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FOREWORD

Estimation is the process of extracting information from data — data which
can be used to infer the desired information and may contain errors. Modern
estimation methods use known relationships to compute the desired information
from the measurements, taking account of measurement errors, the effects of
disturbances and control actions on the system, and prior knowledge of the
information. Diverse can be bilended to form “best” estimates,
and information which is unavailable for measurement can be approximated in
an optimal fashion. The intent of this book is to enable readers to achieve a level
of competence that will permit their participation in the design and evaluation
of practical estimators. Therefore, the text is oriented to the gpplied rather than
theoretical aspects of optimal estimation. It is our intent throughout to provide
a simple and interesting picture of the central issues underlying modern
estimation theory and practice. Heuristic, rather than theoretically elegant,
arguments are used extensively, with emphasis on physical insights and key
questions of practical importance.

The text is organized into three principal parts. Part [ introduces the subject
matter and provides brief treatments of the underlying mathematics. Chapter 1
presents a brief overview, including a historical perspective; Chapters 2 and 3
treat the mathematics underlying random process theory and state-space
characterization of linear dynamic systems, both of which are essential
prerequisites to understanding optimal estimation theory. Part II provides
derivations, interpretations and examples pertinent to the theory of optimal
estimation. Thus, Chapters 4 and 5 address optimal linear filtering and




smoothing, respectively, while Chapter 6 addresses the subject of nonlinear

filtering and smoothing. Part III treats those practical issues which often mean CONTENTS
the difference between success or failure of the implemented optimal estimator.
The practlca] and often pivotal issues of suboptlmal filtering, sensitivity analysis
and i ation considerations are di d at some length in Chapters 7
and 8. Addmonal topics of practical value are presented in Chapter 9; these
include refinements and other viewpoints of estimation theory, and the close
connection of the mathematics which underly both optimal linear estimation
theory and optimal linear control theory.

Many illustrative examples have been interspersed throughout the text to
assist in effective presentation of the theoretical material. Additionally,
problems with “built-in” answers have been included at the end of each chapter,
to further enable self-study of the subject matter.

This book is the outgrowth of a course taught by The Analytic Sciences
Corporation (TASC) at a number of U.S. Government facilities. The course
notes were, in turn, based on the considerable practical experience of TASC in
applying modern estimation theory to large-scale systems of diverse nature.
Thus, virtually all Members of the Technical Staff of TASC have, at one time or
another, contributed to the material contained herein. It is a pleasure to specif-
ically acknowledge those current members of TASC who, in addition to the
principal authors, have directly contributed to the writing of this book. Bard S.
Crawford provided a complete section; Julian L. Center, Jr., Joseph A.
D’Appollto and Ronald S. Warren contributed through providing text additions,

I and insights of a very diverse nature. Other individuals
whose contributions are acknowledged are Robert G. Bellaire, Norman H.
Josephy, William F. O’Halloran, Jr. and Bahar J. Uttam. William R. Sullivan and
Vicky M. Koczerga created all the artwork. Renwick E. Curry, John J. Deyst, Jr.
and Professor Wallace E. Vander Velde of M.I.T. contributed through technical
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1. INTRODUCTION

HISTORICAL PERSPECTIVE

The development of data processing methods for dealing with random
variables can be traced to Gauss (circa 1800), who invented the technique of
deterministic least-squares and employed it in a relatively simple orbit
measurement problem (Ref. 1). The next significant contribution to the broad
subject of estimation theory occurred more than 100 years later when Fisher
(circa 1910), working with probability “density functions, introduced the
approach of maximum likelihood estimation (Ref. 2). Utilizing random process
theory, Wiener (circa 1940) set forth a procedure for the frequency domain
design of statistically optimal filters (Refs. 3, 4). The technique addressed the
continuous-time problem in terms of correlation functions and the continuous
filter impulse response. It was limited to statistically stationary processes and
provided optimal estimates only in the steady-state regime. In the same time
period, Kolmogorov treated the discrete-time problem (Ref. 5). During the next
20 years, Wiener’s work was extended —in a way which often required
cumbersome calculations — to include nonstationary and multiport systems
(Refs. 6-8). Kalman and others (circa 1960) advanced optimal recursive filter
techniques based on state-space, time domain formulations (Refs. 9-13). This
approach, now known as the Kalman filter, is ideally suited for digital computer
implementation. Indeed, it is the very foundation for data mixing in modern
multisensor systems.

It is interesting to see the many similarities between Gauss’ work and the
more “modern” approaches. As is pointed out in Ref. 14, Gauss notes the need
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for redundant data to elimi the influence of measurement errors; he raises
the issue of dynamic modeling of the system under study; he refers to the
inaccuracy of observations and thereby sets the stage for probabilistic
considerations; he refers to the “suitable combination” of observations which
will provide the most accurate estimates and thus touches upon the questions of
estimator structure and performance criterion definition; he refers to the
number of observations that are absolutely required for determination of the
unknown quantities and thus addresses the subject currently referred to as
““observability” of the system. Other similarities can also be cited. In fact, it can
be argued that the Kalman fiiter is, in essence, a recursive solution* to Gauss’
original least-squares problem.

It is also interesting to note two underlying differences between the classical
and modern techniques; namely, the use of random process vs. deterministic
signal descriptions and the use of high-speed digital computers to generate
numerical solutions vs. the requirement for closed-form “pencil and paper”
solutions. The former consideration enables the modern mathematics to more
closely characterize physical situations being treated; the latter tremendously
broadens the range of problems which may be studied.

OPTIMAL ESTIMATION

An optimal esti isa iputational algorithm that processes measure-
ments to deduce a minimum errorl estimate of the state of a system by
utilizing: knowledge of system and measurement dynamics, assumed statistics of
system noises and measurement errors, and initial condition information. Among
the presumed advantages of this type of data processor are that it minimizes the
estimation error in a well defined statistical sense and that it utilizes all
measurement data plus prior knowledge about the system. The corresponding

potential disad ges are its itivity to erroneous @ priori models and
statistics, and the inherent computational burden. The important concepts
bodied in these sta are explored in the sequel.

The three types of estimation problems of interest are depicted in Fig. 1.0-1.
When the time at which an estimate is desired coincides with the last
measurement point, the problem is referred to as filtering; when the time of
interest falls within the span of available measurement data, the problem is
termed smoothing; and when the time of interest occurs after the last available
measurement, the problem is called prediction.

Probably the most common optimal filtering technique is that developed by
Kalman (Ref. 10) for estimating the state of a linear system. This technique,
depicted in Fig. 1.0-2, provides a convenient example with which to illustrate
the capabilities and limitations of optimal estimators. For instance, given a linear
system model and any of its beh , plus statistical models
which characterize system and measurement errors, plus initial condition

*A solution that enables sequential, 1ather than batch, processing of the measurement data.
TIn accordance with some stated criterion of optimality.
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Figure 1.0-1  Three Types of Estimation Problems (estimate desired at time t)

information, the Kalman filter describes how to process the measurement data.
However, the Kalman filter per se does not solve the problem of establishing an
optimal measurement schedule, or of design in the presence of parameter un-
certainties, or of how to deal with computational errors. Other design criteria,
in addition to those used to derive the filtering algorithm, must be imposed to
resolve these questions.

SYSTEM MEASUREMENT
ERROR RROR A PRIORI
SOURCES SOURCES INFORMATION
YSTEM
SYSTEM * ¢ LA
STATE OBSERVATION ESTIMATE
xit) zit) t
SYSTEM 3 MEASUREMENT = >t KALMAN | A

Figure 1.0-2  Block Diagram Depicting System, Measurement and Estimator
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APPLICATIONS OF OPTIMAL ESTIMATION THEORY
The theory of optimal estimation has application to a t dously broad

range of problem areas. To cite a few, we have: tracer studies in nuclear
medicine, statistical image enhancement, estimation of traffic densities, chemical
process control, estimation of river flows, power system load forecasting,
classification of vectorcardiograms, satellite orbit estimation and nuclear reactor
parameter identification.

The estimation problem may be posed in terms of a single sensor making
measurements on a single process or, more generally, in terms of multiple sensors
and multiple processes. The latter case is referred to as a multisensor system.
Suppose there are & sensors, which provide measurements on m physical
processes. Some of the sensors may measure the same quantity, in which case
simple redundant measurements are provided; others may measure quantities
related only indirectly to the processes of interest. The estimation problem, in
the context of this multisensor system, is to process the sensor outputs such that
“best” estimates of the processes of interest are obtained. A computer-
implemented data processing algorithm operates on the sensor data to provide
the desired estimates. These estimates may be used to drive displays and also to
serve as control signals for the physical systems under observation, as illustrated
in Fig. 1.0-3. In modern multisensor systems, the data prc ing algorithm is
very often derived using optimal filter theory.

SENSOR o —
NUMBER
1 l«— | 5]
N DISPLAYS
H
DIGITAL >
stnsor by COMPUTER
NUM|
uMBE - DATA
PROCESSING
ALGORITHM
.
.
. -
L
CONTROL
SENSOR , : SIGN,
NUMBER // . ONALS
2 INTERFACE T
1L

Figure 1.0-3  Modern Multisensor System

Some outstanding examples of multisensor systems occur in the field of
navigation. External measurements were originally used to update navigation
variables in a deterministic manner; for example, system position indication was
changed to agree with the results of an external position measurement. This
approach ignored two important facts. First, external measurements themselves
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contain random errors that may be significant, when compared to the navigation
system errors. Secondly, navigation system errors are primarily caused by
random, time-varying navigation sensor errors. The optimal use of external
measurements, together with those provided by the navigation system, can
provide a resulting navigation accuracy which is better than that obtainable from
either external measurements or the navigation system alone.

Application of modern estimation techniques to multisensor navigation
systems began in the mid-1960’s, shortly after optimal recursive filter theory was
developed and published. Because the errors in a typical navigation system
propagate in essentially a linear manner and linear combinations of these errors
can be detected from external measurements, the Kalman filter is ideally suited
for their estimation. It also provides useful estimates of all system error sources
with significant correlation times. In addition, the Kalman filter provides
improved design and operational flexibility. As a time-varying filter, it can
accommodate nonstationary error sources when their statistical behavior is
known. Configuration changes in the navigation system are relatively easy to
effect by programming changes. The Kalman filter provides for optimal use of
any bination, and seq of external measurements. It is a
technique for systematically employing all available external measurements,
regardless of their errors, to improve the accuracy of navigation systems. This
application of the theory, among others, is often made in the following chapters.

Perhaps the essential non-hardware issues in any practical application of
optimal estimation are those of modeling and realistic performance projections.
These issues are, of course, related and their proper treatment is a prerequisite to
successful system operation in a real environment. Based upon this perspective,
it becomes clear that a reasonable use of estimation theory in any operational
system is: first — design and computer evaluation of the “‘optimal” system
behavior; second — design of a suitable “suboptimal” system with cost con-
straints, sensitivity characteristics, computational requirements, measurement
schedules, etc., in mind; and #hird — construction and test of a prototype
system, making final adjustments or changes as warranted.

Example 1.0-1

Consider a system compmed of two sensors, each making a single measurement, z,(l
1,2), of a but q ity, X, in the of landom, indep
unbiased measurement errors, vi(i = 1,2). Design a data i that

the two measurements to produce an optimal estimate of x.
The measurements are described by

Zy=x+vy and Zy3=Xx+vy .0-1)

In the absence of any other information, we might seek an estimate of x which is a linear
fu ion of the in the form (sup ipt *“~* denotes

X=Kkz; +kyZ (1.0-2)
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where k; and k, remain to be specified. Defining the estimation error, X, as

x=X-x
we seek 1o minimize the mean square value of X as the criterion of optimality. Fmﬂlerfl'fme.,
we require that our choice of ky and k, be independent of the value of x; this condition’
will hold if the estimate is unbiased — i.e., if

E{x] = E[kj(x + V1) +ka(x +¥2) —x] = 0 (1.03)

where E denotes the ensemble expectation? or average. Performing the ix}diuted
expectation, with Efv;) = Efvy] = 0 and E[x] = x since x is “nonrandom”, we obtain

ky=1~k; (1.0-4)
Combining Egs. (1.0-1) through (1.0-4), the mean square error is computed in the form
E[X%]) =ky 20,2 + (1 —k)? 05 (1.05)

where 0,2 and a,z denote the variances of v, and v, respectively. Differentiating this
quantity with respect to ky and setting the result to zero yields

2%ky01% - 21 ~ky) 0,2 =0
or

0,2

Ky =
1 011+‘,22

The corresponding minimum mean square estimation error is

B = [ = N (1.06)
011 022
It can be seen that the mean square estimation error is smaller than either of the mean
square errors. The algorithm (Eq. (1.0-2)]
oy’ _o? ) won
X= 7 + z. -0~
X ‘T“al h,z'z‘ 1 011“722 2

. s i 22 o2
makes sense in the various limits of interest — ie., if 61° = 02", the l.ness‘urements are
averaged; if one measurement is perfect (o, or oz equal to zero) the other is rejected; etc.

In Example 1.0-1, the physical quantity of interest was a scalar constant and
only two linear measurements of that constant were available. In general, we

shall be interested in estimates of vector time-varying quantities where many

measurements are provided.

*This condition is imposed because x is unknown; hence, the gains ky and kp must be

indepenaent of x. i i .
{The ion operator is di d in Section 2.2.
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Physical systems and measurements can be categorized according to whether
they are static or dynamic, continuous or discrete, and linear or nonlinear.
Furthermore, we shall be interested in real-time data processing algorithms
(filtering and prediction) and post-experiment algorithms (smoothing). Due to
its notational simplicity and theoretical power, subsequent treatment of these
physical systems and data processing algorithms is couched in terms of state
space representation, using the mathematics of vectors and matrices and the
notions of random process theory. These topics are discussed in Chapters 2 and
3.
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PROBLEMS
Problem 1-1

Repeat Example 1.0-1 for the case where measurement errors are correlated; that 1s,
Efviv3] = po; 0, where p is a correlation coefficient (lpl < 1). Show that



8 APPLIED OPTIMAL ESTIMATION

2
< 02" — P00y
(= —
a2 *012 — 2p0y0y
and
2 2
o2, 01702 -5%
Ex*] s 55— —
01+ 03" ~2p010,

for the optimal esti Physi interpret the ing of E{x2] = 0 for p = z1.

Problem 1-2

Compute E[izl from Egs. (1.0-1) and (1.0-2) with the gains k and k, unrestricted.
Show that values of the gains which minimize E[)'(z] are functions of x, using the fact that
E[x] = x and E[le =x2,

Problem 1-3

Consider a case similar to Exampile 1.0-1, but in which three independent measurements
are available instead of two. Argue why an estimator shouid be sought in the form

K=kyzy +kazg + (1 — kg ~Kp) 23

Develop optimum values for k; and k4 and use these to show that

E(Z*) = —
1x%] (u‘,

for the optimal estimate.

Problem 1-4
The concentration of a substance in solution decreases exponentially during an
experiment. Noisy measutements of the concentration are made at times t; and t, such
that (i=1,2)
z=xo € Bty

An estimate of the initial concentration, xo, is desired. Demonstrate that an unbiased
estimator is given by

%o = (keM) 2y +{(1 - K) e2] 25

where k, not yet specified, is a constant. Show that the value of k, which minimizes the
mean square estimation error, is

012
0,262t - t1) 4 9,2

INTRODUCTION

and that the corresponding mean square estimation error is

- 1 1 -1
E[(Xo - o)’} = —5 et —
%1 o2

2 2
where 0, ” and 0, are measurement error variances,



2. REVIEW OF UNDERLYING
MATHEMATICAL TECHNIQUES

In this chapter, mathematical techniques utilized in the development and
application of modern estimation theory are reviewed. These techniques include
vector and matrix operations and their application to least-squares estimation.
Also included is a presentation on probability, random variables and random
processes. Of these, the latter is the most important for our work and,
consequently, is given the greatest emphasis. The specific goal is to provide the
mathematical tools necessary for development of state vector and covariance
matrix methods and their subsequent application

Note that the material in this chapter is neither a complete discussion of the
topics, nor mathematically rigorous. However, more detailed material is provided
in the references cited.

2.1 VECTORS, MATRICES, AND LEAST SQUARES

This section contains pertinent definitions and operations for the application
of vector and matrix methods in modern estimation. The reader requiring a more
complete discussion is referred to Refs. 1-3.

VECTOR OPERATIONS

An array of elements, arranged in a col is designated by a |
letter with an underbar and is referred to as a vector (more precisely, a column
vector). The number of elements in the vector is its dimension. Thus, an
n-dimensional vector X is:
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=" 2.1-1)

Vector Addition — Addition of two vectors is defined by
X1 ty;
X2 ty,
x+y? : 2.12)
Xa +¥n

Vector subtraction is defined in a similar manner. In both vector addition and
subtraction, x and y must have the same dimension.

Scalar Multiplication — A vector may be multiplied by a scalar, k, yielding

k=] - (2.1-3)

Zero Vector — The vector Q is defined as the vector in which every element is
the number 0.

Vector Transpose — The transpose of a vector is defined such that, if x is the
column vector

x=| (2.149)

its transpose is the row vector

T =[x% ... %) (2.1-5)
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Imner Product — The quantity xTy is referred to as the inner product or dot
product and yields the scalar

ETY =Xy tXaya +. .ty 2.1-6)
If xTy = 0, x and y are said to be orth 1. In addition, xT%, the squared
length of the vector ¥, is

xTx=X2+x.2 4., 4,2 2.1-7

The length of the vector x is denoted by
Ix 1=/5Tx (2.1-8)

Outer Product — The quantity Z‘.ZT is referred to as the outer product and
yields the matrix

M1 %ays .- len-‘
X2¥1 XYz ... X2¥j
HT = : . )
| XaY1  ¥n¥z2 --- Xp¥n

Similarly, we can form the matrix xxT as

ro. b
Xy XX ... XiXg
X2X1 X2® ... XpXp
T = 219
‘2
| XnX1 XXz ... X

where xx7 is called the scatter matrix of the vector x.

Vector Derivative — By using previously defined operations, the derivative of
a vector may be defined. For continuous vectors x(t) and x(t + At) we get

X (t+A) | [xi(®) [x(t+ A —x, ()
x(t+ A [x(0)] [xa(t+ A —x, (D)

x(t+A) - x(t)= ) -1 = ) (2.1-10)

%o+ 80| [xa(®] [xalt+ 80— x,0)
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Multiplying both sides by the scalar 1/At and taking the limit as At - O yields

%, (1)
(1)

ww= | @1-11)
%0

which is the desired result. The integral of a vector is similarly described — i.e.,
in terms of the integrals of its elements.

MATRIX OPERATIONS

A matrix is an m X n rectangular array of el in m rows and n columns,
and will be designated by a capital letter. The matrix A, consisting of m rows
and n columns, is denoted as:

A= lay) @112

where ay; is the element in the ith row and jth column, fori=1,2,...,mandj=
1,2,...,n. For example.if m=2andn=3, Aisa2X 3 matrix

_ 81 A 413

A= 431 232 333
Note that a column vector may be thought of as a matrix of n rows and 1
column; a row vector may be thought of as a matrix of 1 row and n columns;
and a scalar may be thought of as a matrix of 1 row and 1 column. A matrix of n
rows and n columns is square; a square matrix in which all elements off the main
diagonal are zero is termed a diagonal matrix. The main diagonal starts in the
upper left corner and ends in the lower right; its elements are a4, 833, ..., 8pp.

Matrix Addition — Matrix addition is defined only when the two matrices to
be added are of identical dimensions, i.e., they have the same number of rows
and the same number of columns. Specifically.

A+B2 [a; +by) @.113)

and form=3andn=2:

A | +biy 25, +byy
A+B= | a;; +byy 252 +byq
a31 +hay a3; +by,
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Scaler Multiplication — The matrix A may be maultiplied by a scalar k. Such
scalar multiplication is denoted by kA where
KA = [kay] (2.1-149)

Thus, for matrix subtraction, A — B = A + (—1)B, that is, one simply subtracts
corresponding elements.

Matrix Multiplication — The product of two matrices, AB, read A times B, in
that order, is defined by the matrix

AB=C=[c] (2.1-15)

The product AB is defined only when A and B are conformable, that is, the
number of columns of A is equal to the number of rows of B. Where A is m X p
and B is p X n, the product matrix [clJ | has m rows and n columns and ¢;j is
given by

E ajbyj = aj by +aabyj + ..+ ay,by; (2.1-16)

For example, with A and B as previously defined, AB is given by

AB 81101y +21,bsy ta13bsy  a51bi; +252byp ta1sbsg
=[c.1=
L il a31byy + 23,0y +233b31 231013 + 355025 +333bs2

for m = 2, p = 3, n=2. It is noted that two matrices are equal if, and only if, all
of their corresponding elements are equal. Thus A = B implies a;; = by; for ail i
(1,2, ...,m)and all j (1,2, . . . ,n). For square matrices A and B of equal
dimension, the products AB and BA are both defined, but in general AB #
BA — i.e., matrix multiplication is noncommutative.

Vector-Matrix Product — If a vector X and matrix A are conformable, the
product

y=Ax 2117
is defined such that
n
yi= Z aji; {2.1-18)
1=1
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Matrix Derivative and tntegral — Using the operations of addition and
multiplication by a scalar, the derivative and integral of a matrix may be
formulated. Analogous to the vector operations, we obtain

A® = (3] @.1-19)

Jawa= [ Jao dt] 2120

Zero Matrix — The matrix (0], herein simply denoted 0, is defined as the
matrix in which every element is the number 0.

Identity Matrix — The identity matrix I is a square matrix with 1 located in
each position down the main diagonal of the matrix and 0’s elsewhere — i.e.,

1 0. 0
0 1. [i]
i=
0 0 . 1
(851 (2.1-21)

where §;; is the Kronecker delta defined by

o Jrifi=j R
8y {0ifi=/=j @122
The result of multiplication by the identity matrix is Al = JA = A, that is, no
change.

Matrix Determinant — The square matrix A has a determinant denoted by
|A |l The determinant is a scalar defined by

n n n
1Al = E Y X ey (2.1-23)
=1 j=1 L=1
i R#ELi L.,
In each term the second subscripts ij, . . . , £ are permutations of the numbers

1,2, ... ,n. Terms whose subscripts are even permutations are given plus signs,
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and those with odd permutations are given minus signs. The determinant of the
product AB is

IAB 1= |Al- [Bi 2.1:24)

The determinant of the identity matrix is unity. One common use of the
determinant is in solving a set of linear algebraic equations by means of Cramer’s
Rule (Ref. 1). However, modern computer algorithms utilize other techniques,
which do not rely on calculating the matrix determinant for solving linear
equations. For present purposes, the matrix determinant is used as part of a
criterion for matrix invertibility —a subject which is discussed in subsequent

paragraphs.

The Inverse of a Matrix — In considering the inverse of a matrix we must
restrict our discussion to square matrices. If A is a square matrix, its inverse is
denoted by A™ such that

A A=AAT =1 (2125

That is, the multiplication of a matrix by its inverse is commutative. For square
matrices A and B of the same dimension, it is easily shown that

(AB) =B* A" (2.1-26)

It is noted that all square matrices do not have inverses — only those that are
nonsingular have an inverse. For purposes of clarification, a nonsingular matrix
may be defined as follows:

No row (column) is a linear combination of other rows (columns)
or
The determinant of the matrix is not zero —i.e., 1A I# 0.

If 1A |=0, two or more of the rows (columns) of A are linearly dependent. Use
of the inverse matrix A can be illustrated by its role in solving the matrix
equation

Ax=y @127

where A is an n X n matrix, and X and y are n-row column vectors (n X 1).
Premultiplication by A (assuming that it exists) yields

x=ATy (2.1:28)
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thich is the solution to Eq. (2.1-27). Computing inverses for large matrices is a
time-consuming operation; however, it is suitable for computer solution. Results
for 2X 2 and 3 X 3 matrices are given below. If

_la b
A‘{c a] (2129)
then
L 1[4 b
A =1l (2.130)
—C a
where
lAl=ad —be (2.1-31)
If
a b c
A=ld e f 2.132)
g h i
then
ei—fh ch — bi bf —ec
gf — di ai —ge dec —af 2.1-33
dh—ge gb—ah ae—bd 2133
where

| A |= aei + bfg + cdh — ceg — bdi — afh (2.139)

It can be shown that, in general,
A= L diA
JAT 29

where |A| is the determinant of the square matrix A. and adjA (the adjoint of
A) is the matrix formed by replacing each element with its cofactor and
transposing the result [the cofactor of a;; is the determinant of the submatrix
formed by deleting from A the ith row and jth column, multiplied by (—1)i + j].
Clea:ly, hand computation of the inverse of a large matrix is tedious, since a

of ively smaller sub: ices are obtained and the determinant for
each of these must also be computed.
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The Transpose of a Matrix — The transpose of a matrix is obtained by
hanging its rows and col For le, if

a5, a3 A3
A=
431 837 3

11 83,

13 333

or, in general

A=T[aj], AT=I[aj] (2.1-35)
Thus, an m X n matrix has an n X m transpose. For square matrices, if A = AT,
then A is said to be symmetric. If AT = A, then A is said to be orthogonal. The
determinant of an orthogonal matrix is unity. If AT = —A, A is said to be
skew-symmetric. A property of a skew-symmetric matrix is that all elements on
the main diagonal are zero.

For matrices A and B, of appropriate dimension, it can be shown that

(AB)T = BTAT (2.1-36)
If A is invertible then

(AT = (ATy? 2.1:37)

Trace — The trace of square matrix A is the scalar sum of its diagonal
elements. Thus

n
trace[A] = z ay (2.138)
=1

For square matrices A and B
trace [AB] = trace [BA] (2.139)

Rank — The rank of matrix A is the dimension of the largest square matrix
contained in A (formed by deleting rows and columns) which has a nonzero
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determinant. It follows from the discussion of invertibility that a nonsingular
n X n matrix has rank n.

Matrix Pseudoinverse — The matrix inverse is defined for square matrices
only; it is used in the solution of sets of linear equations — of the form Ax =y —
in which the number of equations is equal to the number of unknowns. For
nonsquare matrices used to describe systems of equations where the number of
equations does not equal the number of unknowns, the equivalent operator is
the pseudoinverse (Ref. 4).

If a matrix A has more rows than columns, the pseudoinverse is defined as

A#=(ATAY? AT (2.140)

for nonsingular (ATA). In the solution of linear equations this is the so-called
overdetermined case — where there are more equations than unknowns. The
resulting solution, x = A#! is best in a least-squares sense. If A has more columns
than rows, the pseudoinverse is defined as

A¥# = AT(AATY! (2.1441)
This corresponds to the underd ined case — there are fewer equations than
unknowns. Typically, such a situation leads to am infinite number of
least-sq solutions (i ider the least-squares fit of a straight line to a single

point). The solution resulting from the pseudoinverse is also best in a
least-squares sense, and the vector x = A%y is the solution of minimum length,
Several useful relations concerning the pseudoinverse are given below:

AA#A= A (2.142)
A#aa¥ = p# (2.143)
(AFA)T = A#A (2.144)
(AAMT = ga# (2.145)

Functions of Square Matrices — With A as a scalar variable, the equation
fA)=IA1-Al=0 (2.146)

is called the characteristic equation of the square matrix A. Values of A that
satisfy this equation are the eig Jues of the square matrix A. By expanding
the determinant, it can be seen that f(0) is a polynomial in A. The
Cayley-Hamilton Theorem states that, for the same polynomial expression,

fay=o0 (2.147)
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That is, every square matrix satisfies its own characteristic equation.
It is possible to define special polynomial functions of a square matrix A, two
of which are:

eA=]+A+2—l!A‘+3L!A’+.,. (2.148)

sinA=A~3—1!A’+Si!A‘~... (2.149)
where

A?=AA (2.1-50)

A3 =AAA ete. (2.1-51)

The matrix exponential ¢A occurs in the study of constant coefficient matrix
differential equations, and is utilized in Chapter 3. Coddington and Levinson
(Ref. 5) provide a number of useful relations for the matrix exponential. Among
them are:

eA*B =¢AeB  if AB=BA (2.1-52)
eTFT ™' = TeFT™1 for IT1#0 (2.1-53)
| eF | = gtrace{F} (2.1-59)

VECTOR-MATRIX OPERATIONS

Vectors and matrices can be bined in math ical expressions in various
ways. Since a vector of dimension n can be thought of as an n X 1 matrix, the
rules developed above for matrix operations can be readily applied. Several
of the more common operations are briefly considered in the following
discussion.

Quadratic Forms — An n X n symmetric matrix A and the n-dimensional
vector x can be used to define the scalar quantity

J=xTAx (2.155)
or

2
T=ay X% X .. A,

+2(212X X2 + 813X1Xa ¥ ... F a1 nXn_1Xn)
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This scalar expression is referred to as a quadratic form. An orthogonal matrix Q
can always be found such that (Ref. 1)

A'=QTAQ (2.1-56)

is diagonal with a}; = \;, where the A; are the eigenvalues of A. It can be shown
that the quadratic form reduces to

T= X+ AgxP + . A2 2.1-57)
where
x'=QTx (2.1-58)

Definite Forms — The quadratic form is further used to define properties of
the matrix A:
1f xTAx > 0 for all real ¥, A is said to be positive definite.
1f xTAx > 0 for all real x, A is said to be positive semidefinite.
If xTAx < 0 for all real x, A is said to be negarive semidefinite.
1f yTAx < 0 for all real x, A is said to be negative definite.

Norm — The matrix-associated quantity, analogous to the length of a vector,
is called the norm and is defined by

1Ax]
= max A3
Al Tel (2.1-59)

With vector length as defined in Eq. (2.1-8), the norm is readily computed as
[EUESVAN (2.1-60)
where A, is the maximum eigenvalue of the matrix product ATA (Ref. 6).
Gradient Operations — Differentiation of vector-matrix expressions, with
respect to scalar quantities such as time, has been previously discussed. Rules for
differentiation, with respect to vector and matrix quantities, are given below.

The gradient or derivative of a scalar function z, with respect to a vector %, is the
vector

(2.1-61)

&I
L]
=
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with
4= (2.1-62)
A case of special importance is the vector gradient of the inner product. We have
B%QT;) -y (2.163)
and
% @Y=y (2164)

The second partial of a scalar z, with respect to a vector x, is a matrix denoted
by

:T’zz - A 2.165)
with
_ 0%z (2.1-66)
i~ axgx;

The determinant of A is called the Hessian of z.
In general, the vector gradient of a vector is the matrix defined as

al _ 2167
= A ( )
with
0z;
] (2.168)
ay .

If z and X are of equal dimension, the determinant of A can be found and is
called the Jacobian of z. The matrix gradient of a scalar z is defined by

a2 _ (2.1-69)
A~ B
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with
dz
bij =5~ (2.1-70
1 ay; )

Two scalar functions of special note are the matrix trace and determinant. A
tabulation of gradient functions for the trace and determinant is provided in
Ref. 7. Some of particular interest for square matrices A, B, and C are given
below:

3
ﬁtrace[A] =1 2.1-71)
ai trace[BAC] = BTCT (2172)
A

% trace[ABAT] = A(B + BT) (2.1-73)
—atrace[eA] = eAT (2.1-74)
YN :

% IBAC |= [BAC} (A™)T (2.175)

LEAST-SQUARES TECHNIQUES

Vector and matrix methods are particularly convenient in the application of
least-squares estimation techniques. A specific example of least-squares estima-
tion occurs in curve-fitting problems, where it is desired to obtain a functional
form of some chosen order that best fits a given set of measurements. The
criterion for goodness of fit is to minimize the sum of squates of differences
between measurements and the “estimated” functional form or curve.

The linear least-squares problem involves using a set of measurements, z,
which are linearly related to the unknown quantities x by the expression
z=Hx+y (2.1-76)

where y is a vector of measurement “noise.” The goal is to find an estimate
of the unknown, denoted by £. In particular, given the vector difference

z—H;

[

we wish to find the £ that minimizes the sum of the squares of the elements of
2 — HE. Recall that the vector inner product generates the sum of squares of a
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vector. Thus, we wish to minimize the scalar cost function J, where
1= (z-HYT @-Hp) 2117

Minimization of a scalar, with respect to a vector, is obtained when

=0 (2.1-78)

o
lx)| &

and the Hessian of J is positive semidefinite

a1
Py

>0 (2.1-79)

Differentiating J and setting the result to zero yields
HTHE = HTz (2.1-80)

It is readily shown that the second derivative of J, with respect to %, is positive
semidefinite; and thus Eq. (2.1-80) does, indeed, define a minimum. When HTH
possesses an inverse (i.c., when it has a nonzero determinant), the leasi-squares
estimate is

% = (HTH)" HTg (2.1-81)

Note the correspondence between this result and that given in the discussion of
the pseudoinverse. This derivation verifies the least-squares property of the
pseudoinverse.

Implied in the preceding di ion is that all available measurements are
utilized together at one time — i.e., in a so-called batch processing scheme.
Subsequent discussion of optimal filtering is based on the concept of recursive
pr ing in which ts are utilized sequentially, as they become
available.

2.2 PROBABILITY AND RANDOM PROCESSES*

This section contains a brief summation of material on probability, random
variables and random processes with particular emphasis on application to
modern estimation, The reader desiring a more extensive treatment of this
material is teferred to any one of the following excetlent boaks on the subject:
Davenport and Root (Ref. 9), Laning and Battin (Ref. 10) and Papoulis (Ref.
11).

*This material dosely follows a similar presentation in Appendix H of Ref. 8.
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PROBABILITY

Consider an event E, which is a possible outcome of a random experiment.
We denote the probability of this event by Pr(E) and intuitively think of it as the
limit, as the number of trials becomes large, of the ratio of the number of times
E occurred to the number of times the experiment was attempted. If all possible
outcomes of the experiment are denoted by E;, i=1,2, ... ,n, then

0<Pi(E)<1 @21
and
3 PE)=1 2.22)
i=1

prescribe the limits of the probability.

The joint event that A and B and C, etc., occurred is denoted by ABC. . .,
and the probability of this joint event, by Pr(ABC . . ). If the events A,B,C, etc.,
are mutually independent — which means that the occurrence of any one of
them bears no relation to the occurrence of any other — the probability of the
joint event is the product of the probabilities of the simple events, That is,

Pr(ABC. . .) = Pr(A)Pr(B)Pr(C). . . (223)

if the events A,B,C, etc., are mutually independ Actually, the math ical
definition of independence is the reverse of this statement, but the result of
conseqt is that independ of events and the multiplicative property of
probabilities go together.

The event that either A or B or C, etc., occurs is denoted by A+B+C and the
probability of this event, by Pr(A+B+C). If these events are mutually exclusive —
which means that the occurrence of one precludes the occurrence of any other —
the probability of the total event is the sum of the probabilities of the simple
events, That is,

Pr(A+B+C+. . .) = Pr(A) + Pi(B)+ Pr(C) + . . . 2:24)

if events AB,C, etc., are mutually exclusive. If two events A and B are not
mutually exclusive, then

Pr(A+B) = Pr(A) + Pr(B) — Pr(AB) 2.2:5)

Clearly, if two events are mutually exclusive their joint probability Pr(AB) is
2ero.

For events which are not independent, the concept of conditional probability
can provide added information. The probability of event A occurring, given that
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event B has occurred, is denoted by Pr(A | B). This probability is defined by

Pr(AB)
P:(B)

Pr(AlB) = (2.2:6)

It is apparent that, if events A and B are independent, the conditional
probability reduces to the simple probability Pr(A). Since A and B are
interchangeable in Eq. (2.2-6), it follows that

Pr(AIB)Pr(B) = Pr(B|A)Pr(A) (227

from which we reformulate Eq. (2.2-6) as

Pr(B IA)Pe(A)

Pr(AIR) =g

(2.2:8)

Let us consider possible outcomes A;, i=1,2. ... ,n, given that B has occurred,

Pe(B |A)Pr(A;)

Pr(A,IB) = By (229
But
Pr(B) = Pr(BIA)Pr(A ) + Pr(BIA; P{A;) + - ..
+Pr(BIA,)Pr(Ap) (2.2-10)
so that
Pr(A;1B) = M),A 2.2-11)

2. Pr(BIA)PHA)

i=1

Equation (2.2-11) is a statement of Bayes' theorem. We shall have the occasion
to utilize this result in subsequent chapters.

Example 2.2-1

The probability concepts defined above are best illustrated by using 2 family of simple
examples. In particular, the commonly used experiment involving the roll of a die is utilized.

Probability

e Experiment — roll a die
o Event — value of the die
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® Possible values - 1,2,3,4,5,6
® Pr(value=j;j=1,2,3,4,5,6)=1/6.

Joint {Independent) Event

# Expenment — roll two dice, Aand B

o Events — value of A and value of B

e Joint event — values of A and B

o Possible joint event values - (1,1), (1,2}, ..., (6,6)
e Pr(joint event) 2 Fi(AB) = 1/36 = Pr(A) Px(B).

Mutually Exclusive Events

» Expenment - roll a die
e Event — value is either 1 or 2
e Pr(l+2)=P()+P()=1/6+1/6=1/3.

Non-Mutually Exclusive Events
o Experiment — roll two dice, A and B
® Event — value of either AorBis 1
o Pr(A=1orB=1)=Pr(A=1)+Pr(B=1)-Pr(A=1andB=1)

=1/6+1/6 - 1/36=11/36.

Conditional Probability

® Experiment - roll three dice A, Band C
o Event E; — obtain exactly two 1's
E; — A=1,B and C any value

e Pr(E))=Pr(A=1)-PrB=1)-Pr(C+1)
+Pr(A+#1)-Pr(B=1) -Px(C=1)
+P(A=1)-Pr(B # 1) - PxC=1)

=3(1/6 X 1/6 X 5/6)=5/72

PrE)=1/6X 1X 1=1/6

Pr(EE) =PA=1) «Px(B=1)* Pr(C + 1)
+PHA=1)-P(B+1)-P(C=1)
=2(1/6 X 1/6 X 5/6) = 5/108
S
Pr(E\Eg) o8
Pr(E, {E,) = =108 =
T(E11E,) PrEy) T

5
18
6
o Thus, given that A = 1, the probability of E; occurring is four times greater.

RANDOM VARIABLES

A random variable X is, in simplest terms, a variable which takes on values at
random; and may be thought of as a function of the outcomes of some random
experiment. The manner of specifying the probability with which different
values are taken by the random variable is by the probability distribution
function F(x), which is defined by
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F(x) =Pr(X <x) 2.212)

or by the probability density function f(x), which is defined by
dF(x)
=— .2:13
f(x) ™ (2.213)

The inverse of the defining relationship for the probability density function is

F(x)= j: _fwde 2.214)

An evident characteristic of any probability distribution or density function is

F(-)=_f fu) du=1 (2.215)

From the definition, the interpretation of f(x) as the density of probability
of the event that X takes a value in the vicinity of x is clear:

f(x) = lim

F(x+ dx) — F(x)
x>0 &

= lim
dx~>0

Pr(x <X < x +dx)
~a =27 2.2-16
; (2.2:16)

This function is finite if the probability that X takes a value in the infinitesimal
interval between x and x + dx (the interval closed on the right) is an infinitesimal
of order dx. This is usually true of random variables which take values over a
continuous range. If, however, X takes a set of discrete values x; — with nonzero
probabilities p; — f(x) is infinite at these values of x. This is expressed as a series
of Dirac delta functions weighted by the appropriate probabilities:

f(x) = Z Pi6(x — %)) @217

An example of such a random variable is the outcome of the roll of a die. A
suitable definition of the delta function, 8(x), for the present purpose is a
function which is zero everywhere except at x = 0, where it is infinite in such a
way that the integral of the function across the singularity is unity. An
important property of the delta function, which follows from this definition, is
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J_‘” G(x) 8(x — Xo) dx = G(xo) (2.218)

if G(x) is a finite-valued function which is continuous at x = x,.

A random variable may take values over a continuous range and, in addition,
take a discrete set of values with nonzero probability. The resulting probability
density function includes both a finite function of x and an additive set of
probability-weighted delta functions; such a distribution is called mixed.

The simultaneous consideration of more than one random variable is often
necessary or useful. In the case of two, the probability of the occurrence of pairs
of values in a given range is prescribed by the joint probability distribution
function

Fo(xy)=Pe(X<xand Y<y) (2.2-19)

where X and Y are the two random variables under consideration. The
corresponding joint probability density function is

%F1(xy)

axdy (2.2:20)

f(xy)=

It is clear that the individual probability distribution and density functions for X
and Y can be derived from the joint distribution and density functions. For the
distribution of X,

F(x) = F,(x,2) (2.221)
9= [ oy @222

Corresponding relations give the distribution of Y. These concepts extend
directly to the description of the joint behavior of more than two random
variables.

If X and Y are independent, the event (X < x) is independent of the event (Y
< y); thus the probability for the joint occurrence of these events is the product
of the probabilities for the individual events. Equation (2.2-19) then gives

F(xy)=PX <xand Y<y)
=P(X<x)}P(Y<y)
=Fx(x)Fy(y) (2.223)

From Eq. (2.2-20) the joint probability density function is, then,
f2(xy) = ix(®fy ) (2229
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Subscripts X and Y are used to emphasize the fact that the distributions are
different functions of different random variables.

E i and istics of Rand Variables — The exp ion of a
random variable is defined as the sum of all values the random variable may take,
each weighted by the probability with which the value is taken. For a random
variable that takes values over a continuous range, the summation is done by
integration. The probability, in the limit as dx—0, that X takes a value in the
infinitesimal interval of width dx near x is given by Eq. (2.2-16) as f(x) dx. Thus,
the expectation of X, which we denote by E[X] is

E[X] = f " f(x)dx (2.225)

This is also called the mean value of X, the mean of the distribution of X, or the
first moment of X. This is a precisely defined number toward which the average
of a number of cbservations of X tends, in the probabilistic sense, as the number
of observations increases. Equation (2.2-25) is the analytic definition of the
expectation, or mean, of a random variable. This expression is valid for random
variables having a continuous, discrete, or mixed distribution if the set of
discrete values that the random variable takes is represented by impulses in f(x)
according to Eq. (2.2-17).

It is frequently necessary to find the expectation of a function of a random
variable. If Y is defined as some function of the random variable X — e.g.,
Y=g(X) - then Y is itself a random variable with a distribution derivable from
the distribution of X. The expectation of Y is defined by Eq. (2.2-25) where the
probability density function for Y would be used in the integral. Fortunately,
this procedure can be abtreviated. The expectation of any function of X can be
calculated directly from the distribution of X by the integral

Bis0] = f_ oot 2226)

An important statistical parameter descriptive of the distribution of X is its
mean squared value. Using Eq. (2.2-26), the expectation of the square of X is
written

oo

E[x?] = _[ x2(x)dx (2.2:27)

The quantity E[X?] is also called the second moment of X. The root-mean-
squared (rms) value of X is the square root of E[X?]. The variance of a random
variable is the mean squared deviation of the random variable from its mean; it is
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denoted by g2 where

0% = fw (x — E|X])? f(x)dx =E[X?] - E[X]? (2.2-28)

The square root of the variance, or g, is the standard deviation of the random
variable. The rms value and standard deviation are equal only for a zero-mean
random variable.

Other functions whose expectations are of interest are sums and products of
random variables. It is easily shown that the expectation of the sum of random
variables is equal to the sum of the expectations,

E[X; +X; +... +X,] =E[X,] +E[X;] +... +E[X,] (2.2:29)

whether or not the variables are independent, and that the expectation of the
product of random variables is equal to the product of the expectations,

E[(X, X, ... X,] =E[Xi] - E[Xz2] - ...- E[X,] (2.2:30)
if the variables are independent. It is also true that the variance of the sum of

random variables is equal to the sum of the variances if the variables are
independent — i.e., if

=1

then, for independent X;,

n

0% = Z oy’ (2.2:31)

i=1
A very important concept is that of statistical correlation between random
variables. A partial indication of the degree to which one variable is related to

another is given by the covariance, which is the expectation of the product of
the deviations of two random variables from their means,

B [oc-epxno-ev)] = J_ax [ ayeBxDo-EYD R0

=E[XY] - E(X]E[Y] (2.2-32)
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In the expression, the term E[XY] is the second moment of X and Y. The
covariance, normalized by the standard deviations of X and Y, is called the
correlation coefficient, and is expressed as

- E[XY] - E[X]E[Y]
Ox0y

P (2.233)

The correlation coefficient is a measure of the degree of linear dependence
between X and Y. If X and Y are independent, p is zero (the inverse is not true);
if Y is a linear function of X, p is * 1. If an attempt is made to approximate Y
by some linear function of X, the mini possible squared error in the
approximation is oy? (1 ~ p2). This provides another interpretation of p as a
measure of the degree of linear dependence between random variables.

One additional quantity associated with the distribution of a random variable
is the characteristic function. It is defined by

&(t) = E[exp(jtX)]
o (2.2-34)
= f exp(jtx) f(x)dx

A property of the characteristic function that largely explains its value is that
the characteristic function of a random variable which is the sum of independent
random variables is the product of the characteristic functions of the individual
variables. If the characteristic function of a random variable is known, the
probability density function can be determined from

f(x) = -il; .[m exp (—jtx) g(t) dt (2.2:35)

Notice that Eqs. (2.2-34) and (2.2-35) are in the form of a Fourier transform
pair. Another useful relation is

E[Xn] =j-n d:i(‘t)

(2.2:36)

=0

Thus, the moments of x can be generated directly from the derivatives of the
characteristic function.

The Uniform and Normal Probability Distributions — Two important specific
forms of probability distribution are the uniform and normal distributions. The
uniform distribution is characterized by a uniform (constant) probability
density, over some finite interval. The magnitude of the density function in this
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interval is the reciprocal of the interval width as required to make the integral of
the function unity. This function is shown in Fig. 2.2-1. The normal probability
density function, shown in Fig. 2.2-2, has the analytic form

0= 735 o [~ %@:] @237

where the two parameters that define the distribution are m, the mean, and o,
the standard deviation. The integral of the function, or area under the curve, is
unity. The area within the *lo bounds centered about the mean is approx-
imately 0.68. Within the $20 bounds the area is 0.95. As an interpretation of
the meaning of these values, the probability that a normally distributed random
value is outside + 20 is approximately 0.05.

1

{

b-a

f

X
1

-
a b X

Figure 2.2-1  Uniform Probability Density Function

m——p

Figure 2.2-2  Normal Probability Density Function



34  APPLIED OPTIMAL ESTIMATION

By calculating the characteristic function for a normally distributed random
variable, one can immediately show that the distribution of the sum of
independent normally distributed variables is also normal. Actually, this
remarkable property of preserving the distribution form is true of the sum of
normally distributed random variables, whether they are independent or not.
Even more remarkable is the fact that under certain circumstances the
distribution of the sum of independent random variables, each having an
arbitrary distribution, tends toward the normal distribution as the number of
variables in the sum tends toward infinity. This statement, together with the
conditions under which the result can be proved, is known as the central limit
theorem. The conditions are rarely tested in practical situations, but the
empirically observed fact is that a great many random variables display a
distribution which closely approximates the normal. The reason for the common
occurrence of normally distributed random variables is certainly stated in the
central limit theorem and the fact that superposition is common in nature.

