or otherwise, or may simply involve statistical signal propagation. In either case, 
the existence of significant nonlinear behavior has traditionally necessitated the 
employment of monte cado techniques- repeated simulation trials plus 
averaging - to  arrive at a statistical description of system behavior. Klmdreds. 
often thousands, of sample responses are needed to obtain statistically 
meaningful results; correspondingly, the computer burden can be exceptionally 
severe both in cost and time. Thus, one is led to search for alternative methods 
of analysis. 

An exceptionally promising technique (Ref. 21). developed by The Analytic 
Sciences Corporation specifically for the direct statistical analysis of dynamical 
nonlinear systems, is presented herein. It is called the Covariance Analysis 
DEscribing function Technique (CADET). This technique employs the device of 
statistical linearization discussed in Section 6.2; however, the viewpoint here is 
statistical analysis rather than estimation. 

The general form of the system to be considered is given by Eq. (6.0-1) and is 
illustrated in Fig. 6.4-1, where x is the system state vector, p is a white noise 
input [p - N(h.Q)], and fw is a vector nonlinear function. The objective is to 
determine the statistical properties - mean and covariance matrix - of&(t). The 
success of CADET in achieving this goal depends on how well fk) can be 
approximated. The approximation criterion used here is the same as that 
employed in Section 6.2; hawewer, the CADET algorithm is derived somewhat 
differently here, in order to expose the reader to additional properties of 
statistical linearization. 

Consider approximation of the nonlinear funct ionB) by a linear function, 
in the sense suggested by Fig. 6.4-2. The input to the nonlinear function, I. is 

Fiyn 6.4-1 Nonlinear System Block Diapram 

taken to be comprised 
process,& Thus,* 

of a mean, m, plus a zero mean. independent, random 

The mean can arise due to an average value of p, a mean initial value of x, a 
rectification in the nonlinearity, or a combination of these. 

P i e  6.4-2 Describing Function Approximation 

*Comparing mbsequent notation with the development in Section 6.2, note that the 
fouomng cquivalcncelhold: 2 = -=. Nmu =L and N - N r -  f-  
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We think of the approximating output,&&), as being comprised of the sum 
of two terms, one linearly related to a! and the other linearly related to& The 
so-called muliiple-input describing function gain matrices, Nm and N,, are 
chosen to minimize the mean square error in representing the actual non- 
linearity output&) by&w.  

Calculation of Nm and N, is readily accomplished. Note first from Fig. 6.4-2 
that 

Forming the matrixeeT, we minimize the mean square approximation error by 
computing 

(trace EIsT] )  = (trace El='"]) = 0 
JN, 

(6.4-3) 
JNm 

These computations result in the relationships 

N m m T  = E b ) I  !RT 

and 

shce ElmT] = ElmT]  = 0. Equations (6.44) and (6.4-5) define Nm and N,. 
Denoting the random process covariance matrix by S(t), viz: 

and assuming that S is nonsingular, we find 

Rather than attempt to solve for Nm (which requires a pseudoinverse calcula- 
tion, since mT is always singular), we simply require 

This result is all we shall need to solve the problem at hand. Evaluation of the 
expectations in Eq. (6.4-7) and (6.48) requires an assumption about the 
probability density function of dt) .  Most often a gaussian density is assumed, 
although this need not be the case. 

Replacing the nonlinear function in Eq. (6.0-1) by the describing function 
approximation indicated in Fig. 6.4-2, we see directly that the differential 
equations of the resulting quadinear system are* (see Fig. 6.4-3) 

and the covariance matrix forrsatisfies 

where Eq. (6.4-10) is simply the linear variance equation with F replaced by 
N,(m,S). These equations are initialized by associating the mean portion of ~ ( 0 )  
with m(O), and the random portion with S(O), where 

A single forward integration of these coupled differential equations will then 
produce ~ ( t )  and S(t). 

\ 
\ 
\ N.IE,SI 

RANDOM POlTlON 

A few special cases are worth noting. When the system is l inea r ,h )=  F& and 
Eqs. (6.4-7) and (6.4-8) immediately lead to the result Nm = N, = F. 
Corresponding to Eqs. (6.4-9) and (6.4-10) are the familiar equations for mean 
and covariance propagation in linear systems. When the nonlinearity is odd [i.e., 
ff-d -f!.&)l. the effective gain to a small mean m_ in the presence of a 

lher equations a h  follow directly from Eqs (6.1-3) md (6.1-5). Note that 2' vl - 8 
is simply the zem mean value portion of the input, y. 
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multidimensional gaussian process, _r, can be shown to be the same as the 
effective gain of that nonlinearity to~ i t se l f  (Ref. 6), that is 

lim Nm = N,(g = OJ 
!Q-0 

The same is true for the effective gain to a small sinusoid and other small signals. 
Discussion of this interesting result can be found in Ref. 7. It is also worth 
noting that whenrisgmssian, N, can be computed from the relationship 

Proof of this useful result is left as an exercise for the reader. Finally, in the case 
of scalar nonlinearities, the scalar describing function gains are computed from 
[Eqs. (6.4-7) and (6.4-8)) 

and 

where r has been assumed to be a gaussian random process. Tables of the result 
of this calculation for a wide variety of common nonlinearities can be found in 
Ref. 7. When the mean of x is known to be zero, we set m to zero and calculate 
only a single-input describing function, 

These calculations are also extensively tabulated in Ref. 7. 

Example 6.4-1 
One issue of considerable importanec is the dcgree of sensitivity which dcsaibing 

function eains disolav asa function of different inout omecss~robabilitv densities To ect a - . .  . .  - 
feel for this sensitivity, we shall examine the limiter nonlinearity with a zero mean, random 
input whose probability density function is cithcr uniform, triangular or~mcssim. 

Consider the uniform rrmbabtitv densitv function. For a12 > 6 (see Fig. 6.44) we fist 

12 

and then utilize this result to obtain n,, vh: 

0 1 

for T > . B  

Pipre 6.44 Describing Function Results With Different Input Robability Densities 

. . 
calculate o2 as 
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For 42 < 6 ,  it is clear that the input never causes output saturation to occur. Hence, in this 
event we r i  

For the gaussian probability density function we obtain the form 

in which the wr&d probability integral, which is tabulated (Ref. ?), oeeun. This result 
was depicted earlier in Fig. 6.2-2. 

The m l t s  of these thme calculations are  lotted in Fin. 6.44. Oualitativelv. at least. the - - 
relalive mrennrivtly ul the linearizmg g m  lo the various vput +a1 probability denotics is 
apparent. This IS obtalncd with other nonhneadlws as well. 11 accouxr. to some degree, for 
the success uf CADET. given thal the rcqulred prubabtlity dcns~ties are m lac1 n m r  exactly 
known 

Example 6.4-2 

Consider the problem of a pursuer and an evader, initially dosing head-on in a p h e .  The 
evader has a m d o m  lateral aceeleration maneuver, perpendicular to the initial linwf-sight, 
characterized by a f i s tader  markkov process with a standard deviation of O.5g (16.1 
fllsee'). The pursuer has fmst-xder commanded lateral acceleration dynamics with lateral 
acceleration saturation. Pursuer lateral acceleration guidance commands are taken as 
proportional to the pursuerevader line-ofWt rate (proportional guidance), with the 
guidance gain 01 set at 3. A block diagram of the system under consideration is shown in Fig. 
6.4-5, wheze T m  is the time-la-intercept. Total problem limp is 10 seconds. 

In the absmce of information to the contrary, we awme x, to be a gaussian random 
process. If it is, the nonlinearitv outout will be sienificantlv noneaupnian for o > 6: but the . . - . -  
action of linear fitering around the Imp back to x, will be such as to reshape the density 
function, whateve it is, back towards gau- (a result of Ule central limit theorem). This is 

CADET and 200 N n  ensemble monte urlo simulation mwlts for the evader acceleration 
(x4) and the relative separation (xz) are presented in Fig. 6.4-6 for the linearized sstem 
(6.4 along with a 16 and a O.lg pursuer lateral acceleration saturation level. The rms miss 
distance is given by the relative separation at 10 seconds (TGo=O). The results clearly 
demonstrate good agreement between CADET and the monte ovla method, even when the 
nonlinear raturntion effect is dominant, as in F i e  6.4-66 The advantage of CADET, of 
course, is that it ondyticdly computes the system statistics, t k b y  saving considerable 
computer time. Mere extensive applications of CADET are diseusmd in Ref. 25. 

Figue 6.4-5 Kiomatic Guidance L m p  With Pursuer Latnal Accderation Saturation 

the often citedfilterhypothesir, common to most describing function analyses. 
Malring use of Eqs. (6.4-7) and (6.4-12). the quad-liearized system can be repepresented 

in state vector notation as foUours: 
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TlME (recl 
HI 

Figure 6.4-6 Simulation Results for Various Levels of Pursuer 
Lateral Acceleration Saturation 
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PROBLEMS 
Prowern 61 

Sup~ose that a parameter x has the probability density function 

p(x) = l2 x e-hx for x > o 9 = 0 for x < 0 
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with a specifled value of h (a) Show that Elx] = 2/h  (b) Show that the maximum value of 
d x )  occurs at x = I/A. (c) Consider an arbitray dendty function, p(y), for a random 
Eariabk. Determine restrictions on p(Y) such that Elyl is the same as the value of y that 
maximizes p(y). 

Roblem 6 2  

Prove that Eq. (6.1-5) reduces to 

when& = Fz 

Roblem 6 3  

Considex a scalar nonlinear system 

with measmments 

Let the estimate of the state at time t); be updated according to  

Aauming that the conditional mean just before the update, &), is known, (a) show that 
&+) is unbiased if 

(b) Detedne bk and ck. such that %(+) is a minimum varianae estimate. 

Problem 6-4 

Derive the estimation equations given in fable 6.1-3 following the steps outlined in the 
text  

Problem 6 5  
Defining 

d-e Eqs. (6.1-42) an+ (6.143) from Eqs. (6.1-39) and (6.1-40). 

W e m  66 
(3 Given a makr nonlineu function fix) of a random variable x, show that the consma 

a, b, and c which minimize the m a n  q u a  error 

 fix) - a - bx - a')'] 
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A 
a=;- b j - ~ x '  

where 

mi= E[(x - ;)i\ for i =  2.3.4 

(b) Show that if f(x) is an odd function of x, and if 

Compare these valuer for b and c with Eqr. (6.2-7) and (6.2-10). 

Roblem 6-7 

Suppose x is a zero mean pussiirn random variable wath variance 02. Show that ~ [ x " l  = 

(1) (3) . . . . (n-l)on for n even and zero for n odd. (Hint: Use the characteristte function 
(Ref. 24) of the probabtlity density lor x.) 

Roblem 6-8 

Supply the mising details inderiving the third equality in Eq. (6.2-34). 

Problem 6 9  
Employ Eq. (6.4-3) to  plrive a t  the relationships which define the multipleinput 

demibingfunctions Nm(mS) and N&S). Eq% (6.4-4) and (6.4-5). 

Problem 6 1 0  

Demonstrate that the describing function approximation error, e (see Fig. 6.4-2). is 
uncorrelated with the nonlinearity input. That is, show that E ~ ~ T I  = < 
Problem 6-1 1 

For a malar nonlinearity described by 

show that the multiple-input describing function gains nm and n, are given by 

nm(m, o,l) = I + m2 + 30,' 

ndm, or2) = I + 3m2 + 30: 

(Hint: Use the result E[?] = 30;. valid for a gausian random variable r.) 
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Problem 6-12 
For the ideal reby nonlinearity defined 

f(x) = D for x > 0 

= O  forx=O 

= -D for x< 0 

show that the derribing functions for gaussian, triatwlar and uniform input dgnal 
probability density functions are: 

Problem 6-13 

For the nodinem differential equation 

*ere w - N(b,q), show Ulat the cwviance analysis describing function technique 
(CADET) yields the following equations f a  mean and covariance propagation: 

7. SUBOPTIMAL FILTER DESIGN AND 
SENSITIVITY ANALYSIS 

After an excursion into the realm of nonlinear systems, measurements 
and filters in Chapter 6, we now direct our attention back to the more 
mathematically tractable subject of linear filtering, picking up where we left off 
at the conclusion of Chapter 5. The subject here, suboptimal linear filters and 
linear fdter sensitivity, is of considerable practical importance to the present- 
day design and operation of multisensor systems. 

The filter and smoother equations, developed in Chapters 4 and 5, provide a 
simple set of rules for designing optimal linear data processors. At first glance, 
the problem of filter design appears to have been solved. However, when the 
Kalman fdter equations are applied to practical problems, several difficulties 
quickly become obvious. The truly optimal filter must model all error sources in 
the system at hand. This often places an impossible burden on the computa- 
tional capabilities available. Also, it is assumed in the fdter equations that exact 
descriptions of system dynamics, error statistics and the measurement process 
are known. Similar statements apply to the use of the optimal smoother 
equations. Because an unlimited computer capability is not usually available, the 
designer of a filter or smoother purposely ignores or simplifies certain effects 
when he represents them in his design equations; this results in a suboptimal 
data processor. For this reason, and because some of the information about the 
system behavior and statistics is not known precisely, the prudent engineer 
performs a separate set of analyses to determine the sensitivity of his design to 
any differences that might exist between his filter or smoother and one that fits 
the optimal mold exactly. This prxess is called sensitivity analysis. The 
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sensitivity analysis discussed here is distinct from another procedure which may, 
from time to time, be given the same name in other writings- that of 
recomputing the optimal filter equations for several sets of assumptions, each 
time finding the accuracv which could be achieved if all the conditions of 
optimality were perfectly satisfied. 

In addition to establishing the overall sensitivity of a particular linear data 
processing algorithm, the equations and procedures of sensitivity analysis can 
inform the filter designer of mdividual error source contributions to esti- 
mation errors. This type of source-by-source breakdown is valuable in 
assessing potential hardware improvements. For example if, for a given system 
and fdter, the error contribution from a particular component is relatively small, 
specifications on that piece of equjpment can be relaxed without seriously 
degrading system performance. Conversely, critical component specifications are 
revealed when errors in a particular device are found to be among the dominant 
sources of system error. 

This chapter discusses various proven approaches to suboptimal filter design. 
The equations for sensitivity analysis of linear filters and smoothers are 
presented, with emphasis on the underlying development of relationships for 
analyzing systems employing "optimal" filters. Several valuable methods of 
utilizing information generated during sensitivity analyses are illustrated, and a 
computer program, organized to enable study of suboptimal filter design and 
sensitivity analysis, is described. 

7.1 SUBOPTIMAL FILTER DESIGN 

The data-combination algorithm, or filter. for a multisensor system is very 
often a deliberate simplification of, or approximation to, the optimal (Kalman) 
filter. One reason, already noted, for which the filter designer may choose to 
depart from the strict Kdman filter formula is that the latter may impose an 
unacceptable computer burden. Figure 7.1-1 illustrates the common experience 
that a judicious reduction in filter size, leading to a suboptimal filter, often 
provides a substantially smaller computer burden with little significant reduction 
in system accuracy (the "conventional" data processing algorithm is understood 
to be a fixed-gain filter, arrived at by some other means). 

Since solution of the error covariance equations usually represents the major 
portion of computer burden in any Kalman filter, an attractive way to make the 
filter meet computer hardware limitations is to precompute the error covariance, 
and thus the filter gain. In particular, the behavior of the filter gain elements 
may be approximated by a time function which iseasy to generate using simple 
electronic components. Useful choices for approximating the filter gain are: 
constants, "staircases" (piecewise constant functions), and decaying exponen- 
tial~. Whenever an approximation to the optimal filter gain behavior is made, a 
sensitivity analysis is required to determine its effect on estimation errors. 

The filter designer may also depart from the optimal design because it appears 
too sensitive to differences between the parameter values he uses to design the 

COMPUTER ESTIMATION 
BURDEN ERROR 

Fire 7.1-1 Illustration of Relative Computer Burden and Estimation Enor for 
Three Data Processing Algorithms 

filter and those which may exist in practice. By choosing an appropriate 
suboptimal design, it may be possible to reduce the sensitivity to uncertain 
parameters, as illustrated in Fig. 7.1-2. In the figure, it is assumed that there is a 
range of uncertainty in the value of at,,,, a certain parameter which is critical 
to the filter design. The value of the parameter that is used, odesign, is chosen in 
the center of the interval in which at,,, is known to lie. Of course when at,,, + 
odesign the filter suffers some loss of accuracy, as indicated by the concave 
shape of the plots. In the hypothetical case shown, the theoretically optimal 
filter requires thirty states (n=30), but exhibits a wide variation in performance 
wer the range of design uncertainty. The lOstate design is relatively insensitive 
but provides less accuracy than the 20-state filter shown, over the region of 
uncertainty. The minimum sensitivity filter of 20 states represents the "best" 
filter in this case. The best filter may be found, for example, by assuming a 
probability density function for at,,, and computing an expected value of the 
performance measure for each proposed filter', selecting the one with the lowest 
mean performance measure. It must be noted that reduced sensitivity is achieved 
at the price of a larger minimum error. 

While the discussion of suboptimal filter design in this chapter centers on 
modifications to the basic Kalman filter procedure, observer theory (see Chapter 
9) is also suggested as a viable technique for producing realizable filters. 
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F i r e  7.1-2 Conceptual Example of Designing for Minimum Sensitivity 
(oUue held constant, o & , ~  is varied) 

CHOOSING SIMPLIFIED SYSTEM MODELS 

As just indicated, the filter designer may need to reduce the number of states 
modeled not only because a fully optimal filter imposes too great a burden on 
the computer available, but also because the optimal filter may be too sensitive 
to uncertainties in the statistical parameters (spectral densities of system noises, 
etc.) which must be provided. There is emerging a body of theory which can 
help the designer to reduce the sensitivity of his filter; this facet of the design 
problem is discussed later. By and large, however, the fiter designer is left 
with few rules of general applicability to guide him in the process of eliminating 
those parts of the full description of the system that can be ignored, rearranged 
or replaced by a simpler mathematical description. He must depend, first and 
foremost, on his physical understanding of the system with whish he is dealing, 
The common procedure is to make a simplified model based on insight, then 
analyze the accuracy of the resulting filter in the presence o f a  complete setof 
system dynamics, properly represented. Ihus. the approach is generally one of 
analysis rather than synthesis, and a number of steps are necessary before a 
satisfactory result emerges. The equations for such analyses are given in Section 
7.2. The present discussion concentrates on particular fiter simplification 
approaches which have proven successful in the past, illustrated by examples. 

Dewupling States - The number of multiplications necessary to compute the 
error covariance matrix used in Kalman-based linear filters generally varies as the 
third power of the state size (for more details see Chapter 8). Therefore. the 
main thrust of attempts to reduce the computer burden imposed by such filters 
is aimed at reducing the filter state size. Often the number of state variables 
reaches an irreducible minimum and the fdter still makes excessive demands on 
the computer. Sometimes, an alternative technique is available that complements 
the more obvious approach of deleting state variables; if certain portions of the 
system are weakly coupled, it may be possible to break the relatively high-order 
fiter into several mutually exclusive lower-order filters- each with separate 
covariance calculations, filter gains, etc. The advantage is evident if one considers 
breaking an n-state filter into three 1113-state fdters. Using the rule stated above, 
the kstate filter requires kn3 multiplications each time its covariance matrix is 
propagated. On the other hand the three n/3-state filters require total of 
3k(n3/27) = kn3/9 multiplications to perform the same operation; the 
corresponding computer burden is thus reduced by about 90%. 

Example 7.1-1 
Consider the secondurder coupled system, with continuous measurements (see Fig. 

7.1-31, given by 

where wl ,  wl, vl and vl are unconelated white noises. 
Notice that the subsystem whose state is x l  receives no feedback from xl. If 7 is zero, 

the system is composed of two independent fist-order mrkov  processes. The estimation 
error covariance equations for a Kalman filter for the coupled, wcond-order system are 

where q l ~ ,  q l l ,  I, I and rll are the spectraldensitiesof w l ,  wl, vl andv?, res~ectivelv. 
If the coupling term 7 is small, it is tempting lo  view the system as two separate, 

uncoupled systems, as follows (see Fig. 7.14): 
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and 

Pi= 7.1-3 Block Diagram of Example System 

F i i  7.14 Black Diagram of Example System with 7 Taken as Zero 

In this ease the estimation error covariance equations are dmply 

Several qualitative obxwations ean be drawn fzom a comparison of Eqs (7.1-2), (7.1-3)and 
(7.14) with Eqs. (7.1-6) and (7.1-7). The expressions for and bll differ by terms 
poportional to  p l l  and pll l ;  if pl1 is mall, the decoupbd Cite, nror wvatiancer are 
similar to  those of the fiter modeling the complete system. Furthermore, the terms in b1 
h t  involve p l l  always acts to reduce the enor covariance in the complete tiiter; this 
suggests that the f i ter  using the complete model of the system will always do a better job of 
estimating xl .  Finally, if we view the error covariances as varying very dowly (a quui-rtltic 
approximation), Eq. (7.1-3) shows that the estimation error correlation term p l l  can be 
viewed u the output of a stabk first-prder system (assuming e l  > 0, a 1  > 0) driven by a 
forcing t n m  p l  It can be reen that if UP wupling coefficient is zero and pll(0) = 0, the 
two sets of enor eovpriance equations are identical. 

Deleting States - Wlien the computer burden indicates a need to delete 
states, it must be done very carefully, and always with some risk. Here the filter 
designer's knowledge of the physics of the problem and of how rhefilrerworks 
will assist him in selecting which states to eliminate first. Once the state vector 
and nominal dynamic and statistical parameters are selected, the resulting filter 
is subjected to a performance evaluation via sensitivity analysis techniques (see 
Section 7.2). If the performance is not acceptable, dominant error sources must 
be isolated and an effort made to reduce their effects. Where a dominant 
correlated enor source was not estimated initially in the fdter, it may be 
necessary to estimate it by adding extra states to the filter.* If it was too simply 
modeled in the fdter, model complexity may have to be increased or model 
parameters adjusted to reduce the effect of this enor source. Based on 
considerations of this type, the filter design is amended and the evaluation 
process repeated, thus starting a second cycle in this trial and error design 
approach. 

Example 7.1-2 
Consider the seconderder system shown in Fig. 7.1-5 and given by Eq. (7.1-8), 

*It should be emphasized that the act of estimating an additional important mrrclnted 
enor m u r a  does mot, in itself. guuan ta  dgniIlcantly improved tiiteter performance. 
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Fire 7.1-5 Block Diagram of Eq. (7.1-8) 

Between measurement% the enor covviance equations for the state variables in Eq. (7.1-8) 
u e  given by 

i n  = P I  1 -(.I + a d  P11 (7.1-10) 

ill = 2 ~ 1 1  - 2 0 2 ~ 1 2  (7.1-11) 

when q is the spectral densly of w. If the frequency content of xl>a high, compved t o  the 
bandwidth of the first-order loop whose output is x l ,  the filter designer may wish to model 
the entire system by a single first-order markov process driven by white noise. In that case, 
only one state variable, x2, remains. The spectral density, q', of the "white noise" driving 
this system is given by q' = 2pl t..IaI = q h n 2  (Refs. 1 and 2). wheze P I  I.. IS the 
steady-state value of p l  , calculated fzom Eq. (7.1-9). The error covariance equation for the 
lone state vviabk of the simplified system is 

In the steady state, the state error covariance of the simplified system can be found from 
Eq. (7.1-12) to be 

The steady-state enoz covariance of the corresponding state, xl, in the full system is found 
from Eqs. (7.1-9). (7.1-10) md(7.L-ll) to be 

It can be seen from Eqs. (7.1-13) and (7.1-14) that when the frequency content of x l  is 
much larger than the bandwidth of the first-order system whose output is x l  (ie.,al > q ) .  
the steadystate covariance for the output of the simplified system closely approximates 
that of the full system. Refertnce 3 explores this technique in mole generality. I t  was also 
employed in Examp* 4.6-1. 

Verification of Filter Design - We conclude this section with an attempt to 
impress upon the reader the importance of checking, by suitable sensitivity 
analyses, any suboptimal fdter design he may produce. The inotivation is best 
illustrated by discussing an unusual type of fdter behavior that has been 
observed in many apparently well-thought-out suboptimal filter designs, when 
they were subjected to analysis which correctly accounts for all error sources. 
This anomalous behavior is characterized by a significantgrowth in errors in the 
estimate of a particular variable when some measurements are incorporated by 
the fdter. The reason for this unusual performance is usually traced to a 
difference between error correlations indicated by the filter covariance matrix, 
and those that are found to exist when the true error behavior is computed. 

Figure 7.1-6 helps to illustrate how incorrect correlations can cause a 
measurement to be processed improperly. Before the measurement the state 
estimates are i, and 9,. with the estimation error distributions illustrated in the 
figure by ellipses which represent equal-srror contours. The measurement 
indicates, within some narrow band of uncertainty not shown, that the state y is 
at y,. Because the measurement is quite precise, the filter corrects the estimate 
of the y coordinate, 9, to a value that is essentially equal to the measurement, 
y,. Because of the correlation that the fdter thinks exists between the x and y 
coordinates, the x coordinate is corrected to i,. Observe that no direct 
measurement of x is made, but the correlation is used to imply x from a 
measurement of y. If the correct error correlations were known, the filter would 

t P K l U A L  ESTIMATION 
FILTER 

NDICAT ION d ESllMATlON 
ERROR CCaRELAlIONS ERWR CORRELATIONS 

Fire 7.14 Illustration of improper Use of a Measurement 
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correct the state to 1 y, and 9;. Because the fdter covariance matrix 
indicated the wrong correlation, the fdter has "corrected" its estimate of x in 
the wrong direction, thus increasing the error in its estimate of that variable. 
This sort' of improper behavior cannot usually be anticipated when choosing 
states, etc., for a suboptimal fdter design. It can only be observed by performing 
sensitiviiy analyses. 