We are often interested in two random variables which possess @ bivariate
normal distribution. The form of the joint probability density function for
zero-mean variables, written in terms of statistical parameters previously defined,
is

2 2
Xy X1 X2 , Xg
=3 2pl 22
f2(Ky Xa) = == exp—| T 01 020" | h93g
2m0103V1 ~p 21 —p%) )
For n random iables, the Itidi jonal or ltivariate normal dis-

tribution is

1 1 -
falka 8a, - X) = Goaa P P [—7 &-mTP ‘u—ﬁ
(22:39)
with

T2 0x, ... %) (2.2-40)
The quantities

m=E[x]
and

P=E[x-m)x-m)T]
are the mean and covariance of the vector x, respectively. Vector and matrix
functions of random variables adhere to the operational definitions and rules

established in Section 2.1. Thus, the expected value of a vector (matrix) is the
vector (matrix) containing expected values of the respective elements.
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RANDOM PROCESSES

A random process may be thought of as a collection, or ensemble, of
functions of time, any one of which might be observed on any trial of an
experiment. The ensemble may include a finite number, a countable infinity, or
a noncountable infinity of such. functions. We shall denote the ensemble of
functions by {x(t)}, and any observed member of the ensemble by x(t). The
value of the observed member of the ensemble at a particular time, say t,, as
shown in Fig. 2.2-3, is a random variable. On repeated trials of the experiment,
x(t;) takes different values at random. The probability that x(t, ) takes values in
a certain range is given by the probability distribution function, as it is for any
random variable. In this case the dependence on the time of observation is
shown explicitly in the notation, viz.:

F(x1,ty) =Prx(t;) <x,} (2.241)
The corresponding probability density function is

f(xy,ts) = %’Q;—“) (2.242)

These functions are adequate to define, in a probabilistic sense, the range of
amplitudes which the random process displays. To gain a sense of how quickly

Figure 2,2-3  Members of the Ensemble {x(t)}
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members of the ensemble are likely to vary, one has to observe the same member
function at more than one time. The probability for the occurrence of a pair of
values in certain ranges is given by the second-order joint probability distribution
function

Fa(Xy1,t13%2,t2) = Prx(ty) < x4 and x(t;) < x,] (2.243)
and the corresponding joint probability density function

32 F(xy,th 3%a,t2)

T (2.244)

£2(Xi tiXa,ta) =

Higher-ordered joint distribution and density functions can be defined following
this pattern, but only rarely does one attempt to deal with more than the
second-order statistics of random processes.

If two random processes are under consideration, the simplest distribution
and density functions that provide some indication of their joint statistical
characteristics are the second-order functions

Fo(x,tsy.ta )=Prix(t) < x and y (12) <y] (2.245)
. = aze(XJl Wita)
£2(xt135t2) ey (2.246)

Correlation Functions — Actually, the characterization of random processes,
in practice, is usually limited to even less information than that given by the
second-order distribution or density functions, Only the first moments of these
distributions are commonly measured. These moments are called autocorrelation
and cross-correlation functions. The autocorrelation function is defined as

Pxx(titz) = E[x(ty) x(t2)} = -[,. dx, [ %o X1 Xo £2(Xy,t15Xg,tp)  (2.247)

and the cross-correlation function as

Pxy(t ) =Elx(ty) y(t2)] = !: dx [.,. dy xy f2(%,ts;¥,t2) (2.248)

In the case where E[x(t,)], E[x(t;)], and E{y(t;)] are all zero, these
correlation functions are the covariances of the indicated random variables. If
they are then normalized by the corresponding standard deviations, according to
Eq. (2.2-33). they become correlation coefficients which measure on a scale
from —1 to +1 the degree of linear dependence between the variables.
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Stationarity — A stationary random process is one whose statistical properties
are invariant in time. This implies that the first probability density function for
the process, f(x;,t;), is independent of the time of observation t,. Then all the
moments of this distribution, such as E[x(t;)] and E{x(t;)], are also
independent of time — they are constants. The second probability density
function is not in this case dependent on the absolute times of observation, t,
and t,, but still depends on the difference between them. So if t, is written as

=ty +7 (2.249)
f2(x1,t1;X2,t2) becomes f5(xy,t1;Xa,ty + 7), which is independent of t,, but still
a function of 7. The correlation functions are then functions only of the single
variable 7, viz.:

exx (1) = Elx(t1) x(ty +7)] (2.250)

Oxy () = E[x(t1) y(t: +7)] (2.2-51)

We note the following properties of these correlation functions:

exx(0) = E[x*] (2.2:52)
Oxx(—7) = 0xx (1) (2.2:53)
Pxy (=) = 0yx (1) (2.2-54)
wxx(0) 2 Loy (1) | (2.2-55)
Ergodicity — One further concept associated with stationary random

processes is the ergodic hypothesis. This hypothesis claims that any statistic

lculated by ging over all bers of an ergodic ensemble at a fixed time
can also be calculated by averaging over all time on a single representative
member of the ensemble. The key to this notion is the word “representative.” If
a particular member of the ensemble is to be statistically representative of all, it
must display at various points in time the full range of amplitude, rate of change
of amplitude, etc., which are to be found among all the members of the
ensemble. A classic example of a stationary ensemble which is not ergodic is the
ensemble of functions which are constant in time. The failing in this case is that
no ber of the ble is rep ive of all.

In practice, almost all empirical results for stationary processes are derived
from tests on a single function, under the assumption that the ergodic
hypothesis holds. In this case, the common statistics associated with a random
process are written
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T

Elx] = lim % _j; X(t) dt (2.2:56)
1 T

Eb] = lim ot _jT' X(t) dt (2.257)
1 T

Vxx (1) = Tl;l{n“° T _f; x(@) x(t + 1) dt (2.2:58)
1 T

‘ny(T)=Tlinl i _f; x()y(t + 1) dt (2.2:59)

Example 2.2-2

An example of a stationary ergodic random process is the ensemble of sinusoids, of given
amplitude and frequency, with a uniform distribution of phase. The member functions of
this ensemble are all of the form

x(©) = A gn (wt+89)

where 8 is a random variable, uniformly distributed over the interval (0,2n) radians. Any
average taken over the members of this ensemble at any fixed time would find all phase
angles represented with equal probability density. But the same is true of an average over all
time on any one member.-For this process, then, alt members of the ensemble qualify as
“representative.” Note that any distribution of the phase angle 8 other than the uniform
distribution over an integral number of cycles would define a nonergodic process. The
relevant calculations are given below. For the ensemble average autocorrelation function
(£(9) = 1/2n for 0 < ¢ < 2x) we get (Eq. (2.247))

2n
‘Pxx(’)=.’(; Asin (wt+ 6) A sin (wt + wr+8) li"dﬂ

R

=H A {cos wr — cos(2wt + wr + 26)) do
2

=7 €OS wT

while the time average autocorrelation function is (Eq, (2.2-58))

T
Pyx(r) = lim —l f Asin (wt +8) Asin (wt+ wr+0)dt
T+ 2T 2T
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T

1 f {cos wr — cos (2wt + wr + 28)]dt
T

A?
(=7 lim or

2
= coswr
2

The two results are equivalent and, thus, x(t) is an example of an ergodic process,

Gaussian Py — A gaussian process is one characterized by the property
that its joint probability distribution functions of all orders are multidimensional
normal distributions. For a gaussian process, then, the distribution of x(t) for
any time t is the normal distribution, for which the density function is expressed
by

2
fx,0) = \/21—” exp ['(XT;;Q] (2.260)

The joint distribution of x(t;) and x(t,) is the bivariate normal distribution;
higher-order joint distributions are given by the multivariate normal distribution.
If x(t) is an n-dimensional gaussian vector then the distribution of x(t) is the
normal distribution expressed by

) = Gy s 0 -3 G-mTPe-m]  @2en

All the statistical properties of a gaussian random proeess are defined by the first
and second moments of the distribution. Equivalently, the statistics of the
process are all contained in the autocorrelation function of the process. Clearly,
this property is a great boon to analytic operations. Additionally, the output of
a linear system whose input is gaussian is also gaussian.

As a consequence of the central limit theorem, gaussian processes are those
most frequently encountered in actual systems; as a consequence of their
analytic convenience, they are also most frequently encountered in system
analysis. It is, therefore, appropriate to introduce a shorthand notation to
contain the information in Eq. (2.2-61). The notaticn, which is used extensively
in the sequel, is

x~ N(m,P) (2.2-62)
which indicates that x is a gaussian (normal) random vector with mean m and

covariance P. By way of ple, for a one-di random process X with
mean m and standard deviation o, we would write

X ~ N(m,0?) (2.263)
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Power Spectral Density Functions — The input-output relation for a linear
system may be written (Ref. 11, also, Section 3.3 herein)

t

y@® = f x(r) w(t,r) dr (2.2-64)

where x(t) is the input function, y(t) is the output. and w(t,7) is the system
weighting function, the response at time t to a unit impulse input at time 7. If
the system is time-invariant, this superposition integral reduces to

y(t) = _!; w(r) x(t — 1) dr (2.2-65)

This expression is also referred to as the convolution integral. Using Eq. (2.2-65),
the statistics of the output process can be written in terms of those of the input.
If the input process is stationary, the output process is also stationary in the
steady state. Manipulation of Eq. (2.2-65) in this instance leads to several
expressions for the relationships between the moments of x(t) and y(t),

E[y] =E[x] f; ) w(t) dt (2.2:66)
Byl = f " drywiry) I " drawlr ) oyt~ 1) @.267)
Pyy (1) = _l; ) dryw(ry) _I(; B AraW(T3) oy (T + 7y — 13) (2.268)
&pxy(‘r) = _Io‘m w(r, )«pxx(‘r — 7)) dry (2.2:69)

Analytic operations on linear time-invariant systems are facilitated by the use
of integral transforms which transform the convolution input-output relation of
Eq. (2.2-65) into the algebraic operation of multiplication. Since members of
stationary random bles must ily be visualized as existing for all
negative and positive time, the two-sided Fourier transform is the appropriate
transformation to employ. The Fourier transforms of the correlation functions
defined above then appear quite naturally in analyses. The Fourier transform of
the autocorrelation function
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Dy y (W)= f Pyx(1) exp (—jowr) dr (2.270)

is called the power spectral density function, or power density spectfum of the
random process {x(t)}. The term “power” is here used in a generalized sense,
indicating the expected squared value of the members of the ensembl_e. Qxx(w)
is indeed the spectral distribution of power density for {x(t) in that integration
of @y, (w) over frequencies in the band from w,; to w; yiel s the mean-squared
value of the process whose autocorrelation function consists only- of those
harmonic components of gy (r) that lic between w, and w,. In particular, t_he
mean-squared value of {x(t) itself is given by integration of -the power d.ensny
spectrum for the random process over the full range of . This last le;ult is seen
as a specialization of the inverse transform relation corresponding to Eq.
(2.2-70), namely

Yxx(T) = % '[.» @, (w) exp (jwr) dw 2.271)

E{x?] = pxx(0) = zi" j_'w Pyy(w) dw 2272

The Fourier transform of the cross-correlation function is called the cross power
spectral density function

@y (w)= _[ Oxy() exp (Hjewr) dr (2273)

The desired input-output algebraic relationships corresponding to Egs. (2.2-68)
and (2.2-69) are

i .2-74
By () = W(iw) P5(w) (2.2-74)
and
Byy(w) = 1 W(iw) P Byy(w) (2.2-75)
where W is the system transfer function, defined as the Laplace transform of the

system weighting function (with s = jw, see Ref. 13)

Wis) = f(; ) w(r) e=5" dr (2.2-76)
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White Noise — A particularly simple form for the power density spectrum is a
constant, ¢, (w) =,. This implies that power is distributed uniformly over all
frequency components in the full infinite range. By analogy with the
corresponding situation in the case of white light, such a random process, usually
a noise, is called a white noise. The autocorrelation function for white noise is a
delta function

Pan()= % [ _ ®oexp (jr) dw = 8o 5(7) 2277

We recall the definition of the Dirac delta §(7) and note that the
mean-squared value of white noise, 9,,(0) = 24,6(0), is infinite. Thus the process
is not physically realizable. White noise is an idealized concept which does,
however, serve as a very useful approximation to situations in which a disturbing
noise is wideband compared with the bandwidth of a system. A familiar physical
process closely approximated by white noise is the shot effect which is a
mathematical description of vacuum-tube circuit output fluctuation.

White noise is also quite useful in analytic operations; integration properties
of the Dirac delta §(r) can many times be used to advantage. Additionally, a
number of random processes can be generated by passing white noise through a
suitable filter. [llustrations of the autocorrelation functions and power spectral
density functions for several common random processes are shown in Fig. 2.24.
Applications of such random processes will be considered in subsequent
chapters.

Gauss-Markov Processes — A special class of random processes which can be
generated by passing white noise through simple filters is the family of
gauss-markov processes. A continuous process x(t) is firsz-order markoy if for
every k and

<t <. . <y
it is true that

F [x(te) Ix(tg_1), - .., x(t1)] = F [x(t) 1 x(t,_1)] (2.278)
That is, the probability distribution for the process x(t) is dependent only on

the value at one point immediately in the past, x(ty_y ). If the continuous process
x(t) is first-order markov, it can be associated with the differential equation

& O x=w @279)

where w is white noise (for a discrete first-order markov process, the associated
relation is a first-order difference equation). If we add the restriction that the
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PROCESS AUTOCORRELATION FUNCTION POWER SPECTRAL DENSITY
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Figure 2.24  Descriptions of Common Random Processes

probability density functions of w and consequently x also are gaussian, the
process x(t) is a gauss-markov process. The statistics of a stationary gauss-markov
process are completely described by the autocorrelation function

‘pxx(T) = geB1lrl 4 m? (2.2-80)

The so-called correlation time (1/e point) is 1/B;. The spectral density of the
white noise, w, which generates the process described by Eq. (2.2-80) is given in
terms of the variance of x as 28,0*. The autocorrelations of many physical
phenomena are well-described by ~ Eq. (2.2-80).



44  APPLIED OPTIMAL ESTIMATION
A continuous process x(t) is second-order markov, if for every k and
t <ty <... <ty
it is true that
Flx(u) [x(ti_1), .., x(t)] = Flx() I x(te_)x(te_p)]  (2.281)
Equivalently, the probability distribution of x(t) is dependent only on the

conditions at two points immediately in the past. An associated differential
equation is

d?*x dx
@ B0 P Ox=w (2.282)

TABLE 2.2-1 CHARACTERISTICS OF STATIONARY MARKOV PROCESSES*

Order of Power Spectral
Markov Density, Autocorrelation Function, Correlation
Process Dyx(w) exx() Time
2 -
1 2610 e 117l —1_
w?+ g} B
483 o2 Bzl
2 ﬂ:a - o%e {1+ﬂz|1’} 2.146
(u +ﬂ2) B
1683 o “Bal7l .90
3 53 0 e {1+ gl Lz} 2903
3 (u’ +83 B3
i Ll S L f T2l % | solvea
n o’e S IE— § i
( 2. 2\0 — k! _ k) | Arithmetically
(2n - W + Bn) k=0 (2n - lkir(n ) for each n
n—>o 2ro28(w) o? o

*I'(n) is the Gamma function.
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If the density function of w is gaussian, the process x(t) is second-order
gauss-markov. If x(t) has mean m and is stationary, its autocorrelation function
has the form

Pxx @ =02 (1 +6; L7 1)eB2 1714 m? (2.2:83)

The correlation time of this process is approximately 2.146/8,; the spectral
density of the white noise w is defined as 48,%¢25(r). For the second-order
gauss-markov process the derivative of ¢, (7) is zero at 7=0; this characteristic is
appealing for many physical phenomena (see Example 3.8-1).

Definition of an nth-order gauss-markov process proceeds directly from the
above. The characteristics of such processes are given in Table 2.2-1 and Fig.
2.2-5. For the nth order gauss-markov process as n—>oo, the result is a bias.
Heuristically, white noise can be thought of as a “zeroth-order” gauss-markov
process.

10
o) ?
3 o8 3
7 ALL AUTOCORRELATION
4 FUNCTIONS NORMALIZED
E g ${0)=1
S ool CORRELATION TIME <1
2 ¢4
z
Q
=
< o4t
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o
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<
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TIME SHIFT, T
Figure 2.2-5 A lati ions of G -Markov Processes
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PROBLEMS
Probtem 2-1
Show that B! = —F1pp’!

Problem 2-2

For the matrix

3 -1 -4
A= |2 2 2
—4 [ B

show that the eigenvalues are

A =2 A2=-4, A3=5.

Problem 2-3
Show that A is positive definite if, and only if, all of the eigenvalues of A are positive.
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Probiem 24
If R(t) is a time-~varying orthogonal matrix, and

dR(t) rTwy = s

show that S(t) must be skew-symmetric.

Problem 25
Consider the matrix A

A= 1 2
3 4
(a) Use the Cayley-Hamilton theorem to show that
A?_sa-2=0
What are the eigenvalues (,A;) of A? (b) Use the result in (a) and the matrix exponential
series expansion to show that

2 3 q
t 1 t
eAt=1+ AUET (SA+ D+ QTA+ 10D+, (1454 + 54D+ ..

©C ing terms in the ion in (b) yields
3 g4 2 .3 4
Y PR LGP L P PICLOSE LS L LA
3 4 2 2 24

eAl =4, ()] +az(DA

or

Closed form values for the two series ay(t) and ag(t) are not immediately apparent.
However, the Cayley-Hamilton theorem can be used to obtain closed form expressions.
Demonstrate that these solutions are of the form”

ay(t) = Me)‘“ - )\leht and az(t) = ej‘_‘_ﬁ
Ay — Az Ay —Ag
Problem 2-6
If Iis a three-dimensional position vector, the locus of points for which
_x_TE'l_l_ <1

where E is a positive definite symmetric matrix defines an ellipsoid. Show that the volume
of this ellipsoid is

4 e
==L /TE
3 VIES
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Problem 2-7

The least-squares derivation in Section 2.1 is based on the assumption that all
measurements z are of equal quality. I, in fact, it is known that it is reasonable to apply

different weights to the various ising z, the least-sqn i
should be ap i dified. If the ith 2j has a relative weight of w;, it is
reasonable to construct a matrix

wl2 0

W2
W=
2
0 Wim

with which to define a weighted cost function
1=(z - HHTW(z - HY)

Show that the weighted least-squares estimate is
Z=@TWH) HTwz

Problem 2-8

For an arbitrary random process x(t), show that the cross-correlation between x(t) and
its derivative x(t) is

3
oxx(ttsta) = E ety tz)

Problem 2-9

If X, Y, and Z are independent random variables each uniformly distributed in the
interval (—1,1), show that the probability density function for the variable w = (X + Y +
2)/3is

%(l—3w2) , 0<|w|<%

27
Pylw) = I—G(I—le)2 s ~;<|w|<1
] R iwi>1

Sketch pw(w) and comment on its shape.

Problem 2-10

The Poisson or exponential random process is frequently used to describe random arrival
rates, or random service times in queueing problems. If u is the average number of arrivals,
the probability density function describing the probability of x successes is
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eHuX
x!

f(x) =

Find the Poisson probability distribution function F(x). If the average arrival rate is
0.4/minute, show that the probability of exactly 4 arrivals in 10 minutes is 0.195 and the
probability of no more than four arrivals in ten minutes is 0.629.

Problem 2-11

If x and y are independent normal random variables with zero mean and equal variance
o, show that the variable

z=x3+y

2
has probability density described by

Z %247
3¢ s
o

230

)=
0 , z<0

The random variable z is called a Rayleigh process. Show that its mean and variance are

and (2 —-12'—)02
Problem 2-12

The probability density for the acceleration of a particular maneuvering vehicle is a
combination of discrete and continnous functions. The probability of no acceleration is Pg.
The p ity of leration at a i rate Amax(—Amax) is Pmax. For all other

values, leration probability is described by a uniform density function.
Sketch the combined probability density function. Show that the magnitude of the uniform
density function is

Q
NE

respectively.

(Pg + 2Pmax)
2Amax

and that the variance of the acceleration is (Ref. 12)

2
2 _ Amax
3

4

{1+ 4Pmax — Pg)

Problem 2-13

Find the mean, mean square and variance of a random variable uniformly distributed in
the interval [a,b].
Problem 2-14

If x4 and x, are zéro-mean gaussian random variables with a joint probability density
function given by Eq. (2.2-38), show that their sum z = X, + X, is gaussian. Note that this
result holds even though x; and x, are dependent.
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Problem 2-15

In Section 2.2 it is noted that white noise is physically lizable. He , it is often
said that a first-order gauss-markov process

X(1) = —gx(t) + w(t)
with
Pxx() = ,,xze‘ﬂ It

is a physically realizable process. Since a physically realizable process cannot have a
derivative with infinite variance, show that x(1) is just as physically unrealizable as white
noise,

Thus, it is suggested that none of the continuous stochastic processes treated in this
book are physically realizable. However, as noted in Ref. 14, this fact merely serves to
emphasize the point that mathematical models are approximate but highly useful
representations of the real world.

3. LINEAR DYNAMIC SYSTEMS

Application of optimal estimation is predicated on the description of a
physical system under consideration by means of differential equations. In this
chapter, state-space notation is introduced to provide a convenient formulation
for the required mathematical description, and techniques for solving the resul-
tant vector-matrix differential equation are also presented. Although the initial
discussion is concerned with continuous physical systems, resulis are extended
to the discrete case in which information is available or desired only at specified
time intervals. Controllability and observability, two properties based on system
configuration and dynamics, are defined and illustrated. Equations for time
propagation of system error state covariance are obtained for both discrete and
continuous systems. A number of models for noise sources that affect the system
error state covariance are discussed, with special attention given to their
statistical properties and the manner in which they can be described in
state-space notation. Finally, some considerations for empirical determination of
error models are presented.

3.1 STATE-SPACE NOTATION

Early work in control and estimation theory involved system description and
analysis in the frequency domain. In contrast to these efforts, most of the recent
advances — work by Pontryagin, Bellman, Lyapunov, Kalman and others — have
involved system descriptions in the time domain. The formulation used employs
state-space notation which offers the advantage of mathematical and notational
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convenience. Moreover, this approach to system description is closer to physical
reality than any of the frequency-oriented transform techniques. It is particu-
larly useful in providing statistical descriptions of system behavior.

The dynamics of linear, lumped parameter systems can be represented by the
first-order vector-matrix differential equation

(1) = F(1)x(t) + G(Ow(t) + L(Du(t) 311

where x(t) is the system state vector, w(t) is a random forcing function, u(t) is a
deterministic (control) input, and F(t), G(t), L(t) are matrices arising in the
formulation. This is the continuous form ordinarily employed in modern
estimation and control theory. Figure 3.1-1 illustrates the equation. The state
vector for a dynamic system is composed of any set of quantities sufficient to
completely describe the unforced motion of that system. Given the state vector
at 2 particular point in time and a description of the system forcing and control
functions from that point in time forward, the state at any other time can be
computed. The state vector is not a unique set of variables; any other set x'(t)
related to x(t) by a nonsingular transformation

£'(1)= AWK (3.12)

fulfills the above requirement.

| — Ic

L)

Git)

1%
~—
"Ix

Flt) J

Figure 3.1-1 Block Diagram of Continuous Representation of
Linear Dynamics Equation
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Given an nth.order linear differential equation
D7 +ay_ ((ODP1 +. .. a1 (D +ao(t)) y(t)= w(t) (3.13)
where D = d/dt, we can define a set of state variables x, (t), . . . , x,(t) by

X2 y®
Xa(t) 4 %1(D

xa(0 2 5,100 (3.1-4)

These relations can be written as a set of n first-order linear differential
equations:

%1(t) = x2(8)
ka(t) = x3(1)

Xa (0 = —ao()x1 (1) — 2, (Dx2 () — . .. — 25 1 (D (D) + W(t) (3.1-5)

The first n—1 of these equations follow from the state variable definitions; the
fast is obtained using the definitions and Eq. (3.1-3). Expressing the equations in
vector-matrix form as in Eq. (3.1-1) yields

%1 O 1 0 ... © 0 X 0
X2 o 0 1 ... 0 0 Xz 0
cl=1 : +H] @16
Rt o 0 0... 0 1 X1l | ©
%5 “ —@1 —@...7p "] | X w

This is called the compaman form of Eq. (3 1-3). The system dynamics matrix F
is square with di n, cor g to the order of the original
differential equation. Equation (3.1-6) is illustrated in block diagram form in
Fig. 3.1-2; note that in this formulation the state variables are the outputs of
integrators,

In many linear systems of interest the forcing and control functions are
multivariable — i.e., w(t) and y(t) in Eq. (3.1-1) are composed of several nonzero
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9

Figure 3.1-2  Block Diagram Representation of Eq. (3.1-6)

functions. Also, the individual elements of w(t) and u(t) may drive several state
variables simultaneously, causing G(t) and L(t) to be matrices with significant
elements at locations other than those on the main diagonal. Ordinarily, system
dynamics are determined directly from the physics of the problem. A block
diagram of the physical system may be sketched and the first-order vector-
matrix differential equation determined by inspection. The outputs of each of
the various integrators would constitute a convenient set of state variables. The
system dynamics equations can be written in the form of Eq. (3.1-1) as

%3 fir fia = fip] |2 81 B1z2 " Bie| | Wi
k2| a1 faz t e fon | % 821 B2 "t By (W2
=1 . . . N PO . . .

n _fnl fa2 *** fon an_‘ Bl Bn2 °" " Bnr| | W

oo R @17

_in L QnsJ LusJ

The functions W and y need not be of dimension n; in the equation shown the
dimension of w is r and that of u is s. H , it is required that products Gy
and Ly be of dimension n. Reference 1 further & trates the steps ired

q

to convert a high-order differential equation into a set of state variables driven
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by a multivariable forcing function. Several examples of the application of
state-space notation to physical systems are given below.

Example 3.1-1

Consider the mass m shown in Fig. 3.1-3; it is connected to the left wall by a spring with
spring constant k and a damper with damping coefficient c. Frictionless wheels are assumed.
Displacement x is measured (positive-left) between the indicators; the entire container is
subject to acceleration w(t) which is positive to the right. This is a one-dimensional
translation-motion-only system and, consequently, displacement x and velocity X are
suitable state variables.

-

EkeNe)

f——a— w{t)

Figure 3.1-3  Second-Order Physical System
The equation of motion of the system is obtained from Newton’s second law

> ix=ma (3.1-8)

The forces acting are Zfy = —kx — cX corresponding to the spring and damper. Total
acceleration is a = X ~ w(t) so that

mx +cx + kx = mw(t) (3.1-9)

If the state vector is defined as

1{"] (3.1-10)
X

the i quation for the system dynamics is

HE IV NN
X ~k/m -¢/m] X w(t),
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Example 3.1-2

Application of state-space notation when the system is described by a block diagram is
illustrated using Fig. 3.1-4, which is a single-axis inertial navigation system Schuler loop
error diagram (Ref. 2). The following definitions apply: ¢ is the platform tilt angle (rad), 5v
is the system velocity error (fps), §p is the system position error (ft), R is earth radius (ft), g
is local gravity (fps®), eg is gyro random drift rate (rad/sec), and e, is accelerometer
uncertainty (fps’). The system state variables are chosen as the outputs of the three
integrators so that the state vector is

x=|sv (3.1-12)

Figure 3.1-4  Single-Axis Schuler Loop Error Diagram

No control u is applied and, therefore, the system dynamics equation can be written by
inspection as

] 0 1/R 0 "] €
svi=f-g 0 O|[|sv]+|ea (3.1-13)
5p 0 1 Oof{sp 0

An equivalent form for the random forcing function is

1o
Gw=fo 111 (.1-14)
0 0%

As previously noted the only requirement is that the product Gy has the same dimension as
the vector x.
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3.2 TRANSITION MATRIX

Having provided a mathematical formulation for the description of physical
systems, we next seek techniques for solution of the system dynamics equation.
The first step involves solving the equation when the forcing function w and
control function y are not present.

The homogeneous unforced matrix differential equation corresponding to Eq.
(3.1-1)is

(1) = F(Ox(t) (3.2-1)

Suppose that at some time, to, all but one of the outputs of the system
integrators are set to zero and no inputs are present. Also, assume that the
nonzero integrator output is given a magnitude of one. The behavior of the state
vector for all times t, where t > t,, can be expressed in terms of a time-varying
“solution vector,” ;(t,to), where the subscript refers to the integrator whose
output is initially nonzero

x1(t,to);
xz(t:to);

giltto)= . (3.22)

Xp{t,to);

If the initial condition on the ith integrator is something other than unity — a
scale factor ¢, for example — we find from the linear behavior of the system

#{t.to,0) = cyi(t,to) (3.2-3)
Now, due to the superposition principle, if integrators i and j both have nonzero

outputs ¢; and ¢ at time to, the system response is the sum of the individual
Tesponse vectors, viz:

#i,i{tto,cisg)) = cigi(tto) + cgj(tito) (3.24)
But this can be written as a product of the matrix

gp

and the vector

]
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In general, every integrator can have a nonzero value at ta: these values
comprise the state (to). The time history of the state is the sum o1 the
individual effects,

] 1
K= [g.(t,to) PRSI gn(t,to)] A(to) (3:25)

which for compactness is written as
x(t) = 2(t,t0) X(to) (3.2-6)

The matrix ®(t,to) is called the fransition matrix for the system of Eq. (3.2-1).
The transition matrix allows calculation of the state vector at some time t, given
complete knowledge of the state vector at to, in the absence of forcing
functions

Returning to Eq. (3.2-2), it can be seen that the solution vectors obey the
differential equation

dg;(t,to)
=5 = FDwltt) (327
where

w(tD=g (3.2-8)
1 0
0 1
0 0

a=|*1, &= | et
0 0

Similarly, the transition matrix, composed of the vectors y;, obeys the equations
£ a(tt)= ) (tte), B(LD=1 (3.29)

Figure 3.2-1 illustrates the time history of a state vector. The transition
matrix ®(t, , to) describes the influence of x(to) on x(t1):

3(t1) = P(t1,t0)x(to) (3.2-10)
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xity)= Pty t)xit,)

h =Pty 1Dt t0) x (1)
x
- x(t)= B (185 x(t5)
xltg)
Pt
ty t, t,
Figure 3.2-1  C ptual Hi ion of the Time E: ion of a State Vector
in (n + 1)-Dimensional Space
Also,
x(t2) = B(t2,t1)x(t1)
= B(t2,t: )P(t1,t0)%(to) (3.2-11)
Therefore,
Dt2,t0) = P(ta,t; J(t1,t0) (3.2-12)

which is a general property of the state transition matrix, independent of the
order of to, ty, and t;. Since for any t

B(t,t) = B(t,te)P(to,t) =1 (3.2-13)
premultiplying by & (t,to) provides the useful relationship

T1(1,t0) = D(to,t) (3.2-14)
Since the inverse of ®(t,to) must exist, it necessarily follows that

19(t,t0) 1% 0 (3.215)



60  APPLIED OPTIMAL ESTIMATION

Other relationships involving the determinant of the transition matrix are

% 19 (t,to)] = trace [F(D)] 19(t,to)! (3.2-16)
and
t
1®(t,t0)| = exp f trace [F(r)] dr (32-17)
1o
Transition Matrix for Stati y Sy - For a stationary system, the F

matrix is time-invariant and the transition matrix depends only on the time
interval considered, viz:

D(1,10) = P(t— to) (3.2-18)

This is easily shown by expanding x(t) in a Taylor’s series about some time, to,

2
5O = 510} * E00) (-10) + ite) T+ (3219

But from Eq. (3.2-1)

X(to) = Fx(to)
K(to) = F&(te) = F* 5(to)

etc.
Substituting, the expansion becomes
F2(t-to)?
2!

()= x(to) + Ft—t0) X(to) + Xto) *- -

=[1 + B(t=to) + 2—1, F(1—to)’ + .. ] (to) (3.2:20)
In Chapter 2, the matrix exponential is defined as
2 3
eA=I+A+—%—+%+... (3.2-21)

Consequently, the transition matrix for the stationary system can be identified
from Eq. (3.2-20) as
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@t — to) =eF(t - to) (3.2:22)

which depends only on the stationary system dynamics F and the interval t — t,.
Examples of the transition matrices for several simple physical systems are
illustrated below.

Example 3.2-1

Consider the circuit shown in Fig, 3.2-2, which is composed of a voltage source, v, a
resistor, R, and an inductor, L. Kirchhoff’s voltage law yields

. di
v=iR+L 2~ (3.2-23)

<
-
o

Figure 3.2-2  Elementary Electrical Circuit

We assume i=ig at t=tg and v=0 for all time, which yields

gi_ R,

- T! (3.2-24)

The system dynamics matrix F is merely the scalar quantity — R/L. Elementary differential
equation solution techniques yield

. - %(t—'o)
it) = ige (3.225)

as the solution to Eq. (3.2-24). From the solution we identify the transition matrix as
R
- (t-tg)

d(t,tg)=e

Properties of the transition matrix are readily verified. For times g, ty, t2, we write

R a0
- ~4
oz t)=e L (3.2:26)
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v%(t.—to)
Ditgg)=e

so that

-{-urt.) -%urm
B(12,1)0(ty,tg) =€ e

R
—‘I-:(lz-lo)

= ¥(t2,10)

Example 3.2-2

The system shown in Fig. 3.2-3 is used as a sccond example of transition matrix
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so that
3.227 .
Ft=14Ft+ 5 P27+ %F’(’
| 3
1 —'-Z—wozlz + | -—wot+ ‘3! -
S ——— - [—— — — - — (3.231)
uo(—-;—!m0313+... | 1—%%21%
|
(3.2-28) We identify the two series in Eq. (3.2-31) as trigonometric functions:
coSwet —sinwgt
*(,0) = (3.2-32)
siwgt  coswgot

computation. Integrator outputs x; and X, are convenient state variables; the system

dynamics equation is obtained by inspection as

NEMNIN

Matrix multiplication yields

Figure 3.2-3 is, in fact, a of a d-ord
borne out by the oscillatory nature of the transition matrix.

; this identification is

(3.2:29)
3.3 MATRIX SUPERPOSITION INTEGRAL
Having computed the homogeneous solution, we now seek the differential
equation particular solution. Consider first the linear system including forcing
(3.2:30) function inputs:

(1) = F(Hx(0 + L(Ou(n) (331
Referring to Fig. 3.3-1, we see that the effect of the input to the ith integrator
of Fig. 3.12 over a small interval (r — Ar, 7) can be represented as an impulse
whose area is the ith row of the term L(r)u(r) times the interval Ar. This impulse
produces a small change in the output of the integrator,

3
0 -wpt —wo?t? 0 0 we't
s R R
= ' 22|’ 33 g
wot 0 0 —wo't —~wo”t
x
> f 1
>
A
-wy Wo
3

—t

Figure 3.2-3

Second-Order Oscillatosy System

ax(r)= (Mﬂn&))i ar (3.32)
The change in the entire state vector can be expressed as
Ax, (1)
Ax,(7)
Ax(1) = =L{numar (3.3-3)
Axy(1)

The effect of this small change in the staie at any subsequent point in time is
given by

Ax(t) [given an impulsive input L(7)u(r) A1) = ®(t,)L{Hu(n)Aar  (3.34)
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[Lim)ul=l], = INPUT TO 1™ INTEGRATOR

|
|
\

r-At T

Figure 3.3-1  Representation of the Input to the ith
Integrator as an Impulse

Because the system is linear, the response to an input can be viewed as the sum
of individual responses to the impulses comprising the input. In the limit as
At — 0 the effect of the input on the state at some time, t, is given by

t
9= .L S(tr)L{r)u(r)dr (3.35)

If the state at some time, tq, is known, it is only necessary to observe the input
after to, by utilizing Eq. (3.2-6):

t
0=+ [ senLeunr (.36)

Equation (3.3-6) is often called the matrix superposition integral. Of course,
differentiation of Eq. (3.3-6) can be shown to result in Eq. (3.3-1). An alternate
derivation of the matrix superposition integral is shown in Example 3.3-1 and its
application to a physical system is illustrated in Example 3.3-2.

Example 3.3-1

‘The solution to the homogeneous equation is

(1) = (L,to)x(to) {3.37
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We seek a solution of a similar nature, which also includes the effect of the forcing function.
The assumed form is

(1) = d(L10)E(t) (3.3-8)

Substitution in Eq. (3.3-1) yields
d
@ {@(t,10)5()} = FlO®,te)f(t) + L{tuln)

or

F(t) B(4,20) £(1) + D(t.t0) E(1) = F(1) @(t,to) £(t) + L() w(t) (3.39)
which reduces to

E(0 = 9(to,t) L) u(t) (3.3-10)

Solving for (1), we obtain

1
O =) + j: D(to,7) L(r) utr) dr G331
0

Substituting this result in Eq, (3.3-8) yields

t
X(t) = ®(L,to) £(to) + j: @(t,tp) dlto,7) L(r) u(r) dr
o

But E(tg) = x(to) so that the desired solution to Eq. (3.3-1) is

t

3(1) = d(t,to) X(to) + f @(t,r) Ly ulr) dr (3.312)
to

Example 3.3-2

The electrical circuit of Fig. 3.2-2 is now subject to a nonzero input voltage, v. We
assume initial condition i=ip at time 1=0. Prior to t=0, the voltage ¥ is zero; for t20 it is
constant at v=V, The system equation is (t>0)

—= i (3.3-13)
Recall that the transition matrix is

R
~T(t—to)
D(tig)=e (3.3-14)
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or

_R,
ot0=e b

Substituting in Eq. (3.3-6), we obtain

R, o R
_R Zeny
i®=ige T +j‘ e L ~dr
L
0
€, 3
<ige L *%(l—e L) (3315

The solution of the dynamics equation, when a random input is present,
proceeds in an analogous fashion. Thus, corresponding to

() = F(t) x(t) + GO w(t) + L(O u() (3:3-16)

we directly find

t t
1) = 2(tto)x(to) * j: 2(tr)Gwlr)dr + j: 2(trL () dr
0 0
(3.3-17)

3.4 DISCRETE FORMULATION

If interest is focussed on the system state at discrete points in time, ty,
k=1,2, ..., the resulting difference equation is, from Eq. (3.3-17),

Xir1 = Pudi + Tyl * Al G4
where
@y = Bltiar ty) 342)
terl
Pewy = j" B(ty 0y, 7) Gr) wlr) dr (3.43)
X
te+l
A= [ e U0 o G44)
X
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In general, Eqs. (3.4-3) and (3.4-4) provide unique definitions of only the
products Tywy and Aguy and not the individual terms Ty, wy, Ay and u,.. In
the following discussion, care is taken to make this distinction clear. Notice that
if w(t) is a vector of random processes, %, and 'yw; will be vectors of random
processes. Equation (3.4-1) is illustrated in Fig. 3.4-1.*

TIME
DELAY

\{
I

$y

A

Figure 3.4-1  Mustration of Discrete Representation
of Linear Dynamics Equation

1t is important to note that, in subsequent discussions, we do not deal with all
discrete systems, but rather, only those that can be derived from continuous
systems. Without this restriction there could be extensive computational
difficulty — e.g., in the discrete system whose transition matrix @, is not
invertible. By considering only the subset of discrete systems noted above, the
invertibility of & is assured.

3.5 SYSTEM OBSERVABILITY AND CONTROLLABILITY
OBSERVABILITY

A discussion of observability requires that the concept of a measurement be
employed. M are briefly di d m Section 2.1 with regard to
least-squares estimation and further discussion is given in Chapter 4. At this
point it suffices to say that measurements can indeed be made. They are denoted
by z and are assumed linearly related to the discrete system state x; by the
observation matrix Hy, as

*In the sequel, the case of Ty = and yy = ( is treated quite often.
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2 = Hyxy + % 351
where y, is the measurement noise. Given a sequence of measurements Zo,
Z1,...,2, the observability condition defines our ability to determine

Xo0:X15 - - - X from the measurements.
Consider the discrete deterministic, constant nt-order system* (Ref. 3)

X1 = Pk (3.52)
with n scalar noise-free measurements
7 =Hgy, k=0,1,2,....n—1 (3.53)

so that H is a constant, n-dimensional row vector. We may write

zo = Hxo
z; = Hx, = HPxX,
(3.5-4)
2,y = Hygy_y = HEP™ 15,
Therefore,

Zo H

Z H®

R %0 =ETxo (35-5)
zh_ Hen-1

If X0 is to be determined uniquely, the matrix ZT (or equivalently =) must have
an inverse — i.e., be nonsingular. Thus, the observability condition is that the
matrix
! | |
== |HT : @THT | ... [ (®T)n—1HT (3.5-6)
| |

be of rank n. The same condition will apply when measurements are a vector, Z;
extension to continuous systems is straightforward.

More complete statements of observability and the observability condition
for continuous systems follow:

*A time-invariant discrete system is denoted by Dy =D, Ap = A et
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® A system is observable at time t, >, if it is possible to determine the state
X(to) by observing zZ(t) in the interval (to, t,). If all states x(t)
corresponding to all z(t) are observable. the system is completely
observable.

® A continuous deterministic n'M-order, constant coefficient, linear dynamic
system is observable if, and only if, the matrix

' | ! )
z= [HT: FTHT ! (FT) ‘HT) L (FT)"“ HT] (3.5-7)
[} 1 ] [}

has rank n.
Example 3.5-1
Consider the third-order system in Fig. 3.5-1 described by:
X; 000]1x, wy
x20=[ 0 0 0] |xa|+|w, (3.5-8)
X3 11 0}}xs 0

If measurements can be made only at the output of the final integrator, then

2= X, (3.5-9)
so that
H=10 0 1] (3.5-10)
We compute
[t] 1
HT=} 0 |; FTHT =| 1 |; FTFTHT =
1 [t]

SYSTEM MEASUREMENT

w2

Figure 3.5-1  Third-Order System with Output Observation Only
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and torm the matrix

0
=30
1

o = =

0
0 (3.5-11)
]

A square n X n matrix has rank n if it has a nonzero determinant. The determinant of X is
Zero so that the matrix has rank less than 3; thus, the system is not observable. The physical
interpretation of this result is that it is impossible to distinguish between the spectrally
identical states x; and x; when the only available measurement is their sum.

CONTROLLABILITY

We now concem ourselves with determining conditions such that it is possible
to control the state of a deterministic linear dynamic system — i.e., to select an
input so that the state takes any desired value after n stages. A simple derivation
of controllability for the case of a discrete system driven by a scalar control is
analogous to the derivation of observability; it is left as an exercise for the
reader. The condition is that the matrix

[
o= |aleal. . len-1Al (3.5-12)
| [
be of rank n. We p d directly to the st
controllability condition for a continuous system:

of controllability and the

® A system is controllable at time t,2>t; if there exists a control u(t) such
that any arbitrary state x(to) =& can be driven to another arbitrary state
3t =7

® A continuous deterministic n'-order, constant coefficient, linear dynamic
system is controllable if, and only if, the matrix

I [

e= [L:FLIF’L I... IF'HL] (3.5-13)
| t |

has rank n.

Example 3.5-2

Consider the system in Fig. 3.5-2. We wish to find conditions on « and g such that the
system is controllable. The system is second-order and described by:

LR
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—X)

—X;

so that
— 1
= « 0 H L=
0 -p 1
yielding
o=|! ™ (3.5-15)
1 -8

To determine the rank of ©, we compute its determinant
101=p+a (3.5-16)
The controllability condition requires 2 nonzero determinant for ®

0+#-g+a

atp (3.517)

The interpretation of this result is quite straightforward. If « and 8 are equal, the two
first-order systems are identical and there is no way that an input u could, by itself, produce
different values of x; and x3. The controllability condition requires that X, and X, can be
driven to any arbitrary values: with a = 8 the condition cannot be met and, therefore, the
system is uncontrollable. It is important to note that the test applied to the matrix @ only
establishes controllability; it does not provide a means to determine the input u required to
control the system, This latter task can be quite difficult.

Nonuniqueness of Model — Having introduced the concept of a measurement,
we have completed the basic state-space structure of a linear system. For a
continuous linear system, the general state-space model is
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(1) = F(Ox(1) + G(t) w(t) (3.5-18)

2(0 =H(®) x(t) + ¥(0 (3.5-19)
For a discrete linear system, the model is

Eye1 = Pry t Diewye (3.5-20)

Zg =Hpxy + ¥ (3.5-21)

These models are not unique; given the pertinent system input and output
quantities — i.e., x(0), w(t) and Z(t) in the continuous case — there are many
different sets of F(t), G(t) and H(t) which will yield the same overail
input-output behavior. As noted in Ref. 4, choosing a particular set of F, G and
H corresponds to the choice of a coordinate system. This choice can have
considerable impact in numerical analyses as well as affecting system observa-
bility and controllability as described above.

3.6 COVARIANCE MATRIX

In the following discussions both the system state and forcing function are
vectors whose elements are random variables. The state vector obeys a
relationship of the form of Eq. (3.1-1), while the forcing function w is, in
general, assumed to be uncorrelated in time (white noise). In the discrete
formulation, the forcing function wy will be assumed uncorrelated from
observation time to observation time (white ). For the inder of this
chapter, we restrict consideration to those systems for which the control input u
is zero.

It is generally assumed that random variables have zero ensemble average
values — ie., they are unbiased. The fact that a variable is known to be biased
implies knowledge of the bias value. Consequently, a new quantity with the bias
removed (i.e., subtracted) can be defined. This does not suggest that certain
constant state variables cannot be considered; as long as their distribution over
the ensemble of possible values is unbiased, constant state variables are

dmissible. It should be pointed out that if the state at some time t, is unbiased,
the state will remain unbiased. This can be illustrated by taking the ensemble
average of both sides of Eq. (3.4-1) where y, = 0:

Efxge1) = El®gx + Nywyl
=®Elx] + T E[w]
=0 (3.6-1)
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The random state and forcing function vectors are frequently described in
terms of their covariance matrices. The cross-covariance matrix of two vectors x
and 8 is defined in terms of the outer products:

cross-covariance of 1 and s= E[(z — E[) Xz — E{s])T]

= B[] — Bl ELsT] 662

When 1 = 5, Eq. (3.6-2) defines the covariance of 1; it is simply a matrix whose

elements are the second of the random comp I, 02, ..., 0. In
the sequel, we define the error X in the estimate of a state vector to be the

difference between the estimated (%) and actual (x) values:

Aa

3=3-x (3.6-3)

The covariance of §, designated P, is then given by
P=E[zxT] (3.6-4)

It provides a statistical measure of the uncertainty in x. The notation permits us
to discuss the properties of the covariance matrix independently of the mean
value of the state.

Some features of the covariance matrix can be seen by treating the error in
knowledge of two random system state variables,

X1

x= (3.6:5)

E[%:?] E[ai%e)
= (3.66)
E[%;%,] E[%.’]

Notice that the covariance matrix of an n-state vector is an n X n symmerric
matrix; this fact will be used repeatedly in subseq hap The diagonal
elements of this covariance matrix are the mean square errors in knowledge of
the state variables. Also, the trace of P is the mean square length ot the vector
% The off-diagonal terms of P are indicators of cross-correlation between the
elements of X. Specifically, they are related to the linear correlation coefficient

o(Xy, %;) by
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E[&:1%;]
9%, 0%

P&y, %,)= (3.6-7)

2

where ¢ indicates standard deviation.

The random forcing functions are also described in terms of their covariance
matrices. In the continuous formulation, the covariance matrix for the white
noise random forcing function, Gw, is given by

ELGOWOXCMwENT] = GG (M) 8(t — 1) (3.6:8)

where the operator § is the Dirac delta function. The corresponding covariance
matrix of the uncorrelated random sequence I'w) in the discrete formulation is

BTz )(Towe)'] = (3.69)

N, k=g
0 k#2

The noise covariance matrix is computed using the definition of 'y w, given in
Eq. (3.4-3), viz:

tk+1
Fpwi = f D(ty4,GMw(r) dr (3.6-10)
tk
yielding
I‘kal"kT = 3.6-11)

tk+ tk+
E[f Sl 1@(tm,r)G(r)v_z«)wT(a)cT(a)«»T(th1,a)drda]
tx tk

The expectation operator may be taken inside the integral since, loosely
speaking, the expectation of a sum is the sum of the expectations and an integral
may be thought of as an infinite series. We obtain

tk+1 t+l
I QLT = _/;k j;( B(tir1 7)GOE [wmwT (@] GT@P T (g, c)drde

tk+ tk+
L bt 2660005 -06T@ T ) d
tk tk
G.612)
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The properties of the Dirac delta function, §(7 — @), are used to perform the
integration over a, yielding

tk+1
QT = ,!; D141, 7) G QM) GT (1) 8T (tye 41, 7)dr (3.6-13)

which is the result sought.

There is an important distinction to be made between the matrices Q(t) and
Q. The former is a spectral density matrix, whereas the latter is a covariance
matrix. A spectral density matrix may be converted to a covariance matrix
through multiplication by the Dirac delta function, 5(t — 7); since the delta
function has units of 1/time, it follows that the units of the two matrices Q(t)
and Qg are different. This subject is again discussed in Chapter 4, when the
continuous optimal filter is derived from the discrete formulation.

The above discussion concerns covariance matrices formed between vectors of
equal dimension n. The matrices generated are square and 1 X n. Covariance
matrices can also be formed between two vectors of unlike dimension; an
example of this situation arises in Chapter 7.

3.7 PROPAGATION OF ERRORS

Consider the problem of estimating the state of a dynamic syster in which
the state vector x is known at some time t, with an uncertainty expressed by
the error covariance matrix

Py =E[x&y '] @11

where the error vector, ¥y, is the difference between the true state, P and the
estimate, X, ;

By =Xy — Xy (3.7-2)
It is desired to obtain an estimate at a later point in time, 41, Which will
have an unbiased error, %y ., . To form the estimate (i.., the predictable portion

of £+ given ;) the known state transition matrix @, of Eq. (3.4-1) is used,
resulting in

Berr = Pl (3.7:3)

To show that the error in the estimate at ty+] is unbiased, subtract Eq. (3.4-1)
from Eq. (3.7-3) to obtain

Hpeey = Pk — Tyewye 374
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The expected value of the error is
E(gx+1) = 2 ElZ] — T Elwy] =0 G.7-5)

Thus, under the assumptions that X, and wy are unbiased, it can be seen that
Eq. (3.7-3) permits extrapolation of the state vector estimate without
introducing a bias.

If a known input was provided to the system during the interval (ty,ty ;) this
would appear as the additional term, Ay uy, in Eq. (3.4-1),

X+1 = PrXy ¥ Ty + Ay (3.7-6)

Since the input is known, an identical quantity is added to the estimate of Eq.
(3.7-3) and thus, the estimation error would be unchanged.

Equation (3.7-4) can be used to develop a relationship for projecting the error
covariance matrix P from time ¢, to ). The error covariance matrix Py, is

Pt = Elfye1 %41 7] (3.7-7)

From Eq. (3.74)

BB = @l — D @&y — Tew )T (.78)
= Dk TP T - Pk T T~ Ciwy T T+ Ty w, w, T T

Taking the expected value of the terms of Eq. (3.7-8) and using the fact that the
estimation error at t, and the noise 'y wy are uncorrelated (a consequence of
the fact that [y w, is a white sequence), namely

Bl Ty )T} = 0 3.79)
the equation for projecting the error covariance is found to be
)
Prsp = OPy T + T QT T (3.7-10)

From Eq. (3.7-10) it can be seen that the size of the random system
disturbance (i.c., the “size” of [} Q' T) has a direct bearing on the magnitude
of the error covariance at any point in time. Less obvious is the effect of
dynamic system stability, as reflected in the transition matrix, on covariance
behavior. In broad terms, a very stable system* will cause the first term in Eq.
(3.7-10) to be smaller than the covariance Py. No restrictions regarding the
stability of the system were made in the development above and the error
covariance of an unstable system will grow unbounded in the absence of

*That is, one whose F-matrix only has eigenvalues with large, negative real parts.
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measurements taken on the state. A system with neutral stability* will also
exhibit an unbounded error growth if appropriate process noise is present.

The expression for covarance propagation in the continuous system

formulation is obtained through use of limiting arguments applied to Eq.
(3.7-10). The noise covariance is:

T+t
Q0T = [k Bty 41, NGOANGCT@Y T (4, , MY (37-11)

For ty 41 — t = At = 0, this is replaced by
I QN T - GOGT At (3.7-12)

whese terms of order At* have been dropped. The differential equation for the
transition matrix is

&(1) = F(t) &(t)

or
W+)t—4’(') =F(0) 2(0) (3.713)

as At~ 0. Rearranging terms we deduce that, for At >0,
@, > 1+FAt (3.7-19)
Substituting in Eq. (3.7-10), we have

Py4; =(1+ FAN) Py (1 + FAQT + GQGT At

(3.7-15)
=P, + (FP + P, FT + GQGT) At + FP,FT A¢®
This equation can be rearranged in the form
Prer =P _ P.FT + GQGT + FP, FT A (3.7-16)
At - FP + F GQG* + FPy t .7-
As At 0, the equation becomes
B(t)= F(OP(t) + POFT(H) + G(HQ(1) GT(1) (3.7-17)

*That is, one whose F-matrix has some purely imaginary eigenvalue pairs.
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which is the continuous form of the covariance propagation equation. This is the
so-called linear variance equation.

3.8 MODELING AND STATE VECTOR AUGMENTATION

The error propagation equations obtained in Section 3.7 are developed unders
the assumption that the system random disturbances (w(t) or wy) are not
correlated in time. Suppose, however, that important time correlation does exist.
The characterization of system disturbances which have significant time
correlation may be accomplished by means of “state vector augmentation.” That
is, the dimension of the state vector is increased by including the correlated
disturbances as well as a description of system dynamic behavior in appropriate
rows of an enlarged F (or ) matrix. In this manner, correlated random noises
are taken to be state variables of a fictitious linear dynamic system which is itself
excited by white noise. This model serves two purposes; it provides proper
autocorrelation characteristics through specification of the linear system and the
strength of the driving noise and, in addition, the random nature of the signal
follows from the random excitation. Most correlated system disturbances can be
described to a good approximation by a combination of one or more of the
several types of models described in this section. The problem of correlated
disturbances is treated for both continuous and discrete formulations.

State Vector Augl ion — The ation of the state vector to
account for correlated disturbances is done uslng Eq. (3.1-1):

1=Fx+Gw (3.8-1)

Suppose w is composed of correlated quantities w, and uncorrelated quantities
w2,

=W tws (3.8-2)
If w, can be modeled by a differential equation
Wi =F,w, + w3 (3.8-3)

where w; is a vector composed of uncorrelated noises, then the augmented
state vector X' is given by

X —H (3849
Wi

and the augmented state differential equation, driven only by uncorrelated
disturbances, is
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% F 6lx G @
£={71 = nk (3.85)
wl (o Bl 0 Iliws

1£
5

1£

We now consider a number of specific correlation models for system
disturbances, in each instance scalar descriptions are presented.

dom C — The random constant is a non-dynamic quantity with a
ﬁxed albeit random, amplitude. The continuous random constant is described
by the state vector differential equation

x=0 (3.8-6)
The corresponding discrete process is described by

Kot = Xk (337

The random constant can be thought of as the output of an integrator which has
no input but has a random initial condition [see Fig. 3.8-1(a)].

Random Walk — The random walk process results when uncorrelated signals
are integrated. It derives its name from the example of a man who takes
fixed-length steps in arbitrary directions. In the limit, when the niumber of steps
is large and the individual steps are short in length, the distance travelled in a
particular direction resembles the random walk process. The state variable
differential equation for the random walk process is

X=w (3.8-8)

where E[w()w(r)] = q(t) 8(t—7). A block diagram representation of this
equation is shown in Fig. 3.8-1(b). The equivalent discrete process is

Xyrp =Xg t Wy (3.89

where the noise covariance is {Eq. (3.6-13)] gy = q(ty 41 —t)- The scalar version
of the continuous linear variance equation

p=2fp+gq (3.8-10)

is used to determine the time behavior of the random walk variable. For f=0,
£=1, we obtain

p=q
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fc) RANDOM WALK and
RANDOM CONSTANT

Figure 3.8-1  Block Diagrams for Random Constant and
Random Walk Processes

5o that
E[x*] =p=qt (3.8-11)

A combination of the random walk and random constant can be represented by
the use of only one state variable. This is illustrated in Fig. 3.8-1(c).

Random Ramp — Frequently, random errors which exhibit a definite
time-growing behavior are present. The random ramp, a function which grows
linearly with time, can often be used to describe them. The growth rate of the
random ramp is a random quantity with a given probability density. Two state
elements are necessary to describe the random ramp:
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X1 =X2
3.8-12
%2=0 G812

The state X, is the random ramp process; X, is an auxiliary variable whose initial
condition provides the slope of the ramp. This initial condition is exhibited in
the form of a mean square slope, E[x;%(0)]. From the solution of Eqs. (3.8-12)
the mean square value of x, is seen to grow parabolically with time, viz:

Efx;*(t)] =Elx,*(0)] ¢ (3.8-13)
A combination of a random ramp, random walk and random constant can be
represented by the use of only two state variables as illustrated in Fig. 3.8-2. The

equivalent discrete version of the random ramp is defined by the two variables

Kyker = Xak ¥ (fgep — kg

(3.8-14)
X2k+] = X2k
x,(0) x, (0}
w RANDOM CONSTANT
+ RANDOM WALK
© RANDOM RAMP
P
f ot f “
Figure 3.8-2 G ion of Three Random Ch; istics by the
Addition of Only Two State Variables
Exp ially C Random Variable — A random quantity whose
autocorrelation function is a decreasing exponential
P (1) = 07! (3.8-15)

is frequently a useful representation of random system disturbances. Recall from
Chapter 2 that this autocorrelation function is representative of a first-order
gauss-markov process. This quantity is often used to provide an approximation
for a band-limited signal, whose spectral density is flat over a finite bandwidth.
The exponentially correlated random variable is generated by passing an
uncorrelated signal through a linear first-order feedback system as shown in Fig.
3.8-3. The differential equation of the state variable is

x=—fxtw (3.8-16)
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The mean square value of the exponentially correlated random variable is
constant if the mean square initial condition on the integrator is taken as q/28.
The mean square value of x is found from the scalar covariance equation, Eq.
(3.8-10). Since q is constant, p=0 in steady state, so that (f= —, g = 1)

0=—2pf+q (3.8-17)
yielding
E[x*] =p=2% (3.8-18)

The discrete version of the exponentially correlated random variable is described
by

Bt —ty)
e k+1 7'k X

X4 = x T Wk (3.8-19)

Using Eq. (3.7-11), we readily find the covariance of wy as
-28(t - ty)
a =% [1 _ & P ~ % ] (3.8:20)

Periodic Random Quantities — Random variables which exhibit periodic
behavior also arise in physical systems. A useful autocorrelation function model
is given by

e x, (=0 e? 17 cosw 7] (3.8:21)

where the values of 8 and w are chosen on the basis of the physics of the
situation or to fit empirical autocorrelation data. Two state variables are
necessary to represent a random variable with this autocorrelation function. One
pair of quantities which provides this relation obeys the following differential
equations (Ref.5)

X=X tw

X =—a% X; — 28X, + (@~28) w (3.8-22)
where

a= (@ + w2 (3.823)

The spectral density of the white noise w is 28028(7).
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A summary of the continuous models described above is given in Fig. 3.8-3.
The discrete models which have been presented are summarized in Fig. 3.8-4.
Occasionally, other more complex random error models arise. For example, Ref.
6 discusses a time and distance correlated error whose autocorrelation function
is given by

o(r,d)=oe S e_ldl ® (3.829)
where T and D are the first-order correlation time and first-order correlation
distance, respectively. This correlation also occasionally appears when consider-
ing geophysical phenomena (e.g., Ref. 7). However, the majority of system
measurement errors and disturbances can be described by some combination of
the random variable relations summarized in Fig. 3.8-3.

3.9 EMPIRICAL MODEL IDENTIFICATION

Subsequent discussions assume that any random process under study has been
modeled as a linear system driven by gaussian white noise. In this section,
methods for determining the best linear-gaussian model to fit an observed
sequence of data are discussed. As illustrated in Fig. 3.9-1, a model for the
process is produced by combining empirical data and prior knowledge of
underlying physical mechanisms. The derived model and the data are then used
in an estimation process as described in succeeding chapters.

Itis d that the available data are a seq of scalar observations,

21,22, - - S Iy
A time-invariant, discrete linear system of the form

Xy+1 = Pxy +S 1 (3.9-1)

z =HE 5 (3.92)

is used to fit the data. It can be shown that this type of model is general enough
to fit any sequence of observations generated by a stable, time-invariant linear
system driven by gaussian noise. Here 1y, referred to as the residual at time t,, is
the difference between the observation at time t, and the output the model
would produce based on inputs up to but not including time t, . The residuals
reflect the degree to which the model fits the data.

Model identification typically proceeds in the following way. Once data are
acquired, a preliminary model for the random process is chosen. An optimal
smoothing algorithm (see Chapter 5) is used to determine the initial state and
the inputs most likely to have produced the observed data. Next, residuals are
examined to determine how well the model fits the data. A new model is
selected if the residuals do not display the desired characteristics, and the
procedure is repeated.
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Figure 3.9-1 Empirical Model Identification

AUTOCORRELATION TECHNIQUES

Since certain of the models considered here can produce stationary gaussian
random processes, it is natural to give primary consideration to the sample mean
and sample autocorrelation function for the data when attempting model
identification. Given a string of data z;, i = 1,2, , N, taken at constant
intervals, At, the sample mean and sample autocorrelation function are

determined as

1 N
m=— Z 2z (3.9-3)
N i=
-R
szz(QAt)-N-——Q—— Z - m)(zg-mT , £=0,1,..,N-2
(3.944a)

If the process being measured is known to be zero mean, then

9 2=0,1,...,N-1
QZZ(QAt) Z.; 1+Sz (3.94b)

A preliminary model for the process can be obtained by choosing one whose
mean and autocorrelation function closely approximate the sample mean and
sample autocorrelation function. Although seemingly straightforward, the
procedure is often complicated by the fact that data might not be taken over a
sufficient period of time or at sufficiently frequent intervals. It is, of course,
necessary to apply physical insight to the problem in order to correctly interpret
calculated statistical quantities. The following example provides an illustration.
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Example 3.9-1

Deflections of the vertical are angular deviations of the true gravity vector from the
direction postulated by the regular model called the reference ellipsoid (Ref. 8). Consider
the data sample shown in Fig. 3.9-2; it consists of measurements of one component of the
deflection of the vertical, &, taken at 12.5 nm intervals across the 35th parallel in the United
States (Ref, 9).

25

20

10

VERTICAL DEFLECTION £ fec
' on
-

5 | 1 | | il 1 i L |
125 120 15 1o 105 100 95 90 85 80 75

WEST LONGITUDE (deg)

Figure 3.9-2  Meridian Component, Vertical Deflections of Gravity —
35th Parallel, United States (Ref. 9)

We are concerned with spatial rather than temporal correlation so that the shift
parameter in the autocorrelation function is distance. The sample autocorrelation function
calculated according to Eq. (3.9-4) is shown in Fig. 3.9-3. The formula is evaluated only out
to 12 shifts, i.e., 150 nm; beyond that point two effects cloud the validity of the results.
First, as the number of shifts ¢ increases, the number of terms N — ¢ in the summation
decreases, and confidence in the derived values is reduced. Secondly, calculated autocorrela-
tion values at shifts greater than 150 nm are sufficiently small that any measurement noise
present tends to dominate.

Vertical deflection autocorrelation values are seen to fall off exponentially. A first-order

model least-squares curve-fit results in the empirical autocorrelation function shown in Fig.
3.9-3. It has the form

e =, 141D 4 2 (3.9-5)
where the standard deviation is determined as

Oy = 5.2 sec
the mean is found to be

my = 0.2 sec

the correlation distance is
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Figure 3.9-3  Vertical Deflection Sample Autocorrelation Function —
35th Parallel U.S.

D= 25.1 nm

and d is the distance shift parameter. As described in Ref. 10, the fitted function from
which Eq. (3.9-5) is obtained is derived using techniques which compensate for finite data.
Thus, it is not unnatural that the function is negative at large distance shifts. In this example
the correlation distance D is approximately twice the data interval. The structure of the
actual autocorrelation function cannot be accurately determined for small distance shifts —
e.g.. less than 12.5 nm.

An exponential (first-order gauss-markov) autocorrelation function describes a process
whose correlation falls off exponentially at all distance shifts, including d = 0. Equivalently,
the derivative of the autocorrelation function is nonzero at zero distance shift,

d . 1

— = S 2
d=0

This result is not physically appealing since vertical deflections are caused by nonuniform

mass distributions in the earth, which are not likely to change instantaneously in distance as

would be implied by a nonzero derivative. Thus, consideration is given to the second-order

gauss-markov process, whose autocorrelation function does have a zero derivative at zero
shift, The form of the function is

- 1dl -
‘ng(d) = 052 (l + —D_) eldi/D 4 msz (3.9-7)

and by least-squares curve fitting the characteristic distance is determined to be

D=11.6 nm
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The empirically determined quantities o, and m, are unchanged. Details of applying the
second-order gauss-markov model to gravity phenomena are given in Ref. 11. Comparisons
of the first- and second-order processes with the empirical autocorrelation values are given in
Fig. 3.9-3.

Finite data length implies an inability to determine the form of an
autocorrelation function at large shifts, whereas finite data spacing implies an
inability to determine the form at small shifts. Together, the two correspond to
a limited quantity of data, thus resulting in classical statistical limitations in
estimating autocorrelation function parameters. These factors are treated
analytically in Refs. 12 and 13; brief summaries are given here.

Consider a zero mean random process whose statistics are described by the
autocorrelation function

0,,(1) =0,% €171/To (3.9-8)

A sequence of measurements taken at intervals At over a period T is used to
obtain an empirical autocorrelation function

N-2¢

- I

9, (RAL) = N_¢ E ZiZivo » 2=0,1,2,...,N-1 (3.9-9)
i=1

where N = T/At. In Fig. 3.9-4, expected values of the normalized empirical
autocorrelation function are plotted for various values of T/To. The case of
T/To = * corresponds to the actual function, Eq. (3.9-8). Clearly, for small
values of T/T,, empirically derived autocorrelation functions may be quite
different from the function corresponding to the underlying physical model.

Data limitations, expressed as a finite value for N, lead to an uncertainty in
the estimation of autocorrelation function parameters. If the actual process
variance is 0,2 and the empirically derived estimate is 6,*, the uncertainty in the
estimate is expressed by

4

E [(3,% — 0,%)*] =9§-_ (3.9-10)

If the actual process correlation time is Ty and the empirically derived estimate
is Ty, the uncertainty in the estimate is expressed by

e2 AtlTo — ]
N(At/T,)?

E [(To — To)?] = To? (3.9-11)

This relationship is illustrated in Fig. 3.9-5; the ideal situation corresponds to T
large and At small, relative to T,.
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Figure 3.94  Expectation of Measured Autocorreiation Function for
Varying Sample Lengths

TIME SERIES ANALYSIS

In Ref. 14, Box and Jenkins present techniques for fitting a model to
empirical scalar time series data. Instead of using a state variable fonnulation for
the linear system, the equivalent difference equation formulation is used,

P q
7 = 2 bzt — 2 [ (3.9-12)
1=1 i=1

Here z, is the observation of the time series at time t, and ry, called the
residual at time ty, is an uncortelated gaussian random variable. The summation
limits p and q as well as the parameters b; and c; are adjusted to fit the data. It is
assumed that the data have been detrended; that is, a linear system has been
found which adequately models the mean value of the data. For example, the
random bias and random ramp models discussed previously can be used. The
detrended data sequence is assumed to have stationary statistics.
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At/Ts
NORMALIZED DATA SPACING
Figure 3.9-5  Variance of Estimated Correlation Time of Exponential
Autocorrelation Function
A state variable representation of this model has the states
r Tk—q+1
Tk—q+2
T2
Tk-1
Xk = (=0 ——
X (3.9-13)
Zx—p+1
Zx_p+2
Zk-1
%) J
Here
B(-)=z — (3.9-14)
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represents the prediction of z, based on the model and on knowledge of the
infinite number of 2’s prior to time t. It is easy to see that

P

q
Tl =bigg —eing + Y bizgayi— D Cifkar—i
i=2 i=2

P q
=b,B(-) (b1 —c) e+ D bizpag_i— D Cifienoi
i=2 i=2

(3.9-15)

Therefore the state variable model is

Xk+1 7
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(3.9-16)

To gain insight into how the characteristics of the time series model are
affected by the coefficients of the difference equation, the general form of Eq.
(3.9-12) is specialized to several particular cases. The characteristics of these
forms are reflected in their autocorrelation functions. Therefore, by studying
these specialized forms, it is easier to identify a model that matches the observed
time series and also has a minimum number of parameters to be determined.

Autoregressive {AR) Process — If it is assumed that the present observation is
a linear combination of past observations plus a gaussian random variable, Eq.
(3.9-12) becomes

P
zkz 2 bl zk—i+rk (3.9-17)
i=1
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This type of time series is called an autoregressive (AR) process. Note that the
residual ry is the only portion of the measurement z, which cannot be predicted
from previous measurements. It is assumed that the coefficients of this
difference equation have been chosen so that the linear system is stable, thus
making the autoregressive process stationary. The characteristic nature of this
process is reflected in its autocorrelation function. Multiplying both sides of Eq.
(3.9-17) by delayed z; and taking the ensemble expectation of the result, we find

p
02(K)= ) b, ¢y, (k=i) (3.9-18)
1=1

Thus, the autocorrelation function of an AR process obeys the homogeneous
difference equation for the process. For a stationary AR process, the solution to
the homogeneous difference equation is given by linear combinations of damped
sinusoids and exponentials.

It is desirable to express the difference equation coefficients in terms of the
autocorrelation function values; estimates of the coefficients can then be
obtained by using the sample autocorrelation function. Evaluation of Eg.

(3.9-19) for p successive shifts results in a set of p linear equations which can be
written as

020 e (D) oy e-D] [b] [en))]
‘pzz(l) Hazz(o) © e \ozz(p_z) b2 ‘pzz(z)

= (3.9-19)
_‘pzz(p‘“]) ¥z2(P—2) * * * ¥;,(0) ) _pr _ﬂozz(p)_‘

This set of linear equations, called the Yule-Walker equations, can be solved for
the correlation matrix values and correlation vector using estimates of the
autocorrelation function. The state variable representation of an autoregressive
process has only the p states,

Zx _p+1
Zx —p+2

Xk = ‘ (3.9-20)

sz( _)
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Moving Average {(MA) Process — If the time series is assumed to be generated
by a finite linear combination of past and present inputs only, the process is
called a moving average (MA) process. Under this assumption, the time series is
generated by the difference equation

q
Be=f— 9, Gl (3.9:21)
i=1

This model always produces a stationary process. It is assumed that the
coefficients are chosen so that model is also invertible — i.e., the input sequence
can be completely determined from knowledge of the observed output sequence.
Under the assumption that the covariance of the input sequence is

Bl =0 for R=k 6922
=0 for 8#k
the corresponding autocorrelation function of the observations is
q-k
@, (K)= (—Ck + .=Zl G Ck+i) o for k<gq (923

=0 for k>q

Thus, the autocorrelation function for an MA process has a finite number of
non-zero values, and cuts off at the order of the process.

Mixed Autoregressive Moving Average {ARMA) Processes — A more general
stationary time series can be generated by combining the AR and MA processes
to get a mixed autoregressive moving average (ARMA) process. The difference
equation model for the process takes the general form of Eq. (3.9-12), but the
allowable range of coefficients is restricted so that the process is stationary and
the model is invertible. The process autocorrelation function is identical to the
pure AR process after (q — p) shifts. Thus, the autocorrelation function is given
by

P
0200= 3 by, ki) for k>q (3.9:24)

i=1

with p initial conditions ¢,,(q), ¢,,(q—1), ..., ¢,(a—pt1). If q <p, the
autocorrelation function will consist of damped exponentials and sinusoids
determined by the difference equation coefficients and initial conditions. If
p < q, there will be (q-pt1) initial values which do not follow the general
pattern. An example is given by the first-order mixed ARMA process,

LINEAR DYNAMIC SYSTEMS 95

Z=biz_jtrg -ty
The autocorrelation function for this process is

1+¢,2 —2¢by
0,,(0) = I Y e

@z2(1)= b1 ¢,(0) — ¢y 0.

- (A—bse )by — 1) 0.2
]_bll T

¢52(K)= by ¢, (k1) for k>2

Note that ¢,,(0) and ¢,,(1) depend upon both the autoregressive and moving
average parameters. The autocorrelation function is exponential except for
,,(0), which does not follow the exponential pattern.

A gressive Integrated Moving A ge (ARIMA) Processes — If the
measurements do not exhibit stationary statistics, the AR, MA and ARMA
models cannot be used directly. In certain situations this difficulty can be
overcome by differencing the data. For example, suppose the differences

d=2— 27 (3.9-25)

are found to have stationary statistics. Then an ARMA process can be used to
model these differences, and the measurements can be modeled as the sum of
the ditferences plus an initial condition. Such a process is called an autoregressive
integrated moving average (ARIMA) process; the term “integrated” refers to the
summation of the differences. Note that the random walk process discussed in
Section 3.8 is the simplest form of an ARIMA process.

Fast Fourier Transforms — In 1965 Cooley and Tukey (Ref. 15) described a
computationally efficient algorithm for obtaining Fourier coefficients. The fast
Fousier transform (FFT) is a method for computing the discrete Fourier
transform of a time series of discrete data samples. Such time series result when
digital analysis techniques are used for analyzing a continuous waveform. The
time series will represent completely the continuous waveform, provided the
waveform is frequency band-limited and the samples are taken at a rate at
least twice the highest frequency present. The discrete Fourier transform of the
time series is closely related to the Fourier integral transform of the continuous
waveform.

The FFT has applicability in the generation of statistical error models from
series of test data. The algorithm can be modified to compute the autocorrela-
tion function of a one-di ional real or the cross-correlation
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function and ¢ lution of two one-di ional real seq It can also be
used to estimate the power spectral density of a one-dimensional real continuous
waveform from a sequence of evenly-spaced samples. The considerable efficiency
of the FFT, relative to conventional analysis techniques, and the availability of
outputs from which statistical error models are readily obtained, suggest that the
FFT will be of considerable utility in practical applications of linear system
techniques. Computational aspects of applying the FFT as noted above are
discussed in Ref. 16.
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PROBLEMS

Problem 3-1
Show that

t
P(t) = @ (t,t0) Plto) @T(t,19) + f 2(L)CMQNGTMoT(t, ndr
to

15 the solution of the linear variance equation.
Probiem 3-2
Use the solution given in Problem 1 to show that the solution to

FP+PFT=_Q

p= f eFtQeF Ty
0

where F and Q are constant matrices.

Problem 3-3

Extensive analysis of certain geophysical data yields the following temporal autocorrela-
tion function

o =a® (al2 +a,? cos wr +as? e_‘””)

where w is earth angular rate (2#/24 hr l) and r is time shift. Derive a set of state vector
equations to describe this random process.

Problem 3-4
For the system shown in Fig. 3-1, where the autocorrelation function is
#x,%, (0 = ote=fir
show that
_ & | 2-1 +e-ﬁ‘>: #(1—eFt
sa-efhy g

for the state vector taken asx =[x x217T.

X2 f —— X}

Figure 3-1
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Problem 3-6

‘Consider the single-axis error modecl for an inertial navigation system shown 1n g, 3-2.

., = UNBIASED RANDOM VERTICAL DEFLECTION

€, = VERTICAL DEFLECTION BIAS 3
£b . UNCORRELATED VELOCITY MEASUREMENT ERROR T
epb BIAS POSITION MEASUREMENT ERROR

ep = UNCORRELATED POSITION MEASUREMENT ERROR ep

Figure 3-2

In this simplificd model, gyro drift rate errors are ignored. It is desired to estimate the
vertical deflection process, e Consider the system state vector consisting of the four states:

xT = (epb 6p 8v egb)
(a) For position measurements only (Zy not available), set up the observability matrix and
determine whether this system is obscrvable. (b) Now assume we have both position and
velocity measurements. Is this system observable? (¢) Now assume eph = 0 and can be

eliminated from the state error model. Is this system observable with position measurements
only?

Problem 3-6

For the linear system whose dynamics are described by

0
1

12

1T 5
®M=10 1 T
0 0 1
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Praobtem 3-7

For the constant discrete nth-order deterministic system driven by a scalar control
Xk+] = Xk + Auk

Show that the controllability criterion is that the rank of
[
o= l|°£|' .l 0“—15
It
be n where Xo, Xn and the uj are given. (Hint: Describe the vector Xp — ®"x,, in terms of
Ugs - - -, Un—] and powers of @.)

Problem 3-8

Show that for the stationary linear system described in Fig. 3-3, the state transition
matrix is (At = 0)

t
-yt _T2 | —AyT, _ o—ayT,
| Ti~Ty

wit)

Figure 3-3

Problem 3-9
For the system illustrated in Fig. 3-4, show that

EE&J«)]w.t
EE&;’(t)] =—q‘3' +4at

s
EE‘az(t)] = q|2:) + A2 ; +qat

w

where the white noise inputs wj have spectral densities g6 (t).
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Problem 3-10

For the second-order system shown in Fig. 3-5, use the linear variance equation to obtain
2 . |
E[x 1 (l)] E:r

EE(;’«)} Pros

whete the white noise input w has spectral density 48 (1), in the steady state.

Figure 3-5

Problem 3-11

For the first-order system shown in Fig. 3-6, choose the gain K to minimize the mean
square error between the command input K(t) and the system output c(t). Define a state
vector xT =[¢ 1{ and obtain the steady-state solution of the linear variance equation, Pgs.
Define the quantity e(t) = c(t) — r(t) and compute its steady-state mean square value as

0e2=[1 —1] Py "1
)

Foro® = g=1.0and N=0.5, show thatK = 1.0.

LINEAR DYNAMIC SYSTEMS 101

rmmru R r—l—L—E

{r1:c2e”

+

n(t)

$anit) :NB(7)

Figure 3-6

—> ¢ (t)



4. OPTIMAL LINEAR FILTERING

The preceding chapters discuss a number of properties of random processes
and develop state-vector models of randomly excited linear systems. Now, we
are ready to take up the principal topic of the book — namely, the estimation of
a state vector from measurement data corrupted by noise. Optimal estimates
that minimize the estimation error, in a well-defined statistical sense, are of
particular interest. This chapter is devoted to the subject of optimal filtering for
linear systems. Filtering refers to estimating the state vector at the current time,
based upon all past measurements. Prediction refers to estimating the state at a
future time; we shall see that prediction and filtering are closely related. Chapter
5 discusses smoothing, which means estimating the value of the state at some
prior time, based on all measurements taken up to the current time.

Our approach to development of the optimal linear filter is to argue the form
it should take, to specify a suitable criterion of optimality and to proceed
directly to optimization of the assumed form. Before embarking upon this
course, however, we briefly provide some background on the subjects of
desirable characteristics of estimators in general, alternative approaches to
optimal estimation and motivation for optimal /inear estimators.

An estimate, X, is the computed value of a quantity, x, based upon a set of

o rents, z. An unbiased estimate is one whose expected value is the same
as that of the quantity being estimated. A minimum variance (unbiased) estimate
has the property that its error variance is less than or equal to that of any other
unbiased estimate. A consisrent estimate is one which converges to the true value
of x, as the number of measurements increases. Thus, we shall look for unbiased,
minimum variance, consistent estimators.
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Let us assume that the set of £ measurements, z, can be expressed as a linear
combination of the n elements of a constant vector x plus a random, additive
measurement error, ¥. That is, the measurement process is modeled as

z=Hx+y (4.0-1)
where z isan £ X 1 vector, x is an n X 1 vector, H is an 2 X n matrix and y is an £
X 1 vector. For £ > n the measurement set contains redundant information. In
least-squares estimation, one chooses as X that value which minimizes the sum of
squares of the deviations, z; — Z; ; i.., minimizes the quantity

J=@-HYT z-HY) (4.02)

The resulting least-squares estimate (2 > n), found by setting 3J/3% = Q (Sec.
2.1),is

2= (HTHy' HTz (4.03)
If, instead, one seeks to minimize the weighted sum of squares of deviations,
J=@-H)' R @- HY) (4.0-4)

where R™' is an 2 X & symmetric, positive definite weighting matrix, the
weighted-least-squares estimate

x=HTR'H! HTR !z (4.0:5)

is obtained. These results have no direct probabilistic interpretation; they were
derived through deterministic argument only. Consequently, the least-squares
estimates may be preferred to other estimates when there is no basis for
assigning probability density functions to x and z. Alternatively, one may use
the maximum likelihood philosophy, which is to take as X that value which
maximizes the probability of the measurements z that actually occurred, taking
into account known statistical properties of y. There is still no statistical model
assumed for the variable x. In the simple example above, the conditional
probability density function for z, conditioned on a given value for x, is just the
density for y centered around Hx. With y taken as a zero mean, gaussian
distributed observation with covariance matrix R, we have

pzix) = W exp [—17 z—-HOTR'(z — Hé)] (4.0-6)

Tc‘J r_naximize p(zlx) we minimize the exponent in brackets. This is equivalent to
minimizing the cost function in Eq. (4.0-4), although now a probabilistic basis
for choosing R exists. The result, of course, is as given in Eq. (4.0-5). Still
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another approach is Bayesian estimation, where statistical models are available
for both x and z, and one seeks the @ posteriori conditional density function,
p(xi2), since it contains all the statistical information of interest. In general,
p(xi2) is evaluated as (Bayes’ theorem)

D) = P‘-"?CP)(‘) (4.0-7)

where p(x) is the a priori probability density function of x, and p(z) is the
probability density function of the measurements. Depending upon the criterion
of optimality, one can compute % from p(xiz). For example, if the object is to
maximize the probability that X = x, the solution is X = mode* of p(x[z). When
the a priori density function p(x) is uniform (which implies no knowledge of x
between its allowable limits), this estimate is equal to the maximum likelihood
estimate. If the object is to find a generalized minimum variance Bayes’ estimate,
that is, to minimize the cost functional

=-[:.[: _/:: G~ TS R - x) pxi)dx,dx, ... dx,

whete S is an arbitrary, positive semidefinite matrix, we simply set 3J/3x=Q to
find, independent of S, that

=_[: [: [: xp(xl2)dx, dx, . .. dx, = E[xiz] (4.09)

which is the conditional mean estimate. Equation (4.0-8) has the characteristic
structure

(4.0-8)

=[:[: j:: L&) p(xlz)dx,dx, .. .dx, (4.0-10)

where L(X) is a scalar “loss function” of the estimation error

i=%-x (4.0-11)
The result given in Eq. (4.0-9) holds for a wide variety of loss functions in
addition to that used in Eq. (4.0-8), with some mild restrictions on the form of
p(x|z); in all these cases the minimum variance Bayes’ estimate (conditional
mean) is also the optimal Bayes’ estimate (Ref. 1). Assuming gaussian
distributions for x and v, the result of evaluating E[xiz] in Eq. (4.09) is

*The peak value of P(XZ).
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X=(P,! +HTR'Hy'HTR 2z (4.0-12)

where Py is the a priori covariance matrix of x.

In comparing the various estimation methods just discussed, we note that if
there is little or no g priori information, Pg™ is very small and Eq. (4.0-12)
becomes Eq. (4.0-5). And if we argue that all measurement errors are
uncorrelated (i.e., R is a diagonal matrix) and all errors have equal variance
(ie., R = ¢®I), Eq. (4.0-5) reduces to Eq. (4.0-3). In his important work,
Kalman (Ref. 2) formulated and solved the Wiener problem for gauss-markov
sequences through use of state-space representation and the viewpoint of
conditional distributions and expectations. His results also reduce to those given
above. Therefore, the important conclusion is reached that for gaussian random
variables, identical results are obtained by all these methods as long as the
assumptions are the same in each case (Ref. 3). This property motivates us to
consider primarily B i variance estimator

Now we observe that X in Eq. (4.0-12) is a Imenr operation on the
measurement data. Funhermore, it is proven elsewhere (Ref. 4) that, for a
gaussian time-varying signal, the optimal (minimum mean square error) predictor
is a linear predictor. Additionally, as a practical fact, most often all we know
about the characterization of a given random process is its autocorrelation
function. But there always exists a gaussian random process possessing the same
autocorrelation function; we therefore might as well assume that the given
random process is itself gaussian. That is, the two processes are indistinguishable
from the standpoint of the amount of knowledge postulated. On the basis of
these observations we are led to consider the optimal estimator as a linear
operator in most applications.

Henceforth, unless stated otherwise, the term optimal estimator refers to one
which minimizes the mean square estimation error. Next, we consider the
recursive form of the linear estimator, which applies to gaussian random
sequences. The discrete time problem is considered first; the continuous time
equivalent is then obtained through a simple limiting procedure. Intuitive
concepts, situations of special interest and examples comprise the remainder of
the chapter.

4.1 RECURSIVE FILTERS

A recursive filter is one in which there is no need to store past measurements
for the purpose of computing present estimates. This concept is best demon-
strated by the following example.

Example 4.1-1

Consider the problem of estimating a scalar nonrandom* constant, x, based on k
noise-corrupted measurements, zj, where zj = x + vj (i = 1, 2, ... k). Here vj represents the

*x is unknown and has no defined statistical properties.
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measurement noise, which we assume to be a white An
variance estimate ik results from averaging the measurements (this can be shown from Eq.
(4.0-3)); thus, we choose

m{=
™M

Xy = 24 .1-1)
i=1
When an additi b i we have, as the new estimate
N k+1
Kyl =— i “4.1-2)
Xk+l T 1 E zj
i=l
This ion can be ipulated to the prior estimate, viz:
3
_k {1 i k. 1
. - 4.1-3
i=
Hence, by employing Eq. (4 1 3) ralher than Eq (4 1-2) to compute xkﬂ the need to store
past is —all p is died in the prior

estimate (plus the measurement index, k) — and we have a recursive, linear ¢stimator. Note
that Eq. (4.1-3) can be written in the alternative recursive form

X1 = R *— (zx+1 — ¥R

in which the new éstimate is given by the prior estimate plus an appropriately weighted
difference bet the new and its d value, given by the prior
estimate, The quantity zg 4] — Xk is cauea the measurement resiaual.

In the example we dealt with scalar quantities; generalization of the concept
to vector quantities proceeds directly. Consider a discrete system whose state at
time t is denoted by x(t) or simply x,, where wy is a zero mean, white
sequence of covariance Qy,

X =Py X 1 tWe g 4.1-4)
Measurements are taken as linear combinations of the system state variables,
corrupted by uncorrelated noise. The measurement equation is written in
vector-matrix notation as

=Hy xp + ¥ (4.1-5)

where z, is the set of € measurements at time ty, namely, z;y, Zgy, - - . » Zgks
arranged in vector form
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n=1{ . (4.16)

Hy is the measurement matrix at time t ; it describes the linear combinations of
state variables which prise 2 in the ab of noise. The dimension of the
measurement matrix is € X n, corresponding to 2-di joned ts of
an p-dimensioned state. The term v, is a vector of random noise quantities (zero
mean, covariance Ry ) corrupting the measurements.

Given a prior estimate of the system state at time t,, denoted )_'Ek(—)., we seek
an updated estimate, X, (+), based on use of the measurement, z;.. In order to
avoid a growing memory filter, this estimate is sought in the linear, recursive
form*

)= Kk () + Ky (4.1-7)

where Ky and Ky are time.varying weighting matrices, as yet unspecified.
Although the following derivation is for an d recursive, single-stage filter,
the result has been shown to be the solution for a more general problem. If wy,
¥y are gaussian, the filter we will find is the optimal multi-stage filter; a
nonlinear filter cannot do better (Ref. 2). In other cases we will simply have
determined the optimal linear fitter.

4.2 DISCREYE KALMAN FILTER

1t is possible to derive the Kalman filter by optimizing the assumed form of
the tinear estimator. An equation for the estimation error after incorporation of
the measurement can be obtained from Eq. (4.1-7) through substitution of the
measurement equation {Eq. (4.1-5)} and the defining relations (tilde denotes
estimation error)

R (+) = x5 + Fye(+)

421
K ()= 2y + X0
The result is
£(H) = [Ky + K Hy — Hxy + K& () + Kvge (4.2-2)

By definition Efy, ] = 0. Also, if E[%,(-)] = 0, this estimator will be unbiased
(e, E[X(¥)] = 0 for any given state vector X only if the term in square
brackets is zero. Thus, we require

*Throughout the text, (—) and (+) are used to denote the times immediately before and
immediately after a discrete measurement, respectively.
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Ki =1 - KHy 4.2:3)
and the estimator takes the form

£e(#) = (1 - KeHRe () + Kiezy 4.2-4)
or alternatively,

R () = Z) + Ky [z~ Hed ) (4.2-5)
The corresponding estimation error is, from Eqs. (4.1-5), (4.2-1) and (4.2-5),

£(+) = (1~ KyHy) J() + Ky (4.2:6)

Error Covariance Update — Using Eq. (4.2-6) the expression for the change in

the error covariance matrix when a measurement is employed can be derived.
From the definition

Po(+) = E [&y () £ (D71 4.2-7)
Eq. (4.2-6) gives

Py(9)=E {1 - KeHoRO) (70 - Ky + 37 KT

(4.2-8)
+ Ry Uiy (T - KT +3, 7K1}
By definition,
Elf (& ()] =P () 29
ElunT] =Ry (42-10)
and, as a result of measurement errors being uncorrelated,
E{& () 3 T1 = Ely %,()T1=0 @2-11)
Thus
P (4 = (1 - Ky Hy) P () (L= KyHy)T + KRy K T (4.2-12)

Optimum Choice of K, — The criterion for choosing Ky is to minimize a
weighted scalar sum of the diagonal elements of the error covariance matrix
Py (#). Thus, for the cost function we choose

Jie = Elg(DT S 15, (0)] (4213)
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where S is anty positive semidefinite matrix. As demonstrated in Eq. (4.0-9), the
optimal estimate is independent of S; hence, we may as well choose S = I,
yielding

Iy = trace [Py (4)] (4.2-14)

This is equivalent to minimizing the length of the estimation error vector. To
find the value of K, which provides a minimum, it is necessary to take the
partial derivative of Jy with respect to Ky and equate it to zero. Use is made of
the relation for the partial derivative of the trace of the product of two matrices
A and B (with B symmetric),

"aaK [trace (ABAT)] = 2AB

From Eqs. (4.2-12) and (4.2-13) the result is

-2~ K H) P (Y H T+ 2K R, =0
Solving for Ky,

Ki =P O H T [HPy O H T +R I (4.2-15)
which is referred to as the Kalman gain matrix. Examination of the Hessian of I,
reveals that this value of Ky does indeed minimize Jy [Eq. (2.1-79)].

Substitution of Eq. (4.2-15) into Eq. (4.2-12) gives, after some manipulation,

Pi(4) = P(-) — Py ) BT P BT+ Ry ] HPy(-)  (42:16a)

= {1 - K Hy ] Pe(-) (4.2-16b)
which is the optimized value of the updated estimation error covariance
matrix.

Thus far we have described the discontinuous state estimate and error
covariance matrix behavior across a measurement. The exirapolation of these
quantities between measurements is (Section 3.7)

B ) =Py B ) (4.217)

Py (‘)’q’k#]Pk—l("’)d’k_]T Qe (4.2-18)
See Fig. 4.2-1 for a “timing diagram” of the various quantities involved in the

discrete optimal filter equations. The equations of the discrete Kalman filter are
summarized in Table 4.2-1.
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Figure 4.2-1  Discrete Kalman Filter Timing Diagram

Figure 4.2-2 illustrates these equations in block diagram form. The Kalman
filter to be implemented appears outside the dashed-line box. That appearing
inside the box is simply a mathematical abstraction — a model of what we think
the system and measurement processes are. Of course, the Kalman filter we
implement is based upon this model. Chapters 7 and 8 dwell on the practical
consequences of this fact. It is often said that the Kalman filter generates its own
error analysis. Clearly, this refers to the computation of Py, which provides an
indication of the accuracy of the estimate. Again, Chapters 7 and 8 explore the
practical meaning of P, in view of modeling errors and other unavoidable
factors.