CHOOSING SIMPLIFIED FILTER GAINS 

It has been pointed out previously that the major portion of the 
computational burden imposed by the Kalman fdter involves computing the 
fdter error covariance matrix for use in determining the fdter gains. While the 
previous discussions emphasized the role of reducing this effort by simplifying 
the system description and cutting the filter state dze, it is sometimes possible 
and desirable to eliminate altogether the on-line covariance calculations. In these 
cases, the error covariance matrix is computed beforehand and the filter gain 
histories are observed. While a pre-recorded set ofprecise gain histories could be 
stored and used, a more attractive approach is to approximate the observed gain 
behavior by analytic functions of time, which can be easily computed in teal 

F ' i m  7.1-7 Pieccwiae Constant Suboptimal Gain 

lime. These tend to be exponentials, staircases and constants. Figure 7.1-7 
illustrates a staircase, or piecewise constant, approximation to an optimal time 
history for a single element in a filter gain matrix. The same gain element could 
also be well approximated by a decaying exponential function of time. 

Approximating the Optimal Gains - Reference 4 discusses a system for 
which, as a practical matter, an investigation was performed to determine a set 
of piecewise constant filter gains that will approximate the performance of a 
Kalman optimal filter. Figure 7.1-8 illustrates such a gain approximation used 
during initial operation of the system. The continuous optimal gain curve was 
approximated by a piecewise constant gain; Fig. 7.1-9 shows one resulting error 
in the system. As expected, the suboptimal gain history produces larger errors 
for a certain duration of time. The interesting observation here is that the 
steady-state error does not suffer as a consequence of the gain approximation. In 
many systems, the longer convergence time may be an acceptable price to pay 
for not having to compute the error covariance and gain matrices on-line or to 
store their detailed time histories. 

While it is usually possible to select good approximations to the optimal filter 
gains simply by observing their time behavior and using subjective judgement, 
some analysis has been performed which could be brought to bear on the 
selection of an optimal set of piecewise constant gains with which to 
approximate time-varying gain elements. The work is described in Ref. 5, and 
deals with the linear regulator problem whose formulation is similar to that of 

STEP- GAIN APPROXIMATION 

KALMAN OPTIMAL GAIN HISTORY 

t 
P i m  7.1-8 Fixed4ain Approximations (Ref. 4) 
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KALMAN OPTIMAL SYSTEM 

P i i e  7.1-9 History of rms Emor for Gain Choices Shown in Fig. 7.1-8 (Ref. 4) 

optimal estimation. Briefly, a set of dimete time intervals - ti < t < ti+,; 
i = 1.2,. . . N - is established and a constant controller gain matrix is sought for 
each of these intervals by minimizing the average quadratic cost function. A 
steepest descent technique is used to converge on the minimum. The same 
technique could be useful for selecting piecewise constant filter gains for a linear 
estimator. Figure 7.1-10 shows the one set of optimal piecewise constant gains, 
kl(t), chosen in Ref. 5 and the optimal continuous gain they replace. It can be 
seen that the problem was solved for several arbitrary subdivisions of the time 
scale. Note that the constant gains do not usually represent the average optimal 
continuous gain fer the time interval they span. 

Using SteadyState Gains - The limiting case of a set of piecewise constant 
gains is choosing each gain to be constant over all time; logical choices for the 
constants are the set of gains reached when the filter error covariance equations 
are allowed to achieve steady state. The gain matrix is simply given by 

where the H and R matrices, as well as the dynamics matrix F, must be.constant 
for the steady-state error covariance, P,, to exist. More generaUy,HTKIH must 
be constant; this condition is seldom satisfied if H and R are not constant. In 
Chapter 4 iI is shown that a Kalman fdter which uses gains derived from the 
steady-state covariance is, in fact, identical with the Wiener filter. 

ONE SUBINTERVAL 

TWO SUBINTPRVALS 

[ t i s e c l  
-0.5 

EIGHT SUBINTERVALS 

----- OPTIMAL GAINS - OPTIMAL PIECEWISE CONSTANT GAINS 

P i i r e  7.1-10 Optimal and Suboptimal Feedback Gains for Thixader  System (Ref. 5 )  

The use of steady-state gains assumes that measurements are available over a 
sufficiently long period of time such that a steady-state condition in the filter is 
achieved before critical (in terms of system accuracy) points in time are reached. 
This approach forfeits the rapid convergence capability of the filter, which 
depends largely on time-varying gains to weight the first few measurements 
heavily when initial uncertainty about the state value is high. How much time is 
required for the fixed gain fdter erron to approach steady state (and therefore 
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satisfy conditions for which the filter was designed) is, of course, a function of 
the particular problem. It is sufficient to say that, in most cases, the constant 
gain filter will be considerably slower in reaching steady state than the 
time-varying filter whose steady-state gains the former may be using. A lower 
bound on the convergence time of the fixed-gain fdter can be determined by 
noting how long it takes for the steady-state covariance matrix, on which those 
fued gains are based, to develop. 

Example 7.1-3 

Consider the problem ofestimating a random walk from a noisy mea$urement 

The estimation error cwarianee equation for the optimal filter is simply 

In the steady state b, = 0 and 

P, = J q  

k, =g 
Observe that the steady-state gain wights  lhe residuals, (2 -;),highly when the process 
noise is high and the measurement noise i s  low. Also, the steady-stateerror is driven by the 
precess and measurement noises alone. 

Consider the error covariance matrix equations for a continuous Kalman filter 
and a Wiener filter 

where 

PK = FPK+PKFTffi~~T-PKHTR-l  HPK (Kalman filter) 

pw = ( F - L H )  Pw+Pw (F-K,H)~+GQC'+K,RK,T (Wiener filter)* 

'An error cavvivlce differential equation for a Rter with the atruemre of a Kalman filter 
but an arbitrary gain K is 

P = (F-KH) P + P(F-KH)T + GQGT + KRKT 

Prwfof this is left as an exerdse for the reader ( ~ e e  Roblem 7-7). 

and P, is the steady-state Kalman fdter error covariance. Reference 6 shows that 
an upper bound on the Hilbert or spectral norm (Ref. 7)* of the difference 
between the Kdman and Wiener error covariances is given by 

where P(0) is the initial error covariance and am,, is the maximum real part of 
the eigenvalues of (F - K,H). Equation (7.1-15) indicates that an upper bound 
on the difference between the Kahnan and Wiener fdter errors is large when the 
difference between the initial and steady-state errors, 6qO) = P(0) - P,, is large. 
Also, a,,,,, is the inverse of the largest time constant in the Wiener filter; the 
bound on6Pvaries with that time constant.The m a t r i x ~ ~ R - ~ H  is recognized as 
being related to the information contained in each measurement, from the 
matrix inversion relationship, Eq. (4.2-19). of Chapter 4. 

Example 7.1-4 
Consder the Kalman and Wlener tillers for the scalar system 

The K a h n  f i ler  error covmianee equation b 

The solution o f  lhk equation is, from Roblem 4-1 1, 

where 

*Tlw Hilbert norm ol a matrix M, denoted HMH, b given by 
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It can be shown by limiting arguments that 

The gain of the Wiener filter is thus 

Using Eq. (7.1-IS), the upper bound on 6dl) = pw(t) - p ~ ( t )  is 

which, given the properties'of the Hilbert norm,' becomes 

MINIMUM SENSITIVITY DESIGN 

In many problems dynamic and statistical parameters are known only to lie in 
certain bounded ranges. Agame-theoretic approach to filter design in the presence 
of these parameter uncertainties has been formulated and studied in Refs. 8 and 
9. Using any of the previously described state reduction techniques, a 
suboptimal filter form is selected a priori, but the filter parameters are left 
unspecified. Any filter performance measure is now a function of uncertain real 
wodd system parameters and the unspecified filter parameters. Let us denote the 
uncertain real world system parameters by a vector q and the unspecified filter 
parameters by the vector 0. It is assumed that g andQ lie in closed bounded sets, 
A and B, respectively. A-convenient scalar measure for any suboptimal filter 
performance is then 

J @,[) = Trace [MP] (7.1-16) 

where M is a positive definite weighting matrix, included to balance the 
importance one assigns to each system error and P is the filter error covariance 
matrix. J @, [) is then simply a weighted sum of all system errors. For a given g, 
the minimum value of J, denoted Job) ,  is attained by the Kalman filter and is a 
function of g alone. Clearly, J (g,[) > J,@ for all g E A and all! E B. Since g is 
unknown and Q alone is available for selection by the designer, it seems most 
natural to view g and Q as adversaries in the game-theoretic sense. With this in 

*From the definition of the Hilbert norm, d e n  M is a SdU, m, 

llmll = m 

mind, three sensitivity measures and their associated rules of synthesis are 
appropriate. They are: 

S, = min max J@.,[) 
8.B = t A  - 

The SI design simply minimizes the maximum value of J over the parameter set 
g. This places an upper bound on the cost, and might be interpreted as a "worst 
case" design. The second and third criteria minimize the maximum absolute and 
relative deviations, respectively, of the filter error from optimum, over the 
parameter set g. Thus, the SZ and S3 criteria force the filter error to track the 
optimum error within some tolerance over the entire set g E A. In each case the 
above procedures yield a fixed value of Q and, therefore, a fixed filter design 
good for all values of the uncertain parameters g. 

Research to date has concentrated on the design of optimally insensitive 
Glters in the presence of uncertain system and measurement noise statistics. 
Specifically, it has been assumed that elements of the system and measurement 
noise covariance matrices, Q and R respectively, were unknown. These unknown 
elements then constitute the vector g. For the SI filter, which is the easiest to 
fmd, a rule of thumb is available: A good initial guess for q is that value which 
maximizes lo&), denoted g' - i.e., 

When the filter state and the real world state are of the same dimension, this 
result is exact and the SI fdter is simply the Kalman fdter for g'. 

Example 7.1-5 
Consider a Iirst-order plant with a noisy measurement 

i = -x + w, w - N(O,q), 0 < q c 1 

z = x + v, v - N(O,r), 0 G r c l 

Given the filter equation 

Meft 1 - p,, where p, is the study-state value o f  the filter enor mvarianee, and perform 
the minimiratbn over the range B = k, k > -1 for SUbiliN snd fhe muimizntion wer the 
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zange of q and r. [Note that thir is the same measure of filter performance expressed in Eq. 
(7.1-la)]. Then 

The SI  value of I, S, = min(k > -1) max(q.1) [J(k,q,r)l, occurs at a = I = 1 with k =  a-1. 
The S2 criterion is satisfied when q = 0, r = 1 and q = I, r = 0 with k = 1. Since lo = 0 when 
r or q are zero, the argument of the S3 criterion is infinite at those boundaries of the r,q 
space under consideration, and the filter satisfying the S3 criterion does not exist in this 
example. 

Example 7.1-6 
Consider the continuous fist+rder markovprocess with noisy measurements (F > 0) 

Assuming that the value of B is uncertain, a filter identical in form to the Kalman filter is 
choscn to estimate x, namely 

;=-Bf;+k(z-;) 

where it is required for stability that Bf + k > 0. The covariance of the estimation error for 
this simple problem has a Readyltate value, denoted here as p, and given by 

Observe that p, is a function of both the unknown fl and the unspecified filter parameters 
Bf and k. The St ,  S2 and S3 f k r s  described above were determined for thir example for the 
casewhereq= lO,r= l a n d O . I < p < l .  
Figure 7.1-11 shows the errox performance of the optimal S,, S2, and S3 filters versus 

the true vdue of p. The performance of a Kalman Nter derigned for B = 0.5 is also 
illusuated. Observe that the S, filter has the smallest maximum error. while the S2 and S3 
Iilte~s tend to track the optimal performance more closely. The S3 error covariance, f a  
example, is werywheze less than 8% above optimum and is only 0.4% from optimum at 
B = 0.3. By comparison, the Kalman liiter desgned fox a nominal value of B equal (a 0.5 
&gades rapidly an the true value of B drop k l o w  0.5. 

This example shows that the minimax fitersean aehiwe near optimal performance over 
wide puameter variations. The filter implemented is identical in form to the Kalman filter 
and thus avoids the additional mechanization complexity of adaptive schemes sometimes 
suggested. 

7.2 SENSITIVITY ANALYSIS: KALMAN FILTER 

The statistical (or covariance) analysis which determines the true behavior of 
estimation errors in a suboptimal linear filter is necessarily more complex than 
the work presented in previous chapters. The equations are developed below. 
Emphasis here is placed on the technical aspects of the analysis, rather than the 

OPTIMAL - 
5 1  ----- 
s 2  

2 5 - 

TRUE SYSTEM P 

F4pm 7-1-11 Estimation Error Covariance Canparison as a Function of Tzue System 
Bandwidth (Ref. 9 )  

motivation. Also, the equations developed, while correct, are not necessarily 
most efficient, because emphasis here is placed on the tutorial presentation of 
the subject. References 10 and 11 provide alternative sensitivity equations which 
may require Less computer space and time. 

Observe the structure of the Kalman filter, illustrated in Fig. 7.2-1, for the 
continuous case; the filter contains an exocr model of the system dynamics and 
measurement process. Additionally, note that the filter gain matrix is calculated 
using the exact models of dynamics and measurement and exact knowledge of 
the Process noise covariance (and the influence matrix.(;), measurement error 
covariance, and initial estimation error covariance. 

There are two broad questions we can ask with respect to the sensitivity of 
the filter: "How does the error covariance behave if we make approximations in 
computing the gain matrix K, but use the correct values of F and H in the 
implemented fdter?" and "How does the error covariance behave if we compute 
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Pipre  7.2-1 Block Diagram of the Continuous Filter Equations 

the gain matrix in some manner (optimal or otherwise), and use wmng values of 
F and H in the implemented filter?" The first question is relatively easy to 
answer, while the second question requires a considerable amount of extra 
calculation. 

EXACT IMPLEMENTATION OF DYNAMICS AND MEASUREMENTS 

'lke error covariance relationships for a discrete filter with the same structure 
as the Kalman filter, but with an mbifrav gain matrix, are (see Problem 7-6): 

A single equation describes the corresponding error propagation for the 
continuous filter (see Problem 7-7). viz: 

Under the assumptions with which we are presently dealing, Fig. 7.2-1 (which 
illustrates the similarity between the filter and ihe system) can be rearranged to 
provide a corresponding block diagram for estimation error dynamics, shown in 
Fig. 7.2-2. A similar error block diagram for the discrete filter is shown in Fig. 
7.2-3. The error equations illustrated in these two figures are used in the 
derivation of Eqs. (7.2-1),(7.2-2) and (7.2-3). 

If the expressions for the optimal gain matrix provided earlier are substituted 
into Eqs (7.2-1) and (7.2-3), they reduce to the previously stated covariance 
relations for the optimal filter-in which the K matrix does not appear explicitly. 

Equations (7.2-3) or (7.2.1) and (7.2-2), together with the covariance equations 
for the optimal tilter and the defmition of the gain matrix, can be used to 
determine the effect of using incorrect values of F, H, G, R or P(0) in the 
calculation of the Kalman gain matrix. The procedure involves two neps which 
can be performed either simultaneously or in sequence. In the latter case K is 
computed and stored for later use in Eqs. (7.2-1) or (7.2-3). 

F i r e  7.2-2 Block Diagram o f  Estimation Error Dynamics of a Continuaus 
Filter: System Dynamics and Measmemen1 Roceu Perfectly 
Modeled in the Filter 

P ipre  7.2-3 Block Diagram of Estimation Error Dynamics of a Dismete 
Filter: System Dynamics and Measurement Process 
Perfectly Modeled in the Filter 
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Step I :  In previous chapters the following error covariance equations, in which 
the filter gain matrix, K, does not appear explicitly, were derived. For 
the discrete-time case, 

pk(+) = pk(-) - pk(-) H~~ ( H ~ P ~ ( - ) H ~ T  + R ~ ) - I H ~ P ~ ( - )  (7.24) 

Pk+l(-) = *kPk(+) *kT + Qk (7.2-5) 

or, for the continuous-time case, 

P = FP + PF' - P H ~ R - ~ H P  + G Q G ~  (7.2.6) 

Using Eqs. (7.24) and (7.2-5), or Eq. (7.2-6), and design* values of F, 
H, G, Q, R and P(O), compute the error covariance history. Also, using 
the equations from previous discussions, compute the filter gain matrix 
which would be optimal if the design values were correct. 

Step 2: Inserting the gain matrix computed in Step 1 into Eq. (7.2-1) or (7.2-3). 
and using the correct values of F. H, G. 0. R and P(O) (which are to 
be implemented in the fdter), compute the "actual" error covariance 
history. 

Because Eqs. (7.2-I), (7.2-2) and (7.2-3) are based only on the structure of 
the Kalman fdter, and not on any assumption that the optimal gain matrix is 
employed, they can be used to analyze the filter enor covariance for any set of 
ITter gains. This permits investigation of proposed sets of precomputed gainsor 
simplified filter gains, such as decaying exponmtials, etc., assuming the correct F 
(or 0 )  and H matrices are implemented in the filter. In that case, the gain matrix 
is simply inserted in Eqs. (7.2-1) or(7.2-3) and. using correct values for F, H, C 
Q, Rand P(O), Eqs. (7.2-1) and (7.2-2). or (7.2-3), are used to compute the error 
covariance. 

INCORRECT IMPLEMENTATION OF DYNAMICS AND MEASUREMENTS 

Answering the second question posed in the introduction to this section is 
more difficult. It is tempting to compute a filter gain matrix based on Eqs. 
(7.24) and (7.2-5) or (7.2.6) and a set of design values, and insert it into Eq. 
(7.2-1) or (7.2-3); essentially, this is following the same procedure as outlined 
above. The fallacy of this approach is that Eqs. (7.2-1) through (7.2-6) are all 
based on the assumption that the system dynamics and measurement process are 
identical in the Kalman filter implementation and the real world - the set of 
circumstances treated in the previous section. 

*Design values a n  those used to derive the filtez gain matrix. The filter implementation 
requires speafiwtion of system dynamin a d  measuzunent matrices, which do  not 
neeersarily have to be the same as the corresponding matrices used in Titer p i n  matrix 
design. 

Continuous Filter - The procedure for deriving error covariance equations 
which can be used to answer the second question posed is quite similar to that 
used in the earlier derivations in Chapten 3 and 4. The error sensitivity 
equations for the continuous fdter are derived as follows: From Chapter 4 we 
know that the equations for the state and the estimate are given by 

where the asterisked quantities K*, H* and F* represent the filter gain and the 
measurement process and system dynamics implemented in the illter; H and F 
represent the actual measurement process and system dynamics. In this 
derivation, it is assumed that the state variables estimated and those needed to 
completelv describe the process are identical. The sensitivity equations for the 
case when the estimated state is a subset of the entire state are provided at the 
end of the derivation. Equation (7.2-7) illustrares the fact that the actual system 
dynamics and measurement process, represented by the matrices F and H, are 
not faithfully reproduced in the fdter -.i.e., F # F*, H # H*. The error in the 
estimate, 5 = i - &, obeys, from Eq. (7.2-7), 

Letting 

A F e F * - F  and A H & H * - H  

and recalling the relation between 2, 4 and 8, Eq. (7.2-8) can be written as 

A new vector, x', is defined by 

The differential equation for 5' in vector-matrix form is, from Eqs. (7.2-7)and 
(7.2-9), 
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Note that Eq. (7.2-10) is in the form of the differential equation for the state of 
a linear system driven by white noise. From Chapter 4, the covariance equation 
for 5' is 

The quantity of interest, the covariance of %, is the upper left corner of the 
covariance matrix ofx': 

where 

Combining Eqs. (7.2-11) and (7.2-12) and expressing the expected value of 
in terms of the spectral density matrices Q and R, 

Breaking Eq. (7.2-13) into its component parts, the error sensitivity equations 
become 

P =  (F*-K8H*)P + P(F*-K*H*)~ + (AF-K* AH)V 

+ VT(AF-K* AH)T + GQCT + K*RK*T (7.2-14) 

Since the initial uncertainty in the estimate is identical with the uncertainty in 
the state, 

Note that when the acmd system dynamics and measurement process are 
implemented (AF = 0, AH = 0), Eqs. (7.2-14), (7.2-15) and (7.2-16) reduce to 
Eq. (7.2-3), as expected. Theie can be only one gain matrix of interest here, the 
one implemented in the fiter, consequently, K* = K. 

If the state vector of the implemented fiter contains fewer elements than the 
correct state vector, F and F* and H and H* will not be compatible in terms of 
their dimensions. They can be made compatible by the use of an appropriate 
nonsquare matrix. For example, if the state vector implemented consists of the 
first four elements in a sixelement true state vector, F is 6 X 6 and Fb is 4 X 4. 
The difference matrix AF can be defined by 

where the matrix W accounts for the dimensional incompatibility between F and 
F*, 

The matrix W is, in fact, the transformation between the true state and that 
implemented, 

A similar transformation can make H* compatible with H, 

The sensitivity equations for a continuous filter which does not estimate the 
entire state vector are 

where AF and AH are defined in Eqs. (7.2-17) and (7.2-18). A more complex set 
of sensitivity equations, cwering the case where the filter state is a general linear 
combination of the true states, is given in Refs. 10 and 11 for both continuous 
and discrete linear fiters. 
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It should be emphasized that the only purpose of the transformation W is to 
account for the elimination of certain state variables in the implementation. The 
approach illustrated here will not cover the situation where entire& different 
sets of state variables are used. 

Discrem Filter - The sensitivity equations for the discrete filter which 
correspond to Eqs. (7.2-14) through (7.2-16) are, between measurements, 

and across a measurement, 

where 

When A 9  and AH are zero, Eqs. (7.2-20) and (7.2-21) become identical with 
Eqs. (7.2-2) and (7.2-I), respectively. 

It is worth noting here that if all the states whose values are estimated by the 
filter are instantaneously adjusted after each measurement according t o  

the estimate of the state following such a correction must be zero. In that case. 
the equation for propagating the estimate between states and incorporating the 
next estimate is 

and there is no need for specifying fdter matrices@* and H*. Equations(7.2-1) 
and (7.2-2) are the equations which apply in this case. Instantaneous 
adjustments can be made if the states being estimated are formed from variables 
stored in a digital computer. 

7.3 SENSITIVITY ANALYSIS EXAMPLES 
This section provides the reader with several examples of the application of 

sensitivity analysis. 

Example 7.31 
Consider a stationary, firstorder markov process where the state is to be identified from 

a noisy measurement: 

Equation (7.2-3) becomes the scalar equation 

i = (-p-k) p + p(-8-k) + q + k2r (7.3-2) 

In the steady state, we set ;, = 0, and thus find 

+ k2r p = 9- (7.3-3) 
" 2 (p+k)  

The optimal k(denoted k,) is computed as p,h/r or, equivalently, from 

aP"_ -- 
ak 

both o f  which yield 

k, = -p+-  

The variation of p, as a function of k i s  illustrated in Fig. 7.3-1. 

Pire 7.3-1 Sensitivity Curve. p, v s k  
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If the filter is designed for particular values of r and q, k is fixed accordmg to Eq. 
(7.3-4). It can be seen from Eq. (7.3-3) that, with kjixed, the steadystate error covariance 
varies linearly with the actual process noise spectral density or measurement error spctral  
density. This is illustrated in Fig. 7.3-2. 

If the true noise variances are assumed fixed and thedtsign values of q and rare varied, 
quite different curves result. Any deviabon of the des i s  varimees, and eonseqvently k, 
from the correct values will cause an increase in the filter error variance. This is a 
Consequence of the optimatity of the fiiter, and is illustrated in Fig. 7.3-3. The sendtivibes 
of the firsturder process shorn in Figs. 7.3-2 and 7.3-3 are similar to those observed in 
Nghe~-order systems. 

1.1 Varlatton of Actual Procerl No,$. 1111 Varmon of Actual Mearurernm Nolx 
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Example 7.3-2 
Continuing with the example, let us suppose that there isan uncertainty in the Mlue of 

the coefficient B in the system dynamics. Furthermore, let us suppose that the filter designer 
selects a design value 0- and is eerlain of the mean quare magnitude. 02, of the state x. 
Consequently, the designer always picks q* = 20%'. In this case, the steady-state estimation 
error eovmance can be shorn to be 

where A = J B * ~  + 2P*011r 

I:ipurc 7.3-4 is a plot of p,. as il function of P', for the ease P = r = o' = I. Notice the 
similarity with Rg. 7.3-3. 

Figure 7.3-2 Effect of Changing Actual Noise Variances 

Figure 7.3-4 Effect of Varying Design Value of System Dynamics Parameter 

F i ~ r e 7 . 3 - 3  Effects of Changing Design Values of Noise Variances 

Example 7.3-3 
To illustrate the effect of different system dynamics models, we consider the system 

sham in Figure 7.3-Sa. The state of interest is influenced by  the-forcing function. A 
measurement, several integrations removed, is used to estimate the system state. The two 
posdble models for the forcmg function considered are: a first-order markov processand a 
random ramp, both of which are illustrated in Fig. 7 .3 -5b  Figures 7.3-6, 7.3-7, and 7.3-8 
illuslrate the results of research into the importance of that model. In Fig. 7 . 3 4 ,  the filer 
has been designed with the forcing function modeled as a first-order markov proces but the 
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actual forcing function is a random ramp. The rms error in the estimate of the state of 
i n t e ~ s t  is shown as a function of the mu ramp dope y. In Fig. 7.3-7, thc fiter has been 
ndesisncd with the forcine function madeled as a random r a m  and the value of 7 in 
the fits design is assumed to  be always correct (ie., the fiter and actual values of y 
coincide for each d u e  of y shown; in this sense the fdter is always optimal). 