In the linear, discrete Kalman filter, calculations at the covariance level
ultimately serve to provide Ky, which is then used in the calculation of mean
values (i.c., the estimate X, ). There is no feedback from the state equations to

TABLE 4.2-1 SUMMARY OF DISCRETE KALMAN FILTER EQUATIONS

System Model Xk = Ph-1Xk-1 +wk-1, Wk ~ N© Q)
Measurement Model 2k = Hgxg +¥x. ¥k ~ N, Ry)

Initial Conditions E[x(0)]} = o, E[(x(0) — Z0)(x(0) — Xo)T] = Py
Other Assumptions E{wky;T} = 0 forallj, k

State Estimate Extrapolation gk(—) = k. ]_ik_ 1+)

Error Covariance Extrapolation Py(-)= ok _1 Pk 1(9) ok 31T+ Q1

Ri+ = Zx(-) + Kiclzx — Hidie(-))
Pic(+) = {I - KxHg] Px(-)
Kalman Gain Matrix Ki = Pr(-) HT[HyPy (- )HET + Ry

State Estimate Update

Error Covariance Update
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Figure 4.2-2  System Model and Discrete Kalman Filter

the covariance equations. This is illustrated in Fig. 4.2-3, which is essentially a
simplified computer flow diagram of the discrete Kalman filter.
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Figure 4.2-3  Discrete Kalman Filter Information Flow Diagram

A Simpler Form for K, — There is a matrix inversion relationship which
states that, for Py (+) as given in Eq. (4.2-16a), P~ (+) is expressible as:

PO #) =P () + B TR Hy (4.2-19)
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This relationship can easily be verified by showing that Py (+) P77 (+) = 1. We
use this result to manipulate Ky as follows,

Ky = P00 P (D] P () Hy T [H P (H, T + Ry )
=P (M)[P () + B TR Hy 1Py (-)H, T [HeP (- )H T + Ry}
Expanding and collecting terms yields
Ky =P (T [1+ R H P () H T [H P ()H T + R 17
=P (H TR (4.2-20)
which is the simpler form sought.

A Property of the Optimal Estimator — We may verify by direct calculation
that

E[Z(ME, (")) =0 (4.221)

That is, the optimal estimate and its error are uncorrelated (orthogonal). The
state and its estimate at time t,(+) are

X1 = Poxo + Wo . (4.2:22)
and

Z1(#)=Do&o + Ky [z1 — Hy DoZo)

=®oZo + Ky [—H; PoZo + Hiwo + i)

(4.2:23)

respectively, where the measurement equation, g, = H;x, + v; has been
employed. Subtracting Eq. (4.2-22) from Eq. (4.2-23) yields an equation in
X, —ie.,
K1) =(®o — KiH; Po)%o + (KiHy — Dwo +Kjyy (4.2:24)

Since E{£0&oT] = 0, we directly calculate the quantity of interest as
E[£: (NE(HT] =E{ (@080 + K, (—H,Poko + Hymo + v1)] -

[Zo T(®Po ~ Ky Hy o) + woT(K H, — DT + !ITKlT]}

=K H; @oPo(®o T~ 0 TH, TK, T)+ K, H, Qo (H, TK, T ~1)
+K,RyK, T
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E[1(DE: (DT] = —KiH, (@oPo@oT + Qo) + KiHi (PoPoo T + Qo)H, TK, T
+KiR,K, T
=—K,H,P;(-)[1-X,TH,T] +K,R,K,T
=K (-H,P, ()T +RK,T)
=0

where use has been made of Eq. (4.2-20). We may now repeat the process for
E[F2(+)%2(+)T] and, by induction, verify Eq. (4.2-21).

Kalman Filter Examples — Several applications of optimal filtering are
presented in this section. Since analytic resulis are sought, only relatively
Jow-order systems are considered. However, it is well to note that, in practice,
Kalman optimal filters for SOt order systems (and even higher) have been
considered, and 10th and 20th order Kalman filters are relatively common. With
increasing availability of small, powerful digital computers, the main factors
which limit the size of implemented Kalman filters are no longer computer
limitations per se, but rather modeling errors and associated sensitivity problems.
These are discussed in Chapters 7 and 8.

Example 4.2-1

Estimate the value of a constant x, given discrete measurements of x corrupted by an
uncorrelated gaussian noise sequence with zero mean and variance ro.

The scalar eq describing this situation are
X+ = Xk System
Zg = Xk + Vg Measurement
where
vk ~ N, 19)

that is, vk is an uncorrelated gaussian noise sequence with zero mean and variance ro. For
this problem, po(tk,tj) =h = 1 and qk = 0 yielding the variance propagation equation

Pk+1(-) = px(¥)
and single-stage optimal update equation
Pkl = Pk 1(=) - Ph1 () [Pk+1(=) + 10} pr1(-)

__Pkt()
1+ Pk+1(-)
o
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Pk(t)

Py = ———
L+ P
To

This difference equation can be solved, starting with pg(+) = po, by noting that

Po

P =
1+—
To
P1(+H) Po
PZ(*’) = =
O] 2pg.
To To

pk(-}):#
1+ Poy
To

The discrete optimal filter for this example problem is

Po
A a To -
Xk+1= Xk + Iz — xx]
1422
To
For sufficiently large k, Xgs7 = Xk = X as new provide ially no new
information,
Example 4.2-2
Consider two unk but x; and x3. We wish to determine the

improvement in knowledge of x; which is possible through processing a single noisy
measurement of x,.
The vector and matrix quantities of interest in this example are:
X1 (=) Pra(-) a?  ond?
x= JH=[01], P()= =
Xz P12(-)  P2y(-) o12®  aa?
where P(-) is the covariance matrix describing the uncertainty in § before the measurement,

that is, 0‘2 is the initial mean square error in knowledge of x;, o,z is the initial mean
square error in knowledge of x3, and 0122 measures the corresponding cross-correlation.

Computing the updated i matrix, P(#), according to Eq. (4.2-16), yields
2 ogz(l—pz)hz I‘ 2 12
P P12(+) 4 PUCI |ro12 02ty
J— —\ o

P(+) = = —_ i _'_
T Iz
P12(¥) P22(¥) au’( 7 2_) | 022( E) )
|
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where 1, denotes the measurement noise covariance, and p is the correlation coefficient
defined by {Eq. (3.6-7)]

2
= %12

G102

A few limiting cases are worth examining. First, in the case where the measurement is
perfect (i.e., 17 = 0), the final uncertainty in the estimate of x3, p22(+), is, of course, zero.
Also, when p = O, the final uncertainty in the estimate of x, is, as expected, equal to the
initial uncertainty; nothing can be learned from the measurement in this case. Finally, in the
case where p = 11, the final uncertainty in the estimate of x, is given by

1
=g 2 f—
P1i(¥) = oy 1+ 032/

and the amount of information gained [i.e., the reduction in p ((+)] depends upon the ratio
of initial mean square error in knowledge of x; to the mean square error in measurement of
x2. All of these results are intuitively satisfying.

Example 4.2-3

Omega is a world-wide navigation system, utilizing phase comparison of 10.2 kHz
continuous-wave radio signals. The user employs a propagation correction, designed to
account for globally predictable phenomena (diurnal effects, earth conductivity variations,
etc.), to bring theoretical phase values into agreement with observed phase measurements.
The residual Omega phase errors are known to exhibit correlation over large distances (e.g.,
> 1000 nm). Design a data processor that, operating in a limited geographic area, can
process error data gathered at two measurement sites and infer best estimates of phase error
at other locations nearby.

In the absence of other information, assume that the phase errors are well-modeled as a
zero-mean markov process in space, with variance gy Further assume that the phase error
process is isotropic — i.e., it possesses the same statistics in all directions, and that the
measurement error is very small. !

We may now proceed in the usual way. First, denote by y; and g3 the two phase error
measurements, and by y; the phase error to be estimated. Then we can form x and Z as

() 02
X=lwv2l . 27
o 3
whence it follows that
¢ 10
H=
¢ 01
Also, by definition
I e~T12/d | e-T13/d
P(O) = 0, | e-T12/d L[ erasld
e'lu/dl e-T23/d | 1



116 APPLIED OPTIMAL ESTIMATION

where 1,j is the distance between sites i and j, and d is the correlation distance of the phase
error random process. The best estimator (in the sense of munimum mean square error) is
given by

=Kz
since X(—) = 0. K is given by

K = P(0) HT (HP©) HT)

and the following result is obtained:

. 1 pafe=t12/d—e—(ry3 +123)/d] l
AT i +ypyfeT13/d_e—(12 *‘rzs)/dl’
2= ¢
‘:73=v’3

The first equation shows that g, is computed as a weighted sum of the perfect
measurements. The last two equations are, of course, a direct consequence of the assumed
perfect measurements.

This technique has been ly ployed with actual Omega data; see Fig. 4.24.
o
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Figure 4.2-4  Phase Estimation Error — Kings Point, N.Y. (Ref. 14)
Example 4.2-4

Study the design of an optimal data processing scheme by which an Inertial Navigation
System (INS), in a balloon launched ionospheric probe, can be initialized in early flight
using radio position updates.

In view of the intended application, it is appropriate to choose a model of INS error
dynamics valid only over a scveral minute period. Taking single-axis errors into
consideration, we may write

2
8P(t) ~ 5p(0) + 5v(O)t +8a(0) '2~
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where §p(0), 6v(0) and 52a(0) represent initial values of position, velocity and acceleration
errots, and higher-order terms have been dropped. Thus, we may write, as the state
equations for this system

Bfw =8v

sv=sa

sa=0
or, equivalently,

p 01 0]]lsp
sv| = lo 0 1]}sv
54 0 0 0f|sa
oy

F p{{)]

The radio position error is indicated by ep(t), see Fig, 4.2-5.

Salo) Sv(0) Sp(0) eplth

3a Splt) *

f vit) 1 ; ey

Figure 4.2-5  System and Discrete Measurement Model

The transition matrix for this time-invariant system is readily computed as

©(1,0) = eFt
2 3
- 2t gl
=[+Ft+F 2!+F 3!+,..

100 010 0017
sfo 1 ¢l + loc 1t +j0 0 0j—+0
00 1 000 000
1t 22
=01 t
¢ 0 1

For any initial estimate X(0) of the system state vector, we may compute the expected value
of X(T™), just prior to the first fix, as follows:
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XT7) = o(T,050

ra B(0) + 5VO)T +63(0)T2/2
V(D) + 83(0)T
53(0)

Also, corresponding to an initially diagonai covariance matrix P(0), the value of P(T7) i
computed according to (overbar denotes ensemble expectation)

P(T™)= @(T,0) P(0) #T(T,0)

sp2(0) + 6y OYTE + saz(on‘/dl av’(O)T+sa’(0)T’/2| sa2 (T2

A I =

which is symmetric, but not diagonal. That is, position error is now correlated with veiocity
and acceleration errors.
The. scalar position measurement is obtained by forming the difference between

di d d and inertially-indi d viz:

z= pind(radio) — pind(INS)
=prtep—(pr+ép)
=-8p+ ep

where the indicated quantities, pjnd, have becn described in terms of their true value, py,
pius error components. This is equivalent to writing

2D=[-1 0 0] [6pM] +ep
H sv(T)
Sa(T)

v

which enables identification of H and the measurement error. Let us assume that the radio
position errors are stationary and uncorrelated from fix to fix. The effect of a fix at time T
is computed according to (op” = ep’):

P(I*) = B(@™) - HT)HTHA(THHT + RJ ™' HP(T™)

P11°(T7) [Py 1(T_)P12(T—)| P11 (TTIP13(T7)

O et | | i) |ea@Deis™)
| | pitam)
The upper left corner element of P(T*) is, for example,
2.0
_ _ p1y (T
Pra(TH = p1y(T7) P v ap 4.2:25)
Y 097
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under the assumption py ((T7) > apz‘ Thus, the first position fix reduces the INS position
error 10 approximately the fix error (actually, somewhat below it). Similar calculations
show that the velocity and acceleration errors are essentially unchanged. The next position
fix reduces the INS veiocity error. The Kaiman gain at time tk for this system is

K = Pk(+) H TRy

Pt | o) | paach] [

= [ P2zt | pasti| o | L5
I [hciaballalpiiipalte .
| | 7] o] T
kit
= { ka1
k3 (tk)

In the optimal filter, illustrated in Fig. 4.2-6, the sampler is understood to represent an
impuise modulator. Note the model of the system imbedded in the Kalman filter.

85t0) 8310 85101

ity 3551

Figure 4.26  Optimat Filter Configuration

Figure 4.2-7 shows the result of a computer simulation of the complete system. The first
fix occurs at t = 0, the second at t = 0.5 min and the third at t = 1.0 min, In this system the
initial errors were py 3 (0) = (1 nm)?, py2(0) = (7.3 kis)2, p33(0) = 0 and ap = 30 ft. Higher
order terms were included but, as indicated earlier, these are not of primary importance
here. Thus, the results are largely as predicted by the analysis herein.

4.3 CONTINUOUS KALMAN FILTER

The transition from the discrete to the continuous formulation of the Kalman
filter is readily accomplished. First, in order to go from the discrete system and
measurement models [Egs. (4.1-4, 5)} to the continuous models®

*Throughout the remainder of the text, time d di of all i time iti
will often be d for i i For le, x(t) and Q(t) will be
denoted by X and Q, etc.




120 APPLIED OPTIMAL ESTIMATION

7
/
/
T /
g 020} /
g [ 1vRix(t=0) /
& /
: / ’
g / /
= /
E 015 ! /
g ! /
= / /
3 / /
2 / 2 FIXES (120,0.5) /
% o0 / /
/ /
g / d
3 / /
- 1 /
o /
Z oos| 4
s,
Ve =
P 3 FIXES (£:0,0.5,1.0)
e
rd
Cd
-~
o i 1 1 L
0 ] 2 3 a s
FIX TIMES TIME {min)

Figure 4.2-7  Optimal Use of Position Fixes in an lonospheric Probe
Inertial Navigation System

x=Fx5+Gy (4.3-1)
z=Hx+y (43-2)
where W, Y are zero mean white noise processes with spectral density matrices Q
and R, respectively, it is necessary to observe the following equivalences, valid in

the limitas ty — t ) = At~ 0:

& > I +Fat
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Q, ~GQGT At
Ry - R/At

The first two of these relationships were derived in Section 3.7. What now
remains is to establish the equivalence between the discrete white noise sequence
v and the (non-physically realizable) continuous white noise process y. Note
that, whereas Ry = E[ywT] is a covariance matrix, R(t) defined by
E[(xT ()] = R(1)5(t — 7) is a spectral density matrix (the Dirac function 5(t —
7) has units of 1/time). The covariance matrix R(t)5(t — r) has infinite-valued
elements. The discrete white noise sequence can be made to approximate the
continuous white noise process by shrinking the pulse lengths (At) and increasing
their amplitude, such that Ry - R/At. That is, in the limit as At - 0, the discrete
noise sequence tends to one of infinite-valued pulses of zero duration, such that
the area under the “impulse” autocorrelation function is Ry At, equal to the area
R under the continuous white noise impulse autocorrelation function.

Using these expressions, our approach is simply one of writing the
appropriate difference equations and observing their behavior in the limit as At—>
0. The notation will be kept as simple as possible and, in keeping with the rest of
the presentation, the derivations are heuristic and to the point. The reader
interested in a more rigorous derivation is referred to Kalman and Bucy (Ref. 5).
For present purposes it shall be assumed that R is non-singular —i.e., R exists.
In addition, it is assumed that w and y are uncorrelated.

CONTINUQUS PROPAGATION OF COVARIANCE

In discrete form, the state error covariance matrix was shown to propagate
according to

Pri1(-) = DPul(D® T +Qy “43-3)
This is now rewritten as

Pes1(-) = {1+ FA{JP($)[1 + FA] T + GQGT At 4.34)
Expansion yields

Pya1(-) = Pe(#) + [FP(+) + P(HFT + GQGT] At + O(At?)

where O(At?) denotes “terms of the order At>.” As a consequence of optimal
use of a measurement, Py (+) can be expressed as [Eq. (4.2-16b)]

Pr(+) = [1 - Ky Hy ] Py (-)

Inserting this expression into the equation for Py, (—) and rearranging terms
yields
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P (=) = P(=) 1
At = FPy(-) + Pp(-)FT + GQGT — At KeHyPi(-)
—FKHyPo(-) — K P (-)FT + O(AY)  (4.3-5)
Examining the term 1/At K, we note that [Eq. (4.2-15)]

1 1 -
At Xk = zp PO TP (BT + Ry ™

= Pk(—)HkT[HkPk(—)HkTAt + Reat]™? (4.3-6)
= Py(H T [Hy Py (-)H TAL + R]™
Thus, in the limit as At =0 we get

. 1 —
lim - K, = PHTR? 4.3
At ALK @37

and, simutltaneously,

P=FP + PFT + GQGT — PHTK ' HP (43-8)

Tracing the development of the terms on the right-side of this equation, it is
clear that FP + PFT results from behavior of the homogeneous (unforced)
system without measurements, GQGT accounts for the increase of uncertainty
due to process noise (this term is positive semidefinite) and —PHTR'HP
accounts for the decrease of uncertainty as a result of measurements. Equation
(4.3-8) is nonlinear in P; it is referred to as the matrix Riccati equation. In the
absence of measurements we get

P=FP + PFT + GQGT 439)
which is the linear variance equation previously derived in Section 3.7.

CONTINUOUS KALMAN FILTER

The discrete form of the Kalman filter may be written as [Eq. (4.2-5)]
B () = Py 1R 1 (D + Kz — BiePre— 1 Zx_1 (1] (4310

where we have made the substitution

A () = P18k 1 (1)
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MEASUREMENT

Figwe 4.3-1  System Model and Continuous Kalman Filter

Replacing &y _1 by I+ FAtand Ky by PHTR™ At and rearranging terms yields

EO 51O L pg 1) PHTR B ()] +0(AD

At
@3-11)
In the limit as At - O this becomes
£=Fz+PHTR? [z - HE (4.3-12)

which is the continuous Kalman filter, and in which P is computed according to
Eq. (4.3-8); see Fig. 4.3-1. The continuous Kalman filter equations are
summarized in Table 4.3-1.

TABLE 4.3-1 SUMMARY OF CONTINUOUS KALMAN FILTER EQUATIONS
(WHITE MEASUREMENT NOISE)

System Model & = FOR(t + Gow(,

Z(8) = H(OX(t) + ¥(1),

WO~NQ Q)
HO~N(Q R(t)
E[X(®)] =Zo, E[(K(0) - £0) G(0) - )T =P

R (1) exists

Measurement Model

Initial Conditions

Other Assumptions

State Estimate (1) = FOX® + K@ at) - HOZ0], X0 = X0

Error Covariance Propagation B(t) = FOP() + POFT(H) + GOQGT(0)
—KMRWKT(), P0) =Py

Kalman Gain Matrix K(t) = POHT(OR ™ (t) when E[w(tyT()] = 0

= [FOHT(®) +GOCHIR™ (1)

when E[w(t)yT()] = C(1)s(t — 1)+
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The differential equation for § can be obtained by subtracting Eq. (4.3-1)
from Eq. (4.3-12) and employing Eq. (4.3-2). Recalling that § = x + §, this
results in (K = PHTR™)

i=(F -KH)Z -Gy +Ky 43-13)
Analogous to the case of the discrete estimator, it can be shown that
EZmzmTl =0 (4.3-14)

CORRELATED PROCESS AND MEASUREMENT NOISES

It is useful to obtain results for the case where the process and measurement
noises are correlated, viz:

E[w(tT(@)] =C(1) 8(t —7) (4.3-15)

One approach is to convert this new problem to an equivalent problem with no

correlation between process and measurement noises. To do this, add zero to the
right-side of Eq. (4.3-1), in the form*

x=Fy +Gy+D@EZ —Hz -y (4.3-16)

where D = GCR™ . The filtering problem now under consideration is
i=(F-DH)x+Dz+Gy Dy @317)
z=Hg+y

where in Eq. (4.3-17) Dz is treated as a known input (Section 4.4) and (Gw —
Dy) is treated as a process noise. By the choice of D specified above, E[(Gw —
Dy)yT] = 0, and thus the measurement and process noises in this equivalent
problem are indeed uncorrelated. Applying previously derived results to this
reformulated problem, it is easily verified that the solution is as given in Table
4.3-1, with the Kalman gain matrix specified by

K = [PHT + GC]R™* - (4.3-18)
This method can also be used to derive results for the corresponding discrete

time problem.

Example 4.3-1

Estimate the value of a X, given a i of x corrupted by a
gaussian white noise process with zero mean and spectral density r.

*Method attributed to Y.C. Ho.
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The scalar i ibing this situation are
x=0 System
z=xX+v Measurement
where
v~N(@©, 1)

Figure 4.3-2 depicts the system and measurement models.
x(0)
$ v
x z
+

Figure 4.3-2  System and Measurement Models

For this problem, =g =q =0 and h = 1; thus yielding the scalar Riccati equation

p=-p'ir
I ing this jon by ing variables, we get
t
[ o
f-_c dat
Po P f
or
p= Po
1400,
T

Note that through the definition, 1o = 1/T, we see that this ms.nlt is identical to that
obtained in Example 4.2-1 at the instants t =kT (k=0,1,2,...), asit shouid be.
The continuous Kalman gain is

Po

k=lo T
I

1+22,
T

Figure 4.3-3 illustrates the filter which, acting on z, produces an optimal estimate of X, viz:
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Po

2 T -

X = [z - x(®)]

1+20
T
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+ i > f -3

Z »

P
- 1452 ¢

Figure 4.3-3  Optimat Filter Design
Notice that, as t — o, k(t) — 0 and thus f(t) tends to a constant, as indeed it should.

Example 4.3-2
A spacecraft is falling mdmlly away frum the earth at an almost constant speed, and is
subject to small, random, h i of spectral density q.
Determine the accuracy to whnch vehicie velocity can be estimated, using ground-based
doppler radar with an error of spectral density r. Assume poor initial condition information.,
Let x denote the deviation from the predicted nominal spacecraft veiocity, using
available gravitational models. We then have

X=w, w ~ N(0,9)
z=xtv, v~N@OD

and consequently (f=0,g=h=1)
p=q-p’lt, PO =po

Employing the identity
1 atp
=< In
% (a - p>
. a a
we find directly (« = v/5q, 8= \/a/T ):

PO =a P, cosh St + a sinh gt
P, sinh pt + a cosh gt

In the case of poor initial condition information, p, is large and thus p(t) reduces to
() ~ & coth gt

In the steady state, p(t) — « regardless of initial conditions; see Fig. 4.3-4. The Kalman filter
for this problem looks like that illustrated in Fig. 4.3-3, with k(1) now given by
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k(t) = p(O)/r
= g coth gt
In the limit of large t, k(t) — 8 and not zero as in the previous example. New measurements

are always processed in this case — a direct consequence of the noise term driving the
system model.

plt)
a
— 1 1
1 2 3
Bt

Figure 4.3-4  Tracking Error Versus Time

4.4 INTUITIVE CONCEPTS

Covariance Matrix — Inspection of the equations describing the behavior of
the error covariance matrix reveals several observations which confirm our
intuition about the operation of the filter. The effect of system disturbances on
error covariance growth is the same as that observed when measurements were
not available. The larger the statistical parameters of the disturbances as
reflected in the “size” of the Q-matrix, and the more pronounced the effect of
the disturbances as reflected in the “size” of the G-matrix, the more rapidly the
eITor covariance increases.

The effect of measurement noise on the error covariance of the discrete filter
is observed best in the expression

P =R () + B TR Hy 44-1)

Large measurement noise (Ry™ is small) provides only a small increase in the
inverse of the error covariance (a small decrease in the error covariance) when
the measurement is used; the associated measurements contribute little to
reduction in estimation errors. On the other hand, small measurement errors
(large Ry™) cause the error covariance to decrease considerably whenever a
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measurement is utilized. When measurement noise is absent, Eq. (4.2-16a) must
be used because Ry, ™! does not exist.

The effect of measurement noise on the ability of the continuous Kalman
filter to provide accurate estimates of the state, appears in the fourth term on
the right side of Eq. (4.3-8). If noise occurs in every element of the
measurement, R and K are positive definite matrices. The term

PHT X! HP (4.42)

is also positive definite and the negative of this will always cause a decrease in
the “size” of a nonzero error covariance matrix P. The magnitude of this term is
inversely proportional to statistical parameters of the measurement noise. Larger
measurement noise will cause the error covariance to diminish Jess rapidly or to
increase, depending on the system dynamics, disturbances and the initial value of
P. Smaller noise will cause the fiiter estimates to converge on the true values
more rapidly. The effects of system disturbances and measurement noises of
different magnitudes can be described graphically by considering the standard
deviation of the error in the estimate of a representative state variable. This is
presented in Fig. 4.4-1 for a hypothetical system which reaches statistical
“steady state.”

Kalman Gain Matrix — The optimality of the Kalman filter is contained in its
structure and in the specification of the gain matrices. There is an intuitive logic
behind the equations for the Kalman gain matrix. It can be seen from the forms

Ky =P () B TR, or K(t) = POHT() R(1) (443)

To better observe the meaning of the expressions, assume that H is the identity
matrix. In this case, both P and R™ are nxn matrices. If R* is a diagonal matrix
(no cross-correlation between noise terms), K results from multiplying each
column of the error covariance matrix by the appropriate inverse of mean square
measurement noise. Each element of the filter gain matrix is essentially the ratio
between statistical measures of the uncertainty in the state estimate and the
uncertainty in a measurement.

Thus, the gain matrix is “proportional” to the uncertainty in the estimate,
and “inversely proportional” to the noise. If noise is
Jarge and state estimate errors are small, the quantity p in Figs. 4.2-2 and 4.3-1 is
due chiefly to the noise and only small changes in the state estimates should be
made. On the other hand, small measurement noise and large uncertainty in the
state estimates suggest that p contains considerable information about errors in
the estimates. Therefore, the difference between the actual and the predicted
measurement will be used as a basis for strong corrections to the estimates.
Hence, the filter gain matrix is specified in a way which agrees with an intuitive
approach to improving the estimate.
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THIS IS ALSO A POSSIBILITY

LARGER DISTURBANCES AND
MEASUREMENT NOISE

RMS ESTIMATION ERROR

SMALLER DISTURBANCES AND
| MEASUREMENT NOISE

{

| -

|— sTeAOY STATE ——
{a) CONTINUOUS FILTER

| LARGER DISTURBANCES AND
| MEASUREMENT NOISE

|SMALLER DISTURBANCES AND
MEASUREMENT NOISE

RMS ESTIMATION ERROR

|
I -t

— sTeADY stare ——
{b) DISCRETE FILTER

Figure 4.4-1  Behavior of the RMS Error in the Kalman Filter Estimate of a Par-
ticular State Variable

Optimal Prediction — Optimal prediction can be thought of, quite simply, in
terms of optimal filtering in the absence of measurements. This, in turn, is
equivalent to optimal filtering with arbitrarily large measurement errors (thus
K - 0 and hence K — 0). Therefore, if are ilable beyond
some time, to, the optimal prediction of x(t) for t>t, given %(to) must be
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obtained from [Egs. (4.3-10) and (4.3-12)]:
&(t) = B(t,to)3(to) discrete (4.4-4)
() = Fa( continuous 4.4-5)

The corresponding equations for uncertainty in the optimal predictions, given
P(to), are Eq. (4.3-3) for a single time stage in the discrete case and Eq. (4.3-9)
in the continuous case.

Note that both the discrete and continuous Kalman filters contain an exact
model of the system in their formulation (i.e., the F or ® matrices). This
provides the mechanism by which past information is extrapolated into the
future for the purpose of prediction.

System Model Contains Deterministic Inputs — When the system under
observation is excited by a deterministic time-varying input, , whether due to a
control being intentionally applied or a deterministic disturbance which occurs,
these known inputs must be accounted for by the optimal estimator. [t is easy to
see that the modification shown in Table 4.4-1 must be made in order for the
estimators to remain unbiased. By subtracting X from £ in both discrete and
continuous cases, it is observed that the resultant equations for X are precisely
those obtained before. Hence, the procedures for computing P, X, etc., remain
unchanged.

TABLE 4.4-1 MODIFICATION TO ACCOUNT FOR KNOWN INPUTS (uk—) OR u(t))

System Model Estimator
Discrete Bkl = Ok_13k— 10+ Ak - 18k~ 1
Xk = Pk—1Xk-1 * Wk—1 + Ak—12k—1 +Kklzk — Hg®k-18k-1(+)
Zk = Higkk + ¥k —H Aoy 1]
Continuous
K1) = FO)g(0) + GEw® + Lty £ = FOio + Lo
21 = HIxW + ¥() +K(W[z() - HIOXW)

Stochastic Controllability — In the absence of measurements and with perfect
a priori information, the continuous system matrix Riccati equation is

P=FP+PFT+GQGT, P(0)=0 (4.4-6)
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for which the solution is*

t
P(t) = fo B(t, 7) G(r) K7) GT(n) &T(t, 1) dr (4.4-7)

where ®(t,7) is the transition matrix corresponding to F. If the integral is
positive definite for some t > 0, then P(t) > 0 — i.e., the process noise excites all
the states in the system. The system is said to be uniformly completely
controllable when the integral is positive definite and bounded for some t > 0.
The property of stochastic controllability is important for establishing stability
of the filter equations and for obtaining a unique steady-state value of P. When
the system is stationary, and if Q is positive definite, this criterion of complete
controllability can be expressed algebraically; the result is exactly that discussed
in Section 3.5.

In the case of discrete systems, the condition for complete controllability is
expressed as

g 1< g ok,i+1)Q PTKk,i+1)<p, 1 4.4-8)
i=k—N
for some value of N >0, where 8; > 0and 8, > 0.

Stochastic Observability — In the absence of process noise and a priori
information, the continuous system matrix Riccati equation is given by

P=FP+PFT —PHTR'HP, P(0)~< (449)
This can be rewritten as

P! =—P'F—FTP! +HTR'H, P'(0)=0 (4.4-10)
using the matrix identity, P! = _P"'PP™. The solution to this linear equation in

Ptis

t
Py = J(; &T (7, )HT (1R (N H() P(r,t)dr 4.4-11)

*This is easily verified by substitution into Eq. (4.4-6), using Leibniz’ rule

t t
d f N f 2
a o A(t,7)dr= AL, D+ AN A7) dr
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where ®(t,r) is the transition matrix corresponding to F. If the integral is
positive definite for some t > 0, then P™'(t) > 0, and it follows that 0 <P(t) <
e — j.e., through processing it is possible to acquire information
(decrease the estimation error variance) about states that are initially completely
unknown (Ref. 6). The system is said to be uniformly completely observable
when the integral is positive definite and bounded for some t > 0. When the
linear system is stationary, this criterion of complete observability can be
expressed algebraically; the result is exactly that discussed in Section 3.5 (Ref.
8).

In the case of discrete systems, the condition for uniform complete
observability is

k
;I 3 OTGOHTR Hid( K <a] (4412)
i=k-N

for some value of N > 0, where @; >0 and a; > 0.

Stability - One consideration of both practical and theoretical interest is the
stability of the Kalman filter. Stability refers to the behavior of state estimates
when measurements are suppressed. For example, in the continuous case, the
“unforced” filter equation takes the form

40 = [F®) - X HOIF0 (44-13)

It is desirable that the solution of Eq. (4.4-13) be asymptotically stable;— i.e.,
loosely speaking, (t) - Q as t - o, for any initial condition $(0). This will
insure that any unwanted component of § caused by disturbances driving Eq.
(4.4-13) — such as computational errors arising from finite word length in a
digital computer — are bounded.

Optimality of the Kalman filter does not guarantee its stability. However, one
key result exists which assures both stability (more precisely, uniform
asymptonc stability) of the filter and uniqueness of the behavior of P(t) for large
t, independently of P(Q). It requires stochastic uniform complete observability,
stochastic uniform complete controllability, bounded Q and R (from above and
below), and bounded F (from above). References 1 and S provide details of this
theorem and other related mathematical facts. It is important to note that
complete observability and controllability requirements are quite restrictive and,
in many cases of practical significance, these conditions are not fulfilled; but
Kalman filters, designed in the normal way, operate satisfactorily. This is
attributed to the fact that the solution to Eq. (4.4-13) frequently tends toward
zero over a finite time interval of interest, even though it may not be
asymptotically stable in the strict sense of the definition. Perhaps, from a
practical viewpoint, the key issues pertaining to various forms of instability are
those associated with modeling errors and impl tion iderations. These
are discussed in Chapters 7 and 8.
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45 CORRELATED MEASUREMENT ERRORS

Measurements may contain errors whose correlation times are significant. Let
us assume that, through the use of a shaping filter, these measurement errors are
described as the output of a first-order vector differential equation forced by
white noise. One might argue that the technique of state vector augmentation
could then be used to recast this problem into a form where the solution has
already been obtained; but it is readily demonstrated (Refs. 9-12) that this is not
the case in continuous-time systems, and undesirable in the case of discrete-time
systems.

STATE VECTOR AUGMENTATION

Consider the continuous system and measurement described by

X=Fx+Gw, w~NQQ) 4.5-1)

z=Hx+y (4.52)
where

i=Ey+w,, w ~NQ.Q)) 4.53)

The augmented state vector x'T = [x y]7 satisfies the differential equation
=== |~+-{-- + -1 (4.54)

and the measurement equation becomes
z=MH 1y (4.5:5)
In this reformulated problem, the measurement noise is zero.

Correspondingly, the equivalent R matnx is singular and thus the Kalman gain
matrx, K = PHTR™!, required for the optimal state estimator, does not exist.

CONTINUOUS TIME, R SINGULAR

There is another approach to this problem which avoids both the difficulty of
singular R and the undesirability of working with a higher order (i.e., aug-
mented) system. From Eq. (4.5-3), where we see that v — Ey is a white noise
process, we are led to consider the derived measurement z,,
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n=z-Ez
=Hx+Hi—EHx - Ey + ¢
=(H + HF ~ EH)x + (HGw + w,)
=H;x+y, (4.5-6)
where the definitions of H, and y, are apparent. For this derived measurement,
the noise y, is indeed white; it is also correlated with the process noise w. The
corresponding quantities R, and C, are directly obtained as (E[w: (g ("] =
0}
R, =HGQGTHT +Q, 4.57)
C, =QGTHT (4.5-8)

and thus the Kalman gain matrix for this equivalent problem, from Table 4.3-1,
is

K, = [PH,T +GC, |R;™
= [P(H + HF — EH)T + GQGTHT] [HGQGTHT +Q, ™ 4.5-9)
The equations for Z(t) and P(t) are
£=FR+K,Z - Ez— H,8) (4.5-10)
P=FP+PFT + GQGT — K, R,K,T @.5-11)
There remain two aspects of this solution which warrant further discussion;
namely, the need for differentiation in the derived measurement and appropriate

initial values of ¥,(t) and P(t). Assuming K,(t) exists and K,(t) is piecewise
continuous, use of the identity

%(K|A)=K11+Kli (@.512)
enables rewriting Eq. (4.5-10) in the form
4 G- KiD=F2-Kiz- K, B2+ HiD) @513)

In this manner, the need to differentiate the measurements is avoided. Figure
4.5-1 is a block diagram of the corresponding optimal estimator. Regarding the
initial estimate and error covariance matrix, note that the instant after
measurement data are available (t = 0*), the following discontinuities occur,
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£(0*) = §(0) + POHT (0)[H(0O)P(O)HT(0) + R(0)]™* [2(0) — H(0)X(0)] (4.5-14)
and
P(0%) = P(0) — PO)HT(O)[H(O)P(OHT(0) + R(0)] "H(OP(0)  (4.5-15)

where E[w(0)yT(0)] = R(0). The initial condition on the filter in Fig. 4.5-1 is
dependent upon the initial measurement and cannot be determined a priori, viz:

initial condition = £ (0%) — K, (0)z(0) (4.5-16)

For additional details, including the treatment of general situations, see Refs. 9
snd 11,

—)

Figure 4.5-1  Correlated Noise Optimal Filter, Continuous Time

DISCRETE TIME, R, SINGULAR

State vector augmentation can be employed in the discrete-time problem with
correlated noise to arrive at an equivalent measurement-noise-free problem, as in

Egs. (4.5-4) and (4.5-5). Let us suppose that the equivalent problem is described
by
X = Pro1Xk-1F Wk (4.5-17)
2 = Hyxy (4.5-18)

Although the measurement noise is zero ¢hence, Ry = 0 and R, does not
exist), apparently there is no difficulty because the discrete Kalman gain matrix
does not explicitly involve Ry *. However, consider the expression for updating
the error covariance matrix (Table 4.2-1),
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PL(+) = Pe(=) — Pu(H,T [Hy P (-, T1 HicP () 5-19)
It is easy to see from this expression that
HyPy(HH,T =0 (4.5-20)

Py (+) must be singular, of course, since certain linear combinations of the state
vector elements are known exactly. Error covariance extrapolation is performed
according to (Table 4.2-1)

Pir 1(-) = D Py (+) &, T + Qe (4.5-21)

Therefore it follows that if & ~ I (i.e., as it would be, in a continuous system
which is sampled at points close in time relative to the system time constants)
and if Qg is small, the covariance update may become ill-conditioned [i..,
Py (=) = Pr(+)] . To alleviate this problem, measurement differencing may be
employed, which is analogous to measurement differentiation previously
discussed. Details of this procedure are available in Ref. 12.

4.6 SOLUTION OF THE RICCATI EQUATION

The optimal filtering covariance equations can only be solved analytically for
simple problems. Various numerical techniques are available for more com-
plicated problems. Numerical integration is the direct method of approach for
time-varying systems (i.e., when the matrix Riccati equation has time-varying
coefficients). For an nth order system, there are n(n+1)/2 variables involved [the
distinct elements of the n X n symmetric matrix P(t)].

Systems for which the matrix Riccati equation has constant (or piecewise-
constant) coefficients, or can be approximated as such, can be treated as
folows® For the nonlinear equation

P=FP+PFT +GQGT — PHTR'HP,  P(t,) given (4.6-1)
the transformations (Ref. 5)
A=Py (46-2)
and
i =-FTy + HTR! HPy (4.6-3)
result in a system of linear differential equations. Using the above, we compute
h=py+py
= FPy + PFTy + GQGTy — PHTR'HPy — PFTy + PHTR 'HPy (4.6-4)
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Therefore
A=FA+GQCTy (46-5)

and the equivalent fitear system equations are:

Y -FT  HTR'H]| y 65
il leeer || oo
M

By denoting the transition matrix for this linear system as & (namely, ®(to+7,t0)
= &(7) = eM7), we can write

Y(to +7) Dyy(r) | Dya(0)] | ¥to)
= | == (4.6-7)
Alto +7) &y | o] Lato)
0)

where ®(7) is shown partitioned into square n X n matrices. Writing out the
expressions for y(to+r) and N(to+7) and employing Eq. (4.6-2) yields

Pto +7) =[5, (1) + Pra(P(t0)] [2y, (1) + Dy, (D P(te)] ' (4.6:8)

Thus, the original nonlinear matrix Riccati equation has been converted to an
equivalent, albeit linear, matrix equation and solved. Once ®(r) is computed,
P may be generated as a function of time by repeated use of Eq.(4.6-8). The
solution to the Riccati equation is obtained without any truncation errors, and is
subject only to roundoff errors in computing ¢. Note the importance of
periodically replacing P with its sy ic part, (P + PT)/2, to avoid errors due
to asymmetry. This method is often faster than direct numerical integration.
Although this technique is equally applicable to general time-varying systems, M
= M(t); thus, ® is a function of both tq and 7 in these cases. The added difficulty
in computing ®(te+7,te) is usually not justifiable when compared to other
numerical methods of solution.
Solution of the linear variance equation

P=FP+PFT + GQGT , P(1) given (4.6:9)
is easily obtained by noting that HTR'H = 0 in this case and thus Dyy(r) =
(e~ F1)T, @,,(r) = ¢F7, and ®y5(r) = 0. The desired result, obtained from Eq.
(4.6:8), is

P(tg +7) = @, (1) ©,,T(r) + &, (1) Pt6) &, T (7) (4.6-10)
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and when all the eigenvalues of F have negative real parts, the unique steady
state solution of the linear variance equation is

P(>) = lim q’)‘y(f)q))\)\T(T) 4.6-11)
7> o
Example 4.6-1
For a certain class of integrating gymscopes all units have a constant but ¢ priori
unknown drift rate, e, once thermally ilized. The g are instr d to

stabilize a single-axis test table. Continuous indications of table angle, 8, which is a direct
measure of the integrated gyroscope drift rate, are avallable The table angle readout has an
error, e, which is well described by an exp ion model of
standard deviation ¢ (sec) and short correlation time T (sec). Design an efficient real-time
drift rate test data processor.

The equation of motion of the test table, neglecting servo errors, is

8=et+8y (4.6-12)
and the measurement is described by
z2=6+e (4.6-13)

with
etw (4.6-14)

where w is a white noise of zero mean and spectral density q = 202[1‘ (s?cz/sec).

There are two ways to formulate the data processor. One is to augment the two
differential equations implied by Eq. (4.6-12) with Eq. (4.6-14), resulting in a third-order
system (three-row state vector), and to proceed as usual. Another is to approximate the
relatively high frequency correlated noise by a white noise process and thus delete/Eq.
(4.6-14), resulting in a second-order system. In this case the spectral density of the noise
(now directly representing e) is r = 20°T (s’é‘czsec). ‘We proceed using the latter approach.

The differential equations corresponding to Eq. (4.6-12) are:

@.

=€

=0

é 0 1] e
- (4.6-15)
¢ 0 o]«

a.

or
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and the measurement is expressed as

(]
z=[10][]re (4.6-16)
€

(see Fig. 4.6-1). Four methods of attack now suggest themselves.

€{0) 8,
[ o

Figure 4.6-1 Model of the System and Measurement

Method 1 — Having identified the system and measurement equations, the Riccati
equation

P=Fp + PFT — PHTR ' HP

must be solved for P(t). Note the absence of the term GQGT in this case. With F and H as
given in Eqs. (4.6-15) and (4.6-16), the Riccati equation becomes

P11 P12 P1z P22 P2 0 i pupi2

Biz P2z 0 0 P22 0 PPz P12’

P11 =2p12 - Puz/l
Ptz = P22 — P11Paz/t
B2z =—pi2’r

which is a set of coupled nonlinear differential equations. While this set of equations can be
solved directly (albeit, with considerable difficulty), there are better methods of appraach.

Method 2 — Following Eq. (4.6-6), form the matrix M to obtain

o ol o
-1 0'o0 o
M= [—— =4 —--
0 0 0 1
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The ition matrix cor ding to M is d next. In this case the matrix
exponential series is finite, truncating after four terms, with the result

1ol s #m
-r 1, 2% Pl

The partitioned matrices ®yy, @y), Ppy and ¥y, are readily identified. With ty =0 and 7=
t, and assuming P(Q) is diagonal,

P11@® 0
PO=1 ¢ 22(0) @617

Eq. (4.6-8) yields

1 [p11@+ @+ o1 @02 @30 tp22@+ 011 @020

P(t)= AT‘) R
tp22(0)+tp11(0) p22(0)/2r P22(0)*+tp11(0)p22(0)/r
(4.6-18a)
where
At) =1+ tpy 1 (01 + £2p32(0)/3t + t*py 1 O)p22(0)/12:° (4.6-18b)

This is the complete answer for P(t). K(t) can now be computed and the optimal filter has
thus been determined. In the case where there is no a priori information, py,(0) =
P22(0) ~ = and the limit of the above result yields

4t 6t
PO =r 4.6-19,
[6/:’ 12/:3] )

The Kalman gain is thus given by
K(t) = P)HTR!

a6t |1

1=

=r
s/ 12/] | o

and the optimal filter is as illustrated in Fig. 4.6-2.

In the limit as t-, our theory says that K(t)~0 corresponding to the covariance matrix
limit P(t) > 0. This steady state would not be one of ideal knowledge if there were any other
error sources driving Eq. (4.6-15). Although we have not modeled any such errars, it is
certain that they will indeed exist and hence influence the drift rate test. Therefore, the
theoretical prediction P(t)+0 should be viewed as unrealistically optimistic, and should in
practice be adjusted to account for other expected noise terms.
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Y
@>

+
2 — o2

Figure 4.6-2  Optimal Filter Configuration

Method 3 — Notice that there is no noise term driving the state vector dilfferefltia]
equation. In this case the nonlinesr Riccati equation in P is identical to the following linear

differential equation in ™'
#1a-pp - FTF! +HTK'H
ing both sides of this

f:::t’::;ns; ;:::‘:‘llo);u:";: r:l);ti;mship § = ~Pl"flnl"l. ﬁenoting the elements of F'! by ayj,
we write
iy an2 ayy apz| j0 1 0 0]lay a2 . 1/r 0
dyp G2z a aj; a2} {0 0 1 0]]a12 az2 0 0
1t -ann
) -2y —2a12
Equivalently,
g =1fr
g3 = -an
57 = -2a13

The solutions are,

an=fran©
t’
s -5 ~ap1(0)t+a;2(0)
2 2 +239(0)
322 = 3; + 2110 F — 221200t + az(
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In the case where P(0) is given by Eq. (4.6-17), the corresponding elements of ! (0) are
211(0) = 1/p11(0), a22(0) = 1/p22(0) and a,3(0) = 0. Thus,

Y1+ 1/p11(0) ~t3/20 - tip; 1 (0)
=
~12 —tp1 @ 3+ Epy1(0) + 1/p22(0)
which, upon inversion, yields Eq. (4.6-18).

Method 4 — It has been mentioned that the choice of state variables is not unique. The
present example serves well for exploration of this point. Suppose we use, as an alternative
system state vector,

Briefly, it follows that
H=[1¢ ,F=0

and consequently that

l',-l__l 1t
a T 2
t ot

Integrating and inverting, assuming no @ priori information Gi.e., P (0) = 0), yields

4t -6/
Py=1
~6/t* 121
This result can be reconciled with Eq. (4.6-19). The procedure is left as an exercise for the
reader.

4.7 STATISTICAL STEADY STATE-THE WIENER FILTER

In the case where system and measurement dynamics are linear, constant
coefficient equations (F, G, H are not functions of time) and the driving noise
statistics are stationary (Q, R are not functions of time), the filtering process
may reach a “steady state” wherein P is Complete observability has
been shown (Ref. 5) to be a sufficient condition for the existence of a
steady-state solution. Complete controllability will assure that the steady-state
solution is unique. Thus, for P = 0, we have

FP_ + PFT + GQGT — PHTR'HP_ =0 @.1-1)

where P_ denotes the steady-state value of P. In this steady state, the rate at
which uncertainty builds (GQGT) is just balanced by (a) the rate at which new
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information enters the system (PHTR ' HP, ), and (b) the system dissipation due
to damping (expressed in F) (Ref. 6).
The corresponding steady-state optimal filter is given by

£ = F&(0 + K [2() - H(0)] @72)
where K is constant (K _ = PHTR!). This equation may be rewritten

&) - (F -~ KH) $() =K.20) @13)
Laplace transforming both sides and neglecting initial conditions yields

(I - F+ K 2(9) =K 2(s) 4.74)
where s is the Laplace transform variable. Thus,

%)= [(1 - F+K HY'K_] 2(9) @.15)

The quantity in brackets (representing the transfer function), which operates
on z(s) to produce X(s), is the Wiener optimal filter. For example, in the scalar
case, Eq. (4.7-5) may be written

x(s) _ K,
W " STECRTH 4.7-6)
which is the optimum filter in conventional transfer function form.