I t  can be sen by comparing Figs 7.34 and 7.3-7 that having the correct system model . . .  
maker a dramaof unpmvrmrnt in Tlller performance Howeve,. the sotuatwn drpmed ~n 
Fig. 7.3.7 is optmstic m c c  the desgner cannot hope tu have perfect anfurmatmn abuu~  the 
YIN d o p  of the random ramp. Figure 7.3-8 illustrates a more realistic situation in which the 
designer has plcked a nominal value for y (ie., 16'). The effect of the existence of other 
values of y is &own. It is evident that some deterioration in performance takes place when 
the actual forcing function is greater than that presumed in the filter design. However, it is 
interesting to  note, by comparing Figs. 7.34,  7.3-7 and 7.3-8, tkat theform chosen for the 
system model has a much greater impact on accuracy in this case than the numerical 
parameters used to describe the magnitude of the forcing function. 

Example 7.34 

We conclude this section with an illustration of how the sensitivity analysis equation, 
developed in Section 7.2, can be used to help c h o w  which states will provide the most 
efficient suboutimal fdter and what deterioration from the omimal filter will be 

VALUE USCD Ilu i l l l E R  DESIGN 

STANDARD [XVIATION - 0002 

50 

10' 10'  10 I 0' I O' 

RMS SLOE 0 1  THF RANDOM RAMP.y 

Finure 7.36 Fllter Based on Exponential Correlation 

expcrieneed. Figme 7.3-9 is drawn from a study of a multimsor system in which the 
complete (optimal) f i ter  would have 28 state variables. It shows the effect of deleting state 
variables from the opbmal filter. A ~udicious reduction from 28 to I6 variables produces leu 
than a 1% increase in the error in the estimate of an imoortant oarameter. sumestine that . . 
the 12 states deleted were not signiticant. Overlooking for the moment the m e  of 13 state 
variables, we can see that further deletions of variables result in mcreasing estimation errors. 
But even the removal of 19 states can give rise to only a 5% increase in eriimation error. 

oh l d 7  
l o b  10 '  

RMS %OPE 0 1  THE R A N D O M  RAMP.Y 

STATE OF 
INTEREST 

WHITE NOISE 
I 

FORCING MEASUREMENT 

(a) The System 

F i y r e  7.3-7 Filter Based on Ramp withcorrect rms Slope 

u 
(b) Foreing Functions Considered 

Piprn 7.3-5 System Used to Illustrate the Effect of Different System Dynamics Modeled 

o-, 10.' 10 10 

RMS SLOPE OF THE RANDOM RAMP.7 

P i y r c  7.3-8 Filter Based on Ramp with Fixed r m s  Slope 
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COMPLETE FORMULATION 
HAS 28 STATE VARIABLES 

NUMBER OF FILTER STATE VARIABLES 

P i  7.3-9 Effect of Reduction in Number of Estimated State Variables 

Of murse, the case of 13 variables does not fit the general pattern. The point illustrated 
here is that care must be exercised in removing stotcs. The I3 variables represented by this 
bar are not the twelve variables represented by the bar to its left, with o m  addition. (If they 
were, a lower enor than that show for I2 states could generally be explcted.)They are a 
different subset of the original 28 states and they have obviously not been wellchosen. This 
kind of information comes to the liitcr designer only through the careful exercise of the 
sensitivity analysis equations. It is behavior such as this that keeps g w d  filter design a 
mixture of both art md aciena. 

7.4 DEVELOPING AN ERROR BUDGET 
Error budget calculations are a specialized form of sensitivity analysis. They 

determine the separate effects of individual error sources, or groups of error 
sources, which are thought to have potential influence on system accuracy. The 
underlying assumption is that a Kalman-like linear kilter is designed, based on 
some choice of state variables, measurement process, noise spectra rtc. ("filter 
model"). When that Nter is employed, all of the error sources ("truth model"), 
whether modeled in the filter or not, contribute in their own manner to errorsin 
the filter estimate. 'Ik error budget is o cotdog of those contibutions. 
This section describes how the error budget calculations are performed. The 
discussion treats the discrete fhe r  in some detail, but tlie approach is valid for 
continuous filters as well. 

Briefly, the steps required to evaluate a proposed filter design by producing 
an error budget are as follows: First, using the filter designer's rules, determine 
the time history of the filter gain matrix. men, using the complete model of 
error sources, evaluate system errors. Developing an error budget involves 
determining the individual effects of a single error source, or group of error 
sources. These steps are illustrated in Fig. 7.4-1. Their implementation leads to a 
set of time histories of the contributions of the sets of error sources treated. The 
error budget is a snapshot of the effects of the error sources at a particular point 
in time. Any number of error budgets can be composed from the time traces 
developed. In this way, information can be summaiized at key points in the 
system operation. As illustrated in Fig. 7.41, each column of the error budget 
can represent the contributions to a particular system error of interest, while a 
row can represent the effects of a particular error swrce or group of error 
sources. For example, the columns might be position errors in a multisensor 
natigation system, while one of the rows might be the effects on those position 
errors of a noise in a particular measurement. Assuming the error sources are 
uncorrelated, the total system errors can be found by taking the root-sum-square 
of all the contributions in each column. Error sources correlated with each 
other can also be treated, either by including them within the same group or by 
providing a separate line on the error budget to  account for correlation 

F@re 7.4-1 Diagram Illustrating the Steps in Error Budget Development 

Notice that Fig. 7.41 indicates that the (optimal) fdter error covariance 
equations are nonlinear [see Eqs. (7.24) through (7.2-6)] while the sensitivity 
equations [Eqs. (7.2-19) through (7.2-2111 are lineur. That is, the 
sensitivity equations are linear in F(or 9), H, R, Q, and initial conditions once 
the filter (F*, H*, R*, Q* and K*) is fiwed. As a consequence of the linearity of 
the sensitivity equations, it is a simple matter to develop sensitivity curves once 
the error budget has been assembled. lh i s  will be illustrated in a later example. 
The figure also points out that the filter covariance calculations are generally an 
optimistic indication of the accuracy of the fdter. When all the error sources are 
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considered the true fdter accuracy is usually seen to be somewhat poorer than 
the filter covariance, per se, would lead one to believe. Certain steps in the 
generation of an error budget are now discussed in some detail. 

Filter Gain Calculations - Each Kalman fdter mechanization specifies a 
particular set of matrices - a filter representation of state dynamics (sym 
bolically, the matrix F* or a*) ,  a fdter representation of the measurement 
process (H*), a process noise covariance matrix (Qb), and a measurement noise 
wvariance matrix (R*). These matrices, combined with an initial estimation 
error covariance pb(0)], are used to compute the time history of filter error 
covariance and, subsequently, the filter gain matrix, K*. The fiter then proceeds 
to propagate its estimate and process incoming measurements according to the 
Kalman fdter equations, using K*, H* and F* (or a*). All of the above-listed 
matrices [F*, Hb, Q*, Rb, P*(O)] must be provided in complete detail. 

True Enor Covariance Calculations - If all of the pertinent error effects are 
properly modeled in the implemented fiter, the error covariance matrix 
computed as described above would be a correct measure of the system 
accwacy. However, for reasons discussed previously, many sources of error are 
not properly accounted for in the design of most filters, and the consequences of 
ignoring or approximating these error effects are to be investigated. The behavior 
of each element of the so-called "trth model': whether or not included in the 
filter design under evaluation, must be described by a linear differential 
equation. For example, an individual error, a, which is presented as a first-order 
markov process obeys the differential equation 

where r ,  is a time constant and w is a white noise. Information wncerningthe 
rms magnitude of such a variable is provided by its initial covariance and in the 
spectral density ascribed to w. When a constant error source such as a 
measurement bias error, b, is considered, it obeys the linear differential equation 

In this case, the rms value of the error is entirely specified by an initial 
covariance parameter. All of the untreated sources of error are added to the 
fdter states to form an augmented "state" vector for performing the error 
budget calculations.' The dynamics of the augmented state are represented by a 
matrix F or its counterpart in the discrete representation, 9. An initial 
wvariance matrix, P(O), is also formed for the augmented state. 

*The augmented s e t e  vector is not lo  be confurd with the vector x' whose dynamicsare 
given in Eq. (7.2-10). The augmented s e l e  veclor discused here ~Talwaysreprernted by 
the x component of&' in Section 7.2. 

Of course, it is essential to the systems under consideration that measure- 
ments be incorporated to reduce errors in estimates of the variables of interest. 
The gain matrix designed for each filter only contains enough rows to account 
for the number of states modeled in the filter. But the augmented state is 
generally much larger and a convenient device is used to make the filter gain 
matrix, K*, conformable for multiplications with the covariance matrix for the 
new state. A matrix W is defined and a new gain matrix is formed as follows: 

If the augmented state is formed by simply adding new state variables to  those 
used in the filter, we can write 

where the identity matrix has dimensions equal to  that of the filter state. 
Clearly, fiter states which are more complex (but linear) combinations of the 
augmented state can be accommodated by proper definition of W. 

The covariance calculations for the augmented state yield, at the appropriate 
locations in the matrix P, the true mean square errors in the estimates of 
interest. The difficulty involved in performing those calculations can be greatly 
reduced if it is assumed that all of the state variables are properly corrected [see 
the discussion surrounding Eqs. (7.2-22) and (7.2-23)j for each measurement; 
this assumption is made in what follows. The covariance equation at the time a 
measurement is taken is similar to  Eq. (7.2-I), viz: 

In the absence of measurements the augmented state (truth model) co- 
variance changes in time according to Eq. (7.2-2), which is repeated here for 
convenience: 

In Eq. (7.4-2) the matrix Qk represents the effects of uncorrelated forcing 
functions over the interval tk to tk+l .  When the state variables are not comcted, 
Eqs. (7.2-20) and (7.2-21) apply, with the appropriate substitution of WKkb for 
Kk8. 

Equations (7.41) and (7.42) can be used to determine the effects of the 
various items in the truth model. In order to separate the effects, the equations 
must be exercised many times, with different initial conditions and forcing 
functions. For example, to investigate the effects of measurement bias errors 
alone, all elements of P(0) not corresponding to these errors will be set to zero, 
along with the Q and R matrices. The error covariance elements generated by 
this procedure only result from measurement bias errors. To look at first-order 
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markov errors the appropriate elements of P(0) and Q are entered (all others set 
to zero) and the equations rerun. This procedure must be repeated many times 
to generate the error budget. The root-sum-square of all the effects provides the 
true measure of total system performance. Section 7.6 describes the organization 
of a computer program to perform these covariance calculations. 

When bias error sources are under consideration, their separate effects can 
also be computed using "simulation" equations such as 

Equations (7.4-3) and (7.4-4) are vector rather than matrix equations, and offer 
some reduction in computer complexity over the covariance equations described 
above [Eqs. (7.4-1) and (7.4-Z)]. However, their use precludes calculating the 
effects of groups of error sources in a single computer run. Each bias error 
source must be treated separately with Eqs. (7.43) and (7.44) and their effects 
root-sum-squared, while the covariance equations permit the calculation of the 
effects of a set of bias error sources in one operation. Also, the "simulation" 
approach cannot handle correlations between error sources. 

Example 7.4-1 
From Example 7.3-1 we can form an error b u d ~ r t  which displays individual . . 

contributions to the strady-stale estimation error. The sources of rrror in the estimate of 
the single state, x, are: initial errors, i (0). prOcrsJ noise, w, and measurement noise, v. 

Effect of Initial Erron - By inppection of Eq. (7.3-3) we can ~ e e  that the initial errors, 
represented by p(O), do not contribute to the steady-state estimation error. 

Effect of Proerr Noi- - Equation (7.3-3) permits us to calculate the effect of process 
noise, characterized by the spectral density matrix q, by setting r = 0: 

Ethet of Measummnt Noir - We can find the effect of measurement noise on the 
steady-slate rnor covariance by setting q = 0 in Eq. (7.3-3): 

If we assign values to 0, q and r, we can construct an rnor budgrt from the above 
equations. Since the rrror budget commonly gives the root-mean-square contribution of 
racn error source we take the square root of p_ in r iding entries in the rrror kudget Set 
P = q = r = 1. Thm, from Eq. (7.3-4) 

and 

The enor kud@ generated is -81 in Table 7.4-1. The root-sum-squm enor can be 
complted e d y .  

TABLE 7.4-1 EXAMPLE ERROR BUDGE3 

Error Sources 

Initial Enor 

Rocess Noise 

The linearity of the equations used in forming error budgets permits easy 
development of sensitivity curves which illustrate the effects of different values 

Contrikutions to Steady-State Errors 
in Estimate of x 

0 

0.595 

Measurement Noise 

of the error sources on the estimation errors, ru long ru the filter design is 
unchanged. The procedure for developing a set of sensitivity curves for a 
particular error source is as follows: First. subtract the contribution of the error 
source under consideration trom the mean square total system error. Then, to 
compute the effect of changing the error source by a factor or y, multiply its 
contributions to the mean square system errors by yZ.  Next replace the original 
contribution to mean square error by the one computed above, and finally, 
take the square root of the newly computed mean square error to obtain the 
new rss system error. Sensitivity curves developed in this manner can be used to 
establish the effect of incorrectly prescribed values of error sources, to  identify 
critical error sources, and to explore the effects of substituting into the system 
under study alternative hardware devices which have different error magnitudes. 

0.245 

Example 7.4-2 

Continuing Example 7.4-1, we car: develop a sensitivity curve showing the effect of 
different values of measurement noise. If the rmr measurement noise is halved (implying a 
114 reduction in r), while k. 8 and q are held constant, the entry on the third line of the 
rnor budget becomes 

Tolal (Root-SumSquarr) Error 0.643 
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AU other entries are unchanged. The new total (rss) error is 

When the rms measurement noise is doubled (factor of 4 increase in I), the entry is doubled 
and the tolal enor is 

&/(0.595)' + (0.490)' = 0.770 

The sensitivity curve constructed from the three points now available 3s shown in Fig 7.4-2. 

RMS MEASUREMENT NOISE 

I Proportional To I 

Fie 7.4-2 Example Sensitivity Curve 

7.5 SENSITIVITY ANALYSIS: OPTIMAL SMOOTHER 
Sensitivity analyses of optimal smoothen provide the same insights, and are 

motivated by the same concerns as those discussed in Section 7.2 with regard to 
optimal filters. The derivation of the sensitivity equations proceeds along lines 
similar to that detailed in Section 7.2. The two cases treated in Section 7.2 - 
when the system dynamics and measurement process are accurately modeled and 
when they are not - also arise in the sensitivity analysis of smoothen. They are 
discussed separately below. 
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EXACT IMPLEMENTATION OF DYNAMICS AND MEASUREMENTS 

Using the same notation as developed in Section 5.2 for the Rauch-Tung- 
Striebel form of the optimal smoother, the optimal filter covariance is computed 
using Eq. (7.2-3), 

Then, using the end condition P(TIT) = P(T), the fixed-interval optimal 
smoother error covariance is computed from the relation [Eq. (5.2-15)] 

If we define a "smoother gain", K,, from the first equation in Table 5.2-2, 

Eq. (7.5-2) can be written 

To determine the effects of differences between design values of F, H, G, Q, R, 
and P(0) and those that may actually exist, assuming that correct values of Fand 
H are used in thefilrer implementation equations, the following steps are taken: 
First, compute P(t) using the design values. Next compute the filter gain K, as 
before, and K, as in Eq. (7.5-3). Finally, using Eqs. (7.5-I), (7.5-4), the end 
condition given above, and the actual values of F, H, G, Q, R, and P(O), compute 
the actual error covariance history. 

INCORRECT IMPLEMENTATION OF DYNAMICS AND MEASUREMENTS 

When incorrect values of F and H are used in filter and smoother 
implementation, a more complex set of relations must be used to perform the 
sensitivity analysis. As before we designate implemented values with an asterisk. 
It is also necessary to define a number of new matrices, some with statistical 
meaning as covariances between familiar vectors (e.g., such as true state, 
estimate, smoothed estimate, error in smoothed estimate, etc.) and others which 
sewe only as mathematical intermediaries. The equations for sensitivity analysis 
of the linear smoother are 
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e t l ~ )  = (F* + G'Q*C*TB-I) P(~IT) + P(~ITJ  (F* + c * Q * c * ~ B - ~ ) ~  

+ c*Q*G*~B-~ [vTDT - p( t )~T]  + [DV - CP(~)] B-'G*Q*G*~ 

+ AF(@ - u d )  + (cfl - DU)AFT + (c + D) G Q G ~  

+ GQC~(C + D ) ~  - G Q C ~ ,  P(TITJ = P(TJ (7.5-8) 

8 = F8B + B F * ~  - BH*R*-'H*~B + G*Q'VT, B(0) = P*(O) (7.5-9) 

= (F* + c*Q*G*TB-~)C - G*Q*G*~B-' - C(F*-K8H*), C(T)= I 
(75-10) 

Note that Kt), V, U, AF and AH are the same asp, V, U, AF and AH in Section 
7.2. The matrix B is the error covariance of the optimal filter if the set of 
"implemented" matrices are correct. Note also that when OF and AH are zero, B 
= fit), D = 0, and, when the implemented matrices are the same as the design 
matrices (F* = F, Qb = Q, etc.) the equation for the actual smoother error 
covariance [Eq. (7.5-8)] reduces to  Eq. (7.5-2) for the optimal smoother. 

7.6 ORGANIZATION OF A COMPUTER PROGRAM FOR 
COVARIANCE ANALYSIS 

This section describes the organization of a computer program which has 
been found useful in the evaluation and design of linear filters. The program 
description illustrates the practical application of the covariance analysis 
methods developed in previous sections. The description is presented in terms of 
algebraic equations and a flow chart and, therefore, is independent of any 
particular programming language. 

EVALUATION OF AN n-STATE FILTER OPERATING IN AN 
mSTATE WORLD 

The program described here is suited to a fairly broad claw of filter evaluation 
problems. The overall program scheme is applicable, with minor modifications, 
to an even broader class of problems involving suboptimal or optimal linear 
fiters. The general situation being considered is one where a linear filter design 
has been proposed; it is to receive measurements at discrete points in time and 

estimate states of a system which is continuously evolving. The filter design is 
based on an incomplete and/or incorrect model of the actual system dynamics. 
It is desired to obtain a measure of the filter's performance based on a tmth 
model which is different (usually more complex) than the model contained in 
the filter itself. 

The problem is formulated in terms of two covariance matrices: P, 
representing the tmth model or system estimation error covariance, and P*, 
representing the filter's internal calculation of the estimation error covariance. P 
is an m X m matrix, where m is the dimension of the truth model. P* is an n X n 
matrix, where n is the number of estimated states. Uwally, m is larger than n; 
sometimes much larger. Ihe principal program ou~put  is the time history of P; 
its value before and after each update is computed. A useful graphical output is a 
collection of plots of the square roots of the diagonal elements of P versus time. 
The time histories of the fdter gain matrix K and covariance P* are also 
computed, and may be printed or dotted if desired. 

The principal program inputs are the following collection of system and filter 
matrices: 

System Inputs 

Po the initial truth model covariance matrix(m X m) 

F the truth model dynamics matrix (m X m) 

H the truth model measurement matrix (Q X m), where Q is the 
measurement vector dimension 

Q the truth model process noise matrix (m X m) 

R the truth model measurement noise matrix (Q X Q) 

Filter Inputs 

Po* the initial filter covariance matrix (n X n) 

F* the filter dynamics matrix (n X n) 

H* the filter measurement matrix (PX n) 

Q* the filter process noise matrix (n X n) 

R* the filter measurement noise matrix (Q X I) 

The five system matrices represent a linearized description of the entire physical 
situation, as understood by the person performing the evaluation. The five filter 
matrices represent, usually, a purposely simplified model, which it is hoped will 
produce adequate results. In the general case, F, H, Q, R, F*, H*, Q*, and R* 
are timerarying matrices, whose elements are computed during the course of the 
problem solution. For the special case of constant dynamics and stationary noise 
statistics these eight matrices are simply held constant at their input values. 
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The immediate objective in running the program is to produce: 

8 A quantitative measure of overall system per fomce,  showing how the 
n-state fdter design performs in the m-state representation of the real 
world. 

A detailed error budget, showing the contribution of each system state or 
driving noise (both those that are modeled and those that are unmodeled 
in the filter) to estimation errors. 

An underlying objective is to gain insight into the various error mechanisms 
involved. Such insight often leads the way to improved filter design. 

TRUTH MODEL AND FILTER COVARIANCE EQUATION 
RELATIONSHIPS 

Two sets of covariance equations, involving P and P*, are presented below. 
The relationship between these two sets is explained with the aid of an 
information flow diagram. This relationship is a key element in determining the 
organization of the covariance analysis computer program. 

Both sets of equations are recursion relations which alternately propagate the 
covariance between measurements and update the covariance at measurement 
times. The truth model covariance equations used in the example program are a 
special case of equations given in Section 7.2. For propagation between 
measurements 

For updafin~ 

where W is an in X n transformation matrix [I l0j as defined in Section 7.4. The 
transition matrix @k and noise matrixQk are found using matrix series solutions 
to 

and 

where At is the time interval between measurements. Equations (7.6-1) and 
(7.6-2) are appropriate forms of Eqs. (7.2-20) and (7.2-21). accounting for the 
difference between filter state size and actual state size, when one of the two 
following situations obtains: ( I )  when AF = AH = 0 - i.e., when the part of the 

truth model state vector that is estimated by the filter is correctly modeled; or 
(2)when a feedback fiter is mechanized and the estimated states are 
immediately corrected, in accordance with the filter update equation. When 
neither of the above conditions hold, the more complicated equations involving 
the V and U matrices should be used. 

Except for one missing ingredient, the five system matrix inputs along with 
Eqs. (7.6-1) and(7.6-2) would completely determine the discrete time history of 
Pk. the estimation error covariance. The missing ingredient is the sequence of 
filter gam matrices Kk*. I h e  filter covariance equations must be solved in order 
to produce this sequence. These equations are, for propagation 

Pk+,*(-)=@k*Pk*(+pk*T + Qk* (7.6-3) 

for gain calruIation 

and for updating 

where 

and 

Figure 7.6-1 is an information flow diagram illustrating the relationship 
between these two sets of recursion formulae. The upper half of the diagram 
represents the iterative solution of the filter covariance equations. These are 
solved m order to generate the sequence of filter gains. Kk*, which is a necessary 
input to the lower half of the diagram, representing Ule iterative solution of the 
truth model covariance equations. 

PROGRAM ARCHITECTURE 

A "macro flow chart" of a main program and its communication with two 
subroutines, is shown in Figure 7.6-2. The function of the main program is to 
update and propagate both system and fiter covariances, P and P*, in a single 
loop. A single time step is taken with each passage around the loop. Note that 
the filter gain and update calculations are performed before the system update 
calculation because the current filter gain matrix must be available as an input to 
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FCn 7.61 Covariance Analysis Information Flaw 

the latter. For constant dynamics problems, no subroutines are needed; the 
values of F, F*, Q, Q*, H, H', R, and R* are read in as inputs and do not change 
thereafter. These constant matrices along with the initial values, Po and PO*, 
completely determine the solution. For time-varying problems a subroutine 
TVM is called once during each passage around the loop. Its function is to  
generate the time-varying elements of the system and filter matrices. 

While the main program is generally applicable to a broad class of problems, 
TVM is a special purpose subroutine which is tailored to a varticular 
time-varying problem. TVM can be designed in a variety of ways. For example, 
in the case of problems involving maneuvering vehicles a useful feature, 
corresponding to the organization shown in Figure 7.6-2, is the inclusion of a 
subsidiary subroutine TRAJ, which provides trajectory information. Once each 
time step TRAJ passes position, velocity and acceleration vectors c, 7, a n d  to 
TVM. TVM generates various matrix elements, which are expressed in terms of 
these trajectory variables. This modular organization is useful in a number of 
ways. For example, once TVM is written for a particular truth model, 
corresponding to a given fdter evaluation problem, the evaluation can be 
repeated for different trajectories by inserting different versions of TRAJ and 
leaving TVM untouched. Similarly, if two or more filter designs are to be 
compared over a given trajectory, different versions of TVM can be inserted 
while IeavingTRAJ untouched. TRAJ can be organized as a simple table-look-up 
procedure, or as a logical grouping of expressions representing a sequence of 
trajectory phases. Individual phases can be constant velocity or constant 
acceleration straight line segments, circular arc segments, spiral climbs, etc. The 
particular group of expressions to be used during a given pass depends on the 
current value of time. 

An overall system performance projection for a given trajectory can be 
generated in a single run by inputting appropriate elements of Po, Q, and R, 
corresponding to the entire list of truth model error sources. The effects of 

F@ue 7.6-2 Covuinna Rogun Macro Plow olnrt 

changing the trajectory, the update interval or the measurement schedule can be 
found using repeat runs with appropriate changes in the trajectory subroutine or 
the parameters, such as At, which control the sequencing of the main program 
loop. Contributions to system error of individual error sources, or snall groups 
of enor sources, can be found by inputting individed or small groups of 
elements of Po, Q, and R. A sequence of such runs c-I be used to generate s 
ryrtern mor budget of the typ discuaaed in Section 7.4, which tabuhtes these 
individual contributions separately. Such n tabulation reveals the major error 
contniuton for a given dedgn. The time-history plots produced in conjunction 
with these error budget runs are also useful in lending inaight into the important 
error mechrnimu involved. This information and these indghts are very,helpfd 
in ruggnting filter deaign improvements. 
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Obssrve that m the n d y  rtate (6 I 1 = = Cl1 = 0). the elements of the a r m  cavaripnw 
matrix all mi&. While the process being a b x m d  is nonrtatianary and grows without 
bound, the estimate canverges on the true values of the states. Notice a h  that, since the 
enor covariance vanishes, the tifitex gain matrix vanirbes. Show that if there is a small 
amount of white noise of spectral density q forcing the rtate - i.e., 

m d  if that forcing function is not accounted for in the filter design (i.e., the s i n s  are 
allowed to go  to zero), the error covaMnce grows according to the relations 

8. IMPLEMENTATION 
CONSIDERATIONS 

In Chapter 7, the effects of either inadvertent or intended discrepancies 
between the tnre system model and the system model "assumed by the Kalman 
fdter" were described. The rms estimation errors associated with the swalled 
arboptimal Kalman filter are always larger than what they would have been had 
the fdter had an exact model of the true system, and they are often larger than 
the predicted rms errors associated with the filter gain matrix computation. In 
addition, the computations associated with calculating the true rms estimation 
errors are more complicated than those associated with the optimal filter. In this 
chapter, these same kinds of issues are addressed from the standpoint of 
real-time implementation of the Kalman filter equations. The point of view 
taken is that a simplified system model, upon which a Kalman fdtering algorithm 
is to  be based, has largely been decided upon; it remains to implement this 
algorithm in a manner that is both computationally efficient and that produces a 
state estimate that "tracks" the true system state in a meaningful manner. 

In most practical situations, the Kalman fdter equations are implemented on 
a digital computer. The digital computer upd  may be a small, relatively slow, or 
special purpose machine. If an attempt is made to implement the "theoretical" 
Kalman fdter equations, often the result is that it is either impossible to  do so 
due to the limited nature of the computer, or if it is possible, the resulting 
estimation simply does not correspond to that predicted by theory. These 
difficulties can usually be ascribed to the fact that the original model for the 
system was inaccurate, or that the computer really cannot exactly solve the 
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Kalman fdter equations. These difficulties and the methods that may be used to 
overcome them are categmized in this chapter. The material includes a 
discussion of: 

modeling problems 
constraints imposed by the computer 
the inherently f ~ t e  nature of the computer 

a special purpose Kalman fdter algorithms 
computer loading analysis 

When reading this chapter, it is important to keep in mind that a unified body 
of theory and practice has not yet been developed in this area. Thus, the 
discussion encompasses a number of ideas which are not totally related. Also, it 
is to be emphasized that this chapter deals with ral-time applications of K h a n  
fdtering, and not covariance analyses or monte carlo simulations performed on 
large generalpurpose digital computers. However, many of the concepts 
presented here are applicable to the latter situation. 

8.1 MODELING PROBLEMS 
Performance projections for data processing algorithms such as the Kalman 

fdter are based on assumed models of the real world. Since these models are 
never exactly correct, the operation of the filter in a real-time computer and in a 
real-time environment is usually degraded from the theoretical projection. 
This discrepancy, commonly referred to as "divergence", can conveniently be 
separated into two categories: apparent divergence and true divergence (Refs. 1, 
2, 3). In apparent divergence, the true estimation errors approach values that are 
larger, albeit bounded, than those predicted by theory. In true divergence, the 
true estimation errors eventually become "infinite." This is illustrated in Fig. 
8.1-1. 

!kRUE * (Q'- 
3 

THEORETICAL THEORETICAL 

TIME TIME 

la) Apparent Diverge- (b) True Divagena 

Pipre 8.1-1 Two Kinds of Divergence 

Apparent divergence can arise wheq there are modeling errors which cause the 
implemented filter to be suboptimal - i.e., it yields a larger rms error than that 
predicted by the fdter covariance computations. This type of behavior was 
discussed in Chapter 7. True divergence occurs when the filter is not stable, in 
the sense discussed in Section 4.4 and Ref. 3. or when there are unmodeled, 
unbounded system states, which cause the true estimation to grow without 
bound. These concepts are illustrated in the following example. 

Example 8.1-1 
As shown in Fig. 8.1-2, the Kalman filter designer aspurnel that the state to be estimated. 

x2,  is simply a bias whereas, in fact, x2(t) is a bias, ~ ~ ( 0 ) .  p h s  the ramp, xl(0)t. Recall from 
Example 4.3-1 that the filter ir simply a fist-order lag where the gain k(t) - 0 as 1 - -. 

I 

REAL WORLD KALMAN FILTER 

Figure 8.1-2 Example System Illustrating True Divergence 

Thus eventually, i 2 ( t )  diverges as xl(0)t. The analogous discrete filtering problem displays 
sirnib behavior. More complicated examples of divergence are given in Refs 46 and 47. 

Practical solutions to the true divergence problem due to modeling errors can 
generally be grouped into three categories: estimate unmodeled states, add 
process noise, or use finite memory fdtering. In the first of these, if one suspects 
that there are unmodeled growing states in the real world, they are modeled in 
the filter for "insurance." Thus, in Example 8.1-1, a ramp state would have been 
included in the filter. However, this approach is generally considered unsatir 
factory since it adds complexity to the filter and one can never be sure that all 
of the suspected unstable states are indeed modeled. The other two categories 
are treated below. More sophisticated approaches are also possible. For example, 
see Refs. 4 and 17. 

FICTITIOUS PROCESS NOISE 

An attractive solution for preventing divergence is the addition of fictitious 
process noise y(t) to the system model. This idea is easily explained in terms of 
Example 8.1-1. Suppose that the true system is thought to be a bias& = O), 
but that the designer purposely adds white noise (in = w), as shown in Fig. 
8.1-3. The Kalman filter based on this model has the same form as that in Fig. 
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8.1-2. However, as shown in Fig. 8.13, the Kalman gain k(t) now approaches a 
constant nonzero vahe as t -* .a. If, as in Example 8.1-1, the true system consists 
of a bias plus a ramp, the Kalman filter will now track the signal x, with a 
nongrowing error. 

P i y e  8.1-3 The Use of Fictitious Process Noise m Kalman Filter Msipi 

The reason that this technique works can be seen by examining the Riccati 
equation for the error covariance matrix P: 

In steady state, P= 0 so that 

If certain elements of Q are zero, corresponding elements in the steady-state 
value of P, and consequently K, are zero. Thus, with respect to the states 
assumed not driven by white noise, the filter disregards new measurements 
("non-smoothable" states, see Section 5.2 and Ref. 5). However, if these 
elements of Q are assumed to be nonzero, then the corresponding elements of K 
will be nonzero, and the filter will always try to track the true system. 
Analogous remarks can be made about the discrete case. 

The choice of the appropriate.level of the elements of Q is largely heuristic, 
and depends to a great extent upon what is known about the unmodeled states. 
Some examples are given in Ref. 6. 

FINITE MEMORY FILTERING 

The basic idea of finite memory fdtering is the elimination of old data, which 
are no longer thought to  be meaningful (this is often called a "moving 
window.") This idea is conveniently explained in terms of an example. 

E x m e  8.1-2 
The hue system h the same as that in Example 8.1-1. The designer wisher to utimate 

the assumed bias x2, using a simple avewer of the form 

Ht) = X,(t) + V(t) 

Note that this avenger only uws data T units of time into the pot.  If, in fact, xl(t) also 
contains a ramp, then 

Z(t) = X,(O) + %,(O) t +"(t) 

It follows that 

The estimation error is 

It is easy to show that the m value of this error ir bounded for a timed value of thedata 
mndaw T. Thlhowh an unknown ramp h present, the estimator is able to track the signal 
with a bounded-. 

Although this example does serve to illustrate the concept of finite memory 
fdtering, it does not represent a recursive filtering algorithm. In order to 
correspond to, and take advantage of, the discrete Kalman filter famulation, it 
is necessary to cast the finite memory filter in the form 

where &(N) is an estimate of g at time tk based on the last N data points, Bk is 
the transition matrix of the filter, and Kk is the filter gin. Somehow, the finite 
memory property of the filter must be embodied in Bk and Kk. Also, an 
additional term in Eq. (8.1-3), i n v ~ l v i n g q - ~ , m a y  be needed to "subtract out" 
the effect of old measurements. The problem of casting the finite memory filter 
in the form of Eq. (8.1-3) has not yet been satisfactorily resolved, although some 
work based on least-squares ideas has been done (Ref. 7). However, three 
practically useful approximation techniques do exist; these are described in the 
following paragraphs. 
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Direct Limited Memory Filter Theory - If there is no process noise (Q=O), 
Jazwinski (Refs. 8, 9) has shown that the equations for the limited memory 
fiter are (j < k) 

where 

pk(N) = best estimate of z k ,  given last N = k-j measurements 

Pklk = covariance of ik- 4 ,  that is, Pk(+) in "normal" nomenclature 

Pkl, = covariance of akU-xk where $ is estimate of & given j 'i measurements - i.e., ik,, = O(k,j)x,(+) 

= O K j )  Pi(+)BT(k,j) 

O(k,j) = transition matrix of the observed system 

pk(N) = covariance of dk(N)- xk 

From Eq. (8.14), it is seen that the limited memory filter estimate is the 
weighted difference of two infinite memory fdter estimates. This is unacceptable 
both because the weighting matrices involve inverses of the full dimension of 
x - a tedious computation - and because the wmputation involves two infinite 
memory estimates, the very calculation sought to  be avoided. 

An approximate method of solving Eq. (8.1-4) has been devised, that 
largely avoids the above difficulties. This method is illustrated in the following 
(see Fig. 8.14), for a hypothetical example where N = 8: (1) Run the regular 

P i e  8.14 Measurement Schedule far the Limited Memory Example 

Kalman filter rrom (a) to  (b) in Fig. 8.14, obtaining i s ,  PSIS = Pa(+); 
(2) Continue to run the regular Kalman filter from (b) to (c). obtaining i 1 6 ,  
PI6116 = PI((+); (3)Calculate i1618 = O(16,8)&, P l s l s  = 0(16,8)Pa(+). 
0T(16,8); (4)Calculate $6(8) and P16(8) from Eq. (8.14); and (5) Run the 
regular Kalman filter from (c) to (d) using a16(8)  and P , , ( ~ )  as initial 
conditions, etc. Note that for k > 8, 'ik is conditioned on the last 8 to 16 
measurements. 

Jazmnski (Refs. 8, 9) has applied this technique to a simulated orbit 
determination problem. The idea is to estimate the altitude and altitude rate of a 
satellite, given noisy measurements of the altitude. The modeling error in the 
problem is a 0.075% uncertainty in the universal gravitational constant times the 
mass of the earth, which manifests itself as an unknown bias. Scalar 
measurements are taken every 0.1 hr and the limited memory window is N = 10 
(1.0 hr). The results are shown in Fig. 8.1-5. Note that the "regular" Kalman 
fiter quickly diverges. 

The E Technique - As indicated earlier, fdter divergence often occurs when 
the values of P and K, calculated by the filter, become unrealistically small and 

! , 
, 

DATA GtP ; 

TIME ihrr)  

I ORBIT - BETWEEN 8and 34 EARTH RADII 
o13sERvnTloN NOISE = Llnm I 

P i e  8.14 Podtian Estimation Error fa the Regular and Limited Memory 
Kalman Filters (Refr 8, 9 )  
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the filter stops "paying attention" to new data. These ideas motivate the 
addition of a correction term t o  the regular Kalman filter update equation, 
which is based on the current measurement. lhis concept, which is due to 
Schmidt (Refs. 9, 10, 11), a n  be expressed mathematically as 

where the subscript reg denotes "regular" - i.e., 

[,+l(+)-,(+j reg = K ~ + , [ , , - H ~ + , * ~ & ( + ~  (8.16) 

and where 

In Eq. (8 .14 ,  Kk is the "regular" Kalman gain based on the assumed values of 
F, 4. Qk, rk, and Po. In Eq. (8.1-7), #denotes the pseudoinverse, zk+l musf 
be a scrdor (Hk is a row matrix, rk is a scalar), and E' IS a scalar factor to be 
determined. Since Hk is a row vector, Eq. (8.1-7) reduces to 

Equations (8.1-7) and (8.1-8) represent the best estimate of - Bkik(+), 
based only on the current measurement residual (Ref. 12). Note that this 
estimate retains the desirable property that Aik+l = Q ~f z k + ~  = Hk *k ak(+). 
Smce xk generally has more components than the scalar measurement zk, the 
problem is underdetermined, and use of the pseudo-inverse is required. 

It is convenienr to define a new scdar, E, where 

Note that the numerator and denominator of Eq. (8.1-9) are scalars. If Eqs. 
(8.1-8) and (8.1-9) are substituted into Eq. (8.1-S), the update equations become 

From this equation, it is seen that the effective gain of this modified filter is 

where KO, is an "overweight" gain proportional to E. Meaningful values of E lie 
in the range of 0 to  I, and are usually chosen by experience or tr~al and error. Of 
course, E = 0 corresponds to the "regular" Kalman filter. When E =  1, Hk+, ' 

= zk+l - i.e., the estimate of the measurement equals the measurement. 
Using the techniques in Chapter 7, it can be shown that the covadance matrix 

of the estimation error is 

assuming that the modeled values F, Qk, Hk, rk, and Po are correct. Practically 
speaking then, this technique prevents Pk(+) from becoming too small, and thus 
overweights the last measurement. This is clearly a f a m  of a lim~ted memory 
filter. A practical application of the "E technique" is given in Ref. 10. 

Fading Memow Filters and Ageweighting (Refs. 9. 13-16) - Discarding old 
data can be accomplished by weighting them according to when they occurred, 
as illustrated in Fig. 8.1-6. This means that the covariance of the measurement 
noise must somehow be increased f a  past measurements. One manner of 
accomplishing this is to set 

where j is some number greater than or equal to one, Rk is the "regular" noise 
covariance, Rk* is the "new" noise covariance and j denotes the present time. 
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For example, suppose R k  is the same for all k - i.e., Rk = R A convenient 
way to think of the factor s is 

where At is the measurement interval and r is the ageweighting time constant. It 
then follows that 

R $ - m = ( e m A t / r ) ~ ,  m=O,1 ,2 ,  

This is illustrated in Fig. 8.1-7. 

Figurr 8.1-7 Conceptual Ulusuatian of Ageweighted Noise Covariance Matrix Behavior 

A recursive Kalman fdter can be constructed under these assumptions. The 
equations are: 

Comparison of this set of equations with the set for the Kalman fdter will show 
that they are nearly identical. The only difference is the appearance of the 
age-weighting factor, s, in the equation for Pek(-). There is, however, a 
conceptual difference between these sets. In the case of the Kalman fdter (s=l), 
P;, (usually denoted by Pk) is the error covariance, E [ G k  - x k ) G k  - z ~ ) ~ ] .  If 

s+l, it can be shown that in general P'k is not the enor covariance. The true 
error covariance can easily be calculated using the techniques in Chapter 7. 

Example 8.1 3 
The ageweighted filter will now be applied ta the simple example, used several times 

previously in this section and illusuated again in Fig. 8.1-8. For this ase ,  i t  follows fiam 
Eq. (8.1-16) that the necessary equations are 

where a lower case p'k is used to emphasize the scalar nature of the example. Far steady 
state, p'k(+) = ~ ' k - ~  (+) = p', and the solution is 

Note that k, > 0 for all s > 1. This is exactly tlie desired behavior; the gain does not "turn 
off'as it does in the "regular" Kalman riter. 

Figure 8.14 Bias System and Matrice (lowu caJeq,9. 
r, h denote scalars) 
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It can also be shown that for this problem as k becomes large the error covariance. 

pk(+) = E[(&(+) - xk) '~,  approaches the limit 

when s > 1. This equation h rummarized in Table 8.1-1 for s=l and -. Note that when 
p .m.  Gk equals the measurement. This implies that the Titer also disregards the initial 
condition information, E[X?O)~; hence, the caption, "one-stage estimator." 

TABLE 8.1-1 LIMITING CONDITIONS OF THE ACEWEIGHTED 
FILTER EXAMPLE 

Regular Kalman Filter One-Stage Estimator 
1 I 

8.2 CONSTRAINTS IMPOSED BY THE COMPUTER 
Generally speaking, the class of digital computers available for a particular 

mission is largely constrained by considerations (e.g., weight and size restric- 
tions) other than the complexity of the Kalman filter equations. This leads one 
to attempt to  reduce the number of calculations performed in the implemen- 
tation of the fdter as much as possible. To accomplish this, the following 
techniques are often used: reducing the number of states, decoupling the 
equations (or otherwise simplifying the F matrix), and prefillering. 

DELETING STATES 

Deleting states implies eliminating states in the system model upon which 
the filter is based, thus automatically reducing the number of states in the flter. 
Presently, state reduction is largely based upon engineering judgement and 
experience. However, some general guidelines (also see Section 7.1) are: 
(1) states with small r m  values, or with a small effect on other state 
measurements of interest, can often be eliminated; (2)states that cannot be 
estimated accurately, or whose numerical values are of no practical interest, can 
often be eliminated; and (3) a large number of states describing the errors in a 
particular device can often be represented with fewer "equivalent" states. These 
ideas are illustrated below. 

Example 89-1 
The error dynamics of an extanally-aided inertial navigation system can be reprerested 

in the form shown in Fig. 82-1 (Refs. 18-21). Typically, 25 to  75 states are required to 
describe ruch a system. However. long-term position error growth is eventually dominated 

F i r e  8.2-1 Error Fiow in .n Inertial Navigation System 

by gyro drift rates and the asmciaied 24hr d y ~ m i c s .  Thus. if external position and velocity 
measurements are not available frequently, accelerometer errors, gravity unacrtainties, and 
the 84-minute (Sehulcr) dynamics can generally be neglected in the Titer. Of coluse. 
estimates of the high frequency cmponents d velocity error .re lost in this s impl i f i  
filter. Even if measurements are available frequently, optimal cov.riance studies will often 
show that although the 84-minute dynamics must be modeled in the filter, mor sMllces 
ruch as accelerometer errors, ve r t id  deflections, and gravity nnomalics cannot be estimated 
accurately relative to their a p i o e  rms values mus, states representing these errors need 
not be modeled in the Titer. 

DECOUPLING STATES 

One method of simplifying the Kalman filter equations is to decouple the 
equations. As mentioned in Section 7.1, the rationale here is that there are 
always fewer computations involved in solving two sets of equations of 
dimension 1112, as opposed to one set of dimension n. For exdmple,suppose the 
model equations are 

If the elements of F r 2  and F2 are small, and if w r  and w, are uncorrelated, it 
may be possible to uncouple& and g 2  and work with the simplified set 

Of course, covariance studies would have to be performed to determine whether 
Eq. (8.2-2) was a reasonable approximation to Eq. (8.2-1). 
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Example 8.2-2 

A more sophisticated approach to  the decwpling problem was recently taken with 
regard to an Apollo application (Ref. 26). In general, the system oquationr can be 
partitioned to read 

The goal ir to  eliminate the states 21 from the fdter, thus reducing its complexity, but still 
somehow compensating for their Ion. The true gain eguatmn far K r  can be w"tten 

If P I I  is small and P1l 1s dominated by its diagonal elements (and they only vary slightly 
about their initial conditions), then the fallowing approximations can be made: 

The gain equation reduces to 

This is the "normal" equation far K , ,  when is neglected, plus the extra term 
W n ( 0 ) h T .  

For the Apdlo application in question, represented the position and velocity at the 
orbitlng spacecraft, and a represented ten insbummt bi-. The measurements are range, 
rangerate, and pointing error. In Table 8.2-1, the performance of the optimal and reduced 

I; state liltem are compared Note that 80% of the perlomanee loss, realized when s2 was 
deleted, h recovered by the inclusion of the term HIPII(0) H ~ T .  

TABLE 8.2-1 COMPARISON OF OPTIMAL AND REDUCEDSTATE FILTERS 

Often, other kinds of simplifications can be made in the F matrix "assumed" 
by the fdter. For example, it is common to approximate broadband error 
sources by white noise, thus eliminating certain terms in the F matrix. Even if 

this simplification does not actually decouple certain equations, it offers 
advantages in the computation of the transition matrix, particularly if use is 
made of the fact that certain elements in the F matrix are zero. 

PREFILTERING 

The concept of "prefdtering," (also referred to as "measurement averaging," 
or "data compression") is motivated by cases where measurements are available 
more frequently than it is necessary, desirable, or possible to process them. For 
example, suppose measurements of a state _x are available every At. Suppose 
further that the time required by the computer to  cycle through the Kalman 
filter equations (obtain gk+l and Pk+l from dk,  Pk, and a) and to perform 
other required operations is AT, where AT = nAt for n 7 1. Clearly each 
individual measurement cannot be used. However, it isgenerally wasteful to use 
the measurement only every AT seconds. This problem is often resolved by using 
some form of average of the measurement (over AT) every AT seconds. 

To illustrate what is involved, consider the scalar measurement 

After every AT seconds, an averaged measurement zVm is used, where 

where the index i runs over the measurements collected during the previous AT 
interval. In order to use the standard Kalmanfdtering equations, zVm must be 
put in the form (state) t (noise). Therefore, by definition, the measurement 
noise vtm must be (measurement) - (state), or 

Reduced Nohe Additional 
Due to Noise Due to 

Smoothing the Smoothing 
Odgbd  Noise the Signal 

As indicated in Eq. (8.2-5), the original noise vk is indeed smoothed but there is 
an additional error due to smoothing the signal xk. 
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To use the Kalman filter, the variance of v',,, must be specified. Since vk and 
xk are assumed independent, this calculation reduces to  specifying the variance 
of the "reduced noise" and the "additional noise." Since vk is an unconelaied 
sequence, and if E[vka] =a,', then 

Properties of the "additional noise" depend on statistical properties of xk. For 
example, suppose that n = 2, and that 

It then follows that 

It is very important to realize that the measurement noise vtm, associated 
with the averaged measurement, is not white noise and - in addition - is 
correlated with the state x; both facts being due to the presence of the 
"additional noise." This must be accounted for in the Kalman filter mechanba- 
tion or serious performance degradation may result. An approximate method for 
accomplishing this is indicated in Ref. 10. A more exact technique involves the 
swalled "delayed state" Kalman filter (Refs. 27,28). 

Recent work by Joglekar (Refs. 51 and 52) has attempted to quantify the 
concept of data compression and presents examples related to aircraft navigation. 
For example, Joglekar shows that the accuracy lost through data compresrion 
will be small if the plant noise p is small compared to the observation noise v. 
Other examples of pefitering and data compression are given in Ref. 24 
(inertial navigation systems), Ref. 48 (communication systems), Ref. 49 
(trajectory estimation) and Ref. 50 (usage in the extended Kalman titer). 

8.3 THE INHERENTLY FINITE NATURE OF THE COMPUTER 
A digital computer cannot exactly solve analytic equations because numerical 

algorithms must be used to approximate mathematical operations such as 
integration and differentution (thus leading to truncation errors) and the word 
length of the computer is finite (thus leading to mundof/enors). The nature of 
the resultant errors must be carefully considered prior to  computer implemen- 
tation. Here, these errors are described quantitatively along with methods for 
reducing their impact. 

ALGORITHMS AND INTEGRATION RULES 

Kdman Filter Equations - In practical applications, the discrete form of the 
Kalman filter is always used. However, the discrete equations arise from 
sampling a continuous system. In particular, recall from Chapter 3 that the 
continuous system differential equation is "replaced by 

Similarly, the covariance matrix Qk of F~ is related to the spectral density 
matrix Q by the integral 

Further, r e d l  that the discrete Kalman fdter equations are 

where 

Thus, exclusin of other matrix algebra, this implementation of the Kahnan fdter 
includes a matrix inverse operation and determination of % and 4. Algorithms 
designed to calculate matrix inverses are not peculiar to  Kalman filtering and 
they are weU-documented in the literature (see, for example, Ref. 30). 
Consequently, these calculations will not be discussed further here. although a 
method for avoiding the inverse is given in Section 8.4. 

The state transition matrix 9 is obtlined from 

and Qk is given by Eq. (8.3-2). Differentiation of this equation using Leibniz' 
formula yields 

Thus, solutions to matrix differential or integral equations are required. 
Exduding those cases where the solution is known in dosed form, Eqs. (8.3-5) 
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and (8.3-6) may be solved by either applying standard integration rules that will 
solve differential equations in general, or by developing algorithms that exploit 
the known properties of the equations in question. It is to be emphasized that 
the following discussion is slanted towards real-time applications. However, the 
results can generally be extrapolated to the off-line situation, where computer 
time and storage considerations are not as critical. 

Integration Algorithms - Standard integration rules typically make use of 
Taylor series expansions (Refs. 31 and 32). To illustrate, the solution to the 
scalar differential equation 

can be expressed as 

where the initial condition x(to) is known. The two-term approximation to Eq. 
(8.3-8) is 

where the subscript k refers to time tk, and where 

The integration algorithm represented by Eq. (8.3-9) is called Eulefs method. 
For many problems, this method is unsatisfactory -the approximate solution 
diverges quickly from the true solution. 

A more accurate algorithm can be derived by retaining the first three terms of 
Eq. (8.3-8), 

The second derivative can be approximated according to 

so that 

However, this is not satisfactory since ik+l is not known. Recalling that ik = 
f(x,, tk) exactly, and approximating xk+] by 

we see that ik+, can be approximated as 

Substitution of Eq. (8.3-15) into Eq. (8.3-13) yields the algorithm 

This algorithm is known as the "modified Euler method. All of the more 
sophisticated integration algorithms are extensions and modifications of the 
Taylor series idea. For example, the Runge-Kutta method uses terms through the 
fourth derivative. 

The important point to  be made is that theoretically, the accuracy of the 
algorithm increases as more terms of the Taylor series are used. However, 
computer storage requirements, execution time, and roundoff errors also 
increase. This tradeoff is illustrated in Fig. 8.3-1. In this figure, "truncat~on 
enor" refers to  the error in the algorithm due to the Taylor series 
approximation. 

COMPLEXITY OF INTEGRATION RULE 

iyn oi term, m loyla ~ermer medl  

Figure 8.Sl Integration Algorithm Tradeoffs 
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Special Algorithms f a  me Transition Matrix - As opposed to general 
integration algorithms, consider now the special case of the equation for the 
transition matrix 

If F is constant, it is well-known that 

where At = t2  - t l .  When At is less than the dominant time constants in the 
system, n on the order of 10 a 20 will furnish six to eight place decimal digit 
accuracy. For At much smaller, just two or three terms may suffice. For larger 
time intervals, At, the property 

is used so that 

In most realistic cases, F is not time-invariant. However, the exponential 
time-series idea can still be used - i.e., 

when t2 - t l  is much less than the time required for significant changes in F(t). 
Equation (8.3-19) can then be used to propagate 9. 