Underlying Wiener filter design (Ref. 13), is the so-called Wiener-Hopf
(integral) equation, its solution through spectral factorization and the practical
problem of synthesizing the theoretically optimal filter from its impulse
response. The contribution of Kalman and Bucy was recognition of the fact that
the integral equation could be converted into a nonlinear differential equation,
whose solution contains all the necessary information for design of the optimal
filter. The problem of spectral factorization in the Wiener filter is analogous to
the requirement for solving n(n+1)/2 coupled nonlinear algebraic equations in
the Kalman filter {Eq. (4.7-1)].
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PROBLEMS

1

bl

Problem 4-1

Repeat Example 1.0-1 by treating the two measurements (a) sequentially and (b)
i ly, within the fr: k of Kalman filtering. Assume no @ priori information,

Problem 4-2

Use the matrix inversion lemma to easily solve Problems 1-1 and 1-3 in a minimum
number of steps.
Problem 4-3

Repeat Problem 1-4 by reformulating it as a Kalman filter problem and considering (a)
simultaneous and (b) sequential measurement processing. Assume no a priori information
about xg.

OPTIMAL LINEAR FILTERING 145

Probiem 44
The least: i 5( ), to an original linear measure-
ment set Zg, mmu.-ement matrix Ho and weighting matrix Ry is given by [Eq. (4.0-5)]

)= (HoTRu_l Ho)- HoTRg 2o

Suppose an additional set, z, b Defining the following
matrices for the complete measurement set,

o[+ B

the new estimate, i(+), can be found as

i) =(H1TR1-I Hl)_l Hy TR, 2

Usmg the deﬁmuons for Hy, Ry, Z, above, show that x(+) can be manipulated into the form
F'(-)= HeTRg 'Ho):

864 = 5 + POHTR [ 2-HE(-)
Fl(#) =F1(-) + ATK'H
Problem 4-6
Choose i to minimize the particular scalar loss function

3= E-x-NTF ) E-x0)) + @HDTR @-HD)

and directly obtain the ive, weighted-l 3Q
£6r=3(-) + POHTR 2-HE(-))
Fl)=F'(-)+HTR'H

Problem 4-6

For the particular linear vector measurement equation, z = Hx+y, where y ~ N(Q,R) is
dent of X, the conditional probability p(zjx) can be written as

- Px2)
pED o

= Py
2

=

D that the esti X, which maximi p_}_l_) (i.e., the maximum likelihood
is found by minimizing the @-HOT R (;—Ha Show that

= (HTR“ ﬂ)” HTR !z

State the recursive form of this estimate.
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Problem 4-7
Consider a gaussian vector X, where x ~ N(i(—), P(-)), and a linear measurement, z =
Hx+y, where the gaussian noise y is independent of x and y ~ N(Q,R).

2) Show that z ~ N(HZ(-), HP(—)HT+R)
b) Show that the a posteriori density function of X is given by (Ref. 16)

- PPY
D" Tog

c) By direct itution into this relationship, obtain

p(u2) = ¢ exp {’%[m-i(—)ﬂr" ) x-EO)] +@-Hy R @-Hy
- 1z HEO) T [P HT R u—ng(-n]}

where c is a constant.

d) Complete the square in the expression in braces to obtain the form

Px(z) = ¢ exp {~ % [u—i(ﬂ]Tl*‘u)lr&ﬂl]}

and thus, identify as the Bayesian maximum likelihood estimate (maximum & posteriori
estimate)

() =K(-) + P(+) HTR ! 2-HE(-))
Flay=Fl(-)+HR'H
Problem 4-8
For the system and measurement equations,
k=Fx+Gw,  w~NQO
z=Hx+y, v~ N@QR)

consider a linear filter described by

where K’ and K are to be chosen to optimize the estimate, i First, by requiring that the
estimate be unbiased, show that K’ = F — KH, and thus obtain

X=FX+K@-HY)
Next, show that the covariance equation of the estimation error is

P=(F — KH) P+ P(F — KH)T + GQGT + KRKT

Finally, choose K to yield a i rate of d of error by minimizing the scalar
cost function, J=trace[P], and find the result:

K =PHIR™
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Problem 4-9
a) Can a Kalman filter separate two biases in the absence of a priori information? Given a
priori information?

b) Can a Kalman filter separate two sinusoids of frequency wq given no a priori
information? Given a priori information about amplituds and/or phase?

¢) Can a Kalman filter separate two markov processes with correlation time 7 given no a
priori information? Given a priori information?

Problem 4-10
A 1andom variable, x, may take on any values in the range — to =. Ba}ed on a sample
of k "l“fs’ xj, i#1,2,...,k, we wish to compute the sample mean, mg, and sample

variance, 0k2, as estimates of the population mean, m, and variance, o2, Show that unbiased
estimators for these quantities are:

and recast these expressions in recursive form.

Problem 4-11
A simple dynamical system and measurement are given by
X=ax+w, w~ N0, @
z=bx+v, v~N(0,1
Show that the optimal filter error vartance is given by

(app + q) sinh gt + fpo cosh §t
p(t) =(bz—‘———

l—pg—a)sinhﬂt*ﬂcoshﬂt

bq
ﬂ’l’

independent of pg. Draw a block diagram of the optimal filter and discuss its steady-state
behavior.
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Problem 4-12

A second-order system and scalar measurement are illustrated in Fig. 4-1, where
w ~ N(0,q). Draw a block diagram of the Kalman optimal filter for this system, and show
that the steady-state Kalman gain matrix is

g

[

8 2 [q
s (43T

Repeat the calculation for the case where simultaneous measurements of x; and Xy are
made. Assume uncorrelated measurement errors.

K_=

Figure 4-1  Example Second-Order System

Problem 4-13

Show that the optimal filter for detecting a sine wave in white noise, based upon the
measurement

(1) = x1 (1) cos(t—T) + x5(t) sin(t—T) + v(1)
where v ~ N(0,1), is as shown in Fig. 4-2, where (Ref. 1)

2(t—tg) — sin 2(t-tg)

k(=
1O Tt “ste)]

2sin(t—to)
[(t-t0)? - sin®(t-tg)]

kya(9 =

Figure 4-2  Optimal Sine Wave Estimator
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Problem 4-14
The output of an integrator driven by white noise w [where w ~ N(0,q)] is sampled
every A seconds (where A=txs]—tk = ), in the ofa noise, vk

[where vk ~ N(0,10)]. Assume that there is no a priori information. Calculate pk(+) and
pk+1(-) for k = 0,1,2, etc. and thus, demonstrate that, for all k,

pk(*) =10 and  pg+i(-)=ro+ga for qA> 1o
and
P = — =P+1(-) forrg » qA
Sketch and physically interpret error variance curves for each of these cases.
Problem 4-15
Reformulate Example 4,2-4 using the alternate state vector x3 = [5p(0) sv(0) 5:(0)]T.

Make appropriate arguments about initial conditions and employ the matrix inversion
lemma to arrive at the following result:

PATH) = \ |
0,2 T ™ | T i T
[P 070 P:\:\(D)“Pn(m‘l_ Tp® p__ @
1 e 1 ™ o i
24T p.,(owu(m m(o; 4p..(m 7 2p10(0)
e — = + = e - R
| | % 1 T
[ SO I
| § PLL(OP2:2(0) " P22(0) P (O)
where

= 1 2 2 ﬁ
Ay(T) P110)P22(@P33(0) [Up +p11(0)+P22(0)T " +p33(0) ]

and p11(0) = E[60%(0)], p22(0) = E[8v*(0)], P33(0) = E[6a%(0)). Reconcile this result
with the exact version of Eq. (4.2-25).

Problem 4-16

By measuring the line of sight to a star, a spacecl’aft stellar navigation system can
measure two of the three angles ing 8, the i di frame misalign-
ment. For 8 = [8, 82 01T, P(O) = a’l demonstrate the value of a “single-star fix” (i.e., a
measurement of 8, and 85). Then, assume another measurement on & different star (i.e., a
measuzement of 9, and 63), and thus, demonstrate the value of a *‘two-star fix.” Assume
that each component of @ is observed with an uncorrelated measurement error, viz. (71,2
or 3)

Zi=8i+vj, vi ~ N, aiz)

Specifically, show that (oi2< o® fori= 1,2, 3)

single)
trace P | star } =~ o?
fix
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and
two -
trace P { star § = 2 + g, + 032
fix 2
Problem 4-17

A polynomidl tracking filter is designed to optimally estimate the state of the system
described by x(t) = 0, given scalar measurements z — X + v, v ~ N(0,r). Assuming no 2 priori
information and measurements spaced r time units apart, show that (k=1,2,...)

2 2k+1 3
_ 2 T
el 5o | 3 0
T kr?

and

22k + 1)
Kiel = (k+ 1)k +2)

k+ 1)k +2)

(Hint: It may prove useful to employ the relationship P(0)* = lim
induction.) €

0 «€l, and to solve by

Problem 4-18
A system and measurement are given as,
x=Fx+Gyw, ¥ ~N@Q
z=Hx+y , ¥~ N@Q,R)

Show that the optimal differentiator associated with a particular output of the system,

y=Mx

F-M+MP)X
Why is it incorrect to compute i by forming _§ = Mg_ and then differentiating the result?
Problem 4-19
Manipulate the discrete covariance matrix update equation into the form
HEPK() = Ric [HiPR(-HKT+ Ry ™ Hycbi(-)
and thus show that, when Hy is square and nonsingular,

IPe()| IRyl

PR = i B TRyl
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This formula for updating the determinant of the covariance matrix has been shown to be
valid independent of whether Hy is square (Ref. 17).

Prablem 4-20

Ob: i of a x are made through a digital instrument with
quantization levels of width g. A reasonable approach for “small” q is to model the
quantizer as 2 noise source whose distribution is uniform over (—a/f2, q/2), and which is
uncormelated with x — 1.¢.

- . . 4 9
Z=X+V, v is uniform over ( 2,2)

Find the optimal linear estimator for x, given that
E(x] = m, E[x?] =¢?

Problem 4-21

Observations z of the constant parameter x are corrupted by multiplicative noise — ie., 2
scale factor error, n,

z=(1+p)x

where
E[x?] = 0,? E[n*] =0}
E[x] =E[n] =E[nx] =0

(a) Find the optimal linear estimate of x based on a measurement z(; = kz). (b) What is the
mean square error in the estimate?

Problem 4-22
Design an optimal linear filter to separate a noise n(t) from a signal s(t) when the
spectral densities for the signal and noise are given by:

ooty = o (= 2
sslw) w’+l’ nn(w el

(Hint: this problem in Wiener filtering can be solved as the steady-state portion of a Kalman
filtering problem).

Problem 4-23

Consider a satellite in space which is spinning at a constant, but unknown, rate. The
angular position is measured every T seconds, viz.:

Zk = 8k + vk, k=1,2,3...
E[vk’]=(5deg)’

where 8 is the angular position at t = kT, and vk is the measurement error. The
H in initial conditions are described by
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E[607] = 20 deg?, E[507] = (20 deg/secy?
E[60] =E[éo) =E[8080) =0

Write the system state equations and then the linear filter equations to give an optimal
estimate of the position and velocity after each observation.

Problem 4-24

An RC filter with time constant 7 is excited by white noise, and the output is measured
every T seconds. The output at the sample times obeys the equation

r

Xk=¢€ Txk—l"‘wk—l, k=12,...
where

E[xo] = 1,E{x0%] =2

E[wk] =0, E{wjwk] = {g ;:‘;

T=7=0. sec
The measurements are described by

2k = Xk + Vk, k=1,2,.

where vk is a white sequence and has the following probability density function:

fiv)

Figure 4-3

Find the best linear estimate (a) of X, based on z;, and (b) x; based on z, and z,; when
23 = 1.5 and z, = 3.0.
Problem 4-25

Design a data processor to determine the position of a ship at sea. E:famine one
dimensional motion (e.g., North-South) under the following assumptions: the ship’s velacity
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relative to the water is constant, but unknown with mean mg and variance asz; the current
has a constant mean value m¢. The random component of current can be modeled as
integrated white noise of spectral density 9, and initial variance acz; position measurements
are made every T hours by radio or sextant methods. The errors in these readings are
independent of each other and have mean zero and variance anz (miles)?; the initial
position estimate (T hours before the first measurement) is Xo, With uncertainty 0o”.

a) Set up the state equations for this system. Show clearly what differential equations

are needed.

b) Set up the filter i to give a of position and the error
in this estimate, Be sure to specify the contents of all matrices and vectors, and all
initial conditions.

Problem 4-26

The differential equation for the altitude hold mode of an airplane autopilot is given by
B(t) + 0.006h(t) + 0.003h(t) = 0.3{Rc(t) + 0.01hg(t)]

where h represents altitude and hc is commanded altitude. The altitude command hg is
modelled as a constant hc,, plus gaussian white noise 5hc(t) in the command channel

he(t) = hey + he()
The constant he,, is a normal random variable with statistics

mean = 10,000 ft
variance = 250,000 ft*

Noise in the command channel has the following statistics
8he ~ N(0, 400 £t? sec)
and 8h is independent of all other variables.

Discrete measurements of altitude are available every 10 seconds and we wish to process
them to obtain the minimum variance estimate of altitude. The altitude measurements
contain random errors

2(tk) = h(tk) + vh(tk)

where z(1k) is measured altitude and vh(tk) is a white sequence of measurement errots,

v ~ N(O, 100 ft%)

D ine the diffe i defining the minimum variance estimator of h(1).
Write these equations out in scalar form.

Problem 4.27

Consider the circuit in Fig. 4-4. It has been constructed and sealed into the proverbial
black box. Capacitor C; has a very low voltage rating and it is desired to monitor the voltage
across Cy to determine when it exceeds the capacitor limit.
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T8LaCK BOX

———-—-
I

15Ry=10HM; C = C, = 1f

Figure 44

The only measurement that can be made on this system is the output voltage, eo. However,
thanks to an dingly good perfect can be made of this voltage
at discrete times. In order to estimate the voltage across Cy, assume that u(t) can be
described as

u ~ N(0, 2 volt? sec)
Determine an expression for the optimal estimate of the voltage across C,. Assume that

the system starts up with no charge in the capacitors. Plot the vatiance of the error in the
estimate as a function of time, taking measurements every half second for two seconds.

Problem 4-28

The motion of a unit mass, in an inverse square law force field, is governed by a pair of
second-order equations in the radjus r and the angle 8.

Figure 4-5

If we assume that the unit mass has the capability of thrusting in the radial direction with a
thrust uj and in the tangential direction with a thrust u,, then we have
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G,

10 =) 6% - 2 +uy()
T°{t)
s aem it [ 1
()= -26(1 o) + [x(t)] ua()

I uy(t) = uy(t) = 0, these equations admit the solution
=R (R constant)
8(t)=wt  (w constant)

where R w? = Gg — ie., circulat orbits are possible. Let x4, X2, X3, and x4 be given by the
relationships

X;=r1r-R, X3 =1, X3 =R {8 - wi), x4 =R (6 — w)
and show that the linearized equations of motion about the nominally circular solution are

x1(t) o 1 0 offxi®w| Jo of |mw
EC 302 0 0 2] xa(0) . 1 o) bun

X3(1) 6 o o 1{|xt] Joo
Xq(t) 0 2w 0 0{]xsw| JO 1

Note that there is no process noise included in the above state equations.

It is desired to measure these small orbital deviations from observations on the ground.
Two proposals are presented. (a) In an effort to keep the measurement stations rather
simple and inexpensive, only angle (x3) measurements will be made. However, the designer
realizes the very likely possibility of measurement errors and includes an optimal filter in his
proposal for estimating the states. The may be d as

2(t) =x3() +v3(t),  va ~N(0,q3)

(b) The second design proposes to use measurements of range (x1). In this case
2(1) = x5 (1) + vy (1), vi{t)~ N(0, qy)

It is your task to determine which of these proposals is superiot.

Problem 4-29

Consider the scalar moving average time-seties model,

k=t trgog
where {rki is a unit-variance, white gaussian sequence. Show that the optimal one-step
predictor for this model is (assume Py = 1)

N _k+1 N

2k+1(-) X+3 2k — 2K(-)]

(Hint: use the state-space formulation of Section 3.4)



5. OPTIMAL LINEAR SMOOTHING

Smoothing is a non-real-time data processing scheme that uses all measure-
ments between 0 and T to estimate the state of a system at a certain time t,
where 0 <t < T. The smoothed estimate of x(t) based on all the measurements
between 0 and T is denoted by X(t|T). An optimal smoother can be thought of
as a suitable combination of two optimal filters. One of the filters, called a
“forward filter,” operates on all the data before time t and produces the
estimate X(t); the other filter, called a “backward filter,” operates on all the data
after time t and produces the estimate £;(t). Together these two filters utilize all
the available information; see Fig. 5.0-1. The two estimates they provide have

BACKWARD FILTER
<3,

[ - | |
0 t T

e ——
=
FORWARD FILTER

Figure 5.0-1  Relationship of Forward and Backward Filters
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uncorrelated errors, since process and t noises are d white.
This suggests that the optimal combination of £(t) and Zy(t) will, indeed, yield
the optimal smoother; proof of this assertion can be found in Ref. 1.

Three types of smoothing are of interest. In fixed-interval smoothing, the
initial and final times 0 and T are fixed and the estimate X(t|T) is sought, where t
varies from 0 to T. In fixed-point smoothing, t is fixed and X(t|T) is sought as T
increases. In fixed-lag smoothing, X(T—A|T) is sought as T increases, with A
held fixed.

In this chapter the two-filter form of optimal smoother is used as a point of
departure. Fixed-interval, fixed-point and fixed-lag smoothers are derived for the
continuous-time case, with corresponding results presented for the discrete-time
case, and several examples are discussed.

5.1 FORM OF THE OPTIMAL SMOOTHER

Following the lead of the previous chapter, we seek the optimal smoother in
the form

R(HT) = AZ(t) + ARy (1) (5.1-1)

where A and A’ are weighting matrices to be determined. Replacing each of the
estimates in this expression by the corresponding true value plus an estimation
error, we obtain

KT = [A+ A"~ 1] x() + AK() + A%(D) (5.12)
For unbiased filtering errors, %(t) and Xy(t), we wish to obtain an unbiased

smoothing error, X(t[T); thus, we set the expression in brackets to zero. This
yields

A=1-A (5.1:3)
and, consequently,
(T = AZ() + (1 - A) % () (5.1-4)

Computing the smoother error covariance, we find
P(tIT) = E[Z(tIT) XT(tIT)]
= AP(t) AT + (I — A) Py(t)T — A)T (5.1-5)
where product terms involving X(t) and Xy,(t) do not appear. P(t|T) denotes the

smoother error covariance matrix, while P(t) and Py(t) denote forward and
backward optimal filter error covariance matrices, respectively.
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OPTIMIZATION OF THE SMOOTHER

Once again, following the previous chapter, we choose that value of A which
minimizes the trace of P(t|T). Forming this quantity, differentiating with
respect to A and setting the result to zero, we find

0= 2AP + 2(I — A)Py(-I) (5.1-6)
or

A=Py(P +Py)! (5.1-7)
and, correspondingly

I-A=P@P+Py}"! (5.1-8)
Inserting these results into Eq. (5.1-5), we obtain

P(tIT) =Py(P + Py  P(P + P,y ' Py, + P(P + P,) ™! P, (P+Py)'P  (5.19)
By systematically combining factors in each of the two right-side terms of this

equation, we arrive at a far more compact result. The algebraic steps are
sketched below,

P(IT) = Py(P+ Py P(1+Py P +P@+B, TPy (me+ 1)"
=Py@+By) (P + By ) +P@ P @ B
=(r +1>,;')_' (5.1-10)
or
P (M =P (5 + Py () $.111)

From Eq. (5.1-11), P(t|T) < P(t), which means that the smoothed estimate of
x(t) is always better than or equal to its filtered estimate. This is shown graph-
ically in Fig. 5.1-1. Performing similar manipulations on Eq. (5.1-1), we find

R(tIT) = AX() + (I — A) Ep(t)
=Py(P+Pp)" 2(t) + P(P+PyJ" 2p(1)
= (F 0y RO+ (4 By 240
=p(t/T) [P (0 2() + Py (1) £p(0)] (5.1-12)
Equations (5.1-11) and (5.1-12) are the results of interest.
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Figure 5.1-1 Advantage of Performing Optimal Smoothing

REINTERPRETATION OF PREVIOUS RESULTS

It is interesting to note that we could have arrived at these expressions by
interpretation of optimal filter relationships. In the subsequent analogy,
estimates Xy, from the backward filter will be thought of as providing
“measurements” with which to update the forward filter. In the corresponding
“measurement equation,” H =1, as the total state vector is estimated by the
backward filter. Clearly, the “measurement error” covariance matrix is then
represented by P,. From Eq (4.2-19), in which Pi™' (=) and P (+) are now
interpreted as P™' (t) and P~ (tIT), respectively, we obtain

P'UT) =P () +Py ' (1) (5.1-13)
Equations (4.2-16b) and (4.2-20) provide the relationships
Ky =Py(+) H TR > PCT) Py ()
(T— KyHy) = Pe(4) P (<) > BUT) P (1)
which, when inserted in Eq. (4.2-5) yield the result

T =PT) [P () £ + Py (1) R (1)) (5.1-14)

where £(~) and £i(+) have been interpreted as X(t) and Z(t|T), respectively.
Thus, we arrive at the same expressions for the optimal smoother and its error
covariance matrix as obtained previously.
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5.2 OPTIMAL FIXED-INTERVAL SMOOTHER

The forward-backward filter approach provides a particularly simple mech-
anism for arriving at a set of optimal smoother equations. Other formulations are
also possible, one of which is also presented in this section. For the moment, we
restrict our attention to time-invariant systems.

FORWARD-BACKWARD FILTER FORMULATION OF THE
OPTIMAL SMOOTHER

For a system and measurement given by
x=Fx+Gw, w~N(Q,Q)
z=Hx+y, ¥~N(Q,R) (5.2-1)
the equations defining the forward filter are, as usual,
£=F%+PHTR [z - Hg], £(0) =%, (5:22)
P = FP + PFT + GQGT — PHTR! HP, P(0)=P, (5.23)
The equations defining the backward filter are quite similar. Since this filter runs

backward in time, it is convenient to set 7 = T — t. Writing Eq. (5.2-1) in terms
of 7, gives*

4 _ 4
e T

- Fx_Gw (5.24)
Zr)=Hx+yv (5.2:5)

for 0 < 7 < T. By analogy with the forward filter, the equations for the
backward filter can be written changing F to —F and G to —G. This results in

4. " "
380 = —Ffy + PHTR [z - HRy ] (5.26)
d

4 Po=—FPy — PyFT + GQGT — P,HTR'HP, (527

At time t = T, the smoothed estimate must be the same as the forward filter
estimate. Therefore, X(T|T) = X(T) and P(T|T) = P(T). The latter resuit, in
combination with Eq. (5.1-11), yields the boundary condition on Py™*,

*In this chapter, a dot denotes differentiation with respect to (forward) time t. Differen-
tiation with respect to backward time is denoted by d/dr.
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P, (t=T)=0 or B (r=0)=0 (5.28)

but the boundary condition on y(T) is yet unknown. One way of avoiding this
problem is to transform Eq. (5.2-6) by defining the new variable

A0 =Py (1) Zp(1) (5.2-9)
where, since £ (T) is finite, it follows that
f=T)=Q or gr=0)=0 (5.2-10)

Computational considerations regarding the equations above lead us to their
reformulation in terms of P,"" . Using the relationship

4. T
PR (SR B (5.2-11)

Eq. (5.2-7) can be written as

:—T o' =Py 'F+FTP; ! — P 'GQGTPR,™" + HTR'H (5.2-12)
for which Eq. (5.2-8) is the appropriate boundary condition. Differentiating Eq.
(5.29) with respect to 7 and employing Eqs. (5.2-6) and (5.2-12) and
manipulating, yields

% 5= (FT —P,'GQGT) 5+ HTR'z (5.213)

for which Eq. (5.2-10) is the appropriate boundary condition. Equations
(5.1-11, 12) and (5.2-2, 3, 12, 13) define the optimal smoother. See Table 5.2-1,
in which altemate expressions for X(tIT) and P(t|T), which obviate the need for
unnecessary matrix inversions, are also presented (Ref. 1). These can be verified
by algebraic manipulation. The results presented in Table 5.2-1 are for the
general, time-varying case.

ANOTHER FORM OF THE EQUATIONS

Several other forms of the smoothing equations may also be derived. One is
the Rauch-TungStriebel form (Ref. 3), which we utilize in the sequel. This
form, which does not involve backward filtering per se, can be obtained by
differentiating Eqs. (5.1-11) and (5.1-12) and using Eq. (5.2-12). It is given by
Egs. (5.2-2) and (5.2-3) and*

*From this point on, all discuqion pertains to the general time-varying case unless stated

otherwise. , for explicit dep of F, G, H, Q, R
upon t may not be shown.
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TABLE 5.221 SUMMARY OF CONTINUOUS, FIXED-INTERVAL OPTIMAL
LINEAR SMOOTHER EQUATIONS, TWO-FILTER FORM

System Model 1 X(t) = F()x(t) +G(w(t),  w(t) ~ N[0,Q(1)]

Measuremnent 2(1) = H()x(t) +¥(1), v(t) ~ N[Q,R(1))
Model

Initial Conditions| E{x(0)] =g, E{(x(0) - X0)x(0) - X¢)T] = Po

Other E[w(ty)¥T(t2)] = 0 for all ty, t; R (1) exists
Assumptions
Forward Filter | #(t) = FR(t) + POHTOR ®[z(t) - ORI,  5(0) = %o

Error Covariance | P(t) = F(t) P(t) + POFT (1) + G) Q) GT(ty
Propagation ~POHTMR (W HMOPE),  PO)=Pp

Backward Filter di S(T-1)=|FT(T—7) - Py ' (T-nG(T-1)QT-7)GT(T-7)] (T~7)
(r=T-t) r
+HIT-nR! -, (0)=0

Error Covariance % Py (T-1) = Py  (T-1)F(T-7) + FT(T-r)Py "} (T-7)

Propagetion P (T-IGT-QT-nGT(T-)Py ! (T-7)

+HT(T )R (T-0)H(T-1), Py (0)=0

Optimal A(UT) = PAIT) [F! () E) +5(0)]

Smoother = [1+P(t) Py ' ()] K1) + PID5(t)

Error Covariance | P(tIT) = [F' (1) + Py ' ()"

Propagation = P(1) - P(t) Py )1+ PPy (0] PO

R(IT) = FE(UIT) + GQGTP™ (HE(HIT) — &(1)] (5:2:14) .

P(LIT) = [F+GQGTP ! (1)) P(UIT)+P(T){F +GQGTP* (1)] T — GQGT
(5.2-15)

Equations (5.2-14) and (5.2-15) are integrated backwards fromt=T tot=0,
with starting conditions given by Z(TIT) = 4(T) and P(T|T) = P(T). Figure 5.2-1
is a block diagram of the optimal smoother. Note that the operation which
produces the smoothed state estimate does not involve the processing of actual
measurement data, It does utilize the complete filtering solution, however, s0
that problem must be solved first. Thus, fixed-interval smoothing cannot be
done real-time, on-line. It must be done after all the measurement data are
collected. Note also-that P(tIT) is a continuous time function even where P(t)
may be discontinuous, as can be seen from Eq. (5.2-15).
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Figure 5.2-1  Diagram of Rauch-Tung-Striebel Fixed-Interval Continuous
QOptimat Smoother (t < T)

All smoothing algorithms depend, in some way, on the forward filtering
solution. Therefore, accurate filtering is prerequisite to accurate smoothing.
Since fixed-interval smoothing is done off-line, after the data record has been
obtained, computation speed is not usually an important factor. However, since
it is often necessary to process long data records involving many measurements,
computation error due to computer roundoff is an important factor. Hence, it is
desirable to have recursion formulas that are relatively insensitive to computer
roundoff errors. These are discussed in Chapter 8 in connection with optimal
filtering; the extension to optimal smoothing is straightforward (Ref. 1).

The continuous-time and corresponding discrete-time (Ref. 3) fixed-interval
Rauch-Tung-Striebel optimal smoother equations are summarized in Table 5.2-2.
In the discrete-time case the intermediate time variable is k, with final time
denoted by N. Py N corresponds to P(tIT), Xy y corresponds to X(tIT) and the
single subscripted quantities X, and Py refer to the discrete optimal filter
solution. Another, equivalent fixed-interval smoother is given in Ref. 4 and the
case of correlated measurement noise is treated in Ref. 5.

SMOOTHABILITY

A state is said to be smoothable if an optimal smoother provides a state
estimate superior to that obtained when the final optimal filter estimate is
extrapolated backwards in time. In Ref. 2, it is shown that only those states
which are controllable by the noise driving the system state vector are
smoothable. Thus, constant states are not smoothable, whereas randomly
time-varying states are smoothable. This smoothability condition is explored
below.

Consider the case where there are no system disturbances. From Eq. (5.2-14),
we find (Q=0)

A(IT) = FX(T) (5.2-16)
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TABLE 5.2-2 SUMMARY OF RAUCH-TUNG-STRIEBEL FIXED-INTERVAL
OPTIMAL SMOOTHER EQUATIONS

Continuous-Time

{See Tabte 4.3-1 for the required continuous optimal fitter terms)

Smoothed State | £(tD) = FOX(T) + GOQWGTOF  ([E@T) — K1)
Estimate - N
where T is fixed, t < T, and X(TIT) = x(T).

Error Covariance | P(UT) = [F(t) + GOQMGTHP )} PiT)

Matrix Propagation -
+ PUD[F®) + G0GTwr 01 T - GecTw

where P(TIT) = P(T)

Discrete-Time

(See Table 4.2-1 for the required discrete optimal filter terms)

Smoothed State | ZyN = £x(+) + AxlZk+ N ~ Ek+1(-)]
Estimate
where

Ak =PIk TPr+1 ' (=), ENIN = EN(H) fork =N - 1.

Error Covariance PN = Py(+) + Ak [Pka1|N — Pk+1¢-)] AKT
Matrix Propagation
where PyyN = PN(H)fork=N-1

The solution is (R(TIT) = X(T))

E(UT) = H(L,THX(T) (5.2.17)
Thus, the optimal fixed-interval h i when Q = 0, is the final
P I filter estiy extrapolated backwards in time. The corresponding

smoothed state error covariance matrix behavior is governed by

P(1IT) = FP(tIT) + PUIT)FT (5.2-18)
for which the solution is [P(TIT) = F(T)]

P(tIT) = (t,T) P(T) T(1,T) (5.2-19)
If, in addition, F = 0, it follows that ®(t,T) = I and hence, that

A(IT) = X(T) (5.2-20)

OPTIMAL LINEAR SMOOTHING 165

and
P(tIT) = P(T) (5.2:21)

for all t < T. That is, smoothing offers no improvement over filtering when F =
Q = 0. This corresponds to the case in which a constant vector is being estimated
with no process noise present. Identical results clearly apply to the m constant
states of an nth order system (n > m); hence, the validity of the smoothability
condition.

Example 5.2-1

This spacecraft tracking problem was treated before in Exampie 4.3-2. The underlying
equations are:

x=w, w~N(0,q)

Z=X+v, v~ N(O,r)
and the steady-state optimal filter sotution was shown to be p(t) = o, where a = \/1q.
Examine the steady-state, fixed-interval optimat smoother both in terms of (1) forward-
backward optimal filters, and (2) Rauch-Tung-Striebet form.
Part 1 — The forward fitter Riccati equation is (f=0, g=h=1)

p=q-p*
which, in the steady state (p=0), yields p = \/rq = o The backward filter Riccati equation is
from Eq. (5.2-7)

d 2

—pp=g - r

FPo=e-Pb f
which has the steady state py, = \/rq = &. Thus, we find, for the smoothed covariance

pm= (5" 0 + o) !

N E

which is half the optimal filter covariance. Consequently,
T = p(uT) [R(p(t) + Kp(D/pp(t)}
| SN -
Y [%(t) + xp(t)) (5.2:22)

The smoothed estimate of x is the average of forward plus backward estimates, in
steady state.

Part 2 — In Rauch-Tung-Striebel form, the steady-state smoothed covariance matrix
differential equation (Table 5.2-2, T fixed, t < T) is
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. 2q
puT) = —ptIT) — q
@
tor which the solution 1s (9/a = 8, p(TIT) = a)
P(IT) =%u e 2Ty | (eT

This result is plotted in Fig. 5.2-2. For T—t sufficiently large (i.e., T—t > 2/g), the
backward sweep 15 m steady state. In this case, we obtain p(tIT) = «/f2, as before. The
corresponding differential equation for the hed state est from Table 5.2-2, is

(T = 8lX(T) — K]

This can be shown to be identical to Eq. (5.2-22) by differentiation of the latter with
respect to time and manipulation of the resulting equation.

. p i) —»

O Qe = - —

g
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z
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T
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1 |
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Figure 5.2-2  Optimal Filter and Smoother Covariances for Example 5.2-1

Example 5.2-2

This example describes an investigation of the applicability of fixed-interval optimal
smoothing to gyroscope testing. In the test considered, a gyroscope is mounted on a servoed
turntable and samples of the table angle, which 1s a measure of the integrated gyroscope
drift rate, ¢, are recorded. The gyroscope drift rate is assumed to be a linear combination of
a random bias b, a random walk, a random ramp (slope m), and a tirst-order markov process;
this is shown in block diagram form in Fig. 5.2-3. The available measurements are the
samples, @, corrupted by a noise sequence, vk, and measurement data are to be batch
processed after the test.

OPTIMAL LINEAR SMOOTHING 167

Figure 5.2-3  Block Diagram of Gyroscope Drift Rate Model and Test Measurement

Consider the aspects of observability and smoothability. The equations governing this
system are

X4 001 1 (x o
%z 000 0 [|x 0
= +
X3 010 O f[xs wy
X4 000 —1r{|xq wa

F X
and
X1
(Lo oolf*
2% = +
k= R A x| TVE
H
X4

The test for observability involves determination of the rank of the matrix Z (Section 3.5),
where in this case

! | '
== [HTI FTHT: T)? HT|I &Ty? HT}
|

10 o [
=f0 0 1 0

01 [ 0

01 —lr 1/

It is easily shown that the rank of = 1s four, equal to the dimension of the system;hence,
the system is completely observable. Performing the test for observability, as illustrated
above, can lend insight into the problem at hand and can help avoid attempting impossible
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tasks. For example, it is tempting to add another integrator (state variable) to the system
shown in Fig. 5.2-3, in order to separate the bias and random walk components, with the
hope of separately identifying them through filtering and smoothing. When such a
five-di jonal system is for d, and the appropriate F(5 X 5) and H(l X 5) are
considered, the resulting & (5 X 5) matrix has rank four. This five-dimensional system is not
completely observable because two state vari have the same d ic relationship to the
measured quantity; it is impossible to distinguish between the bias drift and the initial
condition of the random walk component. Thus, these two components should be
combined at one integrator, as in Fig. 5.2-3, whete no such distinction is made. In this
example, the randomly varying states x, X3, and x4 are smoothable; the constant state, X5,
is not.

Figure 5.24 shows normalized estimation errors for the drift rate ¢ over a 20-hour
period, based upon drift rate samples taken once per hour. Results are shown for the
complete system and for a simpler three-dimensional system which does not include the
markov process component of gyroscope drift rate. In the latter case, state x5 is the entire
drift rate, which is the sum of a ramp, a bias, and a random walk. The filtered estimate of x5
is much improved over that in the four-dimensional situation, and reaches equilibrium after
approximately four hours. The estimate at each point is evidently based primarily on the
current measurement and the four previ The fixed-interval hed
estimate reduces the rms error by almost half, being largely based on the current

the four and the sub four t
ple based on si 1eal data is p d in order 10
illustrate the difference between a set of filtered and smoothed estimates of gyroscope drift
The ple corresponds to the three-di ional ‘no-markov-p; case.
A set of “real” data is by simulating this three-di ional linear system and
using a random number generator to produce initial conditions and two white noise

—— FTER
——— SMOOTHER

COMPLETE SYSTEM (€ = x3+ x,4)
(T =15 hours )

o
&

NO MARKOV PROCESS (€ = X4}

NORMALIZED RMS ESTIMATION ElillOR,dJ

| 1 |
0 10 20
TIME (hours ]

Figure 5.2-4  Error in Filtered and Smoothed Estimates With and Without the
Markov Process (Ref. 7)
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sequences, one representing the random walk input and one representing the sequence of
measurement errors. Figure 5.2-5 compares a sample of a “real™ time history of state X3
(which in this case is ¢, the entire drift rate) with filtered and smoothed estimates. The solid
line connects the “real” hourly values of x3. The dashed line indicates the real bias drift b
(the initial value) and the ramp slope m (the slope of the dashed line). The departure from
the dashed line is due to the random walk Each filtered esti of x3 is based
on the partial set of measurements (z, to zg). Each smoothed estimate of x5 is based on the
full set of measurements (z; to zN).

The relative ad ge of the her is most in the first two hours, where the
filter has only one or two data points to work with. The smoother is also more accurate,
generally, throughout the 20-hour time span due to its ability to “look ahead™ at the
subsequent data points. The example aiso shows that the filter tends to lag the real data
::enever it takes a major “swing” up or down. The smoother does not exhibit this type of

havior.

13
o SMOOTHED ESTIMATE
wia2f FILTERED ESTIMATE
- %MTUA[ DRFT RATE
=
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©
& 10
o
N 09
=
<
= 08
[~ 4
o
Z o7
N .
0 10 20
TIME {hours}

Figure §.2-5  Comparison of Real Data With Filtered and Smoothed
Estimates (Ref. 7)

A STEADY-STATE, FIXED-INTERVAL SMOOTHER SOLUTION

The backward filter Riccati equations [(5.2-7) and (5.2-12)] can be solved by
transforming the n X n nonlinear matrix differential equations to 2n X 2n linear
matrix differential equations, precisely as was done in Section 4.6. Therefore,
this approach warrants no further discussion here. The linear smoother
covariance equation given in Eq. (5.2-15) can also be treated in a manner similar
to that used in Section 4.6; this is briefly treated below. Defining the
transformations

A=P(tT) y (5.2-233)



170  APPLIED OPTIMAL ESTIMATION

and
y=~[F +GQGTP ()} Ty (5.2:23b)
we find
¥ —[F+GQGTP ()| T 0 y
[ Al [ -GQGT F+ GQGTF‘(c)] [A] (5224

Since the boundary condition for the smoothing process is specified at t = T, we
let

r=T—1t (5.2:25)
and use 7 as the independent variable in Eq. (5.2-24). Thus, we obtain
[F+GQGTP! (0] T 0 Y

- (5.2:26)
h GOGT ~[F+GQETF ]| [a

ar

An expression similar to Eq. (4.6-8) may, in principle, be written for the
recursive solution to the smoothing covariance equation. As before, this
formulation of the solution is only of practical value when all elements of the
square matrix in Eq. (5.2-26) are constant. However, if the system is observable
and time-invariant, P(t) tends to a stationary limit, and the constant value of
P(t), denoted P, can be employed in Eq. (5.2-26). If the time interval under
consideration is sufficiently large and if P, is employed in Eq. (5.2-26), the
latter would also have a stationary solution. In many cases of practical interest it
is precisely the stationary filtering and smoothing solutions which are sought; in
these cases the solution to Eq. (5.2-26) is obtained in the form of Eq. (4.6-8) by
iterating until changes in the diagonal elements of P(t|T) are sufficiently small.

5.3 OPTIMAL FIXED-POINT SMOOTHER

When the smoothing solution is sought only for a specific time of interest, it
is more efficient to reformulate the smoother equations to perform the task than
to accomplish it through use of the fixed-interval smoother. To do this, we first
write Eq. (5.2-14) in the form

&(UT) = [F + GQGTP ()] &(tIT) — GQGTP () &(1) (5.3-1)

for which the solution is {%(T|T) = 2(T)]
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t
X(T) = (1,T) X(T) — f . D(t,1)GQGTP  (1)(7) dr (5.32)

where ®(t,7) is the transition matrix corresponding to F + GQGTP"(t), that is,
és(t,T) = [F+GQGTP Y (t)] & (t.T), i(tp)=1 (5.3-3)

Equation (5.3-2) is readily verified as the solution to Eq. (5.3-1) by
differentiation with respect to t and use of Leibniz’ rule.*

Now consider t fixed, and let T increase. Differentiating Eq. (5.3-2), making
use of Leibniz’ rule, we obtain

dZ(tIT) _ dP(t,T) ax(T -
. 2D sm 0,6 ED o - a,0m006T7 MEM +0)

=@ (L THF + GQGTP™ (T)] K(T)+ DL THFK(T) +K(T)[(T)
— HTE(MD1} + 2(LTIGQGTP (THX(T)

= 2 (L, TIK(T)[T) - HT)X(T)) (5.3-4)

where we have used the known optimal filter differential equation for X(T), and
the relationship (T > t)

—®(t, THF(T) + GDUTIGCT(TF'(T)] , b (t.t)=1
(5.3-5)

dPy(t,T) _
d

The latter is easily shown by differentiating the expression ®(t, T)®(T,t) =1
with respect to t and using Eq. (5.3-3).

To establish the fixed-point, optimal smoother covariance matrix differential
equation, write the solution to Eq. (5.2-15) as [P(TIT) = P(T)]

t
P(1IT) = &,(t, T)P(T)®, " (t,T) - fT D(1LNGMQANGCT (1) DT (t7)dr
(5.36)

*
B, " i i(t,na
it a(g)Tl ,7ydr

{
—f (')f(t Ydr = £[t,b(t}) bt fta
ity HEDI = LLbO) =g ~fita]
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This, too, may be verified directly by differentiation. As before, we now
consider t fixed and differentiate with respect to T to obtain

dP(T)

dl;(‘;‘lT) d':bs(t §)) P(T)‘I’sT(t T+ ¢s(' D—2 & T(I,T) (5.3-7)

+ & (L TIP(T) _sd‘T‘ﬂ (0 2,(tT)GQGT®,T(1,T) + 0)
which ultimately simplifies to
LU - g HROHT DR MHRTD,TET) (5.38)

In applications, the fixed-point optimal smoother is perhaps most often used
to estimate the initial state of a dynamic system or process — i.e., orbit injection
conditions for a spacecraft. The continuous-time and corresponding discrete-
time (Ref. 6) optimal fixed-point smoother equations are summarized in Table
5.3-1.

TABLE 5.3-1 SUMMARY OF FIXED-POINT OPTIMAL SMOOTHER EQUATIONS

Continuous-Time

(See Table 4.3-1 for the required continuous optimal filter terms)

Smoothed State ﬂ—) = g(t, TIK(T)[2(T) ~H(T)E(T))
Estimate
dog(t,T, -
TT(T_L —o T IFM+GMAmeTMmF )
where t is fixed, T > t, X(tIt) = X(t) and ®g(t,t) = I
) dP(tiT)_ T myR-! T,
Error Covariance T —&5(t, NMTHI(TR (TKTIP(T)e I (t,T)

Matrix Propagation
where P(tIt) = P(t)

Discrete-Time

(See Table 4.2-1 for the required discrete optimal filter terms)

Smoothed State RN = ZkIN-1 + BNIZN() - EN(-))

Estimate where

BN Al A =PieTRi T ()
i=k

Rkik =Xk N=k+1. k+2,...

Error Covariance PN = PxiN—1 + BN[P(+) — Pr(-)) BNT
Matrix Propagation where Pl = Pi(+)
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Example 5.3-1

Determine the steady-state behavior of the fixed-point optimal smoother for the system
considered in Example 5.2-1. The transition matrix required for the fixed-point optimal
smoother is governed (Table 5.3-1, t fixed, T > t) by

dlﬁ—’—n= - Bos(t,T), ws(t,) =1
Thus,

os(t,T) = e—B(T-1) (5.39)
Using this result in the equation for fixed-point optimal h

(Table 5.3-1), we find

d_‘;(_;_—IT-L — ape—28(T~1), ptit) =a

for which the solution,

PT) =§ (1 + e—Zﬁ(T—ﬁ) (5.3-10)

is obtained directly by i i This equation is identical to that plotted in Fig. 5.2-2,
but the interpretation differs in that now t is fixed and T is increasing. When examining a
point sufficiently far in the past (.e., T — t > 2/g), the fixed-point optimal smoother error is
in the steady state described by p(tiT) = /2, T > t + 2/g. The differential equation for the
fixed-point optimal smoother state estimate (Table 5.3-1) is

d—x—(@- ge—B(T-1)z(T) - X(T)),  R(tIt) = X(t)

for which the solution is computed forward in time from t until the present, T,

54 OPTIMAL FIXED-LAG SMOOTHER

In cases where a running smoothing solution that lags the most recent
measurement by a constant time delay, 4, is sought, the fixed-lag smoother is
used. The derivation closely follows that of Section 5.3. From Eq. (5.3-2), with t
=T— A, we get

T-a
X(T-A[T) = 1 (T-A, TX(T) — [r @ (T-AGQGTP™! (NX (r)dr
(5.41)

Differentiation with respect to T and combining terms, yields
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ng_(‘%l‘f) = F(T-A) + G(T-AYYT-A)GT(T-A)P 1 (T-A)) 2(T-AIT)
—G(T-2)QT-A)GT(T-2)P™(T-A)X(T-4)
+ ¢ (T-ATK(M{AT) — HTE(T)) (5.4-2)
where the relationship [(®1(0, &)= ®(0, 4)]

ﬁ%ﬂ’ [F(T—A)+ G(T-A)Q(T—-8)GT(T— AP (T—2)] by (T-A,T)

— & (T-AT)[E(T) + GDXTIGCT(TF (T)] (5.4-3)
has been used (T > A). This is easily verified by differentiation of the expression
@) (-4, T) = 2(T-4, YB(t,T)

with respect to T. The initial condition for X(T—A|T) is the fixed-point

solution, X(0/A). When measurements are received they are processed by a tixed-

point algorithm until T = A, at which point the fixed-lag algorithm is initialized
and subsequently takes over. The filtering solution, of course, is carried
throughout. The corresponding solution for the fixed-lag smoother covariance
matrix is

dP(fl_;A'TL [F(T—4) + G(T—A)Q(T—A)GT(T—AP™ (T—A)] P(T—AIT)

+P(T-AIT)[F(T-4) + GT-A)QUT-2)GT(T-2)p* (T-4)] T
— & (T-ATPMHT(DR (TH(T)P(T)® T(T-A,T)
— G(T-AXYT-AGT(T-A) (5.4-4)

for which the initial condition is P(0|4), the optimal fixed-point smoothing error
covariance matrix evaluated at T = A,

In practice, the fixed-lag optimal smoother is used as a “refined,” albeit
delayed, optimal filter. Applications in communications and telemetry, among
others, are suggested. The continuous-time and corresponding discrete-time (Ref.
6) fixed-lag smoother equations are summarized in Table 5.4-1.