Example 9.3-1 

Considen the cere where F(t) h the 1 X 1 matrix sin Dt, where f I  is  15 deglhr (earth 
rate). Suppose the desired quantity is the transition matrix *(a5 hr, 0). Equations (8.341) 
and (8.>19) are applied for an increas&ly larger number of rubdivisions of the 0.5 hr 
intowl. The c h l a t e d  d u e  of e(0.5 hr, 0) ia plotted in Fi. 8.3-2, and it isskn that m 
aefeptable interud ovn which the constant F matrix approximation can be used is Lsu Urn 
6 minutes. 

NVMBER OF SUBDNlYONS OF 0.5 hr INTERVAL 

F i  8.3-2 Cahlated Vdue of * 

Other examptes of the "constant F approximation'' are: 

a) q zz 1 + At F(t> 

c) Multiplying out (a), 
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where O(Atl) indicates terms of order At1 or higher. Of these algorithms, @) is 
more accurate than (a) because more terms are used in the series, (a) and (b) are 
more accurate than (c), but (c) requires the least computer space and 
computation time. 

Example 8.3-2 
An algorithm wmidmed for 9 in the C-SA siraaft navigation program ( R e t  10) is a 

modification of (b) and (c) just d u c u s d  Multiplying (b) out, 

where F, is the timeinvariant oortion of F(ti) - ie., 

and F' (ti) is time varying Note that the cror,product IRm has been ocglectcd. This tam is 
both smaU and mmputatiomUy costly. 

Algorithms f a  4 - The design of algorithms that calculate Qk is motivated 
by the same considerations just outlined for 9. Consider first the case of 
applying standard integration rules to Eq. (8.3-6). Suppose, for example, it is 
desired to obtain Qk by breaking the mterval (tk, tk+l) into N equal steps of 
'length" At, and then applyrng Euler's method. Denote calculated values of Qk 

aiter each integration step by &(At), Qk(2At), etc., where Qk(NAt)= &, and 
let F (tk + iAt) = Fi. Then according to Eq. (8.3-6) and Eq. (8.3-9), 

and 

where Q is assumed constant. If this process is continued, one obtains 

In addition, like the equation for 9 ,  the equation for Q has certain known 
properties which can be exploited. In particular, note that Eq. (8.3-6) for Q is 
identical to the matrix Riccati equation with the nonlinear term absent. 
Therefore, it follows from Section 4.6 that if F and Q do not change appreciably 
over the interval tk+] - tk, then 

Qk = @hy ( k + l  - * ~ h ~ ( ~ k + l  - 'k) (8.3-25) 

where bAy and Ohh are submatrices of the transition matrm 

corresponding to the dynamics matrix 

Thus, the problem reduces to  determining algorithms to evaluate transition 
matrices. A more sophisticated application of the relationship between Qk and 
the matrix Riccati equation is given in Ref. 33. 

WORD LENGTH ERRORS 

Computer errors associated with finite word length are best visualized by 
considering multiplication in a f id-point  machine. As illustrated in Fig. 83-3, 
the calculated value of the product a x b is 

where r is a remainder that must be discarded This discarding is generally done 
in two ways: symmetric rounding up or down to the nearest whole number or 
chopping down to the next smallest number (Ref. 34). 
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- 
MUST BE DISCARDED 

Symmetric rounding and chopping are illustrated in Fig. 8.3-4. Note that m 
symmetric rounding, the probability distribution p(r) of the remainder is 
symmetric about r = 0; whereas m chopping, the remainder r is either positive or 
negative depending upon the sign of ab. Thus if the products are in fact 
consistently positive or negative, truncating tends to produce systematic and 
larger errors than symmetric rounding. This is illustrated in Fig. 8.3-5. 

Fim~re 8.34 Distribution of Ihe Remainder for Symmetric Rwoding and Qlopping 
(Q = n u m k  of bits) 

r TIME - I 

-50 
10) CHOPPING 

-a5 
(b) SYMMETRIC ROUNDING 

Fiwre 8.3-5 Errors Due to Finite Word Length (Ref. 34) 

The errors caused by finite word length can be determined in two ways. One 
is to solve the Kahnan fdter equations by direct simulation on a machine with a 
v q  long word length, then solve the fdter equations again using the shorter 
word length machine in question (or on a short word length machine simula- 
tion), and compare the results. The other is to  use the probability distribution in 
Fig. 8.34 and theoretically compute the roundoff error. The choice of methods 
depends upon the availability of computers and the tradeoff between engi- 
neering time and computer time. 

Analytic Methods (Ref. 34) - The basic idea of using probability distribu- 
tions in Fig. 8.34 is the following. Suppose, for example, it is desired to 
calculate 
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The value of y calculated by the computer is - 

E =I, + r2 + . . . + rn @er component) 

r = word length error at each multiplication 

If it is assumed that all r's have the same distribution, symmetric rounding is 
used, ana the r's are independent, then it follows from the central limit 
theorem (see Section 2.2) that E is approximately gaussian and has the variance 

0,' = no,' = 2*@ (per component) (8.3-3 1) 

From this equation, it is seen that roundoff error increases as the number of 
calculations (n) increase and decreases as the word length (2) increases, an 
intuitively satisfying result. 

With respect to  Kalman filter applications, these concepts can be used to 
calculate the mean and covariance of the error in the calculated value of 1, due 
to word length errors. These ideas can also be extended to floating-point 
machines, although the manipulations become more cumbersome. 

EFFECT OF WORD LENGTH ERRORS 

In Kalman fdter implementations, word length errors tend to manifest 
themselves as errors in the calculation of the "filtercomputed" covariance 
matrix Pk(+) and in ir. Since the equation for Pk(+) does not account f a  word 
length errors, Pk(+) tends to assume an unrealistically small value and perhaps 
even loses positivedefiniteness and thus, numerical significance.* This causes 
inaccuracies in the calculation of the gain Kk which in turn may cause the 
estimate ik to  diverge from the true value xk. 

There are several ways in which sensitivity to  word length errors can be 
reduced. These include minimizing the number of calculations, increasing word 
lenglh (double precision), specialized Kalman filter algorithms, E technique, 
choice of state variables, and good a priori estimates. The f is t  of these involves 
techniques described elsewhere in the text (decoupling, reduced state filters, 
etc.), while the second is an obvious solution limited by computer sue. Special- 
ized Kalman filter algorithms are discussed in Section 8.4. The remaining alterna- 
tives are discussed separately in what follows. 

*Positive-definiteness is generally only lost if the filer model is umntrollable and thus the 
filer is M t  asymplotieally stable. 

The E Technique - The E technique was discussed in Section 8.1, in 
conjunction with finite memory fdtering. Recall from that discussion that this 
technique consists of increasing the Kalman gain in such a manner so as to  give 
extra weight to the most recent measurement. The resultant theoretical P matrix 
is increased according to Eq. (8.1-12). Therefore, the e technique also produces 
the desired result for the problem at hand, preventing Pk from becoming 
unrealistically small. Often a modification of the technique is used, where the 
diagonal terms of Pk(+) are not allowed to fall below a selected threshold. 

The effectiveness of the e technique is illustrated in Table 8.3-1. Note that 
without the e technique, and contrary to the previous discussion, symmetric 
rounding is inferior to chopping. This is commented upon in Ref. 35 as being 
curious and points out that each problem may have unique characteristics which 
need to be examined closely. 

TABLE 8.3-1 TYPICAL ERRORS FOR AN ORBITAL ESTIMATION PROBLEM FOR 
20 ORBITS (REF. 35) - 150 NM ClRCULAR ORBIT, 28 BIT MACHINE 

Maximum Enor 

Without r Technique I With r Technique 

Gwd A Priori Estimates (Rd. 36) - For a fixed-point machine, roundoff 
causes errors in the last bit. Therefore, it as advantageous to fdl the whole word 
with significant digits. For example, suppose the maximum allowable number is 
1000 with a roundoff error of e 1. Thus, if all numerical quantities can be kept 
near 1000, maximum error per operation Z 1/1000 = 0.1%. It follows that it is 
advantageous to obtain a good initial estimate, f,. Then Pk and & will not 
differ greatly from Po and &, and all of the quantities can be scaled to fill the 
entire word. 

Symmetric Rounding 32,000 ft 

8.4 ALGORITHMS AND COMPUTER LOADING ANALYSIS 

153 it 

This chapter has emphasized the fact that in any real-time application of 
Kalman f d t e ~ g ,  key issues are the accuracy of the implemented algorithm in 
the face of fmite word length and other "noise" sources, and the associated 

Choppins I 12,000 ft 550 ft 

Choice of State Variables (Rd. 36) - Consider a spacecraft orbiting the 
moon and attempting to estimate altitude with an altimeter as the measurement 
source. There are three variables, two of which are independent and should be 
included as state variables: the radius of moon, R, the radius of orbit, r, and the 
altitude h = r - R. After a number of measurements, h can theoretically be 
determined with great accuracy. However, uncertainties in R and r rem$n larg.5 
thus, R and h or r and h should be used as state variablesLOtherwise, h = i -  R 
tends to have a large error due to roundoff erras  in i and R. 
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computer burden in t e r n  of memory and execution time. In this section, 
certain specialized algorithms are discussed from this perspective, including an 
example of "computer loading analysis." 

PROCESSING MEASUREMENTS ONE AT A TIME 

As early as 1962, it was known that the Kalman filter algorithm was in such a 
form as to avoid the requirement f a  taking the inverse of other than a scalar 
(Refs. 37 and 38). This is because the update equation for the covariance matrix, 

contains an inverse of the dimension of the measurement vector 2 and this 
dimension can always be taken to equal one by considering the simultaneous 
measurement components to oecur serially over a zero (i.e., very short) time 
span. 

Example 8.4-1 
Suppose a system is d4nd by 

where the subsaipb k have bem dropped for conveniem. It follows from h. (8.4-1) that 

On the other hand, k t  us mw amme thnt the two measurements are separated by an 
"htnnt" and p m a u  them individually. For this we, we Tit  -me 

a d  obtain the mfennediarc mult (denoted Pi(+)) 

Utilizing this rssult, the desired value of P(+) is cpleuhtd by n a t  uwunkg 

It is easily vded that this yields Eq. (8.4-2). The advantage of this method is that only a 
1 X 1 mix need be inverted, thus avoiding the proymmmg (storage) of a mUix inverse 
routine. However, some ponplty may be incuned in exeation time. S i m h  mvljpulationr 
can be p w f m n d  to obtrini. 

Although this example considen a case where thc elements of the msuuremcnt vceta 
are uneorrehted (ie, R is a dingod mrfdx), the tschnique u a  be ntmded to the more 
general case (Ref. 39). 

MATHEMATICAL FORM OF EQUATIONS 

Recall that the covariance matrix update equations are, equivalently, 

and 

where 

and the subscripts have again been dropped for convenience. Bucy and Joseph 
(Ref. 36) have pointed out that Eq. (8.4-3), although simpler, is computationally 
inferior to Eq. (8.4-4). If K+  K + 6K, it is easily shown that 

for Eq. (8.4-3). For Eq. (8.44). we instead €id 

6q+)  = 6K[RKT - HI'-) (I-KHJT] + [KR - (1-KH) P(-) H ~ ]  6~~ (8.4-6) 
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Substituting for K, we obtain 

to first order. Equation (8.44) is sometimes referred to as the "Joseph 
algorithm." Of course, despite its inherent accuracy, Eq. (8.44) consumes 
considerably more computation time than Eq. (8.4-3). 

SOUARE-ROOT FORMULATIONS 

In the square-root formulation, a matrix W is calculated instead of P, where P 
= WWT. Thus, P(t) is always assured to be positive dehite. The square-root 
formulation gives the same accuracy in single precision as does the conventional 
formulation in double precision. Unfortunately, the matrix W is not unique, and 
this leads to a proliferation of square-root algorithms (Refs. 11, 39-42,53, 54). 
The square-root algorithm due to Andrews(Ref. 41) takes the form: 

where 

md where the subscripts have been dropped for convenience. Note that Eq. 
:8.4-9) can be venfied by expanding the time derivative of P: 

Of m u m ,  a penalty is paid in that the "square root" of certain matrices such 
as R must be calculated; a somewhat tedious vrocess involving eigenvalue- 
ergenvector routines. An indication of the number of extra calculations required 
to implement the square-root formulation can be seen from the sample case 
illustrated in Table 8.4-1, which is for a state vector of dimension 10 and a scalar 
measurement. This potential increase in computation time has motivated a 
search for eficient square root algorithms. Recently, Carlson (Ref. 53) has 
derived an algorithm which utilizes a lower triangle form for W to improve 
computation speed. Carlson demonstrates that this algorithm approaches or 
exceeds the meed of the conventional algorithm for low-order filters and 
reduces existing disadvantages of square-root filters for the high-order case. 

TABLE 84-1 COMPARISON OF TIlE NUMBER OF CALCULATIONS INVOLVED 
IN THE CONVENTIONAL AND SQUARLROOT FORMULATIONS 

Update: , 
Conventional 

SquueRoot 

Note M&D = multplicattons and drnnonr 
A&S = addtuonr and rubtracuons 

Exuspolation: 

Example 8.42 illustrates the manner in which square-root algorithms mini- 
mize roundoff error. 

Conventional 

Square-Root 

ichmidt (Ref. 11) has shown how to replace the differential equation in Eq. 
8.4-9) with an equivalent difference equation. 

= Ewivdent 
M&D 

2550 

5837 

Square 
Roots 

0 

10 

MbD 1 
2100 

4830 

2250 

4785 
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Exampla 8A-2 (Ref. 39) 

~ ~ p p a e  

where r < I and to simulate cmputer  ward length roundoff, w -me I + r + I but 
I + r' I 1. Is f d w s  that the exocr value for P(+) is - - 

L -I 
whereas the value clleulated in the computer using the standard Kalman fiter algorithm in 
Eq. (8.4-1) i s  

Using the square-root dprithm in Eq. (8.48). the result is 

it follows t h t :  

Clcady fhe convcntionsl famuhtion may lend to divagenee problems. 

COMPUTER LOADING ANALYSIS 

The burden that Kalman fdtering algorithms place on real-time digital 
computers is considerable. Meaningful measures of this burden an  storage and 
computation t i e .  The first item impacts the memory requirements of the 
computer, whereas the second item helps to  determine the rate at which 
masurements can be accepted. If a Kalman filter algorithm is to be programmed 
in real time, it is generally necessary to form some estimate of these storage and 

computation time requirements. These estimates can then be used to establish 
tradeoffs between computer size and speed and algorithm complexity. Of 
course, the constraints of the situation must be recognized; frequently the 
computer has been selected on the basis of other considerations, and the Kalman 
fdter algorithm simply must be designed to "fit." 

Computation time can be estimated by inspecting Kalman filter algorithm 
equations - i.e., counting the number of "adds," "multiplies," and "divides," 
multiplying by the individual computer execution times, and totalling the 
results. Additional time should also be added for logic (e.g., branching 
instructions), linkage between "executive" and subprograms, etc. An example 
of the results of such a calculation for several airborne computers is shown in 
Table 8.42 for a 20-state filter with a 9-state measurement. "Total cycle time" 

TABLE 8.4-2 TYPICAL CYCLE TIME FOR KALMAN FILTER EQUATIONS 
(20 STATE FILTER, 9 STATE MEASUREMENT) 

Load 

Multiply 

Divide 

Add 

store 

Increment 
Index Registn 

1963 
Computer 

(Slow-No Plmting 
Point Hardware) 

@see) 

refers to the time required to compute the Kalman filter covariance and gain, 
update the estimate of the state, and extrapolate the covariance to the next 
measurement time. Considering the nature of the Kalman frlter equations, one 
can see from !he execution times in Table 8.4-2 that the computer multiply time 
tends to dominate the algebraic calculations. In Ref. 44, it is shown that logic 
time is comparable to multiply time. 

Storage, or computer memory, can be divided into the space required to store 
the program instructions and the space required to store scalars, vectors, 
matrices, etc. If one does not have past experience to draw upon, the first step in 
determining the space required for the program instructions is to simply write 

97.5 11.8 
Estimated Cycle 
Time (secl 0.18 0.9 
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the program out in the appropriate language. Then, using the knowledge of the 
particular machine in question, the number of storage locations can be 
determined. For example, the instruction A + B = C requires 1 112 28-bit words 
in the Litton LC-728 Computer. 

When determining the storage required for matrices, etc., care must be taken 
to account for the fact that many matrices are symmetric, and that it may be 
possible to avoid storing zeros. For example, any n X n covariance matrix only 
requires n(n + 1112 storage locations. Similarly, transition matrices typically 
contain many zeros, and these need not be stored. Of course, overlay techniques 
should also be used when possible; this can be done for Pk(+) and Pt(-), for 
example. 

For the example illustrated in Table 8.4-2, 3300 32-bit words of storage were 
required. Of these, 900 words were devoted to storage of the program 
instructions. A further example of storage requirements is illustrated in Table 
8.4.3. The total storage requirement (exclusive of program linkage) is 793 32-bit 
words. The computer in question is the Raytheon RAC-230 and the speed of this 
machine is comparable with the "1968 computer" in Table 8.4-2 (Ref. 45). The 
Kalman filter equation cycle time is computed to  be 9.2 msec. 

TABLE 8.4-3 COMPUTER OPERATIONS REOUlRED FOR A SSTATE FILTER 

1. Compute O 

I 2. Compute 

&(-I= O & - ] ( + ) d  

1 3. Compute H 

4. Compute 

Kk = &(-)HT. 

[HP~( - )HT+ RI-I 

I 5. Compute 

&(+)=I!-KkHI Pk- 

- 
Ad, - 

30C 

5 1 

173 

21 - 
i70 - 

Note that for the 5-state filter in Table 8.4-3, program instructions 
comprise the major portion of computer storage, whereas the opposite is 
true for the 2Ostate filter in Table 8.42. The reason for this is that the matrix 
storage space tends to  be proportional to the square of the state size. Conversely, 
program instruction storage is relatively independent of state size, so long as 
branch-type instructions are used. Branch instructions are those that set up 
looping operations. Thus, for matrix multiplication, it would require the same 
number of machine instructions to  multiply a 2 X 2 matrix as a 20 X 20 matrix. 

Gura and Bierman (Ref. 43), Mendel (Ref. 44) and others have attempted 
to develop parametric curves of computer storage and time requirements, for 
several Kalman filter algorithms ("standard" Kalman, Joseph, square-root.etc.). 
A partial summary of their storage results for large n (n is the state vector 
dimension) is shown in Table 8.44, where m is the dimension of the measure- 
ment vectors. Mendel has considered only the "standard" Kalman filter 
algorithm, and has constructed plots of storage and time requirements vs. the 
dimension of the fdter state, measurement,and noise.* 

TABLE 8.4-4 KALMAN FILTER STORAGE REQUIREMENTS FOR LARGE N 
(PROGRAM INSTRUCTIONS NOT INCLUDED) (REF. 43) 

I Andrews Square-Root I 3 n' / 5.5 n(n+ 0.8) 1 5.5 n' I 2.5 ma 

Algorithm 

Standard Kdman* 

'Eq. (8.4-1) 
tEq. (8.4-4) 
n is the state vector dimension 
m is the measurement vector dimension 

Storage Locations 

Standard Kdman* 
(no symmeey) 

~osepht  
(no symmetry) 

'There is no process noire in this example (Q = 0). 

n p m  

2.5 n' 

'Recdl R may be singular - i.e., the dimension of* may be less than the dimension of=. 

3 n' 

3 n' 

m * n  

m1 

n I m 

5 n(n+ 0.6) 

6 n(n + 0.6) 

n =  1 n * l  

5 n' 

6 n' 

3.5 n(n+ 1.3) / 3.5 n' 

2 m' 

2 m' 



312 APPLIED OPTIMAL ESTIMATION IMPLEMENTATIW CONSIDERATIONS 313 

REFERENCES 

1. Price, C.F., "An Analysis of the Divergence Roblcm in the Kalman filter," IEEE 
Dansactionr on Automotic Control, Vol. AC-13, No. 6, December 1968, pp. 699-702. 

2. Fitzgcrald, R.J., "Error Divergence in Optimal Filter@ Roblem," Second IFAC 
Symposium on Automatic Control in Space, Vienna, Austria, September 1967. 

3. Fitzgerald, &.I., "Divngence d the Kalman Filter," IEEE Tnmmctions on Autormtic 
Connol, Vol. AC-16, No. 6, December 1971, pp. 736747. 

4. NPhi, N.E. and Schnefer, B.M., "Decision-Directed Adaptive Raursive Estimators: 
Divergence Prevention," IEEE Dansoctions on Automotic Confml, Vol. AC-17, No. 1, 
February 1972, pp. 61-67. 

5. Fraser, D.C., "A New Technique for the Optimal Smoothing of ~a ta , "  Ph.D. Thesis, 
Massachusetts Institute of Technology, January 1967. 

6. D'Appolito, J.A., 'The Evaluation of Kalman Filter Designs for Multirnuor Intwated 
Navigation Systems," The Analytic Sciences Corp., AFALTR-70271. (AD 881206), 
January 197 1. 

7. Lee, R.C.K., "A Moving Window Approach to  the Problems of Estimation and 
Identitication,.' Aerospace Corp., El Segundo, California, Report No. TR-1001 
(2307)-23, June 1967. 

8. Jazwinski, A.H., "Limited Memory Optimal Filtering," IEEE Damactions on A u t e  
m t i c  Control, Val. AC-13, No. 5,October 1968, pp. 558-563. 

9. Juwinski, A.H., Stochastic Itoeesres and Filtering Theory, Academic Ress, N w  York, 
1970. 

10. Schmidt, S.F., Weinberg, J.D., and Lukesh, J.S., "Care Study of Kalman Filtering in the 
C-5 Aircmft Navigation System," OIse Studres in System Control. University of 
Michigan, June 1968, pp. 57-109. 

11. Schmidt, S.F., "Computational Techniques in Kalman Filter@," 7heory and Applico 
tiom of Kalman Filtering, Advisory Group for Aerospace Research and Development, 
AGARDopph 139, (AD 7M 306). Fcb. 1970. 

12. Deutsch R., Estimntion Theay,  PrentieeHall, Inc., Englewood Cliffs, N.J., 1965. 

13. Fagin, S.L., "Raursivc Linear Regession Theory, Optimal Filter T h m y ,  and Error 
Analysis of Optimal Systems," IEEE Intemotionol Convention Record, March 1964, 
pp. 216240. 

14. Tam, T.S. and Zaborsky, J., "A h e t i c a l  Nondiverging Filtn," AIAA Joumal, Vol. 8, 
No. 6, June 1970, pp. 1127-1133. 

15. Sacks, J.E. and Sorenson, H.W., "Comment on 'A Radical Nondiverging Filter,"* 
AIAA Jouma1,Vol. 9, No. 4, April 1971, pp. 767,768. 

16. Milla, R.W., "Asymptotic Behavior of the Kalman Filter with Exponential Aeng," 
A I M  Joumal, Vol. 9,No. 3, March 1971, pp. 537-539. 

17. Jazwinski, A.H., "Adaptive Filtcring,"Automtim, Vol. 5, 1969, pp. 975-985. 

18. Leondes, C.T., ed., Guidance and Contrd of Aerospace Vehicles, McCraw-Hill Book 
Co., Inc., New York, 1963. 

19. Brittin& K.R., Inerrid Naviration System Amlysis, John Wiley & Sons, New York, 
1971. 

20. Nub, R.A. Jr.. Lcvine. S.A., and Roy, K.J.. W n m  Analysis of SpafsStable 1nerti.l 
Na-tion Systems," IEEE Tmmactimr on Acmqoce md Elsnon ic  Syst-. Vol. 
AES7, No. 4, July 1971, pp. 617629. 

21. Hutchimon, CE. and Nuh, R.A, Jr., 'Compuiron d Error Ropgation in Lool-Lnnl 
and SpscbStrble Ina t id  Systms," IEEE %mctions on Aerospzce and Electm~ic 
Syrtanr, VoL AES-7. N a  6. November 1971, pp. 1138.1142. 

2 2  Knyton, M. and Fried. W., &..Avionics Nm&tim Systems, John Wiley t Sons, Inc, 
New Ymk, 1969. 

23. O'Hallornn, W.F., 11.. "A Suboptirml E r m  Reduction Scheme f m  a L q - T n m  
SdfCoutained Inertid Navigation System,.' National Aaospce  and Electronics 
Confeteme, Dayton, Ohio, May 1972. 

24. Nash, R.A., Jr., D'Appdito, LA., and Roy, K.J., "Enor Analyais of Hybrid Inertial 
Navigation System," AlAA Guidance d Control Confcrencc, Stanfad, Cdilmnh, 
August 1972. 

25. Bona, B.E. and Smay, RJ., 'Optimum It-t of Ship's Inertial Navigation System," 
IEEE %met iom m AEILLIW~ and Uecnw'c  Systems, Vol. AEM. No. 4, July 
1966, pp. 409-414. 

26. Chin, P.P., "Red Time Kalman Filtering of APOLLO LMIAGS Rendezvous R& 
Data," AIAA Guidance, Control and F l i t  Mcehanics Confernec, Snnta Barbara, 
California, August 1970. 

27. Brown, R.G., "Analysis of u, Intwated Inertial-Dopplcr-Savllite Navigation System, 
k t  1, T h m y  and Mathematical M O W  Engineering Raeuch  Institute, l o w  State 
University, Amcs, Iowa, ER1-62600, Novembm 1969. 

28. Browq, R.G. and Huunann, G.L., "Kalman Filter with Delayed S ta to  as Obsewables," 
h e e d i n 5  of the Notiom1 Electmnics Gmfermce, Chicago, Illinois, Vol. 24, 
December 1966, pp. 67-72. 

29. Klementis, K.A. and S W ,  C.J., '.Final Report - Ruse I - Synergistic Navigation 
System Study," IBM Corp., Owego, N.Y., IBM No. 67-923-7. (AD 678 0701, October 
1966. 

30. Faddecv, D.K. and Faddeeva. V.N., Computoti-1 Methods of L i n m  A @ h ,  W.K 
Freeman ud Co., San Francism, CA,  1963. 

31. Kdly, LC., H a d h k  of Numericd Methods ond Applienrionr. AddiromWaley 
Publish& Co, Reding, Mars, 1967. 

32. Grove, W.E., Brief Numerid Methods, Prenticc-HpU, Inc., Englewood Qiffs, N.J.. 
1968. 

33. D'Appolito, J.A., "A Simpb Algorithm fox Discretizing Linear Stationvy Continuaus 
Time Systems," Roc. of the IEEE, Vol. 54, No. 12, December 1966, pp. 2010,2011. 

34. Lee, J.S. and Jordan, J.W., "The Effect of Word Length in the Implementation of an 
OnbovdComputer," ION National Meeting, Los Angeks, California, July 1967. 

35. 'Computn Recision Study 11," IBM Corp.. Rodrville, MuyLnd, Report No. 
SSDTDR-65-134, (AD 474 102). Dctobsr 1965. 

36. BUN. R.S. and Joseph. P.D., Filtering fw Stoehnstic Recesses With Applicotims to  
Gu&nee, lntmciencc Publishem, N.Y.. 1968. 

37. Ho, Y.C., 'The Method d Lus t  S q v u u  and Optimal Filtuing Theory," Memo. 
RM-3329-PR, RAND Carp., Santa Monica, CII., October 1962. 

38. Ho, Y.C., "On the Stochastic Approximation Method andoptimal FiltcdngThmy,I. 
Math. Amlysirand Applicaflonr. 6.1%3, pp. 152-154. 



314 APPLIED OPTIMAL ESTIMATION IMPLEMENTATION CONSIDERATIONS 315 

39. Knminski, P.G., Bryson, A.E., Jr. and Schmidt, J.F., "Discrete Square Root Filterillg: A 
Survey of Current Techniques," IEEE T~onsnctions on Automatic Contrd, Vol. AC-16, 
No. 6, December 1971, pp. 727-736. ' 

40. Bellantoni, I.F. and Dodge, K.W., "A SquveRoot Formulation of the Kalman-Schmidt 
Filter,"AIAA Journal, Vol. 5, N a  7, July 1967,pp. 1309-1314. 

41. Andrews, A,, "A Square Root Formulation of the Kdmm Covariance Equations," 
AIAA Joumol, June 1968, pp. 1165, 1166. 

42. Battin. R.H.. Astronourieal Cu!&nce, McGraw-Hill Book Co., Inc.. New York, 1964. 
pp. 338-339. 

43. Gum. LA. and Bierman, A.B., "On Computational Eftieiency of Linear Filtering 
Algorithms,"Automtica, Vol. 7, 1971, pp. 299-314. 

44. Mendel, J.M.. '%omputational Requirements for a Discrete Kalm~n Filter," lEEE 
~ m n c t i o n s  on Automoric Connd, Vol. AC-16, No. 6, December 1971, pp. 748-758. 

45. Dawson, W.F. and Parke. N.G.. IV. "Development Taolr for Strapdown Guidance 
Systems," AlAA Guidance, Control and Right Dynamics Conference, Paper No. 
68-826, August 1968. 

46. Toda, N.F., ScNee, F.H. andobhusky ,  P., "The Repon of Kalman Filter Convergence 
far Several Autonor.ous Modes," AlAA Guidance, Control and Flight Dynamics 
Conference, AlAA Paper No. 67423, Huntsville, Alabama, August 1967. 

47. Schlee, F.H., Standish. C.J. and To&, N.F., "Divergence in the Kalman Filter,"AlAA 
Jwmol,  Vol. 5, No. 6, pp. 1114-1120, June 1967. 

48. Davisson. L.D., 'The Theoretical Analysis of Datacompression Systems,"F?oceedingr 
of the IEEE,VoL 56, pp. 176-186, February 1968. 

49. Bar-Shalom, Y., "Redundancy and Data Compression in Remrsive Estimation," lEEE 
nam. a Auromotic Connd, Vol. AC-17, No. 5, October 1972, pp. 684489. 

50. Dressier. R.M. and Ross, D.W., "A Simplifies Algorithm for Suboptimal Non-Lhear 
S a t e  Estimation," A u r m t i c a ,  Vd. 6, May 1970, pp. 477480. 

51. Joglekar, A.N., "Data Compression ~n Recurwe Estimation wlth Applications to 
Navigation Systems," Dept. d Aeronautics and Astronautics, Stanford University, 
Stanfor4 California, SUDAAR N a  458, July 1973. 

52. Jodekar. A.N. and Powell. J.D.. "Data Cornmession in Recunive Estimation with 
Applicatiom to  Nnvjgdtion Systems," AlAA Guidance and Control Confwence, Key 
Bisc~yne, Florida, Pnper No. 73-901, August 1973. 

53. Clrlson, N.A., "Fast Triangulu Formulation of the Square Root Filter,"AlAA Journol, 
Vol. 11, No. 5,pp. 1259-1265, September 1973. 

54. Dyer, P. and McReynolL, "Extension of SquareRoot Filtering to  Include Process 
Noise," Journal of Optimization llreuy and Applications, Vol. 3, No. 6, pp. 446458, 
1969. 

PROBLEMS 

Problem 8-1 
Verify that Ep. (8.1-12) does yield Ule correct covariance matrix when the r technique is 

employed. 

Problem 8-3 
Show that when the semnd measurement in Example 8.4-1 is processed, the mnect 

covarianae matrix is recovered 

Roblem 8-3 
show formally why the fdter in Example 8.1-1 is not asymptotically stable. 

Problem 84 
Apply the technique to the system in Examples 8.1-1 and 8.1-3. Compere the result 

with the other two techniques in the examples. 

Problem 8 6  
Show the rehiionship between the exponential series f a  the trnnrition mauix [Eq. 

(8.3-IS)] and the Euler md modif~ed Euler integration algorithms in Section 8.3. 

Problem 8-7 
Using the delinition P = WWT, set up the equations for W, the quare root of the matrix 

Note that the equations do not have a unique solution What happens when W is constrained 
to  be Oiangular? 

Problem 8-2 
In Ewmpk 8.1-3, denve the equation for p - 
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9.1 ADAPTIVE KALMAN FILTERING 

This chapter presents brief treatments of several important topics which are 
closely related to the material presented thus far; each of the topics selected has 
practical value. For example, while it has been assumed until now that the 
optimal fdter, once selected, is held fixed in any application, it is entirely 
reasonable to ask whether information acquired during system operation can be 
used to improve upon the a priori assumptions that were made at the outset. 
This leads us to the topic of adaptivefiltering, treated in Section 9.1. One might 
also inquire as to the advantages of a filter chosen in a form similar to that of the 
Kalman fdter, but in which the gain matrix, K(t), is specified on a basis other 
than to produce a statistically optimal estimate. This question is imbedded in the 
study of observers, Section 9.2, which originated in the treatment of state 
reconstruction for linear deterministic systems. Or, one might be interested in 
the class of estimation techniques which are not necessarily optimal in any 
siatistical sense, but which yield recursive estimators possessing certain well- 
defmed convergence properties. These stochastic approximation methods are 
examined in Section 9.3. The subject of real-time parameter idenrification can be 
newed as an application of nonlinear estimation theory; it is addressed in 
Section 9.4. Finally, the very important subject of optimal control - whose 
mathematics, interestingly enough, closely parallels that encountered in optimal 
estimation - is treated in Section 9.5. 

We have seen that for a Kalman filter to  yield optimal performance, it is 
necessary to provide the correct a priori descriptions of F ,  G,  H, Q, R, and P(0). 
As a practical fact, this is usually impossible;guesses of these quantitiesmust be 
advanced. Hopefully, the fdter design will be such that the penalty for 
misguesses is small. But we may raise an interesting question - i.e., "Is it 
possible to deduce non-optimal behavior during operation and thus improve the 
quality of a priori information?' Within certaii limits, the answer is yes. The 
particular viewpoint given here largely follows Mehra (Ref. 1); other approaches 
can be found in Refs. 24.  

INNOVATIONS PROPERTY OF THE OPTIMAL FILTER 

For a continuous system and measurement given by 

and a fdter given by 

the innovationsproperfy (Ref. 5 )  states that, if K is the optimal gain, 

In other words the innovations process, y, is a white noise process. Heuristically, 
there is no "information" left in& if i is an optimal estimate. 

Equation (9.13) is readily proved. From Eqs. (9.1-2) and (9.1-4) we see that 
&=E-x): 

Thus, fort, > t , ,  we get 

From Eqs. (9.1-1,2,3,4) it is seen that satisfies the differential equation 
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The solution to this equation is 

where @(la, t , )  is the transition matrix corresponding to (F - KH). Using Eq. 
(9.1-9), we directly compute 

Therefore, from Eqs. (9.1-7, 10, 1 1) 

But for the optimal filter K(tl) = P(tl) HT(tl) R-'(t,), therefore, 

which is the desired result. Note that Eq. (9.1-12) could have been employed in 
a derivation of the Kalman gain as that which "whitened" the processfit). 

ADAPTIVE KALMAN FILTER 

At this point we restrict our attention to time-invariant systems for which 
Eqs. (9.1-1) and (9.1-3) are stable. Under this condition the autocorrelation 
function, ~ M t ~ ) z ~ ( t ~ ) ] .  is a function o f r  = tl-1, only,viz.: 

E M t ,  + r ) ~ ~ ( t ~ ) ]  = ~ e ( ~ - ~ " ) ' ~ l ( p H ~  - KR) + R6(r) (9.1.14) 

In the stationaly, discrete-time case, corresponding results are 

E b k  lk-jT] = HK-) HT + R for j  = 0 

=H[@(I-KH)]J-I *(P(-)HT -K[HP-)HT + R ] )  

fo r j>O (9.1-15) 

which is independent ofk. Here, @ is the discrete system transition matrix. Note 
that the optimal choice, K = P(-) HT [ W - )  HT + Rj-' , makes the expression 
vanish for all j+O. 

In an adaptive Kalman filter, the innovations property is used as a criterion to 
test for optimality, see Fig. 9.1-1. Employing tests for whiteness, mean and 

covariance, the experimentally measured steadystate correlation function 
Ekk&-,T] is processed to identify unknown Q and R, for known F, G and H. 
It can be shown that, for this case, the value of K which whitens the innovations 
process is the optimal gain. If F, G,  and H are also unknown, the equations for 
identification are much more complicated. Care must be exercised in the 
identification of unknown system matrices from the innovations sequence; for 
example, it is known that whiteness of the innovations sequence is not a 
sufficient condition to identify an unknown system F matrix. Thus, non-unique 
solutions for the system F matrix can be obtained from an identification scheme 
ba-2 on the innovations sequence. The following simple example demonstrates 
use of the innovations sequence for adaptive Kalman fdtering. 

TESTS ON THE 
INNOVATION 
SEOUENCE 

I 
Figure 9.1-1 Adaptive Kalman Filter 

Example 9.1-1 
Suppore we have the conlinuous (scalar) system and measurement given by 

x = w , w - N(CAq) 

z = x + v ,  v-N(OJ) 

and utBze the measurement data to estimate x according lo  

i =  k(* - i )  

where k is bared on a sel of inconect anumed values for q and r. The true values of q and r 
can be deduced as follows. 
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First, for steady-state system operation, the process "(1) = z - ; is recorded and its 
autocorrelation function obtained. For a sufficient amwnt of information, this yields [f=O,' 
h=l, in Eq. (9.1-12)l: 

Next, this experimental result is further processed to yield the numkrs r and (p_ - kr). 
Here, p, is the steady-state value of p; it is the solution to the linear variance equation 
associated with Eq. (9.1-0, 

With the values of k, r, and p, already known, this equation is solved for q. Thus, we have 
identified r and q based on analysis of data acquired during system operation, for this simple 
example. 

In practice, the crux of the matter is processing ~ h & - ~ ~ ]  to yield the 
quantities of interest. For the high-order systems of practical interest, the 
algorithms proposed in Refs. 1 and 3 may not work as well as theory would 
predict; other more heuristically motivated approaches may be both com- 
putationally simpler and more effective (e.g., Ref. 6). Nevertheless, the 
viewpoint presented herein is enlightening, and thus worthwhile. Extensions of 
the viewpoint to non-real-time adaptive smoothing may be accomplished 
through application to the forward filter. Here again, heuristically motivated and 
computationally simpler approaches may have a great deal to offer in practice. 

9.2 OBSERVERS 
In some estimation problems, it may be desired to reconstruct the state of a 

deterministic, linear dynamical system - based on exnct observations of the 
system output. For deterministic problems of this nature, stochastic estimation 
concepts are not directly applicable. Luenberger (Refs. 7 and 8) formulated the 
notion of an observer for reconstructing the state vector of an observdle 
deterministic linear system from exact measurements of the output. 

Assume that m linearly independent, noise-free measurements are available 
from an nth-order system (m < n). The initial system state, &,, is assumed to be 
a random vector. Then an observer of order (n-m) can be formulated which, by 
observing the system output, will reconstruct the current state of the system 
exnctly in an asymptotic sense. Hence, an observer is a reduced-order estimator. 
A major application of observer concepts has been to deterministic feedback 
control problems, where the control law may depend on knowledge of all the 
system states, while only limited combinations of the states are measurable (Ref. 
9). 

As formulated by Luenberger, an observer is designed to be an exponenfinl 
estimator, - i.e., for a time-invariant linear system, the estimation error will 
decay exponentially. Since there is no stochastic covariance equation which can 
be used to specify a unique optimal observer in the minimum mean square error 
sense, the eigenvalues of the observer can be chosen nrbitrmily to achieve desired 
response characteristics. The observer response time chosen should be fast 
enough to provide convergence of the estimates within the time interval of 
interest. Observers can also be cons t~c t ed  t o  provide accurate state estimates 
for timevarying, deterministic systems - provided the observer response time is 
chosen to be short, relative t o  the system time variations. 

In the sequel, the theory of reduced-order observers for continuous 
deterministic dynamic systems is presented. These results are then generalized t o  
continuous stochastic estimation problems, containing both noisy and noise-free 
measurements. The stochastic observer unifies the concepts of deterministic 
Luenberger observer theory and stochastic Kalman filtering theory (Refs. 10 and 
11). Only conrinuous linear systems are treated herein; however, analogous 
results have also been derived for discrete systems(Refs. 12, 13 and 14). 

OBSERVERS FOR DETERMlNlSTlC SYSTEMS 

In this section, Luenberger's theory of reduced-order observers is described in 
a form which facilitates extension to stochastic state estimation for time-varying 
systems. Consider a linear deterministic nth-order system described by 

where y(t) is a deterministic (control) input. Observations of the state are 
available according to 

H(t) is an m x n measurement matrix (m < n) which is assumed to be of full 
rank. Thus, ~ ( t )  represents m linearly independent combinations of the state 
vector, &(t). It  is also assumed that the system described by Eqs. (9.2-1) and 
(9.2-2) is completely observable (the observability condition is defined in 
Section 3.5). 

It  is desired to provide an estimate of the state vector, s t ) ,  employing an 
(n - m)Ih-order observer. To  do this, introduce an (n - m) dimensionalvector 
get,. 

such that 
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is a nonsingular matrix. The vector ~ ( t )  represents (n - m) linear combinations 
of the system states which are inGpendent of the measurements, ~ ( t ) .  It is 
therefore possible to obtain the inverse transformation ["''I-' ["'I x(t)=--- --- 

H(t) At)  

For convenience, define 

so that 

The concept of observers is based on devising an (n - m)th-order estimator for 
the transformed state vector l(t), which can then be used to reconstruct an 
estimate of the original state vector ~ ( t ) ,  according to the relationship of Eq. 
(9.2-7). In the following development, the form of the dynamic observer is 
presented and the corresponding enor equations derived. 

At the outset, some constraint relationships can be established between the 
A, B, T and H matrices, viz*: 

and 

These constraints, which are a direct consequence of the inverse relationship 
defined in Eq. (9.2-6), are useful in what follows. 

A differential equation for f can be easily obtained by differentiating Eq. 
(9.2-3) and substituting from Eqs. (9.2-1) and (9.2-7). The result is 

By differentiating the appropriate partitions of Eq. (9.2-9), it is seen that the 
relationships TA = -TA and TB = -TB must hold. It isconvenient to substitute 
these relationships into Eq. (9.2-10) to obtain an equivalent differential equation 
for f, in the form 

'Henceforth, the time arguments are dropped from variable quantities, except where 
necessary for clarification 

i= (TFA - T A ) ~  + (TFB - T B ) ~ +  TLg (9.2-1 1) 

In order to reconstruct an estimate,i, of the vector I ,  it is appropriate to  design 
an observer which models the known dynamics of 4, given by Eq. (9.2-1 I), 
utilizing and p as known inputs. We are therefore led to an observer of the 
form 

A block diagram of this observer is illustrated in Fig. 9.2-1 

F i p n  9.2-1 Deterministic Observer Block Diagram 

It is important to cote that for every initial state of the system, &), there 
exists an initial state l(to) of the observer given by Eq. (9.2-1 2) such that i ( t )  = 
x(t) for any g(t), for all t > to. Thus, if properly initialized, the observer will 
track the true system state exactly. In practice, however, the proper initial 
condition is not known, so it is appropriate to consider the propagation of the 
observer enor. As mentioned previously, observers exhibit the property that the 
observer error, defined by 

decays exponentially to zero. This is eady  demonstrated by subtracting Eq. 
(9.2-1 1) from Eq. (9.2-12a), to obtain the differential equation 
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Note that if the observer is chosen to be asymptotically atable, t heng t )  will 
tend uniformly and asymptotically to zero for arbitra* $to). The stability of 
the observer and the behavior of i are both determined by the propertiea of the 
matrix TFA - TA; the eigenvaluea of this matrix can be chosen arbitrarily by 
appropriate specification of T, A and 8, subject to  the constraints of Eqs. (9.2-8) 
and (9.2-9). 

Now consider the total state eatimation  error,^, defined by 

The differential equation for is derived in the following manner. From Eqs. 
(9.2-7) and (9.2-12b), it is seen t h a t i  is related to L by 

It follows from Eq. (9.2-16) that i tends uniformly and asymptotically to zero, 
owing to the convergence properties of previously discussed. The cor- 
responding relationship 

can be obtained by premultiplying Eq. (9.2-16) by T and invoking the con- 
straint TA=I from Eq. (9.2-9). Using theae relationships the differential 
equation for can be derived as 

i = A i + ~ i  

=(AT + ATF - ATAT) i (9.2-18) 

Notice from Eq. (9.2-18) that the estimation error hehavior depends on 
specifying the matrix producta AT and AT. It would be more convenient, from a 
&sign standpoint, to specify the desired observer error characteristics in terms 
of fewer parameters. Fortunately, it is easy to demonstrate that Eq. (9.2-18) can 
be written in the equivalent form 

The transformation from Eq. (9.2-18) to Eq. (9.2-19) is left as an exercise for 
the reqder. (Hint: show that AT i = i, and employ the constraints AT + BH = I 
and HA = -HA). 

From Eq. (9.2-19), it is apparent that for a given system described by F and 
H, the estimation error depends only on the choice of B. It can be shown that if 
the system is completely observable, the matrix B can be chosen to achieve any 
desired set of (n - m) eigenvalues for the error response. For the special case of 
a time-invariant system, the obsewer may be specified according to the following 
procedure: 

Choose an arbitrary set of eigenvalues, A (complex conjugate pairs) 

Pick B such that F -5HF has A as its nonzero set of eigenvalues 

Choose A and T consistent with AT + BH =I.  

The choice of A and T which satisfies Eq. (9.2-8) is not unique. To illustrate 
this, suppose that an allowable pair of matrices (A*, T*) is chosen (a method for 
constructing such an allowable pair is given in Ref. 52). ?hen the pair (A,T) 
given by 

also satisfies Eq. (9.2-8). where M is any nonaingular matrix. The set of all 
allowable pairs (A, T) defines an equivalent class of observers which exhibit the 
same error behavior. 

Example 9.2-1 
Consider the wond-order example illustrated in Fig. 9.2-2. This system model might be 

representative of a simplified on4imensional tracking problem, where x l  and x l  are 
position and velocity of the tracked object, respectively. The system dynamics are 

with measurements of position available according to 

It is desired to construct an obsclrer for this system. 

w 
F i i m  9 3 2  Seeond-Order Tracking System Example 
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Rom Eq. (9.2-9). HB = I, so that B is constrained to be of the form 

B =[:I 
The enor dynamicscan be writtenas [Eq. (9.2-19)] 

where - - 

Since n - m = I for this problem, the obsemr is of first order and is specified by the single 
eigenvalue, A = - (B + bl). It is desuabk to choose the observer time constant to be 
signilicanuy smaller than the system constant. Arbitrarily choose A = -50, which implies b, 
= 48. A possible choice of A and T, satisfying Eqr (9.2-8) and (9.2-9), is 

This completes the specific~ation of the first-order observer. The corresponding block 
diagram is illustrated in Fig. 9.23. Although the choice of A and T is not unique, it is 
easily demonstrated that any ollowoble choice of A and T leads to the equivalent observer 
configuration of Fig. 9.2-3. This is left as an exercise for the reader. 

w 
F i i  9.2-3 Observer Configuration for Simplified Tracking Example 

The observer performance may be illustrated by a numerical example. Assume that the 
RStem parametus are 

The observer is initialized by choosing 

so that C(O) = -4.0 ftlsec. The resulting system and observer outputs are plotted in Fig. 
9.24. Note that x, is estimated without error since it is directly measured, while the error 
m the estimate of x l  decays exponentially to zero with a time constant of 0.2 s c .  

OBSERVERS FOR STOCHASTIC SYSTEMS 

The formulation for deterministic observers can be extended to encompass 
stochastic systems. Stochastic observer theory forges the link between reduced- 
state deterministic observers and optimal Kalman filtering; in some applications, 
the stochastic observer offers a convenient approach for the design of 
reduced-state filtering algorithms. In the sequel, a heuristic approach is taken to 
the design of stochastic observers. 

Consider the system described by 

For simplicity, deterministic inputs are not included in the system model; any 
deterministic inputs are assumed to be compensated, and can be removed from 
the formulation without Loss of generality. The measurements are assumed to be 
partly deterministic and partly stochastic, viz: 

Of the m measurements, m, are noisy with measurement noise spectral density 
R, ,  and m, are noise-free (m, = m - m,). As before, we assume that Hz is of 
full rank. 

A configuration is sought for the stochastic observer that has the form of the 
(n - m)th-order deterministic observer when all the measurements are noise-free 
(m, = O), and becomes the nth-order Kalman filter when all the measurements 
are noisy (m, = 0). For combined noisy and noise-free measurements, the 
conventional continuous Kalman filter cannot be implemented, due t o  singu- 
larity of the measurement noise covariance matrix. In Section 4.5, an approach 
is given for modifying the Kalman filter to circumvent the singularity of R for 
certain special cases. The concept of stochastic obs~rvers presented herein is 
applicable to  the more general case and reduces exactly to the modified Kalman 
filter of  Section 4.5, under equivalent conditions 

It is immediately apparent from the deternunistic observer block diagram, 
Fig. 9.2-1, that the noisy measurements must be processed differently than the 
noise-free measurements to avoid the appearance of white noise on the output. 
It  is necessaly to provide additional filtering of the noisy measurements to avoid 
this situation. 
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Define the (n - ml) x n transformation 

i = T x  

Such that 

is a nonsingular matrix. It then follows that 

where 

AT+BIH1 = I  

By analogy to the deterministic problem, 1 can be shown to satisfy the 
differential equation 

This is the same expression previously derived in Eq. (9.2-1 I), except that the 
deterministic input, Lg, has been repland by the stochastic input, Cyy. 

It is reasonable to postulate that the stochastic observer should be designed to 
process the noise-free measurements, a, according to the deterministic observer 
formulation, while processing the noisy measurements, L,, according to the 
stochastic Kalman filter formulation. Accordingly, the stochastic observer can be 
postulated to have the form 

An additional n x m, free gain matrix, B,. has been incorporated for processing 
the noisy measurements, & I .  Notice that the noisy measurements appear only as 
inputs to the observer dynamics in a manner analogous to the Kalman filter 
formulation, and a n  not fed forward directly into the state estimates, as are the 
noise-free measurements. A block diagram for this stochastic observer config- 
uration is illustrated in Fig. 9.2-5. The choice of the observer specified by Eqs. 
(9.2-28) has been constrained so that in the absence of the& measurements, the 
observer structure will be identical to the n t h a d e r  Kalman filter. It is easily 
shown that, for m2 = 0, 

P- 9.24 Actual and Estimated States vs. Time for Simplified T r n d t i  Example 
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and Fig. 9.2-5 reduces to the continuous Kalman filter shown in Fig. 4.3-1. In 
this case, the optimal choice of the gain 9 ,  corresponds to the Kalman gain. For 
the other extreme, where all m measurements are noise-free (ml = 0), Fig. 9.2-5 
immediately reduces to the deterministic (n - m)th-order observer depicted in 
Fig. 9.2-1. 