Example 5.4-1

Determine the steady-state behavior of the fixed-lag optimal smoother for the system
considered in Example 5.2-1. The transition matrix required for the fixed-lag optimal
smoother (Table 5.4-1, T — t = A isfixed, T » A) is

TABLE §.4-1
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SUMMARY OF FIXED-LAG OPTIMAL SMOOTHER EQUATIONS

Continuous.Time

(See Table 4.3-1 for the required continuous optimal filter terms)

Smoothed %}Am = [F(T-4) +G(T—-2)QT-2)GT(T-a)P 1 (T-2)]X(T-AIT)
State R
Estimate ~G(T-2)QT-2)GT(T-2)P  (T-2)K(T-4)
\i +OL(T-A,TKM){2(T) — KD
where T > A, A fixed, and X(0(A) is the initial condition obtained from
the optimal fixed-point smoother, and
ﬂ-%_.i& S IHT-2+ G 200 AGHT 3P s epa b
—o(T-4,T)[F(T) + GDATGTMP (D)
where ®1(0,4) = ®4(0,4)
dP(T-AIT
Error —(T’——) =[F(T-a)+ G(TAA)Q(T—A)GT(TvA)l"_l (T-A)|P(T-AIT)
Covariance a
Matrix + P(T-A[F(T-2) + GT-2)QT-2)GT(T-2) P (T-2)] T
Propagation -1
— op(T-a,DFMHTMR T (MHMPT) o T(T-2,T)
- G(T-A)QUT-A)GT(T-2)

where P(0iA) is the initial condition obtained from the optimal
fixed-point smoother.

(See Table 4.2-1 for the required discrete optimal filter terms)

Discrete-Time

r
! smoothed

Keealflor 14N = Pikkik iN + Q@R D™ P kN — Rx(H)
State -~
Estimate + Bic+ 1 +NKk+1 +N[2k+1+N — Hic+ | +NPR+NXK+N(H)]
KN
where By+14N = A, A= PiHeTP T ()
: =k+1
; k=0,1,2, ... and Z(0IN) is the initial condition.
1
Exror Plrl ks 14N = Pa1 (=) = Bica LeNKicr | +NHicr LNPe LN BIHLNT
Covariance o .
Matrix —A " [Pk(+) ~ PgjkeN] (AKTS
Propagation

L

where the initial condition is P(OiN).
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d
—p(T-AT)=0
ar #L( }

under the assumption that p(T —~ A) = p(T) = a. The solution, a constant, is given by the
initial diti btained from fixed-point hing [Eq. (5.3-9)],

eL(T-a,Ty=e=FA
The fixed-lag smoother covariance matrix, therefore, behaves according to (Table 5.4-1)

dp(T-aiT)

T - #P(T-aD - q(l +e—284)

E

ploying the initial dition p(0tA) obtained from the fixed-point solution, Eq. (5.3-10),
we find

PT-AIT) =% a +e-268)

Thus, for A sufficiently large (i.e., A > 2/8), the delayed estimate of the state has the

of the steady-stat: her. This, of course, is the reason for its utility. The
corr ding delayed state esti (Table 5.4-1) 1s given oy
AX(T-AT) _

T ﬂ()?(T—AlT) — R(T-a) +e—BA[Z(T) - i(T)I)

subject to the initial condition, i(OIA), which is obtained from the optimal fixed-point
smoother.
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PROBLEMS
Problem 5-1

Choose x to minimize the scalar loss function
1=@- TP e -+ @ - 2Tl ' - Xp)
and directly obtain the forward-backward filter form of the optimal smoother,
M = PUTP MM + Py OF pv)]
P = [P + Pt

Problem 5-2

Derive the Rauch-Tung-Striebel smoother equations [Egs. (5.2-14) and (5.2-15)] by
following the steps outlined in the text.

Problem 5-3
For the variable A(t), defined by

KT =X (1) ~ PO A
show that

At _
at

—F — Py HTR ' H) Tty + HTR [z201) — HE ()]
where MT) = 0. For A(t) = E [A(t) AT(1)], show that
P(IT) = P(D) — P(t) A(t) P()
where
A)= —[F - POHTRHI TA(t) — AM(F - POHTR'H] +HTR'H
and A(T) = 0. These are the Bryson-Frazier smoother equations (Ref. 4).

Problem 5-4

A scalar system and measurement are described by
X =ax +w, w ~ N(0,9)
z=DbX +v, v~ N@,n)

(a) Show that the forward filter steady-state error covariance, obtained from the Riccati
equation by setting p(t) = 0, is

ar b*
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(b) Next, obtain the¢ steady-state fixed-interval her error i [denoted
P(tiT)] by setting p(IT) = 0, as

PutT) = 22

20 +2 p.)
q

(c) Show that this result can be written in the alternate form (y2 = bzq/azr =0)

Pty _1 7
P 2\l 41492

In this form it is apparent that the smoother error variance is always less than half the
filter error variance.

Probiem 5-5

It is a fact that smoothed covariances are nof il ic about the midp
of the sampling interval (see, for example, Ref. 8). A simple illustration of this point can be
made with the second-order system of Fig. 5-1, where w ~ N((),?aaz). Assume that the
system is in steady state, and that at t=0 a perfect measurement of x, is made. Show that,
while E[x;%(t)] is symmetric with respect to t=0, E[izz(t)] is not symmetric with respect
to t=0, viz:

E[%, (0] = o*(1 - e~ 2ultl)

02 ﬂ
E[%22()) =—— {1 -——e2et} <o
ROl = g

2 —at _ 2g¢—B1) 2
e (lia[(aw)e e 0l ) 50
fletp) (eH5)a—)

(Hint: It may prove simplest to seek estimates in the form X,(t) = ky(t) x,(0), XM=

ka(1)x2(0). and to choose ky(f) and kp(t) to minimize E[X,%(t)] and E{x23(D)],
respectively.)

a L B

Figure §-1

Problem 5-6

The output of an integrator driven by white noise w [where w ~ N(0,q)] is sampled
every A seconds (where A =ty —tg = ) in the p ofa noise vk
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{where vig ~ N(0,ro)]. Assume that three nts are made, ding to k =
0, 1, 2. Further assume that there is no @ priori information.

a) Show that a fixed-interval optimal smoother yields (y = q Afrg)

L+y
i =1p (371)
1+3y44°

POz =ro G

b) Check these results by for ing the optimal ther in terms of a continuous
optimal forward filter updated at the measurement times by a continuous optimal
‘backward filter, and sketch the filtering and smoothing covariances.

) Show that a fixed-point optimal smoother for the initial condition yields

(i
Po|1'fo(2+7)
1+3y+9°
S St Ak ol
Foiz =10 3+

Problem 5-7
Design an optimal linear smoother to separate 2 noise n(t) from a signal s(t) when the
spectral densities for the signal and noise are given by:

2w
» @an(w) = 700

1
Pss() =77 1

+1

(Hint: This problem in Wiener smoothing can be solved as the steady-state portion of an
optimal linear smoothing problem.)



6. NONLINEAR ESTIMATION

This chapter extends the discussion of optimal estimation for linear systems
to the more general case described by the nonlinear stochastic differential
equation

() = f(x(t).t) + w(t) 6.0-1)

The vector f is a nonlinear function of the state and w(t) is zero mean gaussian
noise havmg spectral density matnx Q(t). We shall investigate the problem of

1od

estimating x(t) from samp measu ts of the form

eo=ht) tue k=12, (602)

where hy depends upon both the index k and the state at each sampling time,
andtypl is a white random sequence of zero mean gaussian random variables
with associated covariance matrices Rk}. This constitutes a class of estimation
problems for nonlinear systems having continuous dynamics and discrete-time
measurements.

For several reasons, the problem of filtering and smoothing for nonlinear
systems is considerably more difficult and admits a wider variety of solutions
than does the linear estimation problem. First of all, in the linear gaussian case
the optimal estimate of x(t) for most reasonable Bayesian optimization criteria is
the conditional mean defined in Eq. (4.0-9). Furthermore, the gaussian property
implies that the conditional mean can be computed from a unique linear
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operation on the measurement data —e.g., the Kalman filter algorithm.
Consequently, there is little theoretical justification for using a different data
processing technique, unless a nonBayesian optimization criterion is preferred.
By contrast, in the nonlinear problem x(t) is Ity not gaussian; hence, many
Bayesian criteria lead to estimates that are different from the conditional mean.
In addition, optimal estimation algorithms for nonlinear systems often cannot be
expressed in closed form, requiring methods for approximating optimal
nonlinear filters.

One further complication associated with general nonlinear estimation
problems arises in the structure of the system nonlinearities. Theoretical
treatments of this subject often deal with a more general version of Eq. (6.0-1),
namely

£(t) = fx(t),t) + GG, Dw(t) (6.0-3)

where G(3(t),t) is a nonlinear matrix function of x(t), and w(t) is again
(formally) a vector white noise process. In this case a theory for estimating x(t)
cannot be developed within the traditional framework of mean square stochastic
calculus because the right side of Eq. (6.0-3) is not integrable in the mean square
sense, owing to the statistical properties of the term G(x(t).t)w(t). This
difficulty is overcome by formulating the nonlinear filtering problem within the
context of Ito calculus (Refs. 1 and 2) which provides consistent mathematical
rules for integrating Eq. (6.0-3). However, a theoretical discussion of the latter
topic is beyond the scope of this book.

The main goal of this chapter is to provide insight into principles of nonlinear
esnmatlon theory which will be useful for most practical problems. In this spirit,
we the mathematical issues raised by Eq. (6.0-3) usmg the following
argument. Most physical nonlinear sy can be rep ted by a diffs ial
equation of the form

£1(1) = £, (31 (X2 (1)) (6.0-4)

where X,(t) is a bandlimited (nonwhite) random forcing function having
bounded rms value — i.e., there is no such thing as white noise in nature, We
shall model x,(t) as a gaussian random process generated by the linear system

520 = F2(0%: (1) + w2 (0 (6.0-5)

where w,(t) is gaussian white noise. Combining Egs. (6.0-4) and (6.0-5) and
defining

()
PORN Rt
Xz(t)J
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we obtain the augmented equations of motion

p10)] L1 (1), %2(1),1) Q
ww={---=|-————---- +|-~ (6.06)

k(1) Fa(t) %2(t) w2 (t)

having the same form as Eq. (6.0-1). Because the white noise term in Eq. (6.0-6)
is independent of x(t), the manipulations associated with mean square stochastic
calculus can be applied. A more detailed discussion of this point is provided in
Ref. 1.

Within the framework of the model in Eqs. (6.0-1) and (6.0-2), this chapter
considers some estimation criteria that lead to practical techniques for
estimating the state of a nonlinear system. Sections 6.1 and 6.2 discuss filtering
and smoothing algorithms for mini variance esti — ie., those which
calculate the conditional mean of ¥(t). In Section 6.1 emphasis is placed on
Taylor series approximation methods for computing the estimate. Section 6.2
describes the use of statistical linearization approximations. Section 6.3 briefly
treats the topic of nonlinear least-squares estimation, a technique that avoids the
need to specify statistical models for the noise processes, w(t) and ¥, in Eqs.
(6.0-1) and (6.0-2). Finally, Section 6.4 discusses a practical analytical technique
for analyzing nonlinear stochastic systems, based upon statistical linearization
arguments.

6.1 NONLINEAR MINIMUM VARIANCE ESTIMATION
THE EXTENDED KALMAN FILTER

Given the equations of motion and measurement data in Eqs. (6.0-1) and
(6.0-2), we seek algorithms for calculating the minimum variance estimate of
%(t) as a function of time and the accumulated measurement data. Recall from
Chapter 4 that the minimum variance estimate is always the conditional mean of
the state vector, regardless of its probability density function. Now suppose that
the measurement at time ty_; has just been processed and the corresponding
value F(ti_ 1) of the conditional mean is known. Between times ty _; and ti, no
measurements are taken and the state propagates according to Eq. (6.0-1). By
formally integrating the latter, we obtain

AW =xte_p+ f ", ndrt f Y owmdr ©.1-1)
k-1 tk-1

Taking the expectation of both sides of Eq. (6.1-1) conditioned on all the
measurements taken up until time t, _, interchanging the order of expectation
and integration, and differentiating produces

4 B3O =E[EG0.0], oy <<t (61-2)
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with the initial condition
Efx(t_ )] =8(t1)

Therefore, on the interval ty | < t < ti, the conditional mean of (t) is the
solution to Eq. (6.1-2), which can be written more compactly as

f0=1amo. 4, <t<y (6.1-3)

where the caret () denotes the expectation operation. Similarly, a differential
equation for the estimation error covariance matrix

P2 E [[z(t) — XOV[E®) - x(t)]T] ©14)

is derived by substituting for x(t) in Eq. (6.14) from Eq. (6.1-1), interchanging
the order of expectation and integration, and differentiating. The result is

LA A
Py=xfT—RIT+ExT - FRT+Q), 4y <t<t (6.1-5)

where the dependence of x upon t, and f upon x and t, is suppressed for
notational convenience.

Equations (6.1-3) and (6.1-5) are generalizations of the propagation equations
for the linear estimation problem. If £(t) and P(t) can be calculated, they will
provide both an estimate of the state vector between measurement times and a
measure of the estimation accuracy. Now observe that the differential equations
for Z(t) and P(t) depend upon the entire probability density function* p(x,t) for
X(1). Recall that for linear systems f(x(1), t) = F(t) x(t) so that Eq. (6.1-3)
reduces to

N s

R(t) = F(t) x(1)
=F(1) 2(1)
=f& 1)

That is, £(t) depends only upon F(t) and £(t); similarly, by substituting the
linear form for f into Eq. (6.1-5) it follows that P(t) depends only upon F(t),
P(t), and Q(1).** Therefore, the differential equations for the estimate and its
covariance matrix can be readily integrated. However, in the more general
nonlinear case

=

~
fao= [ .. f feor@dx ... dx#LGY
N — o
* T_he. syrr.lbo} PQ,t) is used to denote the probability density function in this chapter to
distinguish it from the dynamic nonlinearities, £(X, 1).
**See Problem 6-2.
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Thus, in order to compute £(x.0), p(x.t) must be known.

To obtain practical estimation algorithms, methods of computing the mean
and covariance matrix which do not depend upon knowing p(x,t) are needed. A
method often used to achieve this goal is to expand f in a Taylor series about a
known vector E(t) that is close to x(t). In particular, if f is expanded about the
current estimate (conditional mean) of the state vector, then X = X and

fa0=1@0+ 5| G- ©19)

where it is assumed the required partial derivatives exist. Taking the expectation
of both sides of Eq. (6.1-6) produces

f&xH=fED+0+...

The first-order approximation to i(x(t), t) is obtained by dropping all but the
first term of the power series for f and substituting the result into Eq. (6.1-3);
this produces*

FH=08®), t_ <t<y 6.1-7)

Similarly, an approximate differential equation for the estimation error
covariance matrix is obtained by substituting the first two terms of the
expansion for f into Eq. (6.1-5), carrying out the indicated expectation
operations, and combining terms; the result is

B(t) = GO, H PO + O FT QW) 9 +Q(), 4y <t<t  (6.1-8)
where F(Z(t), t) is the matrix whose ijth element is given by

fEo. & HE0D

50 xw=iwm

Equations (6.1-7) and (6.1-8) are approximate expressions for propagating
the conditional mean of the state and its associated covariance matrix. Being
linearized about Z£(t), they have a structure similar to the Kalman filter
propagation equations for linear systems. Consequently they are referred to as
the extended Kalman filter propagation equations. Higher-order, more exact
approximations to the optimal nonlinear filter can be achieved using more terms
in the Taylor series expansion for the nonlinearities, and by deriving recursive
relations for the higher moments of x. Methods of this type are discussed

*Up to this point i has denoted the exact conditional mean; henoeionh,i denotes any
estimate of the state that is an imation to the conditi mean.
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bsequently. Other techniques that depend upon finding functional approxima-
tions to the conditional probability density function of %, and which are not
treated here, are discussed in Refs. 19 and 20.

To obtain a complete filtering algorithm, update equations which account for
measurement data are needed. To develop update equations, assume that the
estimate of x(t) and its associated covariance matrix have been propagated using
Egs. (6.1-7) and (6.1-8), and denote the solutions at time t; by Zx(—) and
Py(—). When the measurement zy is taken, an improved estimate of the state is
sought. Motivated by the linear estimation problem di d in Chapter 4, we
require that the updated estimate be a linear function of the measurement — i.e.,

K+ =2 + Kizge 6.19)

where the vector gy and the “‘gain” matrix Ky are to be determined. Proceeding
with arguments similar to those used in Section 4.2, we define the estimation
errors just before and just after update, X, (—) and Ey(+), respectively, by

£ 2 B(h) — 5 6110
£ £ Bi(-) -3¢ ’

Then Eqgs. (6.1-9) and (6.1-10) are combined with Eq. (6.02) to produce the
following expression for the estimation error:

& (") =ax + Kihie(xi) * Ky + Ex(-) — Ru(-) (6.1-11)
One condition required is that the estimate be unbiased — i.e., E[Xx(+)] =Q.

This is consistent with the fact that the desired estimate is an approximation to
the conditional mean, Applying the latter requirement to Eq. (6.1-11) and
recognizing that

E{f(-)] =E[x] =0
we obtain

a + K ~ &) =@ (6.1-12)
Solving Eq. (6.1-12) for ay and substituting the result into Eq. (6.1-9) yields

2(+) = B() + Kiclzg — Bl (6.1-13)

In addition, Egs. (6.1-11) and (6.1-12) can be combined to express the
estimation error in the form

Fx(®) = Ei(-) + Ky [hie(x) — i) + Kitie (6.1-14)
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To determine the optimal gain matrix Ky, the same procedure used for the
linear estimation problem in Section 4.2 is employed. First an expression is
obtained for the estimation error covariance matrix Py(+) in terms of Ky ; then
Ky is chosen to minimize an appropriate function of Py(+). Applying the
definition

Pi(+) = E[Zx(H) Z(H)T]

to Eq. (6.1-14), recognizing that v, is uncorrelated with Xy (-) and Xy, using
the relations

Py(-) =E[&(-) £ ()T
Ryc = E [ty Tl
and assuming that Py (+) is independent of z,, we obtain’
P =Pel-) + Ko E i) Bead) o) ~ s T] KT
+E [zk(—) (i) — Bie0) T] Ky
+ K E [mk@k) - Bl zk(—)T] + KRk, T (6.1-15)

The estimate being sought — the approximate conditional mean of x(t) —is a
minimum variance estimate; that is, it minimizes the class of functions

Jx=E [i‘k(*)T SXk(*)]

for any positive semidefinite matrix S. Consequently, we can choose § =1, and
write

I =E [3k(+)T -Xk(’f)] = trace [Py(+)] (6.1-16)

Taking the trace of both sides of Eq. (6.1-15), substituting the result into
(6.1-16) and solving the equation

for Ky, yields the desired optimal gain matrix,
K = —E[ 5 Ihuteo) - Bumol 7]
X{ E [Lnk(xk) = B0 i) — Bie] T] +Ry } 6117
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Substituting Eq. (6.1-17) into Eq. (6.1-15) produces, after some manipulation,
Py(+)=Py(-) + K¢ E [mk(x.k) )| zk(—)T] (6.1-18)

Equations (6.1-13), (6.1-17), and (6.1-18) together provide updating algor-
jthms for the estimate when a measurement is taken. However, they are
impractical to impl in this form t they depend upon the probability
density function for x(t) to calculate ﬁk. To simplify the computation, expand
hy(xx) in a power series about Xy () as follows:

Br(xx) = heGr(-)) + BNk — (D) +- - 6.1-19)

where

Hy(Ge(-) = ) ©61-20)

x=Xk(-)

Truncating the above series after the first two terms, substituting the resulting
approximation for hy(xy) into Egs. (6.1-13), (6.1-17), and (6.1-18), and
carrying out the indicated expectation operations produces the exrended
Kalman filter measurement update equations

Epe(P) = (=) + Ky [z — @ (-D]
Ky =By BTG (BB PO BTG )+ R
Py(+)= [1 ~ Ky HpGi(-)] Py (-) (6.1-21)

Equations (6.1-7), (6.1-8), and (6.1-21) constitute the extended Kalman
filtering algorithm for nonlinear systems with discrete measurements. A
summary of the mathematical model and the filter equations is given in Table
6.1-1; the extension of these results to the case of continuous measurements is
given in Table 6.1-2. A comparison of these results with the conventional
Kalman filter discussed in Section 4.2 indicates an important difference; the
gains Ky in Eq. (6.1-21) are actually random variables depending upon the
estimate %(t) through the matrices F(Z(t), t) and Hy(&(-)). This results from
the fact that we have chosen to linearize fand by about the current estimate of
x(t). Hence, the sequence { Ky ; must be computed in real time; it cannot be
precomputed before the measurements are collected and stored in a computer
memory. Furthermore, the sequence of (approximate) estimation error covari-
ance matrices {Pk} is also random, depending upon the time-history of
%(t) — i.e., the estimation accuracy achieved is trajectory dependent. The reader
can verify that when the system dynamics and measurements are linear, the
extended Kalinan filter reduces to the conventional Kalman filter.



188  APPLIED OPTIMAL ESTIMATION

TABLE 6.1-1 SUMMARY OF CONTINUOUS-DISCRETE

EXTENDED KALMAN FILTER

System Model

Measurement Model

X0 =L@ +w®;  w() ~NQ Q)
Zk=hk(t) +xk:  k=1,2,...; 3k ~N@QRg)

Error Covariance
Propagation

Initial Conditions X(0) ~ N(Xo, Po)

Other Assumptions | E fw(9) ] = 0 for all k and all
State Estimate A oA

Propegation X0 =£600

B(9) = FE(0,0 Py + Py FTGE(0,0) + Q1)

State Estimate Update

Error Covariance

Update

Ek(+) = Zk(-) + Kk [2k—hi Gk(-))

Pr(+) = [I-Kk Hg Gk(-D)1 Px(-)
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It should be noted that a linearized Kalman filtering algorithm, for which the
filter gains can be precalculated is developed if the nonlinear functions f and hy
in Egs. (6.0-1) and (6.0-2) are linearized about a vector X(t) which is specified
prior to processing the measurement data. If the stages in the extended Kalman
filter derivation are repeated, with X substituted for & throughout, the filtering
algorithm given in Table 6.1-3 is obtained. Generally speaking, this procedure
yields less filtering accuracy than the extended Kalman filter because X(t) is
usually not as close to the actual trajectory as is X(t). However, it offers the
computational advantage that the gains { K¢ can be computed off-line and
stored in a computer, since X(t) is known a priori.

TABLE 6.1-3 SUMMARY OF CONTINUQUS-DISCRETE

Gain Matrix Kk = P(=) i TGi(-) [Hk@k(—)) Py(-) BT Gk(-)) + Ré‘"
20 p o LGN
FEM.H = %
x® L""i‘”
Definitions

Ay (a(ty))

H —_N=
K&k~ ()

=gy ()

LINEARIZED KALMAN FILTER
System Model O =fxMH+wD 5 wt) ~ NQ QW)
Measurement Model 2k =hkGxtN+yk 5 k=12,...; ¥k~ N@QRp
Initial Conditions x(0) ~N(X°, Po)

Other Assumptions E[w(t) yT} =Oforallk andall t
Nominal trajectory X(t) is available

TABLE 6.1-2 SUMMARY OF CONTINUOUS EXTENDED KALMAN FILTER

System Model

() = £(0,0 + w(®) 5 w(t) ~ N@©, Q)

Measurement Model 2(t) = h(x(1),1) + ¥(t) ; ¥(t) ~ N(Q, R(t))

Initial Conditions X(0) ~ NGo, Po)

Other Assumptions E{w(t) 3T()] = 0foralltand all +

£0 =L@ + KO 2O-bG©]
Error Covariance Equation Bty = F(E(t),0) P(t) + P() FTEm.0 + Q)
- Py HTEm,0 K () REW.0 P

State Estimate Equation

Gain Equation K1) =Pt) HT G0 K (1)

State Estimate A - -
Propagation X1 =£E®.0+FEO,0[X0-X0)]

Error Covariance By = T (s =
Propagation B(t) = F(X(1),0) P(t) + P(t) FT(E(1), 1)+ Q(t)

Vot )= R+ Ki L2 ~BCECK0) ~ B ) Ek(-) - X101 ]

Error Covariance

Py(+) = {1 - Kk HK(E(110) | Pi(-)

Update
Gain Matrix Kk =Pk(-)HKT (R (k) Hk(E(ti) P - HKTE(10) + Rk )™
- f(x(1),1)
FE(M,0 = =%
DION PRS0
Definitions
3h 1]
HyE(no) - TREK)

TR (1) = Xt

F@o.0= 2LEDD

X(D=%()

s o - BGD
HEO0 _”“_l_(oi(o

Definitions

X

Because the matrix Py in Eq. (6.1-21) is only an approximation to the true
covariance matrix, actual filter performance must be verified by monte carlo
simulation. There is no guarantee that the actual estimate obtained will be close
to the truly optimal estimate. Fortunately, the extended Kalman filter has been
found to yield accurate estimates in a number of important practical
applications. Because of this experience and its similarity to the conventional
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Kalman filter, it is usually one of the first methods to be tried for any nonlinear
filtering problem.

HIGHER-ORDER FILTERS

The Taylor series expansion method for treating the nonlinear filtering
problem, outlined in the preceding section, can be extended to obtain
higher-order nonlinear filters. One method of accomplishing this is to write the
estimate, X (+) in Eq. (6.1-9), as a higher-order power series in z . Another more
commonly used approach is to include more terms in the expansions for f(x.t)
and by (xk) in Egs. (6.1-6) and (6.1-19). These methods differ in that the latter
seeks better approximations to the optimal filter whose structure is constrained
by Eq. (6.1-9) —i.e., the measurement appears linearly; the former allows a
more general dependence of the estimate upon the measurement data. If both
techniques are applied simultaneously, a more general nonlinear filter will result
than from either method alone. The discussion here is restricted to the case
where the estimate is constrained to be linear in z, .

The iterated Extended Kalman Filter — One method by which the estimate
Zy(#) given in Eq. (6.1-21) can be improved is by repeatedly calculating £y (+),
Ky, and Py(+), each time linearizing about the most recent estimate. To develop
this algorithm, denote the ith estimate of x,(+) by Ry i(#),i=0,1,..., with
R o(+) = & (-) and expand hy(xy) in Eqgs. (6.1-13) and (6.1-17) in the form

ik, ) = b i(+) + HeEx i)k ~ Zx, (D +- - -
- A B

Hie(Ry j(+)) = 22k

P
xx =R i(+) (6.1-22)
Observe that Eq. (6.1-22) reduces to Eq. (6.1-19) when i = 0. Truncating the
series in Eq. (6.1-22) after the second term, substituting the resuit into Eqs.
(6.1-13), (6.1-17), and (6.1-18), performing the indicated expectation opera-

tions, and observing that* E[xy] = Zx(-), produces the following iterative
expressions for the updated estimate:

B i1 (1) = B () + Ky 2y — i By 5(9) — Hye Gy ()& () — &y ()]

Ky s = P TGy i(9) [ i049) Pi(-) Hy TGy 109) + Ry )1

*This is true because the expectation fiy is conditioned on all the up to, but
not including, time tx.
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Py ir1 (9 = [1 = Ky ; He Gy ()] P(-)
R o2 Z(=) , 1=0,1,... (6.1-23)

As many calculations of %y ;(+) in Eq. (6.1-23), over the index i, can be
performed as are necessary to reach the point where little further improvement
is realized from additional iterations. However, it should be recognized that each
iteration of Eq. (6.1-23) contributes to the computation time required to
mechanize the filter.

A similar procedure can be devised for iterating over the nonlinear dynamics
in Eq. (6.1-7); for details the reader is referred to Ref. 1. It has been found that
such iteration techniques can significantly reduce that part of the extended
Kalman filter estimation error which is caused by system nonlinearities (Ref. 5).

A Second-Order Filter — Another type of higher-order approximation to the
minimum variance estimate is achieved by including second-order terms in the
expansions for h,(xy) and f(xy, t) in Egs. (6.1-6) and (6.1-19). Thus, we write

Hx(1),) = [Z(1),0) — FE).1) &(1) +%Q’ EEOET)+. ..

- - 1 . -
by = By (-)) ~ HE(-) £(-) +52° Qred() TN -
(6.1-24)

where the operator 3%(f,B), for any function f(x,t) and any matrix B, is a vector
whose ith element is defined by

a s 2%
3;2(£,B) £ trace 2[3’(" axq] Bg (6.1-25)

The bracketed quantity in Eq. (6.1-25) is a matrix whose pqth element is the
quantity 92 fi/8xpdx,q. Truncating the series in Eq. (6.1-24) after the third
term, substituting the resulting approximations for f and hy into Egs. (6.1-3),
(6.1-5), (6.1-13), (6.1-17), and (6.1-18), and carrying out the indicated
expectation operations produces, after some manipulation,*

*An assumption used in deiiving Eq. (6.1-26) is that third-order moments of jk(—) are

negligible — i.c., the probability density for ik(—) is assumed to be symmetric about the
mean.
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20 =160+ 2EP0)
. o St<yy
Bt) = F&().0 Pt) + P(t) T, + Q1)

R (4) = Z(-) + Ky [Zk = heGx () — % 9* (., Pk(—))]

-1
Ky = P (=) B T @ () [Hk(.gk(*» PO BT G-+ R + Ak]
Py(#) = [1 - KyHy @y (- D] Py(-) (6.1-26)

The matrix Ay js defined by the relation
al - o - .
AL B2 (hk,xk(—) sz(v)) ? (hk,zk(f)sz(—))T

1
727 Pl =) 2° e Pu(-)T 6.1-27)
The ijth element of Ay is given approximately by

2

a 1 E 9%h; + 9%h;
kij =2 W (Ppmpqn Ppnpqm)ax

j (6.1-28)
PG Xq m 0%p

2 = Ek(-)

where h; denotes the ith element of hy and the dependence of h and x on the
time index k is suppressed for convenience.
Equation (6.1-28) is derived from the gaussian approximation

E{%, %q Xm %n] = Ppq Pmn + Ppm Pgn * Ppn Pqm

where x; and pj; denote the ith and ijth elements of %, (—) and Py(-),
respectively. For this reason, Eq. (6.1-26) is sometimes referred to as a gaussian
second-order filter (Ref. 1). It has a structure similar to the extended Kalman
filter described in Table 6.1-1; however, there are additional terms to account
for the effect of the nonlinearities. Consequently the improved performance is
achieved at the expense of an increased computational burden.

EXAMPLES OF NONLINEAR FILTERING

In this section a number of examples are discussed which illustrate the
comparative performance of various nonlinear filters. The first is a geometric
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example of a hypothetical navigation application; the second and third present
computer simulation results of linearized and nonlinear filters applied to a
tracking problem.

Example 6.1-1

The extended Kalman filter is a popular method for treating nonlinear estimation
problems (e.g., see Ref. 18). However, if nonlinearities are sufficiently important, the
estimation error can be significantly reduced through use of a higher-order estimation
technique. As a specific illustration, consider an aircraft whose estimated location in X, y
coordinates is ;‘o-yo in Fig. 6.1-1, with a gaussian distribution p(x,y) in position uncertainty
whose shape is indicated by the narrow shaded elliptical area; the value of p(x,y) is constant
on the circumference of the ellipse.* Now suppose the aircraft measures its range to a
transponder that has a known position in X,y coordinates. Furthermore, assume that the
range measurement errors are very small. If the nonlinear relationship of range to x,y
position were taken into account exactly, a new estimate of position would be deduced
approximately, as follows: Assuming the range measurement, rpy,, is perfect, the aircraft lies
somewhere on the circle of radius 1y, shown in Fig. 6.1-1. Given the a priori distribution of
x and y denoted by the shaded ellipse, the new minimum variance estimates, < 1 and 37, of x
and y will lie close to the peak value of p(x,y) evaluated along the range circle. Hence, %1
and y; will lie Proxil ly at the point indi in Fig. 6.1-1.

CONSTANT RANGE - LOCUS
OF ACTUAL POSITIONS

TRANSPONDER

Figure 6.1-1 An Ilustration of the Difference Between Linearized Estimates
(X'1, ¥'1) and Nonlinear Estimates (X3, ¥1)

*The elliptical contour is obtained by setting the magnitude of the exponent of the gaussian
density function equal to a constant; that is, on the contour x and y satisfy

T -
X-X, =

2ol Bt ¥ X0 < constant
¥-Yo Y-Yo
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By contrast, if the range measurement is linearized as in an extended Kalman filter, the
argument proceeds as follows: In terms of the initial range estimate ry in Fig. 6.1-1, 1y is
approximately expressed as

¥-Yo) (6.1-29)

(xR + &

= Ty + o
Tm=lo* 2ol . ayl-

Xo:Yo

XoYo

where 1 is the range to the transponder as a function of x and y. In other words

tm = fo = TEo T |50 (6.1-30)
Y-Yo

where yr(;‘,io) is the gradient of 1 with respect to x and y evaluated at r,. The direction
of the gradient is along the radius vector from the transponder. Equation (6.1-30) states that
the new values of X and y deduced fmm Iy must lie along the straight dashed line shown in
Fig. 6.1-1, which is normal to Vr(xo,yo) Choosing the new estimate of position at the
maximum of p(x,y) along the straight line, linearized estimates, X'y and ¥', are obtained at
the point indicated in the figure. D: ing upon the range accuracy desired, the difference
betwaen the nonlinear estimate (X 1.y 1) and (X', ¥ ;) may be significant.

This example illustrates the point that nonlinearity can have an important effect on
estimation accuracy. The degree of importance depends upon the estimation accuracy
desired, the amount of nonlinearity, the shape of the density function p(x,y) and the
strength of the measurement noise.

Example 6.1-2

In this example, we consider the problem of tracking a body falling freely through the
atmosphere. The motion is modeled in one dimension by assuming the body falls in a
straight line, directly toward a tracking radar, as illustrated in Fig. 6.1-2. The state variables
for this problem are designated as

X1=x, X327k x3%4 (6.131)
where g is the so-called ballistic coefficient of the falling body and x is its height above the

earth,
The equations of motion for the body are given by

X1 X2
xp [= |d-g
X3 0
ol vad
X pC.9)
_pxa®
2x3
Xy
Tk,
p=pye 4 (6.1-32)

where d is drag deceleration, g is acceleration of gravity, p is atmospheric density (with oo
the atmospheric density at sea level) and kp is a decay constant. The differential equation
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FALLING 80ODY

|
|
|
|
!
|
!
|
|
]

7}1 RADAR

Figure 6.1-2  Geometry of the One-Dimensionat Tracking Problem

for velocity, X, is li through the depend of drag on velocity, air density and
ballistic coefficient. Linear are assumed available in the i form
2() = x1(t) + v(t) (6.1-33)

where v(t) ~ N(0,1). Initial values of the state variables are assumed to have mean, &, and a
covariance matrix of the form

P11 O 0
Po=| 0 pap O (6.1-34)
0 0 p33,

The problem of estimating all the state variables may be solved using both the extended
and linearized Kalman filters discussed in Section 6.1. Recall that the extended Katman
filter is linearized about the current estimate of the state, whereas the general linearized
filter utilizes a precomputed nominal trajectory X(t). The latter is derived for this example
by solving the differential equation

0 = » (6.1-35)

Comparative performance results from the two different filters are displayed in Figs.
6.1-3 and 6.14, which show the estimation errors achieved from a single monte carlo trial.
The simulation parameter values are given below.
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PARAMETER VALUES FOR THE ONE-DIMENSIONAL
TRACKING PROBLEM

po= 34X 107 Ib sec?/ft* X(0) ~ N(10° ft, 500 ft?)

8= 32.2 ft/sec? X(0) ~ N(—6000 ft/sec, 2 x 10% ft?fsec?)
k, = 22000 ft P11 = 500 £t

=100 fi%/Hz P220 =2 X 10% £t fsec?

8~ N(2000 Ib/ft2, 2.5 X 10° Ib2/ft*)  P3ao= 2.5 x 10° w/fet

Directing our attention to the errors in estimating the ballistic coefficient, we note that
neither filter tracks 8 accurately eatly in the trajectory. Physically, this is due to the fact
that the thin atmosphere at high altitude produces a smafl drag force on the body;

, the contain little information about 8. After the body enters
the thicker atmosphere, the increased drag force enables both filters to achieve substantial
reduction in the § estimation error; however, the extended Kalman filter (Fig. 6.1-3¢) gives

iably better per C y, the latter also gives better estimates of
position and velocity as the body enters denser atmosphere. The actual performance
observed for the extended Kalman filter is consistent with the behavior of its associated
i matrix, p from the algori in Table 6.1-2, This is demonstrated by the
fact that the estimated states in Fig. 6.1-3 tend to remain between the smooth lines, which
are the square roots of the corresponding diagonal in the d P mattix. In
contrast, the estimates for the linearized filter in Fig. 6.14 tend to have larger errors than
predicted by the P matrix.

This example illustrates the fact that the extended Kalman filter generally performs
better than a filter linearized about a precomputed nominal trajectory. However, the reader
must remember that the latter is more easily mechanized because filter gains can be
precomputed and stored. Consequently, there is a trade-off between filter complexity and
estimation accuracy.

Example 6.1-3
As a further comparison of the types of nonlinear filters discussed in Section 6.1, we
include a t i i tracking in which the range measurement is made along

the line-of-sight illustrated in Fig. 6.1-5. This example is taken from Ref. 5. The equations
of motion are the same as in the one-dimensional tracking problem except that the third
state variable is identified as 1/3. Range measurements, taken at one second intervals, are
now a nonlinear function of altitude given by

acyulr -0+
Vi~ N(0,7) (6.1-36)
The problem of estimating the three state variables was solved using the extended Kalman

filter, a second-order filter, and an iterated filter. Monte carlo computer simulations were
performed using the following parameter values:

PARAMETER VALUES FOR THE TWO-DIMENSIONAL
TRACKING PROBLEM

28 0.05 b/1t* x50 =2x 107 12 /1b

x(0)= X(®)= 3% 10° ft R3(0)= 6% 107* i fib
%(0) = £0) = 2 x 10* fi/sec =100 ft/Hz
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Figure 6.1-5  Geometry of the Two-Dimensional Tracking Problem

The rms errors incurred in estimating altitude and the inverse ballistic coefficient, 1/8, using
the three filters are shown in Fig. 6.1-6. These results have been obtained by computing the
rms errors over 100 monte carlo runs.
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Figure 6.1-6  Comparative Performance of Several Tracking Algorithms (Ref. 5)
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Near the beginning of the trajectory, all filters yield the same performance because they
have the same initial estimation errors. Evidently, the higher-order methods — the
second-order and iterated filters — yield substantially better estimates as the body falls into
the earth’s denser atmosphere. This occurs because both the measurement and dynamic
nonlinearities become stronger as the altitude decreases.

This ple also clearly di the trade-off between estimation accuracy and
ﬁlter complexnty In terms of these criteria, the filters are ranked in the order of both

and ity as follows: Kalman filter, second-order filter,
iterated filter. Thus, better filter performance is achieved at the expense of a greater
computational burden. '

NONLINEAR SMOOTHING

The purpose of this section is to briefly indicate how smoothing algorithms
for nonlinear systems can be derived using linearization techniques. The
philosophy of smoothing for nonlinear systems is the same as for the linear case
discussed in Chapter 5; namely, the filtered estimate of x(t) can be improved if
future, as well as past, measurement data are processed. The associated
estimation problem can be formulated as one of fixed-interval, fixed-point, or
fixed-lag smoothing. The discussion here is confined to fixed-interval smoothing.
Linear and second-order algorithms for the fixed-point and fixed-lag cases are
described in Refs. 22 and 23. For a more theoretical treatment of this subject
the reader is referred to Ref. 4.

Recall from Section 5.1 that the smoothed estimate X (tIT) for a linear
system, with a given data record ending at time T, can be expressed as

K(HIT) = PUT)[P' (1) X(0) + Py ' (1) (V)]
P(UT) =P (1) + P, (1) (6.1-37)

where %(t) and %y (t) are estimates provided by forward and backward filters,
respectively, and P(t) and Py(t) are their corresponding covariance matrices.
If the same approach is taken in the nonlinear case - i.., if it is assumed that
the smoothed estimate is a linear combination of (t) and X (t) — then Eq.
(6.1-37) still holds (Ref. 3). The quantities X(t) and P(t), associated with the
forward filter, can be obtained by any of the filtering algorithms given in the
preceding sections. The subsequent discussion treats appropriate expressions for
the backward filter.
The backward filter operates recursively on the t data, beg

at the terminal time and proceeding toward the desired smoothing point.
Consequently, it is useful to redefine the equations of motion and the
measurements in Eqgs. (6.0-1) and (6.0-2) by making the change of variable
1 = T—t, resulting in

£ 5(T-r) = ~£(T-1), T-1) + w(T-1)
Zn-x = By kT + iy (6.1:38)
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ry
=Tty g

Using Eq. (6.1-38) as the model for the system dynamics, the linearization
methods discussed in previous sections can be applied to obtain a backward
filtering algorithm. In particular, it is convenient to assume that the forward
extended Kalman filter, described in Table 6.1-1, is first applied to all the data;
then the backward filter is derived by linearizing Eq. (6.1-38) about the forward
filter estimate. This procedure results in a backward-filter having the form given
in Table 6.1-3, where the nominal trajectory X(1) is taken to be %(t) = X(T — 7).
The resulting expressions for Xy, (r) and Py(r) are as follows: .

PROPAGATION EQUATIONS

& .1,(1')- —£&(T—1), T-7) ~ FE(T~1), T-1) §,(1)-X(T-7))

‘% Py(r) = —FE(T—7), T-7) Py(r) - P, (r) FTR(T-71), T—-7) + Q(T—7)
6.1-39)

MEASUREMENT UPDATE EQUATIONS

Ry, (1) = 2y, () + Ky, [ZN- k=bN-kEN- D~ HN_kEN-0) (Bu, ()-EN- k)]
Ky, =Pp, (-YHn_ TGn_) [HN- kBN )Py, (M, T @y )+ RN—k]_l
Py ()= [I— Ky, Hy_ k@n-k)]l’bk(—) , k=0,1,...,N—1 (6.140)

where hy_x and Hy_, are obtained from the forward filter. The quantities
py (—) and Pbk( ) are the solutions to Eq. (6.1-39) evaluated at time 7y, just
ore ZN-k is processed.

The problem of obtaining initial conditions for the backward filter is
circumvented by deriving algorithms for Py ' (t) and s(t) £ £ Py (1)E4(1), both of
which are initialized at zero, just as in the case of the linear smoother discussed
in Chapter 5. Using Egs. (6.1-39) and (6.1-40) and the matrix identities

(A" + BTC'B)" =A— ABT (BABT + c)“ BA
(A-l + BTC‘B)" BTC! = ABT (BABT + c)" (6.141)

and mhng the assumption that Ry_j has an inverse, the following, more
convenient expressions for the backward filter are obtained:
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PROPAGATION EQUATIONS

:—T 3(1) = [FT—Py ' (D QUT-7)] 5(1)—Py (1)L - FA(T-7)]
% Py (r) =Py (1) F+FTRI @) Py (D QT-)P (1) (6.142)

MEASUREMENT UPDATE EQUATIONS
5 =5 +Hy TRy Ianoi — i HHy ]
Py (1) =Py () Hy_ " Ry "Hy_x

Pbo”(—)=0, s0(=)=0, k=0,1,...,N-I (6.1-43)

where F and f are understood to be functions of (T — 7) and (T — 7).
Substituting §(t) into Eq. (6.1-37), the smoothed estimate is obtained in the
form

E(UT) = P[P (DR(1) +5()] (6.144)

Again by analogy with linear systems, another form of the fixed-interval
smoother is the Rauch-Tung-Striebel algorithm which expresses X(t,IT) and
P(t) |T), denoted by % n and Py y, in terms of a forward filter estimate and the
smoothed estimate at stage k + 1. This is more convenient to mechanize than the
forward-backward filter inasmuch as it does not require inverting a covariance
matrix. The relations for the smoothed estimate at successive measurement times
are stated below without proof:

Bon =B+ K (B — Ok~ Saw=dv

Ky =By (q’kpkq’kT Q"

P = Pic + Ky (Pre iy — P T — Qk)KkT > Pyn=Py (6.145)
where Py and X, are obtained from a forward filter and Py is (approximately)

the error covariance matrix associated with . The quantity by is the solution
to the differential equation

(1) = F(E(D), ) b(t) + f&(1), 1) — FE(), %)
Q(tk) =0 (6.1-46)

at time ty,; Py is the transition matrix from time t, to t, . associated with
the homogeneous differential equation

x(ty = FE(1),)x(t) (6.147)
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and Qy is given by

tk+1
Q =f ®(7, 1) Q(7) ®(7, )T dr (6.1-48)
%

Observe that the initial conditions for Eq. (6.1-45) are the filter outputs §)y and
Py; clearly the latter are identical with the corresponding smoothed quantities at
the data endpoint. When the system dynamics and measurements are linear, by =
Qand Eq. (6.1-45) reduces to the form given in Ref. 1.

6.2 NONLINEAR ESTIMATION BY STATISTICAL
LINEARIZATION

In Section 6.1, a2 number of approximately optimal nonlinear filters have
been derived using truncated Taylor series expansions to represent the system
nonlinearities. An alternative approach, and one that is generally more accurate
than the Taylor series expansion method, is referred to as statistical approxi-
mation (Refs. 6, 8, and 9). The basic principle of this technique is conveniently
iltustrated for a scalar function, f(x), of a random variable x.

Consider that f(x) is to be approximated by a series expansion of the form

f(X)=ng +nyx + nyx? +.. .+ xm 62-1)

The problem of determining appropriate coefficients ny is similar to the
estimation problem where an estimate of a random variable is sought from given
measurement data. Analogous to the concept of estimation error, we define a
function representation error, ¢, of the form

e=f(x)—ng —...—n xm

It is desirable that the ny’s be chosen so that e is small in some “average” sensc;
any procedure that is used to accomplish this goal, which is based upon the
statistical properties of x, can be thought of as a statistical approximation
technique.