Figure 9.24 Stochastic Observer Block Dlagrarn 

The estimation error dynamics for the stochastic obsetver may be determined 
in a manner analogous to that used to derive the deterministic observer 
dynamics. From Eqs. (9.2-27) and (9.2-28b), the expression f o r i  is 

~ = ( T F A - T ~ ) ~ + T B ,  (z, - H ~ ~ ) - T G ~  (9.2-30) 

Noting that 

the differential equation for the estimation error,%, is then obtained as 

k = i j t ~ f  

=(AT t ATF - A T ~ T  - ATB,H, ) i+  ATBIII - ATGx (9.2-32) 

Following the deterministic observer analysis, an equivalent differential equation 
for % can be expressed in terms of the gain B, as 

Consider replacing B, by ATBl in Eq. (9.2-33). Using the identity TA = I ,  it can 
be seen that the error dynamics are unaffected by the substitution. Hence, Eq. 
(9.2-33) may be simplified by replacing the term ATB, by B1, yielding the 
following equivalent expression for the estimation error dynamics: 

Notice that, in the case of no measurement or process noise, Eq. (9.2-34) 
reduces to the deterministic observer error dynamics of Eq. (9.2-19). In the 
absence of noise-free measurements, BI and Hz are zero and Eq. (9.2-34) 
reduces to the standard Kalman filter error dynamics of Eq. (4.3-13), where B, 
is identified as the Kalman gain matrix. 

OPTIMAL CHOICE OF B, AND Bl 

The stochastic observer design may now be optimized by choosing B, and BI 
to minimize the mean square estimation error. The error covariance equation, 
determined from Eq. (9.2-34), is 

Both Bl and B, may now be chosen to minimize the trace of P (see Problem 
4-8). Minimizing first with respect to B,, yields the optimal gain 

Substituting BIOPt into the covariance equation gives 

The optimum choice of B, can be determined by minimizing the trace of P in 
Eq. (9.2-37), with respect to B,. This computation leads readily to 

To complete the specification of the optimal stochastic observer, it is 
necessaly to properly initialize the filter estimates and the covariance matrix. 
Due to the exact measurements, discontinuities occur at t = 0' Single stage 
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estimation theory can be used to determine the initial conditions i(O+) and 
P(O+) from y ( 0 )  and the prior estimates, 3 0 )  and P(0): 

The initial estimate depends on the initial measurement, y to), and cannot be 
determined a pnori. The initial condition for the observer, 1(0*), is related to 
i@+) 

Note that the optimal gain BlOpt, specif~d according Eq. (9.2-38), depends 
on the presence of process noise. In order to compute B20Pt, it is necessary to 
invert the matrix H 2 w T ~ , ' .  This matrix will be nonsingular, yielding a 
unique solution for BaOPi, if the first derivatives of the noise-free measurements 
contain white process noise. If some of the derivatives of the noise-free 
measurements are also free of white noise, then the choice of B1 is .not 
completely specified. Under these conditions, B2 may be chosen to give 
desirable error convergence properties, as in the case of completely deterministic 
observers. 

SPECIALIZATION-TO CORRELATED MEASUREMENT ERRORS 

In many filtering problems of practical interest, the measurements may he 
modeled as containing correlated measurement errors, where the measurement 
errors an described by fm-~rder  differential equations driven by white noise. 
Consider the nih-order system, with m measurements, described by 

where the measurement noise,& satisfies the differential equation 

The (n + m)ih-order augmented system, with x I T  = [xTi vT] is described by 

where 

The nth-xder optimal stochastic observer is now derived for this problem. 
A  useful property of observers is that the estimation error is orthogonal to 

the noise-free measurements, so that 

The proof of this result is left as an exercise for the reader. [Hint: Premultiply 
the relation ?(' = A by H',, and use the constraint of Eq. (9.2-9)]. Hence, the 
covariance matrix, P' = E [x' ~ ' ~ 1 ,  can be expressed as 

where P is the covariance matrix of the errorx. The pertinent observer matrices 
may be partitioned according to 

where B, is n x m, T, is n x n and A l  is n x n. Substituting Eqs. (9.2-45) and 
(9.247) into the optimal gain expression of Eq. (9.2-38) gives 

A  possible selection of A and T that satisfies the constraint AT + B~H' ,  = 1 is 
given by 

The observer dynamics are described by 
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Substituting for T, F', and B2 leads to the result 

where H, has been defined as 

A block diagram of the optimal observer is illustrated in Fig. 9.2-6, for the 
obselver defined by Eqs. (9.2-52) and (9.2-53). Since we are not interested in 
estimating the noise,y, only the estimatesi are shown in the figure. Assume that 
the prior estimate of P' is given by 

For an initial estimate i(O), the discontinuities in i(0') and P(O+) are 
determined by appropriately partitioning Eqs. (9.2-39) and (9.2-40), resulting in 

F i r e  9.26 Correlated Measurement Error OptimalObrwel 

The optimal reduced-order observer for the special case of correlated mea- 
surement errors is identical to the modified Kalman filter derived in Section 4.5, 
using a completely different approach. The Kalman filter approach to the 
problem requires that special allowances be made to circumvent the singularity 
of the R matrix. Using the structure of stochastic observer theory, however, the 
solution to the correlated measurement error problem follows directly. 

9.3 STOCHASTIC APPROXIMATION 

Most of the material contained in this book is concerned with obtaining 
optimal estimates of a random vector 5,  or a vector random process ~ ( t ) ,  from 
noise-corrupted measurement data. Recall that an optimal estimate is one which 
minimizes an appropriate functional of the estimation error; examples of such 
criteria - maximum likelihood, least squares, etc. - are discussed in the 
introduction to Chapter 4. This section considers a class of estimation 
techniques, called stochastic approximation methods, that are not necessarily 
optimal in any statistical sense, but which yield recursive estimates with certain 
well-defined convergence properties. 

The motivation for stochastic approximation methods is that optimal 
estimation criteria often depend upon assumptions about the statistical 
characteristics of ~ ( t ) ,  and its associated measurement data, which may not hold 
true in practice. For instance, the Kalman fdter yields a minimum variance 
estimate of At), provided the latter satisfies a linear stochastic differential 
equation driven by gaussian noise and measurements are linearly related tox(t) 
with additive gaussian noise. If the dynamics of x(t) and its observations are 
dominated by nonlinear effects that cannot be accurately approximated by 
linearization, or if the noise processes are nongaussian, the corresponding 
optimal estimation algorithm is often too complex to mechanize. More 
generally, if the noise statistics are unknown or undefined, the optimal estimate 
may be indeterminate. In such circumstances it is sometimes possible, through 
use of stochastic approximation methods, to  obtain a sequence of estimates for 
At)  that either asymptotically approaches the true value (whenxft) is constant), 
or possesses a statistically bounded error (in the time-varying case). The 
mathematical assumptions needed to prove these convergence properties are 
generally much weaker than those required to determine optimal estimators. 
Furthermore, most stochastic approximation algorithms are recursive linear 
functions of the measurement data that can be readily mechanized in a 
computer. Connequently, they offer attractive alternatives to optimal estimation 
techniques in some applications. 

M E  SCALAR CONSTANT-PARAMETER CASE 

Stochastic approximation methods were first developed as iterative proce- 
dures for determining a solution, x,, to the scalar nonlinear algebraic equation, 
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where Aik)  cannot be evaluated exactly for trial values, or "estimates," i l ,  . . . 
i k ,  . . . , of the argument, x. This is analogous to the classical deterministic 
problem of obtaining a solution to Eq. (9.3-1) for a known function g(x), which 
can be treated by any of several classical numerical techniques - Newton's 
method, successive approximations, etc. Most such numerical techniques have 
the common property that an approximate solution for x, is obtained by 
iteratively performing the calculation 

where k , k = 1.2,. . . , is an appropriately chosen sequence of "gains" (denoted 
by {kkf). In the method of successive approximations kk = -Sgn (g'(Ck)] 
for all values of k; in Newton's method* 

The objective at each stage is to apply a correction to the most recent estimate 
of x which yields a better estimate. Conditions under which the sequence 
f k  generated by Eq. (9.3-2), converges to a solution of Eq. (9.3-1) can be 1 r' 

stated in terms of restrictions on the sequence of gains, on the function g(x) in 
the vicinity of the solution and on the initial "guess", xl (see Ref. 15). 

The stochastic case refen to situations where Air)  cannot be evaluated 
exactly; instead, for each trial value of x a noise-corrupted observation 

is generated. In the sequel it isconvenient to assume that g(x) is a monotonically 
increasing or decreasing function having a unique solution to Eq. (9.3-I), and 
(.v! ] is r sequence of zero mean independent random variables having bounded 
vanances. Furthermore it is assumed that Ax) has finite, nonzero slope as 
illustrated in Fig. 9.3-1 - i.e., 

Somewhat less restrictive conditions could be imposed; however, those given 
above suffice for many applications of interest. 

A practical example of the type of problem described above might be the 
nonlinear control system illustrated in Fig. 9.3-2, where x represents the value of 
a control gain and g(x) represents the steady state error between the system 
output and a constant input, as an unknown function of x. If the objective is to  

determine the proper gain setting to achieve zero steady state error, an 
experiment can be devised whereby successive gain settings are tried and the 
resulting steady-stateerror is measured with an error vk. 

Fiym 9 . l l  Graphical Illustration d the Class of Functions, s(x) 

The background of iterative methods available for determining the solution to 
Eq. (9.3-1) in cases where Ax) is a known function led investigators, beginning 
in the early 1950's, to inquire whether a recursion relation of the form 

can also generate a sequence that in some sense converges to x, when g(fk) is 
observable only through Eq. (9.3-4). Equation (9.3-5) has the same form as its 
deterministic counterpart, Eq. (9.3-2), except that g(ik) is replaced by the 
measurement mk. Because mk has a random component, Eq. (9.3-5) iJ called a 
stochastic approximation algorithm. 

A common definition of convergence applied to the random sequence 
generated by Eq. (9.3-5) is mean square convergence, defined by 

lim E[(x,-ik)'] = 0 
k-- 

(9.3-6) 

The pioneering work of Robbins and Munroe (Ref. 16) demonstrates that the 
solution to Eq. (9.3-5) converges in mean square, if the gains kk satisfy the 
conditions 
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lim (kk) = 0 
k-- 

We shall not supply convergence proofs here; however, the reader should 
qualitatively understand why the conditions in Eq. (9.3-7) are generally 
necessary for convergence. For instance, Eq. (9.3-7a) insures that the correction 
to each estimate ik is in the proper direction, by analogy with the classical 
techniques for determining zeros of known functions. Hence, although g(x) is 
unknown, the sign of its derivative must be known in order to choose a proper 
sequence of gains. The condition that the gain sequence approaches zero [Eq. 
(9.3-7b)] is needed to insure that 

lim Sk+l = Gk (9.3-8) 
k- - 

in Eq. (9.3-9, otherwise { ik } cannot converge in a mean square sense to x,. 
[Note tbat condition (9.3-7b) is implied by condition (9.3-7d).] The conditions 
in Eqs. (9.3-7c) and (9.3-7d) are needed to insure that lkkl approaches zero at 
the proper rate - not too fast, Eq. (9.3-7c), but not too slowly either, Eq. 
(9.3-7d); an example that specifically demonstrates the necessity of these 
conditions is given in the problem section. 

Following Robbins and Munroe, others derived alternative conditions for 
convergence of stochastic approximation algorithms and investigated ways of 
choosing the gain sequence ( kk } in Eq. (9.3-5) to achieve a high rate of 
convergence (Refs. 17, 18 and 19). Algorithms have been obtained for problems 
in estimation (Refs. 20 through 25), optimization (Refs. 26 and 27), and pattern 
classification (Refs. 28, 29, and 30). The subsequent discussion in this section 
pursues the viewpoint of our main interest, viz., estimation theory. 

Suppose tbat an unknown constant x, is to be estimated from observations 
of the form 

where h(x) is a known function and { vk \ is a sequence of independent zero 
m a n  random variables, having otherwise unknown statistical properties. If a 
new function g(x) is defined by 

then the problem of determining x, is equivalent to finding the solution to 

Subtracting h(ik) from both sides of Eq. (9.3-9), using Eq. (9.3.10), and 
defining 

we obtain equivalent measurements 

Thus, estimation of x, is lecast as the problem of approximating the solution to 
Eq. (9.3-11) from the measurement data ( mk I in Eq. (9.3-13). Applying the 
algorithm in Eq. (9.3-9, we can estimate x,, recursively, from the relation 

when the gain seguence ( kk \ is chosen to satisfy the conditions in Eq. (9.3-7). 
Equation (9.3.14) is similar in form to the discrete Kalman mtering algorithm 
described in Section 4.2. In particular, the new estimate at each stage is a linear 
function of the difference between the new measurement and the most recent 
estimate of b(x,). However, notable differences are tbat h(x) can be a nonlinear 
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function and the gains { kk } are determined without making any assumptions 
about the statisticaIpmperties of x, and vk) . 

As an example, suppose x, is observed through linear measurements of the 
form 

4 = X o + v k  

Then Eq. (9.3-14) becomes 

Using the fact that g(x) = x, - x, the condition in Eq. (9.3-7a) reduces to kk > 
0; hence Eq. (9.3-14) becomes a linear filter with positive gains. Some gain 
sequences which satisfy the other convergence conditions in Eq. (9.3-7) are 

The class of estimation algorithms discussed above can be extended to 
situations where the observation function, h(x,), varies with time - i.e., 

This category includes the important problem of estimating the coefficient of a 
known time-varying function - e.g., 

and corresponding observations, 

we seek the value of x that satisf~s 

for all values of k. To this end, an algorithm having the same form as Eq. 
(9.3-14) is employed, viz.: 

In order for the sequence {ik) to converge to x, in the case of a time-varying 
observation function, conditions must be imposed which take into account the 
variations in &(x) with the index k, as well as the properties of the gain 
sequence {kkl .  Henceforth, attention will be restricted to linear problems - i.e., 

where hk may be a function of k. For this case, the following conditions, in 
addition to those in Eq. (9.3.7). are imposed(Ref. 24): 

The condition in Eq. (9.3-25a) is analogous to that in Fig. 9.3-1, which bounds 
g(x) by a linear function with a finite slope. The condition in Eq. (9.3-25b) is a 
generalization of Eq. (9.3-7c) (the latter is implied by the former) needed to 
insure that the measurements contain sufficient information about x,. For 
example, if the measurements in Eq. (9.3-19) are taken at uniform intervals of 
length 2njw sec, beginning at t = 0, then hk = sin (2nk) is zero for all values of k, 
causing Eq. (9.3-25b) to be violated - i.e., Zlkkllhkl = 0 + -. In this case, the 
data would contain no information about x,. 

The condition in Eq. (9.3-25b) is physically similar to the concept of 
stochastic observability (see Section 4.41, which describes the information 
content of measurement data associated with linear dynamical systems. To 
demonstrate this, we begin by recalling that a discrete-time dynamic system is 
uniformly stochastically observable if 
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for some value of N, with a, > 0 and al > 0, where a(i,k) is the transition 
matrix from stage k to stage i, Hi is the measurement matrix and Ri is the 
masurement noise covariance matrix. It follows from Eq. (9.3-26) that 

Applied to the problem of estimating x, in Eq. (9.3-24) for which 

q i ,k )  = 1 
f o r d  i,k 

with the assumption that the additive measurement noise has constant variance,' 
0 2 ,  Eq. (9.3-27) reduces to 

Now, the optimal least-squares estimate for x, in Eq. (9.3-24). obtained from a 
set of k-1 measurements of the form 

is given by (see the discussions of least-squaresestimation in the introduction to 
Chapter 4), 

That is, 4 in Eq. (9.3-29) is the value of xk which minimizes the function 

This assumption is for convenience of expositmn only; the analogy we are making here will 
hold under much weaker conditions. 

If the additive measurement errors have bounded variance, it is easy to prove* 
that fk will converge to x,,, provided the denominator in Eq. (9.3-29) grows 
without bound as k approaches infinity - i.e., provided x, is observable 
according to Eq. (9.3-28). Thus, obserwbility implies convergence of  the least- 
squares estimate. 

On the other hand Eq. (9.3-29) can be written in the recursive form 

Comparing Eqs. (9.3-23) and (9.3-30), we can regard the latter as a specific 
stochastic approximation algorithm having a gain given by 

In order that the condition in Eq. (9.3-2Sb) be satisfied, it must be true that 

It can be shown that Eq. (9.3-32) will hold provided (see Ref. 31 on the 
Abel-Dini Theorem) 

which is equivalent to Eq. (9.3-28). Consequently, for least-squares estimation. 
stochastic observability and Eq. (9.3-256) imply the same conditions on hk. 
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However, Eq. (9.3-2Sb) has more general applicability, in the sense that it 
provides convergence conditions for gain sequences that are not derived from a 
particular optimization criterion. 

Example 9.3-1 

To illustrate the performance of stochastic approximation methods, consider the 
estimation of a gaussian random variable xo with a mean C, and variance ool .  Suppose that 
x, s observed from linear measurements defined by 

where ( Q [ is  a squence of zero mean, independent gaursian random variables having 
varianee oZ. A commonly used stochastic approximation algorithm is one having gains of 
the form 

This choice is motivated by least-squaresestimatorsof the type given in Eq. (9.3-30). whox  
gains are the same as in Eq. (9.3-35) in the special care, hk = I. Applying this squenee of 
gains, the algorithm for estimating xo becomes 

If the variances of xo and Q \  are known, the mean square estimation error can be 
computed. In particular, for this example 

It is i n~ t r~e t ive  to compare the result in Eq. (9.3-37) with the error that would be 
achieved if an optimal Kalman filter, based upon knowledge of I&,. ool,  and o l ,  had been 
used. The liiter equation has the form 

= 4 + 4 (zk - ;k) (9 3-38) 
k + L  

"0 

and the correspondrig mean square estlmatlon error s gwen by 

The mean square estimation errors, computed from Eqs. (9.3-37) and (9.3-391, are shown in 
Fie. 9.3-3 for the care on1 = 0.5 o1 - i.e.. the error variance in the. aiori estimate of x, is - ~" 
rmallcr than the mcasuremsnt error Ihr. Kalmrn fdkr taker rdvanlaps of thn mlorrn*lmn 
by "rug gatnr that / w e  less w q h l  to the first leu mcasurcmcnts than docs the alponthm m 
Eq. (9.3-36), thereby providing a lower estimation error. This comparison simply 

emphasizes the fact that it is w i x  to take advanage of m y  available knowledge about the 
statirtia of x, and( vk). 

1.5 o2 

"WRONG" KALMAN FILTER lam: = 2 0 ' )  

I , , , ,  
5 

TOTAL NUMBER OF MEASUREMENTS 

F@re 9.3-3 Comparison of  rms Estimation Error for 
Various Filtering Algorithms 

On the other hand, if a Kalman filter design is based upon assumed values for the 
statistical parameters which are incorrect, the algorithm in Eq. (9.3-36) may yield a better 
estimate. To illustrate, suppos x, has zero mean and variance 

where ool is the assumed value and AoO1 represents an error. Then the Kalman filter in Eq. 
(9.3-28) produces an actual mean square estimation error given by 

BY contrast, the mean square estimation error associated with Eq. (9.3-36) remains the same 
as in Eq. (9.3-371, which is independent of ool.  The mean square error computed from Eq. 
(9.340) is also shorn  in Fig. 9.3-3, for the e a s  AoO1 = 20'. Evidently. the improperly 
dedgned Kalman filter now performs consistently worse than the stochastic approximation 
algorithm, reflecting the fact that the latter generally tends to be less sensitive to changes in 
o~r io"  statistics. 

We conclude, from the above discussion and example, that a stochastic 
approximation algorithm is a reasonable alternative to an optimal estimation 
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technique when the statistical parameters on which the latter is based, are not 
well known. In addition, in many nonlinear estimation problems the linear 
stochastic approximation algolithm is generally more easily mechanized. Finally, 
in real-time filtering applications where measurements must be processed rapidly 
due to high data rates, easily computed gain sequences such as that in Eq. 
(9.3-35) may be preferable to the generally more complicated optimal gains. 
This advantage is particularly applicable to the vector case described in the next 
section. Thus this class of estimation techniques should be included within the 
data processing repertoire of any engineer concerned with fdtering and 
estimation problems. For additional details the reader is referred to  the cited 
references, particularly Ref. 24. 

GENERALIZATIONS 

The Vecmr Constant-Parameter Case - To extend the preceding discussion to 
the problem of estimating a set of n constant parameters arranged in a vector so, 
we again consider a scalar linear measurement of the form 

where bk is a time-varying vector and vk is a sequence of zero mean independent 
random variables having bounded variance. The case of vector measurements can 
be included within this categoly by considering individual measurements one at 
a time. By analogy with Eq. (9.3-23), the corresponding vector stochastic 
approximation algorithm takes the form 

Conditions for convergence of the sequence of vectors {&) to& can be found 
in Ref. 24. They represent a nontrivial multidimensional generalization of the 
conditions required in the scalar parameter case; we do not include them here in 
keeping with our purpose of presenting a principally qualitative description of 
stochastic approximation methods. However, it is useful to mention a particular 
gain sequence that often yields convergent estimates. In particular, i P  

subject to the conditions 

then(&l converges to &. Tne form of Eq. (9.3-43) is suggested by the least- 
squares gain sequence in Eq. (9.3-31) for the scalar parameter case. I t  has the 
advantage of being easily computed and the conditions for convergence can be 
readily checked. 

Time-Varying Parameters - Stochastic approximation methods were first 
developed for estimating coostant parameters. However, analogous methods can 
be applied for estimating variables that are time-valying. To illustrate, suppose it 
isdesired to estimate xk from the measurements 

where xk varies from sample to sample. Specifically the variation in xk is 
assumed to be governed by the stochastic difference equation 

where %(x) is a sequence of known functions, and {wk\ is a sequence of zero 
mean random variables. 

By analogy with the constant parameter case, an algorithm of the form 

is suggested for estimating xk. Equation (9.347) diffen from Eq. (9.3-23) in 
that 4%) replaces ik to account for the redicted change in xk at each stage. In 
general, we cannot expect the sequence fck/ to  conve;ge to however, it is 
often possible to achieve an estimation error that IS stat~stically bounded 
according to the conditions 

lim b = b , < = =  
k-- 

Criteria for achieving statistically bounded estimates, for a scalar nonlinear 
estimation problem, are provided in Ref. 24. In the case of linear dynamic 
systems, any Kalman fdter whose gains may be incorrect due to errors in the 
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assumed noise covariance matrices, or because of imperfect knowledge of the 
system dynamics, can be viewed as a time-varying stochastic approximation 
algorithm. Conditions for the boundedness of the resulting estimation error are 
given in Refs. 32 and 33. Aside from these special cases, development of simple 
algorithms that yield bounded estimation errors for time-varying parameters - 
particularly when the dynamics and/or the measurements are nonlinear - a, in 
many respects, still an open problem requiring further research. 

9.4 REAL-TIME PARAMETER IDENTIFICATION 
The problem of identifying constant parameters in a system can be regarded 

as a special case of the general state estimation problem discussed throughout 
this book, where the parameters are a set of random variables,& satisfying the 
differential equation 

The need to  estimate parameters can arise in anumber of ways. For example, in 
linear fdtering theory it is assumed that the elements of the matrices F, H, . . ., 
etc., that describe the dynamics and measurement data for the linear system, are 
known. In practice, this condition is not always satisfied, and the task of 
estimating certain unknown parameters may be included as part of the overall 
state estimation problem. Similarly, in control system design, it is necessary that 
we know the dynamics of the plant to be controlled, so that an appropriate 
control law can be derived. If some plant parameters are unknown, a parameter 
estimation algorithm may be a necessary part of the system control loop. 

In this section, we present an example of real-time parameter identification 
for a specific control system - viz, an airframe autopilot - where several 
dynamic quantities are unknown. The equations of motion are nominally linear, 
in the form 

where u(t) is a known control input. In the more general case, process noise can 
be included in Eq. (9.4-2); however it is omitted from this particular illustration. 
For this application, real-time estimates of &(t) and a are needed so that 
satisfactory control of the system can be maintained. That is, u(t) is a feedback 
control depending upon the current best estimate of d t ) ;  the nature of this 
dependence is discussed in the sequel. Since u(t) is assumed to be known, it is 
not necessary to know how it is generated in order to design a fdter for a t ) ;  it 
can simply be regarded as a time-varying known input analogous to y(t) in Table 
4.4-1. 

Both 5 and &(t) are to be estimated in realdime from the linear noisy 
measurement data 

If a and &(t) are combined into a composite state vector a t ) ,  the combined 
equations of motion for the system become 

In this form it is evident that the composite estimation problem is nonlinear 
because the product F,@ x,(t) is a nonlinear function of 3 and &. 

MODELING UNKNOWN PARAMETERS 

Applications where the need for parameter identification often arises, are in 
systems where the dynamics are nominally time-invariant, but where it is 
expected that certain parameters will change with time, while the system is 
operating. The exact nature of this time variation is frequently unknown; 
however, the range of variation may be sufficiently large to require that it be 
included in modeling the equations of motion. To illustrate, suppose that the 
nominal equations of motion are 

with parameters, a. One approach to allowing for time variations in the 
parameters is to mode lg  as a truncated power series. 

&,=a, + & t + . . . + g + , t n  (9.4-6) 

If Eq. (9.46) is substituted into Eq. (9.4-9, the equations of motion take the 
form of Eq. (9.4-4) with the vector 2 being composed of the constant sets of 
coefficients a,, . . .,g+l 

One apparent difficulty with the above mcdeling technique is that the 
dimension of 2 - and hence, also, the dimension of the composite state vector in 
Eq. (9.4-4) -increases with every term added in Eq. (9.4-6). Because the 
complexity of the filter algorithm required to estimate a increases with the 
number of parameters, it is desirable that Eq. (9.4-6) have as few terms as 
possible. However, a practical, finite number of terms may not adequately 
describe the change in&, over the time interval of interest. 

An alternative method useful in accounting for time-varying parameters, that 
avoids introducing a large number of state variables, is to assume that the 
time-variation in 20 is partially random in nature. In particular, we replace the 
constant parameter model = 0) in Eq. (9.4-1) with the expression 

i ( 0  = ( 0  (9.4-7) 

where g,( t )  - N(Q, Q,). The strength of the noise should correspond roughly to 
the possible range of parameter variation. For example, if it is known that the 
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ith element of p is likely to change by an amount Aai over the interval of 
interest, At, then require 

ith diagonal element of Ql 4 % 
At 

In practice, it is frequently observed that Eq. (9.4-7) is a good model for the 
purpose of filter design, even though the parameter changes may actually be 
deterministic in nature. In fact, the random model often permits dropping all 
but the first term in Eq. (9.46). thus keeping the number of state variables at a 
minimum. Combining Eq. (9.47) with Eqs. (9.42) and (9.4-3), we obtain the 
model 

The equations of motion and observation given in Eq. (9.49) have the same 
form as the nonlinear system dynamics in Eq. (6.@l) with linear discrete 
measurements, 

L = Hk ~ ( t k )  + xk 

if we make the identifications 

In addition, if statistical models are assumed for &to), &(to) and a, the 
Bayesian nonlinear fdtering methods discussed in Chapter 6 can be applied. The 
extended Kalman filter, described in Table 6.1-1, is used for the application 
discussed in this section. However, the reader should be aware that there are 
many different methods that can be used for parameter identification - e.g., 
maximum likelihood (Refs. 34 and 35), least-squares (Ref. 36), equation error 
(Refs. 37 and 38), stochastic approximation (see Section 9.3 and Ref. 24), and 
correlation (Ref. 39). Some discussion of the relative applicability of the= 
techniques is in order. 

Some of the alternative identification methods mentioned above are 
advocated for situatims where the unknown parameten are assumed to be 
constant with unknown statistics, and where an algorithm is desired that yields 
perfect (unbiased, consistent) estimates in the limit, as an infinite number of 
measurements is taken. The equation error, stochastic approximation, and 
correlation methods are all in this category. However, when the parameters are 
time-varying, as in Eq. (9.4-7), the convergence criteria do not apply. Whether or 
not these methods will operate satisfactorily in the time-varying case can only 
be ascertained by simulation. 

Other methods are based upon various optimization criteria - e.g., maximum 
likelihood and least-squares. The maximum likelihood estimate is one that 
maximizes the joint probability density function for the set of unknown 
parameten; however, it is typically calculated by a uon-real-tlme algor~thm that IS 

not well suited for control system applications. In addttion me probabil~ty 
density function can have several peaks, in which case the optimal estimate may 
require extensive searching. The least-squares criterion seeks an estimate that 
"bst" fits the observed measurement data, In the sense that it minimizes a 
quadratic penalty function; in general, the estimate is different for each 
quadratic penalty function. In contrast with the minimum variance estimate, the 
least-squares estimate does not require knowledge of noise statistics. 

The autopilot design application treated here demonstrates the parameter 
identification capability of the minimum variance estimation algorithms dis- 
cussed in Chapter 6. The latter provide a logical choice of identification 
techniques when the random process statistics are known and the requirement 
exists for real-time filtered estimates; both of these conditions exist in this 
example. 

Example 9.4-1 

The framework of the parameter rdentification problem described here is the design of 
an adaptive piteh-plane autopilot for an aerodynamic vehicle having the funetiorul black 
diagram shown in Fig. 9.4-1. This example treats motion in a single plane only -referred to 
as the pitch-plane. The airframe dynamics are assumed tinear, with a number of unknown 
timevarying parameters. The objective is to obtain a feedback controi @MI u(t), that 
causer the wframe lateral aceeleratron to closely follow the input steering command c(t). 

If the airframe dynamics were completely known, feedback compensation could be 
selected to obtain the desired autopilot response characteristi- using any appropriate 
system design technique. Because certain parameters are unknown, an autopilot design is 
wghl that identifies (estimales) the mrameters in real time and adiusts the feedback 
compensatron accorLnglv lo manrun the denred response .haractawcs In ths 
a ~ p l m t ~ ~ n ,  the method used todetermmc the control 1npulr9 the rwlled pdcossymenr 
rechnrque. M~ercby "(1) IS spu~fied rs a funcrm ofi,&, and .(I) trom the relallon 

Assuming the parameter estimates are perfect, the feedback gains, are chosen such that 
the autopilot "inrtsnfsneour cloasdloop poles" have deshed values; ho is an input gain 
chosen to provide a specified level of input-aulput de s in .  If the airframe parameters are 
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1 l s . l&.C~ t,l,V"' " j  
p , i i  

F i e  9.4-1 Adaptive Autopilot Including Parameter Identification 

know and constant, ho and h will be constant; the mathematid details for deriving the 
functional expressions for the gains can be found in Ref. 40. However, because a is 
initially unknown and timevarying, the estimates will vary and the mntrol gains must be 
ocriodicdv recalculated: this is the adaotlve control feature of the autopilot. For the 
purpose of developng the paramete! rdrntnficamn algorithm, w e  need lay no mole about 
"(1): the f a ~ t  that 11 a known to the drrlgnrr as a lunctron 01 the led ume estlmrtrr of& 
anda  is sufficient. 

The airframe configuration in this application is for the tail-controlled vehicle illustrated 
in Fig. 9.4-2. The equations of motion for the airframe can be expressed in the 
vector-matrix form 

or, in abbreviated notation. 

The quantity A represents known actuator dynamin, V is unknown airspeed, and Mq, Ms. 
etc., are unknown stability derivatives. In the context of Eq. (9.4-9). the set of unknown 
parameters is defined to be 

k: 1 

Pipre 9.42 Airframe Confguration 

For this demonstration, the vehicle is assumed to be thrusting longitudinally a t  a level of 
25-%I, causing rapid variations in the parameters in Eq. (9.4-14) through their dependen- 
upon sirspeed The trajectory duration is three seconds. The simulation truth model uses - - 

piecewiselinear time functions to represent the parameters; the filter model assumes that 
the parameters vary randomly according to Eq. (9.4-7). Measurements of the thee  airframe 
state variables are assumed to be available in the form 

where b\ is agaussian white sequence. With these assumptions, Eqs. (9.4-14) and (9.4-16) 
fit the format of Eq. (9.4-9) and the extended Kalman filter algorithm a n  be directly 
applied. A digital eompute~ monte carlo simulation of this model was performed under the 
following conditions: 

Measurement noise rms level. pitch rate gyro, 4.5 x 10- rad/sec 
accelerometer, 0.16 ft/sec2 
deflection angle lesolvsr, 6.3 X 1C3 rad 

Input command, e(t): square wave - amplitude = 10 ft/sec2 and 
frequency = 1.67 Hz 

Measurement interval: tk+l - tk ' 0.02 sec 

The parameter tracking accuracy achieved for the system in Fig. 9.4-1 is illustrated by the 
curves in Fig. 9.4-3, which display both the truth model and the estimated parameter values 
as functions of time. 

It is observed from Fig. 9.4-3 that some parameters are identified lea accurately than 
others; in particular, f , t  and fix are relatively poorly estimated. This is physically explained 
by the fact that these two parameters describe the open loop damping characteristics of the 
misile airframe. Since the damping is very light, it has little influence on the slrframe state 
variables ~ ~ ( 1 ) .  and hence, on the measurement data. Thus, f l l  and fiz are relolvely 
unobservable. However, this behavior does not adversely affect autopilot design because 
Parameters that have little influence on airframe behavior tend alno to have little eflect on 
the airflame control law. 

Another phenomenon demonstrated by this application is that the character of the input 
signal "(1) in Eq. (9.413) influences the parameter identifiation accuracy - a n  effect that 
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is not observed in truly h e a r  filtering problems.* Tlus occurs because the extended Kalman 
tilter gains are dependent upon&(t) which, in turn, isdependent upon u(t). To illustrate this 
behavior, two simulations were performed under identical conditions except that different 
values of the square wave signal frequency were used for c(t). One parameter in Eq. 
(9.4-13). f13, exhibited marked sensitivity to the frequency changes, as demonstrated in 
Fig. 9.4-4. 

The above example illustrates the use of the extended Kalman fdter for 
obtaining estimates of state variables in problems that are inherently nonlinear. 
Practical problems in parameter identification are currently receiving consid- 
erable attention in many fields - e.g., high-speed aircraft, ship control and 
nuclear power plant control. Work on the design of optimal inputs for system 
parameter identification is also a subject of current research (e.g., Ref. 41). 

9.5 OPTIMAL CONTROL OF LINEAR SYSTEMS 
An important application for the estimation techniques discussed in this book 

is the field of control system design. The concept of control arises when the 
equations of motion of a system contain a set of "free" variables g(t), whose 
functional form can be prescribed by a designer to alter the system dynamic 
properties. A linear stochastic system having this capability is represented by the 
equation 

where L(t) is a gain matrix describing the influence of g t )  on the state vector. If 
g(t) is explicitly a function of time only, it is referred to as an open loop 
connol. If y(t) is explicitly a function of ~ ( t )  also, it is called a closed loop or 
feedback control. 

We note that Eq. (9.5-1) has the same form as the equations for the 
continuous system in Table 4.41, where y(t) is referred to as a deterministic 
input. The linear open loop control systcm falls into the same category, because 
the control variables are specified by the designer; therefore, they can be 
considered as known (deterministic). 

To mechanize a feedback control, yk( t ) ,  t] , the state variables y(t) must be 
accessible. Typically At )  can be observed only through the available measure- 
ments d t ) .  In designing linear control systems, the latter are assumed to be given 
by the familiar linear expression 

where y(t) is gussian measurement noise. As we shall subsequently demonstrate, 
the role of state estimation is to process the measurement data so that an 

*Note from TaUe 4.4-1 that the covaziance matrix for a linear system is unaffected by the 
pesencr of ~ ( 1 ) .  

appropriate approximation to the desired feedback control law - y[i(t),t] - 
can be achieved. An example of this type was treated in Section 9.4; how- 
ever, in this section we are explicitly concerned with the design of the 
control law. 

Just as various optimization criteria have been employed to derive optimal 
estimation algorithms, the concept of optimalcontrol arises when y(t) is chosen 
to minimize a performance index, or figure of merit, for the controlled system. 
For linear systems with certain specific types of performance indices, there are 
significant similarities in the solutions to  the control and estimation problems. 
This section briefly discusses the control problem, compares it with the 
estimation problem, and indicates how both subjects are combined in the design 
of an optimal stochastic control system. 

DETERMINISTIC OPTIMAL LINEAR SYSTEMS - DUALITY 

First, we discuss the control problem for deterministic linear systems where 
the noise processes, fit) and a t ) ,  in Eqs. (9.5-1) and (9.5-2) are absent. To 
determine a control law for the system described by 

it is desirable to impose a performance criterion that leads to a unique choice of 
g(t). An important class of problems, successfully treated from this point of 
view, is the so-called reguhtor problem, wherein ~ ( t )  is assumed to have an 
initial value & at time to and the control is chosen to drive the state toward 
zero. This objective is stated more precisely by requiring that g(t) minimize a 
performance index, J, which provides a measure of the size of At). In addition, 
the index should include a weighting on the magnitude of d t )  to  limit the 
amount of control effort expended in nulling the state vector. A form of J that 
is found to  be convenient and useful for linear systems is the quadratic 
performance index, defined by 

where Vf, V(t) and U(t) are specified weighting matrices and tf is a specified 
final time. The matrices Vf and V(t) are usually required to be symmetric and 
positive semidefmite; U(t) is symmetric and positive definite. 

The positive quadratic terms in & in Eq. (9.54) provide performance 
measures that tend to  achieve the desired reduction in the state when g(t) is 
chosen to minimize J. However, the amount of reduction achieved is 
compromised with the control effort expended by the inclusion of a quadratic 
term in ~ ( t ) .  The smaller the elements of U(t), relative to  those of Vf and V(t), 
the larger will be the magnitude of the optimal control and the greater will be 
the reduction in ~ ( t ) .  
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The procedure outlined above for designing a feedback control system is 
referred to as an optimal conbol problem formulation, where a control law is 
sought that minimizes a scalar index of performance, J. Such problems are 
extensively treated in the control systems literature (see Refs. 36, 4244). 
Solutions for the optimal controls are obtained by various mathematical 
techniques - the principal ones being the calculus of vmintions, Ponnyagin's 
maximum principle, and d y ~ m i c  programming. It is not our intention here to  
provide a detailed exposition of control theory; instead we discuss the analogy 
between the contrd and estimation problems for linear systems, and demon- 
strate the role of estimation theory in the control of linear stochastic systems. 
For these purposes, a relatively simple "special-purpose" derivation (Ref. 45) of 
the optimal feedback control law, which minimizes the index in Eq. (9.54), will 
suffice. 

Let us assume that a time-varying symmetric matrix S(t) exists, defined on 
the mterval to < t < tf, such that 

where Vf is the weighting matrix for the terminal value of the state appearing in 
Eq. (9.54). For the present, no additional conditions are imposed on S(t); 
hence, its values at other times can be quite arbitrary. Observe that Eq. (9.5-5) 
implies 

where it is tacitly assumed that S(t) isdifferentiable. For notational convenience 
the explicit dependence of 5,  S, and other tie-varying quantities upon t is 
frequently omitted in the sequel. If is substituted from Eq. (9.5-3) into Eq. 
(9.5-7), the result can be written as 

The fmal expression of Eq. (9.5-8) is obtained simply by adding and subtracting 
the terms in the integrand of the quadratic performance index 10 the right side 
of Eq. (9.5-7). 

Examination of Eq. (9.5-8) reveals that it can be rewritten in the form 

if we impose the following condition on S(t): 

Equation (9.5-9) is readily verified by inspection of Eqs. (9.5-8) and (9.5-10). 
Until now, S(t) has been an arbitrary symmetric matrix, except for its value at 4 
specified by Eq. (9.5-5); hence, we have the freedom to require that S(t) satisfy 
Eq. (9.5-lo), recognized as the m a t i i  Riccati equation, on the interval 
t o < t < t f .  

Finally we observe that 

Combining Eqs. (9.54), (9.5.5), (9.5-9), and (9.5-Il), we obtain the following 
equivalent expression for the performance index: 

Both S(t,) and &, are independent of the control ~ ( t ) ;  consequently, J can be 
minimized by minimizing the integral alone in Eq. (9.5-12). Furthermore, it is 
evident that the integrand in Eq. (9.5-12) is nonnegative and can be made 
identically zero by requiring 

Solving Eq. (9.5-13) for y(t) and Eq. (9.5-10) for S t ) ,  subject to the condition 
impor4 in Eq. (9.5-5). provides the complete solution to the optimal control 
problem, which is summarized as follows: 

Obselve that the optimal control law, derived above, has the linear form 
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with the feedback gains C(t) given by 

The latter are evaluated by integrating the Riccati differential equation for S(t) 
backward in time from the terminal condition, S(tf) = Vf. If all of the system 
state variables are measured directly [H = 1 in Eq. (9.5-2)) with negligible 
measurement enor, the control law can be mechanized as illustrated in Fig. 
9.5-1. If the matrix H in Eq. (9.5-2) is singular, an approximation t o a t )  can be 
generated with an "observer," as demonstrated in Fig. 9.5-2 (see the discussion 
in Section 9.2). The case where appreciable measurement errors may be present 
is treated in the next section. 

F i e  9.5-1 Optimal Control System Configuration, H = I 

There are important structural similarities between the linear control law, 
derived above, and the Kalman filtering algorithm for continuous systems, 
discussed in Section 4.3. In particular, the control gains C(t) are determined by 
solution of a matrix Riccati equation in Eq. (9.5-14), similar in form to that in 
Table 4.3-1 which specifies the filter gains, K(t). Therefore, all the conditions 
under which solutions to the filtering problem exist, have their counterparts in 
the control problem. For this reason the control and estimation problems are 
said to be the duals of each other. 

One consequence of duality is the fact that the concepts of observability and 
controllability, discussed in Section 4.4, are also defined for control systems. 
The control system is said to be controllable if the integal 

Fire 9.5-2 Approximately Optlmal Control System 
Configuration, H is Singular 

is positive definite for some t > 0, andobservable if the integral 

is positive definite for some t >O.  The quantity 9 is the transition matrix 
associated with F in Eq. (9.5-3). Comparing the above definitions with those 
given in Section 4.4, we find that controllability in the control system, defined 
in terms of F, L, and U P ,  corresponds to observability in the Kalman filter, 
defined in terms of F ~ ,  HT and R-' . Similarly, observability for the control 
system, defined in terms of FT and V, corresponds to controllability of the 
Kalman filter, defined in terms of F and G W T .  Thus, for each control~ble 
dynamic system in a filtering problem, there exists a corresponding observable 
dynamic system for a control problem, and vice versa. 

A list of duality transformations for the control and fdtering problems is 
given in Table 9.5-1. This comparison is useful because only one body of theory 
is needed to treat both situations. 

OPTIMAL LINEAR STOCHASTIC CONTROL SYSTEMS - 
SEPARATION PRINCIPLES 

When the noise processes, y(t) and d l ) ,  are present in Eqs. (9.5-1) and 
(9.5-2), the optimal control problem must be posed diflerently than for the 
deterministic case treated in the preceding section. Because the exact value of 
the state vector is unknown, due to the noisy measurement data, it is 
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TABLE 9.5-1 DUALITY RELATIONSHlff 

Filtering Control - - 
P - S 

I Observability - - Controllability I 
Controllability - = Observability 

meaningless to talk about minimizing the index J in Eq. (9.5-9, which depends 
upon &(t). Instead, a statistical measure of performance is needed; this can be 
obtained by d e f ~ n g  a new performance index 7, which is the average value of J, 
written as 

(9.5-17) 

The optimal stochastic connol problem is to  choose ~ ( t )  so that 7 is minimized, 
subject to  the equations of motion given in Eq. (9.5-1). If a feedback control is 
sought, ~ ( t )  will depend upon the measurement data in Eq. (9.5-2). 

To describe the solution to the control problem defined above, we first note 
that regardless of wha? method is used to generate ~ ( t ) ,  the conditional mean 
(optimal estimate) of the state vector i(t) can always be determined by applying 
a Kalman filter to  the measurement data. This is true because d t ) ,  in Eq. 
(9.5-I), is effectively a known time-varying input to the linear system when the 
control law is specilied. Consequently, g(t) can be determined from the 
algorithm in Table 4.4-1. With this fact in mind, we can state the optimal control 
law which minimizes 7; it consists of two separate cascaded functions. First, a 
conventional Kalman fdter is employed in the manner outlined above toobtain 
an optimal estimate of the state vector. Then the control command, is 
generated according to the relation 

where C(t) is the set of contrd gains derived in the preceding section. A 
functional diagram of the control law is shown in Fig. 9.5-3. The realization of 
the optimal linear stochastic control law, in terms of distinct fdtering and 
control functions, is referred to as the separation principle. 

l l t l  
C O N T R O L L E R  

;It1 

K A L M A N  
FILTER 

SENSORS 

MEASUREMENT I 
I 

Pipre 95-3 Optimal Stochastic Control System Confxuration 

The separation principle is usually derived by applying thptheory of dynamic 
programming to the minimization of J in Eq. (9.5-17) (Ref. 44). To provide 
insight as to why the principle is true, we offer a relatively simple plausibility 
argument, without the mathematical rigor of a complete proof. Using a 
procedure similar to that described in the preceding section for deriving the 
optimal deterministic contrd law, it can be shown that the performance index 
can be written in the form 

7= E & ~ S ( ~ , , ) ~ ~ ]  + trace [ S G W ~ ]  dt 6" 

where S(t) is the solution to the matrix Riccati equation in Eq. (9.5-14). The 
derivation of Eq. (9.5-19) is left as an exercise. The principal difference between 
Eqs. (9.5-12) and (9.5-19) is that the latter contains the term S G Q G ~ ,  which 
arises from the process noise in Eq. (9.5-1). The first and second terms in Eq. 
(9.5-19) are independent of y(t) and can be disregarded in the nlinimization. 
Interchanging the order of expectation and integration, the third term In Eq. 
(9.5-19) becomes 
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At any given time t, having collected all the measurement data u p  t o  time t, 
the integrand in Eq. (9.5-20) is instantaneously minimized with respect t o  the 
control by solving the expression 

for ~ ( t ) ,  where the expectation is conditioned on the available measurement 
data. The resulting value of the control isgiven by 

Observe that it  is expressed in terms of the optimal state estimate, i(t). 
Substituting Eq. (9.5-22) into Eq. (9.5-20) and carrying out the indicated 
expectation operation produces 

which is independent of ~ ( t ) ;  J,, depends only upon the trajectory-independent 
quantities S ,  L, U and P. Therefore, if g t )  is specified by Eq. (9.5-22), the 
integrand in Eq. (9.5-20) 5 minimized at each point in time. Consequently, the 
integral itself, and hence J, is minimized by the choice of control given in Eq. 
(9.5-22). 

The separation principle cited above is most frequently associated with linear 
gaussian stochastic systems having quadratic performance indices. However, i t  
has been demonstrated (Refs. 46-49) that optimal control laws for linear 
stochastic systems with more general types of performance indices, including the 
possibility of an explicit constraint on the control magnitude as well as 
nongaussian measurement noise, also satisfy a form of separation principle. In 
the latter case, the control law consists of a Kalman fdter cascaded with a 
controller that computes g t )  in terms of i(t) .  However, for nonquadratic 
performance indices, the controller portion of the control law can be a nonlinear 
function of i(t);  furthermore, i t  generally depends upon the statistics of the 
process and measurement noises. In many cases the resulting controller 
computation cannot be carded out in closed form. The structure of this more 
general separation principle is similar t o  that shown in Fig. 9.5-3; however, the 
controller can now be nonlinear. The reader is referred t o  the works cited above 
for further details. 

The purpose of this section has been to demonstrate the role that optimal 
estimation theory plays in developing optimal conuol laws for linear stochastic 

systems. For nonlinear systems, the optimal control laws generally d o  not 
separate into an optimal filter cascaded with a control command computation 
(Refs. 50  and 51). However, in these cases it  may be possible t o  linearize the 
nonlinearities and design an approximately optimal linearized system using the 
separation principle. Thus, from this point of view, estimation theory is seen t o  
be exceptionally useful for a wide variety of feedback control system design 
problems. 
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PROBLEMS 

Problem 9-1 

A system and measurement am described by the set of diflcrcntial equations 

i = -px + w, w - N(0.q) 

Z = X + Y ,  v - N(0.r) 
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with measurement data processed to provide an estimate ; according to  

; = -6 + k(z - c) 
where k h based on erroneous a ,rim. assumptions about q and r. 

Describe a computational approach leading to the adaptive behavior of this estimator, in 
which the value of k can be improved as the system operates. Detail all the relwant 
equations and estimate, in terms of the given parameters, the length of time it would take to 
establish the correct value of k to within 5%. 

Problem 9-2 
The stochastic observer undernoes initial discontinuities in both the state estimates and 

estimation error covariance due to  the exact information provided by the noire-free 
measurements at t = O+. Show that i (0+) and P(O1) satmfy Eqs. (9.2-39) and (9.240). 
[Hint: First show that 

and then determine the optimum gain, B20Pt(0), by minimizing the trace of P(O1) with 
respect t o  Bz(0).] 

Problem 9-3 

Define the covariance- of the observer errori, to be 

n = E I ~ ~ T I  

Show that n and P can be related by 

Verify this result for the s p e d  case of the colored-noise stochastic observer, where A and T 
are specified according to 4. (9.251). 

Pmblem 94 

The stochastic observer covariance propagation and optimal gains given by 4 s .  (9.2-36) 
to  (9.238) are written in terms of then X n covariance matrix, P. As shown in Robkm 9-3, 
the observer errors may be equivalently represented by the reduced-order (n-m) X (n-m) 
covariance matrix, n. Starting with the differential equation for the observer error,i, given 
in Eq. (9.2-30), derive the differential equation for the observe< error covariance matrix, n. 
By minimizing the trace of n, derive expressions for the optimal gains of the stochastic 
observer in t e r m  of the reduceddrder covariance matrix, n. 

Problem 9 6  

Rove that the modified Newton's algorithm 

will converge to the solution, x,, of 

from any initial guess, where g(x) is a known function satisfying 

and k., h a constant which satisfies 

(Hint: Find a recursion for the quantity, xi - x,.) 

Problem 9 6  
Demonstrate that conditions in Eqs. (9.3-7c) and (9.3-7d) are necessary in order that the 

generated by Eq. (9.3-5) converges t o  the sdution of 

(Hint: Evaluate Gi for the special care, g(x) = x - a, in terms of the gain sequence {kk).) 

Problem 9-7 

Verify that the gain sequences defined in Eq. (9.3-17) satisfy the conditions in Eqs .  
(9.3-7c) and (9.17d). 

Problem 9 8  
Derive Eqs. (9.3-37) through (9.340). 

Pmblem 9-9 
Suppme that a random sequence 

Xk+l ' Xk + Wk; k = 1,2,. . . 

Elx, 1 = 0 

E [ x , ~ ]  = ooz 

where 1 wk a a sequence of independent zero mean random variables having uni- 
form varianc!o;2. Measurements of the form 

are available, where vk is a sequena of zero mean independent random variables having 
uniform variance oZz. Using the algorithm 

to estimate xk, where k, is constant, derive conditions on k, such that the mean square 
estimation mor is bounded. Compute the rms estimation error in terms of 00'. 012, q 2 ,  
and k.,. 
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Problem 9-10 

Formulate and eve the solution t o  the optimal control problem which is the dual of the 
estimation problem described in Example 4.61. 

Problem 9-1 1 - 
Prove that I in 4. (9.5-17) can be exprwed  in the form dvm in Eq. (9.5-19) (Hint: 

Minuc the development beginning with 4. (9.5-5), replacinEETsZ by E [ ~ % ~ ] ) .  
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