The most frequently used method for choosing the coefficients in Eq. (6.2-1)
is to minimize the mean square value of e, E[e*]. This is accomplished by
forming

E[(f(x) —No—mX—...— nmx"‘) ’] 6.2-2)

and setting the partial derivatives of this quantity with respect to each ny equal
to zero. The result is a set of algebraic equations, linear in the ny s, that can be
solved in terms of the moments and cross-moments of x and f(x). Without
carrying out the details of this procedure, we can see one distinct advantage that
statistical approximation has over the Taylor series expansion; it does not
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require the existence of derivatives of f. Thus, a large number of nonlinearities —
relay, saturation, threshold, etc. — can be treated by this method without having
to approximate discontinuities or corners in f(x) by smooth functions. On the
other hand, because of the expectation operation in Eq. (6.2-2), an apparent
disadvantage of the method is that the probability density function for x must
be known in order to compute the coefficients ny, a requirement that does not
exist when f(x) is expanded in a Taylor series about its mean value. However, it
turns out that approximations can often be made for the probability density
function used to calculate the coefficients, such that the resulting expansion for
f(x) is considerably more accurate than the Taylor series, from a statistical point
of view. Thus, statistical approximations for nonlinearities have potential
performance advantages for designing nonlinear filters.

This section discusses the calculation of the first two terms in a series, having
the form of Eq. (6.2-1), for a vector function f(x). This provides a statistical
linearization of { that can be used to construct filter algorithms analogous to
those provided in Section 6.1. An example is given that illustrates the
comparative accuracy of the nonlinear filter algorithms derived from both the
Taylor series and the statistical linearization approximations.

STATISTICAL LINEARIZATION
We seek a linear approximation for a vector function f(x) of a vector random

variable X, having probability density function p(x). Following the statistical
approximation technique outlined in the introduction, we propose to approxi-
mate f(x) by the linear expression
Kx)=a+Ng (623)
where 2 and N; are a vector and a matrix to be determined. Defining the error
e -a-Ngx 6.24)

we desire to choose a and Ny so that the quantity

J= E(gTAd (6-2'5)

is minimized for some symmetric positive semidefinite matrix A. Substituting
Eq. (6.24) into Eq. (6.2:5) and setting the partial derivative of J with respect to
the elements of a equal to zero, we obtain

E[Af(x) -2 - N =Q (6.26)
Therefore, a is given by
2=5(0) - N& 627)
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where the caret (") denotes the expectation operation. Substituting a from Eq.
(62-7) into J and taking the partial derivative with respect to the elements
of Ny, we obtain

E [A[NfzzT +(® »z(;»_ﬂl] -0 ©628)

where

2=%-x

Solving Eq. (6.2-8) produces
— .
Ne= [T - fZT] P! 6.29)

where P is the conventional covariance matrix for x. Observe that both a and Ny,
as given by Egs. (6.2-7) and (6.2:9), are independent of the weighting matrix A;
hence, they provide a generalized minimum mean square error approximation to
£

Equation (6.2-9) has an important connection with describing function
theory (Ref. 7) for approximating nonlinearities. In particular, if both f and x
are scalars and their mean values are zero, N; becomes the scalar quantity

_ Elfx]
AT

(6.2-10)

which is the describing function gain for an odd-function nonlinearity whose
input is a zero mean random variable (e.g., see Fig. 6.2-1). The use of describing
functions to approximate nonlinearities has found wide application in analyzing
nonlinear control systems. Tables of expressions for n; have been computed for
many common types of nonlinearities having gaussian inputs.

;pl"l—————l

Figure 6.2-1  The Describing Function Approximation for a Scalar Odd Nonlinearity

m8d
R N “/g_ fix) +C e
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At this point, it is worthwhile to note why statistical linearization tends to be
more accurate than the Taylor series approximation method. Consider the
example of the saturation nonlinearity in :.g. 6.2-1. If f{(x) for this case is
expanded in a Taylor series of any order about the origin (X = 0), we obtain

fx)=x (6.2-11)

The effect of the saturation is completely lost because of the discontinuity in
the first derivative of f. By contrast, if statistical linearization is used, we have

fx) =nex 6.212)

where ng is the describing function gain defined by

f_: X 60x) p(x) dx
f_i x? p(x) dx

np = (6.2:13)

and p(x) is the probability density function for x. If we now assume that x is a
gaussian random variable, then

x2

_ 1 T 3.7
p(x)_»\/i_ﬁe (6.2-14)

Substituting Eq. (6.2-14) into Eq. (6.2-13) and evaluating n; for the saturation
function shown in Fig. 6.2-1, we obtain (from Ref. 7) the result shown in Fig.
6.2-2. Evidently, ng is a function of the linear part of f(x), the point 8 at which

md +

-m& T

(a) Saturating Nonlinearity (b) Describing Function

Figure 6.2-2 The D ing F: ion fora $ ion Nonlinearity (Ref. 7)
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saturation occurs, and the standard deviation of x. The essential feature of the
describing function is that it takes into account the probability that x can lie
within the saturation region.

For values of o which are small relative to 8, the probability of saturation is
low and ng is approximately equal to one — i.e., f is approximately equal to the
Taylor series given in Eq. (6.2-11). For larger values of g, n is significantly
smaller than one because there is a higher probability of saturation. Thus, for a
given saturation function, statistical linearization provides a series of o-
dependent linearizations illustrated in Fig. 6.2-3. In subsequent sections the
usefulness of this approximation for designing nonlinear filters and analyzing
nonlinear system performance is demonstrated.

fix)
nglo=0)
o)

/ ezl
m3

> 0y>0

Figure 6.2-3  IIh ion of Statistical Linearization as a g-Dependent Gain

DESIGN OF NONLINEAR FILTERS

The approximation of a nonlinear function f(x) by a statistically optimized
power series can be combined with results obtained in Section 6.1 to derive
approximate minimum variance filtering algorithms. In particular, by substi-
tuting Eq. (6.2-7) into Eq. (6.2-3), we obtain

10 =f)+ Nx — &)

B,

use of the af ioned connection with describing function theory, we
shall refer to N; as the describing function gain matrix. We now can identify f
with the nonlinear function in the equations of motion [Eq. (6.0-1)] for a
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nonlinear stochastic system. The latter is in general a function of time as well, in
which case N¢ as computed from Eq. (6.2-9) is also time-dependent. Introducing
the notation N(t) to denote the describing function gain matrix for f(x,t), we
write

S ={ED+ NG - 8) (6.2:15)
Using similar notation for the measurement nonlinearity in Eq. (6.0-2) produces
B Gi0) = i) + No ) Gy — &) (6.2:16)

Now the issue of computing f,ﬁk, Ny, and Ny, arises. Each of these quantities
depends upon the probability density function for x, a quantity that is generally
not readily available. In fact, the absence of the latter is the entire motivation
for seeking power series expansions for { and h, . Consequently, an approxi-

mation is needed for p(x) that permits the above quantities to be calculated. For

TABLE 6.2-1 SUMMARY OF THE STATISTICALLY LINEARIZED FILTER

System Model X0 =L &0, )+ wt): W) ~ NQ,Q1)
Measurement Model Zh = he () +xx 3 k=12,...3 ¥k ~ N@Rk)

Initial Conditions %(0) ~ N&o, Po)
Other Assumptions E{w(t) T} = 0 foralik and all

State l’f:;'f’m“f;o" 0=,
E“°‘§Z;f;;fn B(t) = Nev) P(t) + PO NT (0 + Q)
Describing Function

= [¢xT - £3T] P!
Calculations Ny = [g2T - £5T) Pl

State Estimate Update | k() = Xk(-) + Ky [2k—fikxx)]

Error Covariance

Update Pi(+) = (I-KgNp(K)] Py(-)

-1
Gain Matrix Calculation | Kk = Pk(~)Np(x)T [Nh(K)Pi(-)NpT k) + Rg]

3 T —
Describing Function - _ T _f 3 5T (] B
Calculations Ny = {hgeae(-)) 25 T(-) — B Xk ] ey
PR - i N
25T, 5 X are exp lculated X~ NEP)
~ A /\ .
Definitions B, Xi(—) and hy &T(_) are exp

k(=) ~ N[, Pe(-))

NONLINEAR ESTIMATION 209

this purpose, it is most frequently d that x is ian. Since the
probability density function for a gaussian random variable is completely
defined by its mean % and its covariance matrix P, both of which are part of the
computation in any filtering algorithm, it will be possible to computé all the
averages in Egs. (6.2-15) and (6.2-16).

Assuming that the right sides of Eqs. (6.2-15) and (6.2-16) are calculated by
making the gaussian approximation for x, the statistical linearizatidn for f and
Bk can be substituted into Eqs. (6.1-3), (6.1-5), (6.1-13), (6.1-17), and (6.1-18)
for the nonlinear filter. Making this substitution and carrying out the indicated
expectation operations produces the filter equations given in Table 6.2-1.
Observe that the structure of the latter is similar to the extended Kalman filter
in Table 6.1-1; however, Ng and Ny, have replaced F and Hy. The computational
requirements of the statistically linearized filter may be greater than for filters
derived from Taylor series expansions of the nonlinearities because the
expectations — f, by, etc. — must be performed over the assumed gaussian
density for x. However, as demonstrated below, the performance advantages
offered by statistical linearization may make the additional computation
worthwhile.

Example 6.2-1

To compare the filtering algorithm in Table 6.2-1 with those derived in Section 6.1 the
following scalar example, due to Phaneuf (Ref. 6), is presented. The equation of motion is

X(t) = —sin(x(1)) + w(t)

x(0) ~ N(O,p), w(t) ~ NO0.9) (6.2-17)
The unforced solution (w(t) = 0} to Eq. (6.2-17) is of interest, and is displayed in Fig. 6.2-4
for several different initial values of x. Observe that x(t) approaches a steady-state limit that
depends upon the value of the initial condition.

8

x {radians)

d L 1 r
0 [ 05 10 5 20 25 30 35 40

TIME (sec)
Figure 6.244  Unforced Solutions to Eq. (6.2-17)
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Anonli discrete-time ion of the form

% =% sin(2xk) + vk, vk ~ N(0,r) (6.2-18)

is assumed.

The dynamics of this example are sufficiently simple so that a variety of nonlinear filters
can be constructed for estimating x(1). Algorithms were derived for the extended Katman
filter, for higher-order filters using second-, third-. and fourth-order Taylor series expansions
of the nonlinearities, and for the statistically li ized (quasi-li ) filter di in this
section. The results of monte carlo runs, performed with identical noise sequences for each
of the above five filters, are compared in Fig. 6.2-5. Evidently the error associated with
statistical linearization is much smaller than for the filters derived from Taylor series ex-
pansions, even up to fourth-order, during the transient period. This is explained on the basis
that Taylor series expansions are least accurate when the estimation error is large.

1.6

MEAS. NOISE r = 0.02
SYSTEM NOISE g = 0.01

SECOND ORDER

08
EXTENDED
KALMAN
FILTER

|ERROR| IN ESTIMATE {rodions)

06

04}

02} QUASI-LINEAR

[} 1 2 3
TIME {sec}

Figure 6.2-5  Estimation Errors for Five Filters (Ret, 6)
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In the vector case, the statistically linearized filter requires computation of
the matrices N; and Ny, in Eqs. (6.2-15) and (6.2-16). This, in general, involves
the evaluation in real-time of multidimensional expectation integrals having the

form
R I T

&= [ : - _[ :x,-fi@)p(x)dz 6.2-19)

Similar expressions must be evaluated for the components of jj. The quantity £
denotes the jjth element of the matrix f(x)xT in Eq. (6.2-9) and p(x) is the
assumed joint gaussian density function for x(t),

P = c exp [-% @G- HTP —3)] (6.220)

where ¢ is the appropriate normalizing constant. The degree of difficulty in
calculating &;; and f; is an important consideration in judging whether to use
statistical linearization for a particular application. The computational effort
required is, of course, dependent upon the specific type of nonlinearity. Some
systematic procedures for evaluating the expectation integrals are discussed next.

COMPUTATIONAL CONSIDERATIONS
Both integrals in Eq. (6.2-19) can be represented by the general expression

§=[: - .[: cg(x)exp [‘%@—X)TP"(X‘X)] dx (6.221)

where g(x) is a nonlinear function. In general, g will be difficult to evaluate;
however, its computation can be facilitated by making a change of variables
which simplifies the exponential term in Eq. (6.2-21) (Ref. 6). First, we define

1=x-% (6.2-22)

so that § becomes

g=f f cale + £)exp [-%ﬂp-‘;] dar (6.2.23)

Next, recognizing that P! js a symmetric matrix, we can find a nonsingular
transformation matrix, T, such that
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TP 'T=D (6.2-24)

where D is a diagonal matrix whose diagonal elements are the eigenvalues of P!
(Ref. 10). Now, if we define

sfT g (6.2:25)

it follows from the properties of T that § can be written in the form*

i= [ [ carsrens [-3a0a] e 6226)

or alternatively,

g=c jmdsne—dnsnzﬂ f dsn__le-dn—lsn~ll/2

= . 2
= [,, dig(Ts+ He=dise’ /2 6.2:27)

where d; is the i'h diagonal element of D. Consequently, § can be evaluated from
Bq. (6.2-27) by successively computing integrals of the form

- - - — 2
gk+1(sk+1,.-,sn)=f dydilsps - -»5p)e K% 12 k=1, n
(6.228)

where

>

a1 FE and g5 0 8T R

The task of evaluating § from Eq. (6.2-27) may still be difficult; however,
formulating the solution as a sequence of integrals of the form given in Eq.
(6.2-28) permits the systematic application of approximate integration tech-
niques, such as gaussian quadrature formulae. Other methods are suggested in
Ref. 7.

Turning now to some important special cases of Eq. (6.2-21), we note that.if
g(x) has the form

D) =XM1 x, M2 x P (6.2-29)
*In particular, T is an orthogonal matrix whose il is one. C , after

changing variables of integration fromgtog £ is given by Eq. (6.2-26).
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then § can be expressed analytically in terms of the first and second moments of
X, assuming the latter is gaussian. For example, if X has zero mean and

2(X) =Xy X2 X3X4 (6.2-30)
then it can be shown (Ref. 24) that

AN AN NN

B X1 X2X3Xs *’X/l};@a + X1XaX2X3 (6.2:31)

Product nonlinearities are an important class of functions because they can often
be used to approximate more general nonlinearities.

A second special case of practical interest arises when the nonlinear part of
the system dynamics i3 a function of only a few of the total number of state
variables. For example, there may be a single saturation nonlinearity of the type
shown in Fig. 6.2-1 embedded in a dynamical system which is otherwise linear.
In this case, the system equation of motion could be expressed as

0

0
A1) = Fx() + | fiog)| + w() (6.2:32)

0

0
where f;(x;) is a nonlinear function of only one state variable. It is demonstrated
below that this type of structure generally simplifies the computational effort

involved in computing the describing function gain matrix N¢ in Eq. (6.2-9).

Consider the ij™® element of N which requires calculating the quantity Eij in
Eq. (6.2-19). When the nonlinearities are functions of a limited number of state

variables, there will be some elements of Ny that depend upon values of &;; of the
form

&= f_ : . f_ : f (5 )p(x)dx (6.2:33)

where X is a subset of the vector X which excludes Xj. If it is further assumed
that X is a gaussian random variable, then with some manipulation the expression
for & in Eq. (6.2-33) can be simplified as follows*:

—_—
*This derivation was suggested by Prof. Wallace E. Vander Velde, Department of Aero-
nautics and A i ts Insti ot ‘Technology. Line three of Eq.

(6.2-34) is obtained from line two by substituting the gaussian form for P&sj) and p(Xs).
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g f [ e, [ xpoisex

=‘]_‘:~~-‘[:fi(xs)9(ls)d&j::xjp?&—i‘;)dxj

- 80T (El-200£01 T By -50) 8 0|

=%, + 0,Tpis (6.2-34)
where
B S Ely - %) (- 3] (6235)

and g is the describing function vector for fi(),), defined by
A - s o .
By, £ EI6GX5; — £)7] EILG, — £, — 2T (6.2:36)

The last equality in Eq. (6.2-34) verifies that &jjin Eq. (6.2-33) can be calculated
by first linearizing fi(x,) independently of x;, viz:

fitxg) = fi(k) + 0T & — 29

and then carrying out the indicated expectation operation. This result simplifies
the statistical linearization computations considerably, when nonlinearities are
functions of only a few state variables.

SUMMARY

This section demonstrates a method of deriving approximately optimal
nonlinear filters using statistical linearization. In many instances, this technique
yields superior performance to filters developed from Taylor series expansion of
the nonlinearities. The fact that practical application of the filter algorithm
requires that a form be assumed for the density function of the state is not
overly restrictive, since the same assumption is implicit in many of the existing
Taylor series-type filters. The decision as to which of the several types of filters
discussed in Sections 6.1 and 6.2 should be employed in a particular application
ultimately depends upon their computational complexity and relative per-
formance as observed from realistic computer simulations.

6.3 NONLINEAR LEAST-SQUARES ESTIMATION

As an alternative to the mini variance esti on criterion employed
throughout Sections 6.1 and 6.2, we briefly mention the subject of least-squares
estimation. This approach requires no statistical assumptions about the sources
of uncertainty in the problem, because the estimate of the state is chosen to
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provide a “best” fit to the observed t data in a deterministic, rather
than a statistical sense. To illustrate, for the case with no process noise — i.¢.,

(0 =1&(0D.1) 6.3-1)
Zx = (i) *+ ¥ (6.3-2)

a weighted least-squares estimate of the state at stage k, xk, is one which mini-
mizes the deterministic performance index

I = 2 @ — hiEDTV (& — &) (6.3-3)

where {WJ is a sequence of weighting matrices. Since Eq. (6.3-1) is unforced,
A(t) is determined for all time by its initial value xo; hence, the estimation
problem is equivalent to determining the value of X, which minimizes Jy. The
kth estimate of the initial condition, Kok can in principle be obtained by solving
the familiar necessary conditions for the minimum of a function,

=0 (6.3-4)

where)ik in Eq. (6.3-3) is expressed in terms of §oy through the solution to Eq.
(6.3-1).

The above formulation of the estimation problem is in the format of a
classical parameter optimization problem, where J, the function to be
minimized, is subject to the equality constraint conditions imposed by the
solutions to Eq. (6.3-1) at the measurement times. The latter can be expressed as
a nonlinear difference equation

Bx+1 = L) (6.3-5)
where

a tk+1
EXRE P I OY (636)
ti

Consequently, the estimate %o, at each stage is typically determined as the
solution to a two-point boundary problem (e.g., see Ref. 17). For general
nonlinear functions f, and £, the boundary value problem cannot be solved in
closed form; thus, approximate solution techniques must be employed to obtain
practical algorithms. To obtain smoothed estimates of Xo, after a fixed number
of measurements have been collected, various iterative techniques that have been
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developed specifically for solving optimization problems can be employed — e.g.,
steepest descent (Ref. 17), conjugate gradient (Ref. 11) and quasi-linearization
(Refs. 12 and 13). To obtain recursive estimates at each measurement
stage — i.e., to mechanize a filter — the sequence of functions, I, J,, ...,
defined in Eq. (6.3-3), must be minimized. Approximate recursive solutions have
been obtained using both the invariant embedding (Ref. 14) and quasi-
linearization methods. Extensions of the least-squares method to cases where Eq.
(6.3-1) includes a driving noise term, and where the measurements are
continuous are given in Refs. 15 and 16.

The above discussion presents a very brief summary of the philosophy of
least-squares estimation. It is a useful alternative to minimum variance estima-
tion in situations where the statistics of uncertain quantities are not well defined.
To obtain specific least-squares data processing algorithms, the reader is referred
to the cited works.

6.4 DIRECT STATISTICAL ANALYSIS OF NONLINEAR
SYSTEMS — CADET™

One often encounters systems, for which the statistical behavior is sought, in
which significant nonlinearities exist. These problems may include filters, linear
or otherwise, or may simply involve statistical signal propagation. In either case,
the existence of significant nonlinear behavior has traditionally necessitated the
employment of monte carlo techniques — repeated simulation trials plus
averaging — to arrive at a statistical description of system behavior. Fandreds,
often thousands, of sample responses are needed to obtain statistically

gful results; correspondingly, the ¢« burden can be exceptionally
severe both in cost and time. Thus, one is led to search for alternative methods
of analysis.

An exceptionally promising technique (Ref. 21), developed by The Analytic
Sciences Corporation specifically for the direct statistical analysis of dynamical
nonlinear systems, is presented herein. It is called the Covariance Analysis
DE:cnbmg functzon Techmque (CADET) This technique employs the device of

i ion d in Section 6.2; however, the viewpoint here is
statistical analysis rather than estimation.

The general form of the system to be considered is given by Eq. (6.0-1) and is
illustrated in Fig. 6.4-1, where x is the system state vector, w is a white noise
input [w ~ N(b,Q)], and f(x) is a vector nonlinear function. The objective is to
determine the statistical properties — mean and covariance matrix — of (t). The
success of CADET in achieving this goal depends on how well f(x) can be
approximated. The approximation criterion used here is the same as that
employed in Section 6.2; howewer, the CADET algorithm is derived somewhat
differently here, in order to expose the reader to additional properties of
statistical linearization.

Consider approximation of the nonlinear function f(X) by a linear function,
in the sense suggested by Fig. 6.4-2. The input to the nonlinear function, X. is
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NONLINEAR
FUNCTION

Figure 6,4-1  Nonlinear System Block Diagram

taken to be comprised of a mean, m, plus a zero mean, independent, random
process, [. Thus,*

X=m+r 6.41)

The mean can arise due to an average value of w, a mean initial value of X, a
rectification in the nonlinearity, or a combination of these.

NONLINEAR
FUNCTION

APPROXIMATION
[ ****** £
! .
i
| +
i
I
' i
[ i
! I
| 1
L - J
Figure 6.4-2  Describing Function Approximation
e vra—
*Co
with the devel in Section 6.2, note that the

t'ollowmg equivalences hold: 1 = —%, Njyn = _[ and Ny = Ng.
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We think of the approximating output, {,(x), as being comprised of the sum
of two terms, one linearly related to [n and the other linearly related to r. The
so-called Itiple-input describing function gain matrices, N and N,, are
chosen to minimize the mean square error in representing the actual non-
linearity output f(x) by £,(X).

Calculation of N, and N, is readily accomplished. Note first from Fig. 6.4-2
that

£=1(x) - £,(2)
=f(x)~ Npm— Ny (6.4-2)

Forming the matrix ge¥, we minimize the mean square approximation error by
computing

3
N,

(trace E[ggT]) = 3_13, (trace E[geT])=0 64-3)
These computations result in the relationships

Npom” = E [()] mT (6.44)
and

NE[n™] = E[f(x}"] (64-5)

since E[mT] = E{mT] = 0. Equations (6.44) and (6.4-5) define N, and N,.
Denoting the random process covariance matrix by S(t), viz:

S(t) = Bty (V)] 6.46)
and ing that § is ingular, we find
N(@m,S) = Efx)"]s™ 647

Rather than attempt to solve for Ny, (which requires a pseudoinverse calcula-
tion, since mmT is always singular), we simply require

Npy(mS)m = E[f(X)] (6.4-8)

This result is all we shall need to solve the problem at hand. Evaluation of the
expectations in Eq. (64-7) and (6.4-8) requires an assumption about the
probability density function of p(t). Most often a gaussian density is assumed,
although this need not be the case.
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Replacing the nonlinear function in Eq. (6.0-1) by the describing function

approximation indicated in Fig. 6.4-2, we see directly that the differential
equations of the resulting quasi-linear system are* (see Fig. 6.4-3)

B=N,mS)m+b

L=N@S)c+y 649)
and the covariance matrix for g satisfies

$=N@.S)S+SNT@S) +Q (6.4-10)
where Eq. (6.4-10) is simply the linear variance equation with F replaced by

N (@.S)- These equations are initialized by associating the mean portion of x(0)
with m(0), and the random portion with $(0), where

5(0)= E[(x(0) - m(0)) (x(0) — m(@)"]

A single forward integration of these coupled differential equations will then
produce m(t) and S(t).

3

DETERMINISTIC
ORTION

RANDOM
PORTION

Figure 6.4-3  Quasilinear System Model

A few special cases are worth noting. When the system is linear, f(x) = Fx and
Eqgs. (64-7) and (6.4-8) immediately lead to the result N, = N, = F.
Corresponding to Eqs. (6.4-9) and (6.4-10) are the familiar equations for mean
and covariance propagation in linear sy . When the nonlinearity is odd [ie.,
f—x) = —f(X)l, the effective gain to a small mean m in the presence of a

*These equations also follow directly from Eqs. (6.1-3) and (6.1-5). Note that u=w — b
is simply the zero mean value portion of the input, W.
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multid i 1, can be shown to be the same as the

effective gain of that nonlmeamy to f itself (Ref. 6), that is

lim N_=N(m=0 (6.4-11)
m =
n-0

The same is true for the effective gain to a small sinusoid and other small signals.
Discussion of this interesting result can be found in Ref. 7. It is also worth
noting that when r is ian, N, can be c« d from the relationshi

N(m.S)= dlm E[f)] (64-12)

Proof of this useful result is left as an exercise for the reader. Finally, in the case
of scalar nonlinearities, the scalar describing function gains are computed from
{Eqs. (6.4-7) and (6.4-8)}

1 - 24, 2
= j: _ e+ mye= 126" gr (6.4-13)
and
] f" 20, 2
= + —(1°/26%) .
M= o f f(r + m)e dr (6.4-14)

where 1 has been assumed to be 2 gaussian random process. Tables of the result
of this calculation for a wide variety of common nonlinearities can be found in
Ref. 7. When the mean of x is known to be zero, we set m to zero and calculate
only a single-input describing function,

=1

f f(re= 1261y (6.4-15)

21ra

These calculations are also extensively tabulated in Ref. 7.

Example 6.4-1

One issue of considerable importance is the degree of sensitivity which describing
function gains display as a function of different input process probability densities. To get a
feel for this itivity, we shall ine the limiter i ity with a zero mean, random
input whose probability density function is either uniform, triangular os gaussian.

Consider the uniform probability density function. For a/2 > & (see Fig. 6.4-4) we first
calculate o2 as
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ot = [ rzp(r)dr =

and then utilize this result to obtain ny, viz:

1 o0
n,=—07 f f(Drp(r)dr

& 2
-3 [ rla +Jq/ Mld]
Pl ") a "

Figure 6.4-4  Describing Function Results With Different Input Probability Densities
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For af2 < 8, it is clear that the input never causes output saturation to occur. Hence, in this
event we find

1 for 2ok
np= o — <———
T 5 3

Simi , for the tri ility density function we calculate
oot
6
and

_ _Zil 1(5)’+ 1 (5)’ " u)L
" 3¢ 6\o 126 \e s NCY

in which the so-called probability integral, which is tabulated (Ref. 7), occurs. This result
was depicted earlier in Fig. 6.2-2.
The results of these three calculations are plotted in Fig. 6.4-4. Qualitatively, at least, the
relative insensitivity of the linearizing gain to the various input signal probability densities is
This is obtained with other It ities as well. It to some degree, for
the success of CADET, given that the required probability densities are in fact never exactly
known,

Example 6.4-2

Consider the problem of a pursuer and an evader, initially closing head-on in a plane. The
evader has a random lateral pendicular to the initial line-of-sight,
chaxac!enzed by a first-order markov process wnth a standard deviation of 0.5g (16.1
ft/sec?). The pursuer has first-ord ded lateral ion dynamics with lateral
acceleration saturation. Pursuer lateral ferati id ds are taken as

ional to the p der line-of-sight rate (proportional guidance), with the
guldanoe gain « set at 3 A block diagram of the system under consideration is shown in Fig.
6.4-5, where TG is the time-to-intercept. Total problem time is 10 seconds.

In the absence of information to the contrary, we assume x; to be a gaussian random
process. If it is, the nonlinearity output will be significantly nongaussian for ¢ > &; but the
action of linear filtering around the loop back to x,; will be such as to reshape the density
function, whatever it is, back towards gaussian (a result of the central limit theorem). This is
the often cited filter hypothesis, common to most describing function analy ses.

Making use of Egs. (6.4-7) and (6.4-12), the quasi-linearized system can be represented
in state vector notation as follows:
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i 1 a o
1 - X 0
Teo’ To '
X2 [ 0 1 0 X2 0
= +

X3 —Nr (Ox)) 0 0 1 X3 [}

g 0 0 0 1| x4 wa
CADET and 200 run ble monte carlo si results for the evader acceleration

(x4) and the relative separation (x3) are presented in Fig. 6.4-6 for the linearized system
(6==) along with a 1g and a 0.1g pursuer lateral acceleration saturation level. The rms miss
distance is given by the relative separation at 10 seconds (TGQ=0). The results clearly
demons'.rate good agreement between CADET and the monte carlo method, even when the

effect is domil as in Figure 6.4-6d. The advantage of CADET, of
course, is that it armlytrcally compu!es the system statistics, thereby saving considerable
time. Mere ions of CADET are discussed in Ref, 25,
EVADER PURSUER
MANEUVER MODEL DYNAMICS
——

Ed

PURSUER SATURATION

DERMNITIONS
;= COMMANDED PURSUER ACCELERATION
RELATIVE LATERAL SEPARATION
© RELATIVE SEPARATION RATE
© EVADER LATERAL ACCELERATION
w, + WHITE NOISE

2yt
3
0

Figure 6.4-5  Kinematic Guidance Loop With Pursuer Lateral Acceleration Saturation
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PROBLEMS
Problem 6-1
Suppose that a parameter x has the probability density function
px)=2A%x e=XX forx> 0, =0 forx < 0
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with a specified value of A. (a) Show that E[x] = 2/A. (b) Show that the maximum value of
p(x) occurs at x = 1/A. (c) Consider an arbitrary density function, p(y), for a random
variable. Determine restrictions on p(y) such that E{y] is the same as the value of y that
maximizes p(y).

Problem 6-2
Prove that Eq. (6.1-5) reduces to
P=FP+PFT+Q
when f(x) = Fx

Problem 6-3
Consider a scalar nonlinear system

x(1) = fx) + w(t);  w(t) ~N(©0q)

with measurements
zx = h(xg) +vk; vk ~ N(O,1)

Let the estimate of the state at time tk be updated according to
Xk (#) = ak + bkzk + ki’

Assuming that the conditional mean just before the update, )‘Ek(— ), is known, (a) show that
Xi(+) is unbiased if

ak + bkh + ck(h? + 1) - Xk(-} =0
(b) Determine bk and ck, such that Xk(+) is a minimum variance estimate.

Problem 6-4

Derive the estimation equations given in 'rable 6.1-3 following the steps outlined in the
text

Problem 65
Defining

S0 =Py (O Zp(0
derive Eqs. (6.1-42) and (6.1-43) from Eqgs. (6.1-39) and (6.1-40).

Problem 6-6

(a) Given a scalar nonlinear function f(x) of a random variable x, show that the constants
a, b, and ¢ which minimize the mean square error

E[(f(x) — a — bx — x?)?]

are given by
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PN
a=f-bx - o

/\ —-
(4" mz + 4""‘3 + madix - - (2xm2 + m‘)(ix - f\zl

mymg - my?
/\

- adN
—(2Xmg + m;)(fx —fx)+ mz(t\ -t
e= il i
mymg — m;z

where
=Eftx - %} fori=2,34
{b) Show that if f(x) is an odd function of x, and if
X= m3 =0, thenc=0and

A -
fx - fx

m
Compare these values for b and ¢ with Eqgs. (6.2-7) and (6.2-10).

Problem 6-7

Suppose X is a zero mean gaussian random variable with variance o?. Show that E[x") =
MmH3.... (n—l)u“ for n even and zero for n odd. (Hint: Use the characteristic function

(Ref. 24) of the probability density ror x.)
Problem 6-8

Supply the missing details in deriving the third equality in Eq. (6.2-34).
Problem 6-9

Employ Eq. (6.4-3) to armrive at the relationships which define the multiple-input
describing functions Npp(m.S) and N({m.S), Eqs. (6.4-4) and (6.4-5).

Problem 6-10
D that the ibing function approximation error, e (see Fig. 6.4-2), is
fated with the inearity input. That is, show that E(gxT} = 0.
Problem 6-11

For a scalar nonlinearity described by

£x) = x(1 + x2)

show that the iple-input describing function gains ngy, and n; are given by
Bp(m, 057 = 1 + m? + 30,
ng(m, a,’) =1+3m%+ 3(7,.2

(Hint: Use the result E{s?] = 30;4, valid for a gaussian random variable 1.}
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Problem 6-12
For the ideal relay nonlinearity defined by
fx)=D forx >0
=0 forx =0
=-D forx<0

show that the describing functions for gaussian, triangular and uniform input signal
probability density functions are:

2D D
jan) = j— — & =
n; (gaussian) i 0.80 >

2 D D
i = |2 Z~082-
ny (triangular) 3 o ~ p

D

if = \/? D ~0.87
ng (uniform) i
Problem 6-13
For the nonlinear differential equation
x= alx+azx2 +w

where w ~ N(b,q), show that the i ana.lysis.‘ ibing fi T

(CADET) yields the following equations for mean and
m=aym+aym?+azp+b

P = 2a; +2aymlptq

7. SUBOPTIMAL FILTER DESIGN AND
SENSITIVITY ANALYSIS

After an excursion into the realm of nonlinear systems, measurements
and filters in Chapter 6, we now direct our attention back to the more
mathematically tractable subject of linear filtering, picking up where we left off
at the conclusion of Chapter 5. The subject here, suboptimal linear filters and
linear filter sensitivity, is of considerable practical importance to the present-
day design and operation of multisensor systems.

The filter and smoother equations, developed in Chapters 4 and S, provide a
simple set of rules for designing optimal linear data processors. At first glance,
the problem of filter design appears to have been solved. However, when the
Kalman filter equations are applied to practical problems, several difficulties
quickly become obvious. The truly optimal filter must model all error sources in
the system at hand. This often places an impossible burden on the computa-
tional capabilities available. Also, it is assumed in the filter equations that exact
descriptions of system dynamics, error statistics and the measurement process
are known. Similar statements apply to the use of the optimal smoother
equations. Because an unlimited computer capability is not usually available, the
designer of a filter or smoother purposely ignores or simplifies certain effects
when he represents them in his design equations; this results in a suboptimal
data processor. For this reason, and because some of the information about the
system behavior and statistics is not known precisely, the prudent engineer
performs a separate set of analyses to determine the sensitivity of his design to
any differences that might exist between his filter or smoother and one that fits
the optimal mold exactly. This p is called itivity analysis. The
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sensitivity analysis discussed here is distinct from another procedure which may,
from time to time, be given the same name in other writings — that of
recomputing the optimal filter equations for several sets of assumptions, each
time finding the accuracv which could be achieved if all the conditions of
optimality were perfectly satisfied.

In addition to establishing the overall sensitivity of a particular linear data
processing algorithm, the equations and procedures of sensitivity analysis can
inform the filter designer of individual error source contributions to esti-
mation errors. This type of source-by-source breakdown is valuable in

ing potential hard improv: For example if, for a given system
and filter, the error contribution from a particular component is relatively small,
specifications on that piece of equipment can be relaxed without seriousty
degrading system performance. Conversely, critical component specifications are
revealed when errors in a particular device are found to be among the dominant
sources of system error.

This chapter discusses various proven approaches to suboptimal filter design.
The equations for sensitivity analysis of linear filters and smoothers are
presented, with emphasis on the underlying development of relationships for
analyzing systems employing “optimal” filters. Several valuable methods of
utilizing information generated during sensitivity analyses are illustrated, and a
computer program, organized to enable study of suboptimal filter design and
sensitivity analysis, is described.

7.1 SUBOPTIMAL FILTER DESIGN

The data-combination algorithm, or filter. for a multisensor system is very
often a deliberate simplification of, or approximation to, the optimal (Kalman)
filter. One reason, already noted, for which the filter designer may choose to
depart from the strict Kalman filter formula is that the latter may impose an
unacceptable computer burden. Figure 7.1-1 illustrates the common experience
that a judicious reduction in filter size, leading to a suboptimal filter, often
provides a substantially smaller computer burden with little significant reduction
in system accuracy (the “conventional” data processing algorithm is understood
to be a fixed-gain filter, arrived at by some other means).

Since solution of the error covariance equations usually represents the major
portion of computer burden in any Kalman filter, an attractive way tn make the
filter meet computer hardware limitations is to precompute the error covariance,
and thus the filter gain. In particular, the behavior of the filter gain elements
may be approximated by a time function which is easy to generate using simple
electronic p ts. Useful choices for approximating the filter gain are:
constants, “staircases” (piecewise constant functions), and decaying exponen-
tials. Whenever an approximation to the optimal filter gain behavior is made, a
sensitivity analysis is required to determine its effect on estimation errors.

The filter designer may also depart from the optimal design because it appears
too sensitive to differences between the parameter values he uses to design the
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filter and those which may exist in practice. By choosing an appropriate
suboptimal design, it may be possible to reduce the sensitivity to uncertain
parameters, as illustrated in Fig. 7.1-2. In the figure, it is assumed that there is a
range of uncertainty in the value of 0y, ,, a certain parameter which is critical
to the filter design. The value of the parameter that is used, %designs is chosen in
the center of the interval in which 0., is known to lie. Of course when oy, . #
Ogesign the filter suffers some loss of accuracy, as indicated by the concave
shape of the plots. In the hypothetical case shown, the theoretically optimal
filter requires thirty states (n=30), but exhibits a wide variation in performance
over the range of design uncertainty. The 10-state design is relatively insensitive
but provides less accuracy than the 20-state filter shown, over the region of
uncertainty. The minimum sensitivity filter of 20 states represents the “best”
filter in this case. The best filter may be found, for example, by assuming a
probability density function for o, and computing an expected value of the
petformance measure for each proposed filter, selecting the one with the lowest
mean performance measure. It must be noted that reduced sensitivity is achieved
at the price of a larger minimum error.

While the discussion of suboptimal filter design in this chapter centers on
modifications to the basic Kalman filter procedure, observer theory (see Chapter
9) is also suggested as a viable technique for producing realizable filters.
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CHOOSING SIMPLIFIED SYSTEM MODELS

As just indicated, the filter designer may need to reduce the number of states
modeled not only because a fully optimal filter imposes too great 2 burden on
the p ilable, but also b the optimal filter may be too sensitive
to uncertainties in the statistical parameters (spectral densities of system noises,
etc.) which must be provided. There is emerging a body of theory which can
help the designer to reduce the sensitivity of his filter; this facet of the design
problem is discussed later. By and large, however, the filter designer is left
with few rules of general applicability to guide him in the process of eliminating
those parts of the full description of the system that can be ignored, rearranged
or replaced by 2 simpler mathematical description. He must depend, first and
foremost, on his physical understanding of the system with which he is dealing.
The common procedure is to make a simplified model based on insight, then
analyze the accuracy of the resulting filter in the presence of a complete set of
system d ics, properly represented. Thus. the approach is g lly one of
analysis rather than synthesis, and a number of steps are necessary before a
satisfactory result emerges. The equations for such analyses are given in Section
7.2. The present discussion concentrates on particular filter simplification
approaches which have proven successful in the past, illustrated by examples.
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Decoupling States — The number of multiplications necessary to compute the
error covariance matrix used in Kalman-based linear filters generally varies as the
third power of the state size (for more details see Chapter 8). Therefore. the
main thrust of attempts to reduce the computer burden imposed by such filters
is aimed at reducing the filter state size. Often the number of state variables
reaches an irreducible minimum and the filter still makes excessive demands on
the computer. Sometimes, an alternative technique is available that complements
the more obvious approach of deleting state variables; if certain portions of the
system are weakly coupled, it may be possible to break the relatively high-order
filter into several mutually exclusive lower-order filters — each with separate
covariance calculations, filter gains, etc. The advantage is evident if one considers
breaking an n-state filter into three n/3-state filters. Using the rule stated above,
the nestate filter requires kn® multiplications each time its covariance matrix is
propagated. On the other hand the three n/3-state filters require a total of
3k(n®/27) = kn®/9 multiplications to perform the same operation; the
corresponding computer burden is thus reduced by about 90%.

Example 7.1-1
Consider the second-order coupled system, with continuous measurements (see Fig.
7.1-3), given by

DR EE
MR

where Wy, wa, vy and v, are uncorrelated white noises.

Notice that the subsystem whose state is x; receives no feedback from x3. If 7 is zero,
the system is posed of two indep first-order markov p: The estimati
error covariance equations for a Kalman filter for the coupled, second-order system are

2 2
Py _Pra

P11 = -209P1s +q11 - —— 71.1-
()] 22
- P11, P22
= _ o+ A1 4 F22 + 7.1-3)
P12 (ﬂl az ™ [“)Plz P
2 2
: P12
P22 = —200p22 + a2z - 222 - 212 onpis (1.1-4)
f22 Y

where qyy, 22, 174 and 137 are the spectral densities of wy, W, vy and vy, respectively.
¥ the coupling term 7 is small, it is tempting 1o view the system as two separate,
uncoupled systems, as follows (see Fig. 7.1-4):

Xy = —ayXy + W
Zp=xg +vy (7.1-5a)
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and
V1
X = —apXg + Wy
22 =Xz +V2 (7.1-5b)
In this case the estimation error i i are simply
2
. P11
P11 = —21p11 + Q11 ——— @.16)
¥ ]
2
. P22
P2z = —2a2P22 +d22 — — (7.1-7)
T2

Several qualitative observations can be drawn from a companson of Eqs {7.1-2),(7.1-3) and
(7.1-4) with Eqs. (7.1-6) and (7.1-7). The expressions for pyy and pa, differ by terms
proportional to p,, and Plz ; if Py is small, the d led filter error are
similar to those of the filter deling the ! system th the terms in pl 1
that involve p,, always acts to reduce the error covariance in the complete filter; this
suggests that the filter using the complete model of the system will always do a better job of
estimating x,. Finally, if we view the esror covariances as varying very slowly (a quasi-static
approximation), Eq. (7.1-3) shows that the estimation error correlation term p,, can be
viewed as the output of a stable first-order system (assuming a; > 0, a; > 0) driven by a
forcing term p,,. It can be seen that if the couplmg coefficient is zero and py2(0) = 0, the
two sets of error are i

Figure 7.1-3  Block Diagram of Example System Deleting States — Wlien the computer burden indicates a need to delete
states, it must be done very carefully, and always with some risk. Here the filter
designer’s knowledge of the physics of the problem and of how rthe filter works
will assist him in selecting which states to eliminate first. Once the state vector
and nominal dynamic and statistical parameters are selected, the resulting filter
is subjected to a performance evaluation via 1

analysis t i (see
Section 7.2). If the performance is not acceptable, dominant error sources must
be isolated and an effort made to reduce their effects. Where a dominant
correlated error source was not estimated initially in the filter, it may be
necessary to estimate it by adding extra states to the filter.* If it was too simply
modeled in the filter, model complexity may have to be increased or model
parameters adjusted to reduce the effect of this error source. Based on
considerations of this type, the filter design is amended and the evaluation
process repeated, thus starting a second cycle in this trial and error design
approach.

w,

il

w2

Example 7.1-2
Consider the second-order system shown in Fig. 7.1-5 and given by Eq. (7.1-8),

*It should be emphasized that the act of estimating an additi i
error source does not, in itself, igni imp d filter perf

Figure 7.14  Block Diagram of Example System with v Taken as Zero
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%3 -« O 7 Xy w
N + (1.1-8)
Xg 1 —ay X2 0
T —
+ f 1.
w j ‘z
a a,

Figure 7.1-5  Block Diagram of Eq. (7.1-8)

Between the error for the state variables in Eq. (7.1-8)
are given by
P11 = —2P11+q 7119
P12 =p11 — (o +a2) P12 (7.1-10)
P22 = 2p12 - 202P22 (7.1-11)

where q is the spectral density of w. If the frequency content of X is high, compared to the
bandwidth of the first-order ioop whose output is X3, the filter designer may wish to model
the entire system by a single first-order markov process driven by white noise. In that case,
only one state variable, X3, remains. The spectzal density, q', of the “white noise™ driving
this system is given by q4' = 2py/a; = q/m,2 (Refs. 1 and 2), where pyy,, is the
steady-state value of py, calculated from Eq. (7.1-9). The error covariance equation for the
lone state variable of the simplified system is

P=—2agp+q (1.112)

In the steady state, the state error covariance of the simplified system can be found from
Eq.(7.1-12) to be

(7.1-13)

The steady-state error covariance of the corresponding state, X, in the full system is found
from Egs. (7.1-9), (7.1-10) and (7.1-11) to be

q

2ajay(a; +az) @.1-14)

P22 =

It can be seen from Egs. (7.1-13) and (7.1-14) that when the frequency content of x, is
much larger than the bandwidth of the first-order system whose output is x5 (ie., ay » a3),
the steady-state covariance for the output of the simplified system closely approximates
that of the full system. Refi 3 expk this i in more lity. It was also
employed in Example 4.6-1.
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Verification of Filter Design — We conclude this section with an attempt to
jmpress upon the reader the importance of checking, by suitable sensitivity
analyses, any suboptimal filter design he may produce. The motivation is best
illustrated by discussing an unusual type of filter behavior that has been
observed in many apparently well-thought-out suboptimal filter designs, when
they were subjected to analysis which correctly accounts for all error sources.
This anomalous behavior is characterized by a significant growth in errors in the
estimate of a particular variable when some measurements are incorporated by
the filter. The reason for this unusual performance is usually traced to a
difference between error correlations indicated by the filter covariance matrix,
and those that are found to exist when the true error behavior is computed.

Figure 7.1-6 helps to illustrate how incorrect correlations can cause a
measurement to be processed improperly. Before the measurement the state
estimates are X, and ¥, with the estimation error distributions illustrated in the
figure by ellipses which represent equal-error contours. The measurement
indicates, within some narrow band of uncertainty not shown, that the state y is
at y,,. Because the measurement is quite precise, the filter corrects the estimate
of the y coordinate, y, to a value that is essentially equal to the measurement,
Ym- Because of the correlation that the filter thinks exists between the x and y

dinates, the x coordi is corrected to X,. Observe that no direct
measurement of x is made, but the correlation is used to imply x from a
measurement of y. If the correct error correlations were known, the filter would

FILTER
ACTUAL ESTIMATION INDICATION of ESTIMATION
ERROR CORRELATIONS ERROR CORRELATIONS

FILTER CORRECTS THE STATE,
USING MEASUREMENT y

R FILTER SHOULD WAVE
CORRECTED THE STATE
IN THIS MANNER

<Y

Figure 7.1-6  1lh ion of Useofa ¥
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correct the state to §; = y_. and X). Because the filter covariance matrix
indicated the wrong correlation, the filter has “corrected” its estimate of x in
the wrong direction, thus increasing the error in its estimate of that variable.
This sorf of improper behavior cannot usually be anticipated when choosing
states, etc., for a suboptimal filter design. It can only be observed by performing
sensitivity analyses.

CHOOSING SIMPLIFIED FILTER GAINS

It has been pointed out previously that the major portion of the
computational burden imposed by the Kalman filter involves computing the
filter error covariance matrix for use in determining the filter gains. While the
previous discussions emphasized the role of reducing this effort by simplifying
the system description and cutting the filter state size, it is sometimes possible
and desirable to eliminate alfogether the on-line covariance calculations. In these
cases, the error covariance matrix is computed beforehand and the filter gain
histories are observed. While a pre-recorded set of precise gain histories could be
stored and used, a more attractive approach is to approximate the observed gain
behavior by analytic functions of time, which can be easily computed in real

OPTIMAL GAIN

SUBOPTIMAL GAIN

FILTER GAIN

TIME

Figure 7.1-7  Piecewise Constant Suboptimal Gain

SUBOPTIMAL FiLTER DESIGN AND SENSITIVITY ANALYSIS 239

time. These tend to be exponentials, staircases and constants. Figure 7.1-7
illustrates a staircase, or piecewise constant, approximation to an optimal time
history for a single element in a filter gain matrix. The same gain element could
also be well approximated by a decaying exponential function of time.

Approximating the Optimal Gains — Reference 4 discusses a System for
which, as a practical matter, an investigation was performed to determine 2 set
of piecewise constant filter gains that will approximate the performance of a
Kalman optimal filter. Figure 7.1-8 illustrates such a gain approximation used
during initial operation of the system. The continuous optimal gain curve was
approximated by a piecewise constant gain; Fig. 7.1-9 shows one resulting error
in the system. As expected, the suboptimal gain history produces larger errors
for a certain duration of time. The interesting observation here is that the
steady-state error does not suffer as a consequence of the gain approximation. In
many systems, the longer convergence time may be an acceptable price to pay
for not having to compute the error covariance and gain matrices on-line or to
store their detailed time histories.

While it is usually possible to select good approximations to the optimal filter
gains simply by observing their time behavior and using subjective judgement,
some analysis has been performed which could be brought to bear on the
selection of an optimal set of piecewise constant gains with which to
approximate time-varying gain elements. The work is described in Ref. 5, and
deals with the linear regulator problem whose formulation is similar to that of

TIME

FILTER GAIN

KALMAN OPTIMAL GAIN HISTORY

Figure 7.1-8  Fixed-Gain Approximations (Ref. 4)
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~N STEP-GAIN SYSTEM
\/

\ KALMAN OPTIMAL SYSTEM

ERROR

Y

TIME

Figure 7.1 History of rms Error for Gain Choices Shown in Fig. 7.1-8 (Ref. 4)

optimal estimation. Briefly, a set of discrete time intervals— t; <t < s
i=1,2,...N— isestablished and a constant controller gain matrix is sought for
each of these intervals by minimizing the average quad cost function. A
steepest descent technique is used to converge on the minimum. The same
technique could be useful for selecting piecewise constant filter gains for 2 linear
estimator. Figure 7.1-10 shows the one set of optimal piecewise constant gains,
k; (1), chosen in Ref. 5 and the optimal continuous gain they replace. It can be
seen that the problem was solved for several arbitrary subdivisions of the time
scale. Note that the constant gains do not usually represent the average optimal
continuous gain fer the time interval they span.

Using Steady-State Gains — The limiting case of a set of piecewise constant
gains is choosing each gain to be constant over all time; logical choices for the
constants are the set of gains reached when the filter error covariance equations
are allowed to achieve steady state. The gain matrix is simply given by

K=P_HTR!

where the H and R matrices, as well as the dynamics matrix F, must be, constant
for the steady-state error covariance, P, to exist. More generally, HTR ' H must
be constant; this condition is seldom satisfied if H and R are not constant. In
Chapter 4 it is shown that 2 Kalman filter which uses gains derived from the
steady-state covariance is, in fact, identical with the Wiener filter.
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Figure 7.1-10  Optimal and Suboptimat Feedback Gains for Third-Ozder System (Ref. 5)

Aahl

The use of steady-state gains that are over 2
sufficiently long period of time such that a steady-state condition in the filter is
achieved before critical (in terms of system accuracy) points in time are reached.
This approach forfeits the rapid convergence capability of the filter, which
depends largely on time-varying gains to weight the first few measurements
heavily when initial uncertainty about the state value is high. How much time is
required for the fixed gain filter errors to approach steady state (and therefore



o
b,

242  APPLIED OPTIMAL ESTIMATION

satisfy conditions for which the filter was designed) is, of course, a function of
the particular problem. It is sufficient to say that, in most cases, the constant
gain filter will be considerably slower in reaching steady state than the
time-varying filter whose steady-state gains the former may be using. A lower
bound on the convergence time of the fixed-gain filter can be determined by
noting how long it takes for the steady-state covariance matrix, on which those
fixed gains are based, to develop.

Example 7.1-3

Consider the problem of estimating a random walk from a noisy measurement
X=w, w~ N(0,q)

Z=X+Y, v ~ N(0,r)

The estimation erzror i ion for the optimal filter is simply

PO N
P N q

In the steady state p,, = 0 and

P =VIQ
k.= 2

Observe that the steady-state gain weights the residuals, (z ~ X), highly when the process
noise is high and the measurement noise is low. Also, the steady-state error is driven by the
process and measurement noises alone,

Consider the error covariance matrix equations for a continuous Kalman filter
and a Wiener filter
Py = FPy+Py FT+GQGT Py HTR'HPy (Kalman filter)
Py = (F—K.H) Py+Py (F-K.H)T+GQGT+K_RK, T  (Wiener filter)*
where

K. =P,HTR ™!

*An error covariance differential equation for a filter with the structure of a Kalman fitter
but an arbitrary gain K is

P = (F-KH) P + P(F-KH)T + GQGT + KRKT

Proof of this is left as an exercise for the reader (see Problem 7-7).
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and P, is the steady-state Kalman filter error covariance. Reference 6 shows that
an upper bound on the Hilbert or spectral norm (Ref. 7)* of the difference
between the Kalman and Wiener error covariances is given by

I1P(0)—P_ I” IHTR'H |
8lamay |

I Py(t) — P () I < (7.1-15)

where P(0) is the initial error covariance and @y, , is the maximum real part of
the eigenvalues of (F — K, H). Equation (7.1-15) indicates that an upper bound
on the difference between the Kalman and Wiener filter errors is large when the
difference between the initial and steady-state errors, P(0) = P(0) — P, is large.
Also, &, is the inverse of the largest time constant in the Wiener filter; the
bound on 8P varies with that time constant. The matrix HTR ™' H is recognized as
being related to the information contained in each measurement, from the
matrix inversion relationship, Eq. (4.2-19), of Chapter 4.

Example 7.1-4
Consider the Kalman and Wiener filters for the scalar system
X=ax +w, w ~ N(0,q)
2=bx +v, v~ N@©,n

The Kalman filter error covariance equation is

. bz 2
Pg{t) = 2apg(t) +q - Li o) » P0) =po

T

The solution of this equation is, from Problem 4-11,

PO = (abgzg +q) sinhgt + gpg cosh gt

—ng-—a) sinh 8t + 8 cosh gt

where

*The Hilbert norm of a matrix M, denoted Ml is given by

IMI = A0 (MTM)

where Aoy MTM) is the lazgest eigenvalue of MTM.
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1t can be shown by limiting arguments that

ar ']
SEALE
Lol (l a)

The gain of the Wiener filter is thus

Using Eq. (7.1-15), the upper bound on &p(1) = pwlt) — pK(t) is

2 o

Ipo — Pl Il—rll

et €« ——
w0 Blamax!

which, given the propertiesof the Hilbert norm,* becomes

2.2

- b

sp(0) {Po — Do)
Brp

MINIMUM SENSITIVITY DESIGN

in many problems dynamic and statistical parameters are known only to lie in
certain bounded ranges. A game-theoretic approach to filter design in the presence
of these parameter uncertainties has been formulated and studied in Refs. 8 and
9. Using any of the previously described state reduction techniques, a
suboptimal filter form is selected @ priori, but the filter parameters are left
unspecified. Any filter performance measure is now a function of uncertain real
world system parameters and the unspecified filter p Let us denote the
uncertain real world system parameters by 2 vector g and the unspecified filter
parameters by the vector §. It is assumed that @ and § lie in closed bounded sets,
A and B, respectively. A ient scalar for any suboptimal filter
performance is then

1(g, 8)= Trace [MP] (1.1-16)

where M is a positive definite weighting matrix, included to balance the
importance one assigns to each system error and P is the filter error covariance
matrix. J (@, §) is then simply a weighted sum of all system errors. For a given g,
the mini value of J, d d Jo(_q), is attained by the Kalman filter and isa
function of g alone. Clearly, J (g, §) > J,(a) for all @€ A and all § e B. Since g is
unknown and § alone is available for selection by the designer, it seems most
natural to view g and § as adversaries in the game-theoretic sense. With this in

*From the definition of the Hilbert norm, when M is a scalar, m,

mll =m
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mind, three sensitivity measures and their associated rules of synthesis are
appropriate. They are:

S, = min max J(g, §)
BeB aeA

S; = min max( [3@8) - Jo(@]

L‘ieB
o J(g,g)—Jo@o]
S ["“X‘[ 1@

The S, design simply minimizes the maximum value of J over the parameter set
. This places an upper bound on the cost, and might be interpreted as a “worst
case” design. The second and third criteria minimize the maximum absolute and
relative deviations, respectively, of the filter error from optimum, over the
parameter set @, Thus, the S, and S; criteria force the filter error to track the
optimum error within some tolerance over the entire set @ € A. In each case the
above procedures yield a fixed value of § and, therefore, a fixed filter design
good for all values of the uncertain parameters @.

Research to date has concentrated on the design of optimally insensitive
filters in the presence of uncertain system and measurement noise statistics.
Specifically, it has been assumed that elements of the system and measurement
noise covariance matrices, Q and R respectively, were unknown. These unknown
elements then constitute the vector g. For the S, filter, which is the easiest to
find, a rule of thumb is available: A good initial guess for g is that value which
maximizes Jo(g), denoted o’ — i.e.,

Jole) = max Jo(®)
aeA

When the filter state and the real world state are of the same dimension, this
result is exact and the S, filter is simply the Kalman filter for ',

Example 7.1-5

Consider a first-order plant with a noisy measurement
X=-x+w, w~ N(0,q), 0<g<1
Z=X+v, v~ N(@,1), 0<r<1

Given the filter equation
):Z= X+ k(z — i); k unspecified

select J .- ?,, where P, is the steady-state value of the filter error covariance, and perform
the minimization over the range 8 = k, k > —1 for stability and the maximization over the
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range of q and r. {Note that this is the same measure of filter performance expressed in Eq.
{7.1-16)}. Then

K+
_kr+gq So= @ +rt? -

Wi’ r (1.1-17)
The S value of §, §; = min(k > —1) max(q,7) [J(k,q,1)], occurs at @ =1 =1 with k= /2~1.
The S, criterion is satisfied whenq =0,r=1and q = 1, r= 0 with k = 1. Since Jo = 0 when
I or q are zero, the argument of the S3 criterion is infinite at those boundaries of the r,q
space under consideration, and the filter satisfying the 83 criterion does not exist in this
example.

Example 7.1-6
Consider the continuous first-order markov process with noisy measurements (5 > 0)

x=-px+w, w~N@©4Q)
Z2=X+Y, v ~ N(0.n

Assuming that the value of g is uncertain, a filter identical in form to the Kalman filter is
chosen to estimate X, namely

i- ke -R)

where it is required for stability that ¢ + k > 0. The covariance of the estimation error for
this simple problem has a steady-state value, denoted here as p_, and given by

_K+q @ - M4
25 +K) 2001 + K + By +K)

Poo

Observe that p, is a function of both the unknown g and the unspecified filter parameters
frand k. The S, S, and Sj filters described above were determined for this example for the
case whereq =10, r=1and0.1<g< 1.

Figure 7.1-11 shows the etror performance of the optimal Sy, S;, and Sy filters versus
the true value of 8. The performance of a Kalman filter designed for g = 0.5 is also
illustrated. Observe that the S, filter has the smallest maximum error, while the $; and S3
filters tend to track the optimal performance more closely. The S3 error covariance, for
example, is everywhere less than 8% above optimum and is only 0.4% from optimum at
# = 0.3. By comparison, the Kalman filter designed for a nominal value of g equal to 0.5
degrades rapidly as the true value of 8 drops below Q.5.

This example shows that the minimax filters can achieve near optimal performance over
wide p iati The filter i is i ical in form to the Kalman filter
and thus avoids the additional hanizati ity of adaptive schemes s i
suggested.

7.2 SENSITIVITY ANALYSIS: KALMAN FILTER

The statistical (or covariance) analysis which determines the true behavior of
estimation errors in 2 suboptimal linear filter is necessarily more complex than
the work presented in previous chapters. The equations are developed below.
Emphasis here is placed on the technical aspects of the analysis, rather than the
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Figure 7.1-11  Estimation Error Covariance Compatison as a Function of True System
Bandwidth (Ref. 9)

motivation. Also, the equations developed, while correct, are not necessarily
most efficient, because emphasis here is placed on the tutorial presentation of
the subject. References 10 and 11 provide alternative sensitivity equations which
may require less computer space and time.

Observe the structure of the Kalman filter, illustrated in Fig. 7.2-1, for the
continuous case; the filter contains an exact model of the system dynamics and
measurement process. Additionally, note that the filter gain matrix is calculated
using, the exact models of dynamics and measurement and exact knowledge of
the process noise covariance (and the influence matrix.G), measurement error
covariance, and initial estimation error covariance.

There are two broad questions we can ask with respect to the sensitivity of
the filter: “How does the error covariance behave if we make approximations in
computing the gain matrix K, but use the correct values of F and H in the
implemented filter?” and “How does the error covariance behave if we compute
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SYSTEM el kaumAN FILTER
[ A e e T T
|

Figure 7.2-1  Block Diagram of the Continuous Filter Equations

the gain matrix in some manner (optimal or otherwise), and use wrong values of
F and H in the implemented filter?” The first question is relatively easy to
answer, while the second question requires a iderabl of extra
calculation.

EXACT IMPLEMENTATION OF DYNAMICS AND MEASUREMENTS

The error covariance relationships for a discrete filter with the same structure
as the Kalman filter, but with an arbitrary gain matrix, are (see Problem 7-6):

P(#) = (I-KyHy) Po(=) A-K H)T + K R Ky T (7.2-1)

Pyi (=) = OB (+) ‘ka +Qy (7.2-2)

A single equation describes the corresp
continuous filter (see Problem 7-7), viz:

. .
g error propagation for the

P = (F—KH)P + P(F-KH)T + GQGT + KRKT (7.2:3)

Under the assumptions with which we are presently dealing, Fig. 7.2-1 (which
lustrates the similarity between the filter and the system) can be rearranged to
provide a corresponding block diagram for estimation error dynamics, shown in
Fig. 7.2-2. A similar error block diagram for the discrete filter is shown in Fig.
7.2-3. The error equations illustrated in these two figures are used in the
derivation of Eqs. (7.2-1),(7.2-2) and (7.2-3).

If the expressions for the optimal gain matrix provided earlier are substituted
into Egs. (7.2-1) and (7.2-3), they reduce to the previously stated covariance
relations for the optimal filter, in which the K matrix does not appear explicitly.
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Equations (7.2-3) or (7.2-1) and (7.2-2), together with the covariance equations
for the optimal filter and the definition of the gain matrix, can be used to
determine the effect of using incorrect values of F, H, G, R or P(0) in the
calculation of the Kalman gain matrix. The procedure involves two steps which
can be performed either simult ly or in seq In the latter case K is
computed and stored for later use in Eqs. (7.2-1) or (7.2-3).

wit)

£

Figure 7.2-2  Block Diagram of ion Error Dy ics of a C
Filter: System Dynamics and Measurement Process Perfectly
Modeled in the Filter
wit)

Figure 7.2-3  Block Diagram of Estimation Error Dynamics of a Discrete
Filter: System Dynamics and Measurement Process
Perfectly Modeled in the Filter
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Step 1: 1n previous chapters the following error covariance equations, in which
the filter gain matrix, K, does not appear explicitly, were derived. For
the discrete-time case,

B (+)=Pyp(=) = P () H T (M P (OH, T + Ry ) H P () (7.24)

Py ()= P (M) 2, T +Q (1.2:5)
or, for the continuous-time case,

P=FP+PFT — PHTR'HP + GQGT (7.2:6)

Using Eqgs. (7.2-4) and (7.2-5), or Eq. (7.2-6), and design* values of F,
H, G, Q, R and P(0), compute the error covariance history. Also, using
the equations from previous discussions, compute the filter gain matrix
which would be optimal if the design values were correct.

Step 2: Inserting the gain matrix computed in Step 1 into Eq. (7.2-1) or (7.2-3),
and using the correct values of F, H, G. O. R and P(0) (which are to
be implemented in the filter), compute the “actual” error covariance
history.

Because Egs. (7.2-1), (7.2-2) and (7.2-3) are based only on the structure of
the Kalman filter, and not on any assumption that the optimal gain matrix is
employed, they can be used to analyze the filter error covariance for any set of
filter gains. This permits investigation of proposed sets of precomputed gains or
simplified filter gains, such as decaying exponentials, etc., assuming the correct F
(or ®) and H matrices are implemented in the filter. In that case, the gain matrix
is simply inserted in Egs. (7.2-1) or (7.2-3) and. using correct values for F, H, C
Q, Rand P(0), Egs. (7.2-1) and (7.2-2), or (7.2-3), are used to compute the error
covariance.

INCORRECT IMPLEMENTATION OF DYNAMICS AND MEASUREMENTS

Answering the second question posed in the introduction to this section is
more difficult. It is tempting to compute a filter gain matrix based on Eqs.
(7.2-4) and (7.2-5) or (7.2-6) and a set of design values, and insert it into Eq.
(7.2-1) or (7.2-3); essentially, this is following the same procedure as outlined
above, The fallacy of this approach is that Eqs. (7.2-1) through (7.2-6) are all
based on the assumption that the system dynamics and measurement process are
identical in the Kalman filter implementation and the real world — the set of
circumstances treated in the previous section.

*Design values are those used to derive the filter gain matrix. The filter implementation
requires specification of sysiem dynamics and measurement matrices, which do not
necessarily have 10 be the same as the corresponding matrices used in filter gain matrix
design.
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Continuous Filter — The procedure for deriving error covariance equations
which can be used to answer the second question posed is quite similar to that
used in the earlier derivations in Chapters 3 and 4. The error sensitivity
equations for the continuous filter are derived as follows: From Chapter 4 we
know that the equations for the state and the estimate are given by

X=Fx+Gw
z=Hx+y
& = F*§ + K* [z-H*§] 727

where the asterisked quantities K*, H* and F* represent the filter gain and the
measurement process and system dynamics implemented in the filter; H and F
represent the actual measurement process and system dynamics. In this
derivation, it is assumed that the state variables estimated and those needed to
completelv describe the process are identical. The itivity ions for the

case when the estimated state is a subset of the entire state are provided at the
end of the derivation. Equation (7.2-7) illustrates the fact that the actual system
dynamics and measurement process, represented by the matrices F and H, are
not faithfully reproduced in the filter —i.e., F # F* , H # H*, The error in the
estimate, X = X — X, obeys, from Eq. (7.2.7),

& = (F*—K*H*)% — (F—K*H)x — Gw +K*y (7.2-8)
Letting

AF2F*—F and AHZH*-H
and recalling the relation between x, X and X, Eq. (7.2-8) can be written as

i = (F*—K*H"X + (AF—K*AH)x — Gw + K*y (7.29)

A new vector, x', is defined by

ff

The differential equation for x' in vector-matrix form is, from Eqs. (7.2-7) and
(729),

> 1 I
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Note that Eq. (7.2-10) is in the form of the differential equation for the state of
a linear system driven by white noise. From Chapter 4, the covariance equation
for x' is

d_@BdITﬂD = FE{x'xT] +E(x'xT] FT+E[w'y'T) (7.2-11)

The quantity of interest, the covariance of %, is the upper left corner of the
covariance matrix of x':

- [B T}
Efxx"] = v (7.2-12)
where

PLERET) V2ERET) U2 BT

Con}bining Egs. (7.2-11) and (7.2-12) and expressing the expected value of
w'w'T in terms of the spectral density matrices Q and R,

[_f’_iV_T . [Fr-XeHe | aF —k+aH] [PV
ViU o} \ F viu

L[V [&F:-_K_‘*_‘*_)T_ Lo
VU | [(AF—K*AH)T | FT
[GQGT +K*RK*T | —GQGT]

g [P RIRRT 606 (7.213)

Breaking Eq. (7.2-13) into its component parts, the error sensitivity equations
become

P=(F*—K*H*)P + P(F*-K*H*)T + (AF-K* AH)V

+ VT(AF—K* AH)T + GQGT + K*RK*T (7.2-14)
V = FV + V(F*—K*H*)T + U(AF-K* AH)T — GQGT (7.2-15)
U=FU+ UFT + GQGT (7.2-16)

Since the initial uncertainty in the estimate is identical with the uncertainty in
the state,

P(0) = -V(0) = U(0) = E[x(0)x(0)T)
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Note that when the actual system dynamics and measurement process are
implemented (AF = 0, AH =‘0), Egs. (7.2-14), (7.2-15) and (7.2-16) reduce to
Eq. (7.2-3), as expected. There can be only one gain matrix of interest here, the
one impl d in the filter, consequently, K* = K.

If the state vector of the implemented filter contains fewer elements than the
correct state vector, F and F* and H and H* will not be compatible in terms of
their dimensions. They can be made compatible by the use of an appropriate
nonsquare matrix. For example, if the state vector implemented consists of the
first four elements in a six-element true state vector, Fis6 X 6 and F*is4 X 4.
The difference matrix AF can be defined by

AF =WTF*W —F (7.217)

where the matrix W accounts for the dimensional incompatibility between F and
F*,

o O O =
(=2~ T ]
o = o o
-0 o e
[ =2 =R = = ]
o o oo

The matrix W is, in fact, the transformation between the true state and that
implemented,

Ximplemented = Wxirue
A similar transformation can make H* compatible with H,

AH=H*W-H (7.2-18)

The sensitivity equations for a continuous filter which does not estimate the
entire state vector are

P = WT(F*—K*H*)WP + PWT(F*—K*H*)TW + (AF-WTK*AH)V
+ VT(AF-WTK*AH)T + GQGT + WIK*RK*Tw
V = FV + VWT (F*—K*H*)TW + U(AF-WTK*AH)T-GQGT
U=FU + UFT + GQGT (7.2-19)

where AF and AH are defined in Egs. (7.2-17) and (7.2-18). A more complex set
of sensitivity equations, covering the case where the filter state is a general linear
combination of the true states, is given in Refs. 10 and 11 for both continuous
and discrete linear filters.
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It should be emphasized that the only purpose of the transformation W is to
account for the elimination of certain state variables in the implementation. The
approach illustrated here will not cover the situation where entirely different
sets of state variables are used.

Discrete Filter — The sensitivity equations for the discrete filter which
correspond to Egs. (7.2-14) through (7.2-16) are, between measurements,

P ()= 8 P 2T + v T T
+AG, Vi (1) &, *T + A0, U AD,T +Q
Vir 1) = O V(B 0 *T + & U ad, T — Qp
Upey = DU T+ Qg (7.2-20)
and across a measurement,
Pi() = (1K *H, 9By () (=K *Hy )T — (1-K *H OV, T (A, TR, ¥ T
— K *8H V() (1 - K *Hi 9T + K *aH U AH TR, *T
+ Kk an Kk *T
Vi(#) =V () G-K H T - U aH T *T 7.221)
where
AD2 0% — @

When A® and AH are zero, Eqgs. (7.2-20) and (7.2-21) become identical with
Eqs. (7.2-2) and (7.2-1), respectively.

It is worth noting here that if all the states whose values are estimated by the
filter are inst ly adjusted after each according to

Y

2+ = (=) - £ (¥) (7.2-22)

the estimate of the state following such a correction must be zero. In that case,
the equation for propagating the estimate between states and incorporating the
next estimate is

Eee1 () =Ky (7.2:23)

and there is no need for specifying filter matrices * and H*. Equations (7.2-1)
and (7.2-2) are the equations which apply in this case. Instantanecus
adjustments can be made if the states being estimated are formed from variables
stored in a digital computer.
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7.3 SENSITIVITY ANALYSIS EXAMPLES

This section provides the reader with several examples of the application of
sensitivity analysis.

Example 7.3-1

Consider a stationary, first-order markov process where the state is to be identified from
a noisy measurement:

(1) = —fx + w, w ~ N(0,q)

Z{t)=x+v, v ~ N(O,r) 7.3-1)
Equation (7,2-3) becomes the scalar equation

p=(-8-K)p +p(~p-k) +q +Kk’r (1.32)
In the steady state, we set p,, = 0, and thus find

_ 9+

=22 7.3-3)
2(8 +k)

P

, from

The optimal k{(d\ d ko) is puted as p_h/r or, equi

both of which yield

SN - a0

The variation of p,, 2s a function of k is illustrated in Fig. 7.3-1.
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Figure 7.3-1  Sensitivity Curve, p, vs k
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If the filter is designed for particular values of r and q, k is fixed according to Eq,
(7.3-4). It can be seen from Eq. (7.3-3) that, with k fixed, the steady-state efror covariance
varies linearly with the actual process noise spectral density or measurement error spectral
density. This is illustrated in Fig. 7.3-2.

If the true noise variances are assumed fixed and the design values of q and r are varied,
quite different curves result. Any deviation of the design variances, and consequently k,
from the correct values will cause an increase in the filter error variance. This is a
consequence of the optimality of the filter, and is illustrated in Fig. 7.3-3. The sensitivities
of the first-order process shown in Figs. 7.3-2 and 7.3-3 are similar to those observed in
higher-order systems.

1 |
! \

K : i
2(8+k) { i
L} r

]

Y

{a) Variation of Actuat Process Noise {b} Vanation of Actual Measurement Noise

Figure 7.3-2  Effect of Changing Actual Noise Variances

t
t
1
1) a

ta) Variation of Design Process Noise

{b) Variation of Design Measurement Noise

Figure 7.3-3  Effects of Changing Design Values of Noise Variances
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Example 7.3-2

Continuing with the example, let us suppose that there is an uncertainty in the value of
the coefficient g in the system dynamics. Furthermore, let us suppose that the filter designer
selects a design value g* and is certain of the mean square magnitude, o2, of the state x.
Consequently, the designer always picks g* = 28%0". In this case, the steady-state estimation
effor covariance can be shown to be

1
B+ A}

where A = o h;': +2p%a2/r

Figure 7.3-4 is a plot of p_, as a function of #*, for the case g =r
similarity with Fig. 7.3-3.

b= {qz [+ B*IN+ (8 - B*)B* | + 1%\ — BH)(B* — ﬂ)} 7.3-5)

2 = ], Notice the

regi:
084

080

2
{

Figure 7.3-4  Effect of Varying Design Value of System Dynamics Parameter

Example 7.3-3

To illustrate the effect of different system dynamics models, we consider the system
shown in Figure 7.3-Sa. The state of interest is influenced by the forcing function. A
several i i d, is used to estimate the system state. The two

possible models for the forcing i idered are: a fust-order markov process and a
random ramp, both of which are illustrated in Fig. 7.3-5b. Figures 7.3-6, 7.3-7, and 7.3-8
illustrate the results of research into the importance of that model. In Fig. 7.3-6, the filter
has been designed with the forcing function modeled as a first-order markov process but the
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actual forcing function is a random ramp. The rms error in the estimate of the state of
interest is shown as a function of the rms ramp slope 4. In Fig. 7.3-7, the filter has been
redesigned with the forcing function madeled as a random ramp and the value of v in
the filter design is assumed to be always correct (ie., the filter and actual values of v
coincide for each value of 4 shown; in this sense the filter is always optimal).

It can be seen by comparing Figs. 7.3-6 and 7.3-7 that having the correct system model
makes a di in filter per However, the situation depicted in
Fig. 7.3-7is opumlmc since the designer cannot hope to have perfect information about the
rms slope of the random ramp. Figure 7.3-8 illustrates a more realistic situation in which the
designer has picked a nominal value for y (ie., 10°®). The effect of the existence of other
values of 7y is shown. It is evident that some deterioration in performance takes place when
tlle actual forcing function is greater than that presumed in the filter design. However, it is

ing to note, by ing Figs. 7.3-6, 7.3-7 and 7.3-8, tkat the form chosen for the
system model has a much greater impact on accuracy in this case than the numerical
parameters used to describe the magnitude of the forcing function.

Example 7.3-4

We conclude this section with an il ion of how the itivity analysis equation,
developed in Section 7.2, can be used to help choose which states will provide the most
efficient suboptimal filter and what deterioration from the optimal filter will be
experienced. Figure 7.3-9 is drawn from a study of a2 multisensor system in which the
complete {(optimal) filter would have 28 state variables. It shows the effect of deleting state
variables from the optimal filter. A judicious reduction from 28 to 16 variables produces less
than a 1% increase in the error in the estimate of an important parameter, suggesting that
the 12 states deleted were not significant. Overlooking for the moment the case of 13 state
variables, we can see that further deletions of variables result in increasing estimation errors.
But even the removal of 19 states can give rise to only a2 5% increase in estimation error.

STATE Of WHITE NOISE
INTEREST

MEASUREMENT

FORCING
FUNCTION

(a) The System

INITIAL
CONDITIONS

(b) Forcing Functions Considered

Figure 7.3-5  System Used to Illustrate the Effect of Different System Dynamics Modeled
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COMPLETE FORMULATION
HAS 28 STATE VARIABLES

INCREASE IN RMS ERROR FROM OPTIMAL {%}

1 [ |
k4 10 12 %
NUMBER OF FILTER STATE VARIABLES

Figure 7.3-9  Effect of Reduction in Number of Estimated State Variables

Of course, the case of 13 variables does not fit the general pattern. The point illustrated
here is that care must be exercised in removing states. The 13 variables represented by this
bar are not the twelve variables represented by the bar to its left, with one addition. (If they
were, a lower error than that shown for 12 states could generally be expzcted.) They are a
different subset of the original 28 states and they have obviously not been well chosen. This
kind of information comes to the filter designer only through the careful exercise of the

itivity analysis i It is behavior such as this that keeps good filter design a
wixture of both art and science.

7.4 DEVELOPING AN ERROR BUDGET

Error budget calculations are a specialized form of sensitivity analysis. They
determine the separate effects of individual error sources, or groups of error
sources, which are thought to have potential influence on system accuracy. The
underlying assumption is that a Kalman-like linear filter is designed, based on
some choice of state variables, measurement process, noise spectra etc. (“filter
model”). When that filter is employed, all of the error sources (*“truth model”),
whether modeled in the filter or not, contribute in their own manner to errors in
the filter estimate. The error budget is a catalog of those contributions.
This section describes how the error budget calculations are performed. The
discussion treats the discrete filter in some detail, but tlie approach is valid for
continuous filters as well.
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Briefly, the steps required to evaluate a proposed filter design by producing
an error budget are as follows: First, using the filter designer’s rules, determine
the time history of the filter gain matrix. Then, using the complete model of
error sources, evaluate system errors. Developing an error budget involves
determining the individual effects of a single error source, or group of error
sources. These steps are illustrated in Fig. 7.4-1. Their implementation leads to a
set of time histories of the contributions of the sets of error sources treated. The
error budget is a snapshot of the effects of the error sources at a particular point
in time. Any number of error budgets can be composed from the time traces
developed. In this way, information can be summarized at key points in the
system operation. As illustrated in Fig. 7.4-1, each column of the error budget
can represent the contributions to a particular system error of interest, while a
row can represent the effects of a particular error source or group of error
sources. For example, the columns might be position errors in a multisensor
navigation system, while one of the rows might be the effects on those position
errors of a noise in a particular A ing the error are
uncorrelated, the total system errors can be found by taking the root-sum-square
of all the contributions in each column. Error sources correlated with each
other can also be treated, either by including them within the same group or by
providing a separate line on the error budget to account for correlation

FILTER
m-STATE (OPTIMISTIC)
FILTER DESIGN COVARIANCE L. FITER-INDICATED
MODEL EQUATIONS PERFORMANCE
INONUNEAR)
7ROR BUDGL!
TIME - VARYING eator Srsiem 17208
FILTER GAINS o o
BN e CA O e P P Y
Y REALISTICALLY
PROJECTED SYSTEM
n-STATE Ty PERFORMANCE
“TRUTH MODEL~ COVARIANCE
N EQUATIONS 1
{nzm} {LINEAR) . T[j ‘ij:r’
1
i

Figure 7.4-1  Diagram llustrating the Steps in Error Budget Development

Notice that Fig. 7.4-1 indicates that the (optimal) filter error covariance
equations are nonlinear [see Eqs. (7.24) through (7.2-6)] while the sensitivity
equations {Eqs. (7.2-19) through (7.221)] are linear. That is, the
sensitivity equations are linear in F(or ®), H, R, Q, and initial conditions once
the filter (F*, H*, R*, Q* and K*) is fixed. As a consequence of the linearity of
the sensitivity equations, it is a simple matter to develop sensitivity curves once
the error budget has been assembled. This will be illustrated in a later example.
The figure also points out that the filter covariance calculations are generally an
optimistic indication of the accuracy of the filter. When all the error sources are
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considered the true filter accuracy is usually seen to be somewhat poorer than
the filter covariance, per se, would lead one to believe. Certain steps in the
generation of an error budget are now discussed in some detail.

Filter Gain Calculations — Each Kalman filter mechanization specifies a
particular set of matrices — a filter representation of state dynamics (sym-
bolically, the matrix F* or $*), a filter representation of the measurement
process (H*), a process noise covariance matrix (Q*), and a measurement noise
covariance matrix (R*). These matrices, combined with an initial estimation
error covanance [P*(0)], are used to compute the time history of filter error

and, sub ly, the filter gain matrix, K*. The filter then proceeds
to propagate its estimate and process incoming measurements according to the
Kalman filter equations, using K*, H* and F* (or ®*). All of the above-listed
matrices [F*, H*, Q*, R*, P*(0)] must be provided in complete detail.

True Error Covariance Calculations ~ If all of the pertinent error effects are
p deled in the impl ed filter, the error covariance matrix
computed as described above would be a correct measure of the system
accuracy. However, for reasons discussed previously, many sources of error are
not properly accounted for in the design of most filters, and the consequences of
ignoring or approximating these error effects are to be investigated. The behavior
of each element of the so-called “truth model”, whether or not included in the
filter design under evaluation, must be described by a linear differential
equation. For example, an individual error, o, which is presented as a first-order
markov process obeys the differential equation

: 1
=——atw
1&

where 1, is a time constant and w is a white noise. Information concerning the
rms magnitude of such a variable is provided by its initial covariance and in the
spectral density ascribed to w. When a constant error source such as a
measurement bias error, b, is considered, it obeys the linear differential equation

b=0

In this case, the rms value of the error is entirely specified by an initial
covariance parameter. All of the untreated sources of error are added to the
filter states to form an augmented “state” vector for performing the error
‘budget calculations.* The dynamics of the augmented state are represented by a
matrix F or its counterpart in the discrete representation, ®. An initial
covariance matrix, P(0), is also formed for the augmented state.

*The augmented state vector is not lo be confused with the vector x' whose dynamics are
given in Eq. (7.2-10). The d state vector di: here is always d by
the x component of X’ in Section 7.2.
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Of course, it is essential to the systems under consideration that measure-
ments be incorporated to reduce errors in estimates of the variables of interest.
The gain matrix designed for each filter only contains enough rows to account
for the number of states modeled in the filter. But the augmented state is
generally much larger and a convenient device is used to make the filter gain
matrix, K*, conformable for multiplications with the covariance matrix for the
new state. A matrix W is defined and a new gain matrix is formed as follows:

K’ =WK*

If the augmented state is formed by simply adding new state variables to those
used in the filter, we can write

wT=[1}0]

where the identity matrix has dimensions equal to that of the filter state.
Clearly, filter states which are more complex (but linear) combinations of the
augmented state can be accommodated by proper definition of W.

The covariance calculations for the augmented state yield, at the appropriate
locations in the matrix P, the true mean square errors in the estimates of
interest. The difficulty involved in performing those calculations can be greatly
reduced if it is assumed that all of the state variables are properly corrected [see
the discussion surrounding Eqs. (7.2-22) and (7.2-23)] for each measurement;
this assumption is made in what follows. The covariance equation at the time a
measurement is taken is similar to Eq. (7.2-1), viz:

Po(+) = A—WK, *H,) P (=) (-WK *HT + WK *R K *TWT (7.4.1)
In the ab of the d state (truth model) co-

variance changes in time according to Eq. (7.2-2), which is repeated here for
convenience:

Prs(#) = P () Oy + Q (7.4-2)

In Eq. (7.4-2) the matrix Q, represents the effects of uncorrelated forcing
functions over the interval t, to t, ;. When the state variables are not corrected,
Eqs. (7.2-20) and (7.2-21) apply, with the appropriate substitution of WK * for
Ki*

Equations (7.4-1) and (7.4-2) can be used to determine the effects of the
various items in the truth model. In order to separate the effects, the equations
must be exercised many times, with different initial conditions and forcing
functions. For example, to investigate the effects of measurement bias errors
alone, all elements of P(0) not corresponding to these errors will be set to zero,
along with the Q and R matrices. The error covariance elements generated by
this procedure only result from measurement bias errors. To look at first-order
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markov errors the appropriate elements of P(0) and Q are entered (all others set
to zero) and the equations rerun. This procedure must be repeated many times
to generate the error budget. The root-sum-square of all the effects provides the
true measure of total system performance. Section 7.6 describes the organization
of a computer program to perform these covariance calculations.

When bias error sources are under ideration, their separate effects can
also be computed using “simulation” equations such as

X+ () = Pz () (74-3)

X () = (=K *Hy *)x () (7.4-4)

Equations (7.4-3) and (7.4-4) are vector rather than matrix equations, and offer
some reduction in computer complexity over the covariance equations described
above [Egs. (7.4-1) and (7.4-2)]. However, their use precludes calculating the
effects of groups of error sources in a single computer run. Each bias error
source must be treated separately with Eqs. (7.4-3) and (7.4-4) and their effects
root-sum-squared, while the covariance equations permit the calculation of the
effects of a set of bias error sources in one operation. Also, the “simulation”
approach cannot handle correlations between error sources.

Examgle 7.4-1

From Example 7.3-1 we can form an error budget which displays individual
contributions to the steady-state estimation error. The sources of error in the estimate of
the single state, x, are: initial errors, x (0), process noise, w, and measurement noise, v.

Effect of Initial Errors — By inspection of Eq. (7.3-3) we can see that the initial errors,
represented by p(0), do not contsibute to the steady-state estimation error.

Effect of Process Noise — Equation (7.3-3) permits us to calculate the effect of process
noise, characterized by the spectral density matrix q, by settingr = 0:

= q
Paol@) G+

Effect of Measurement Noise — We can find the effect of measurement noise on the
steady-state error covariance by setting q = 0 in Eq. (7.3-3):

= k°r
P= 2+ 10

If we assign values to g, q and r, we can construct an error budget from the above

equations. Since the error budget gives the t q! ibution of

each error source we take the square root of p,, in finding entries in the error budget. Set
B8=q=r1= 1. Then, from Eq. (7.34)

k=-1+/2=0414
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[
Vrola)= 048 0.595

Vi@ - (0.414)?

e = (0,245
2(1.414) o

The error budget gemerated is given in Table 7.4-1. The root-sum-square error can be
computed easily.

TABLE 7.4-1 EXAMPLE ERROR BUDGET

Contributions to Steady-State Errors
Error Sources in Estimate of x
Initial Error 0
Process Noise 0.595
Measurement Noise 0.245
Total (Root-Sum-Square) Error 0.643

The linearity of the equations used in forming error budgets permits easy
development of sensitivity curves which illustrate the effects of different values
of the error sources on the estimation errors, as long as the filter design is

h d. The proced for developing a set of sensitivity curves for a
particular error source is as follows: First, subtract the contribution of the error
source under consideration irom the mean square total system error. Then, to
compute the effect of changing the error source by a factor o1 y, multiply its
contributions to the mean square system errors by y®. Next replace the original
contribution to mean square error by the one computed above, and finally,
take the square root of the newly computed mean square error to obtain the
new rss system error. Sensitivity curves developed in this manner can be used to
establish the effect of incorrectly prescribed values of error sources, to identify
critical error sources, and to explore the effects of substituting into the system
under study alternative hardware devices which have different error magnitudes.

Example 7.4-2

Continuing Example 7.4-1, we can develop a sensitivity curve showing the effect of
different values of measurement noise. If the rms measurement noise is halved (implying a
1/4 reduction in r), while k, g and q are held constant, the entry on the third line of the
error budget becomes

(0.245)
N
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All other entries are unchanged. The new total (rss) error is

J(0.595)% +(0.123)7 = 0.607

When the rms measurement noise is doubled (factor of 4 increase in 1), the entry is doubled
and the total error is

N (0.595) +(0.490)? =0.770

The sensitivity curve constructed from the three points now available is shown in Fig. 7.4-2,
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Figure 7.4-2  Example Sensitivity Curve

7.5 SENSITIVITY ANALYSIS: OPTIMAL SMOOTHER

Sensitivity analyses of optimal smoothers provide the same insights, and are
motivated by the same concerns as those discussed in Section 7.2 with regard to
optimal filters. The derivation of the sensitivity equations proceeds along lines
similar to that detailed in Section 7.2. The two cases treated in Section 7.2 —
when the system dynamics and measurement process are accurately modeled and
when they are not — also arise in the sensitivity analysis of smoothers. They are
discussed separately below.
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EXACT IMPLEMENTATION OF DYNAMICS AND MEASUREMENTS

Using the same notation as developed in Section 5.2 for the Rauch-Tung-
Striebel form of the optimal smoother, the optimal filter covariance is computed
using Eq. (7.2-3),

B(t) = (F-KH) P(1) + P(t) (F—KH)T + KRKT + GQGT (72.5-1)

Then, using the end condition P(TIT) = P(T), the fixed-interval optimal
smoother error covariance is computed from the relation [Eq. (5.2-15)]

P(tIT) = (F + GQGT P~1(t)] P(HIT)
+P(HT) [F + GQGT P! ()] T -GQGT (1.52)
If we define a “smoother gain”, K, from the first equation in Table 5.2-2,
K, = GQGTP™'(t) (15-3)
Eq. (7.5-2) can be written
P(tIT) = (F + K,) P(tIT) + P(tIT) (F + K )T — GQGT (7.5-4)

To determine the effects of differences between design values of F, H, G, Q, R,
and P(0) and those that may actually exist, assuming that correct values of F and
H are used in the filter implementation equations, the following steps are taken:
First, compute P(t) using the design values. Next compute the filter gain K, as
before, and K as in Eq. (7.5-3). Finally, using Egs. (7.5-1), (7.5-4), the end
condition given above, and the actual values of F, H, G, Q, R, and P(0), compute
the actual error covariance history.

INCORRECT IMPLEMENTATION OF DYNAMICS AND MEASUREMENTS

When incorrect values of F and H are used in filter and smoother

1 ation, a more complex set of relations must be used to perform the
sensmvny analysis. As before we designate implemented values with an asterisk.
It is also necessary to define a number of new matrices, some with statistical
meaning as covariances between familiar vectors (e.g., such as true state,
estimate, smoothed estimate, error in smoothed estimate, etc.) and others which
serve only as mathematical intermediaries. The equations for sensitivity analysis
of the linear smoother are

P(1) = (F*—K*H*) P(t) + P(t) (F*_K*H*)T + (AF—K*AH)V
+ VI(AF-X*aH)T + GQGT + K*RK*T,  P(0)=P*(0) (7.5-5)
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V =FV + V(F*—K*H*)T + U(AF-K*aH)T - GQGT, V(0) = E[x(0)xT(0)]
(7.5-6)

U=FU+UFT +GQGT,  U(0) = E[x(0)xT(0)] (7.5-7)
B(IT) = (F* + G*Q*G*TB™) B(tIT) + P(HT) (F* + G*Q*G*TB™)T
+G*Q*G*TB™! [VIDT — P()CT] + [DV — CP()] B} G*Q*G*T
+ AF(VCT — UDT) + (CVT — DU)AFT + (C + D) GQGT
+GQGT(C+D)T -GQGT, PKTIT=PT) (7.58)
B = F*B + BF*T — BH*R* 'H*TB + G*Q*G*T,  B(0) = P*(0) (7.5:9)

é = (F‘ + G‘Q'G’TB—' )c — GtQ*GtTB-I _ C(F‘—K‘H‘), C(T) =1
(7.5-10)

D= (F*+G*Q*G*TB™!) D — DF — AF + CAF-K*AH), D(T)=0
(7.5-11)

Note that P(t), V, U, AF and AH are the same as P, V, U, AF and AH in Section
7.2. The matrix B is the error covariance of the optimal filter if the set of
“implemented” matrices are correct. Note also that when AF and AH are zero, B
= P(t), D = 0, and, when the implemented matrices are the same as the design
matrices (F* = F, Q* = Q, etc.) the equation for the actual smoother error
covariance [Eq. (7.5-8)] reduces to Eq. (7.5-2) for the optimal smoother.

7.6 ORGANIZATION OF A COMPUTER PROGRAM FOR
COVARIANCE ANALYSIS

This section describes the organization of a computer program which has
been found useful in the evaluation and design of linear filters. The program
description illustrates the practical application of the covariance analysis
methods developed in previous sections. The description is presented in terms of
algebraic equations and a flow chart and, therefore, is independent of any
particular programming language.

EVALUATION OF AN n-STATE FILTER OPERATING IN AN
m-STATE WORLD

The program described here is suited to a fairly broad class of filter evaluation
problems. The overall program scheme is applicable, with minor modifications,
to an even broader class of problems involving suboptimal or optimal linear
filters. The general situation being considered is one where a linear filter design
has been proposed; it is to receive measurements at discrete points in time and
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estimate states of a system which is continuously evolving. The filter design is
based on an incomplete and/or incorrect model of the actual system dynamics.
It is desired to obtain a measure of the filter’s performance based on a truth
model which is different (usually more complex) than the model contained in
the filter itself.

The problem is formulated in terms of rwo covariance matrices: P,
representing the truth model or system estimation error covariance, and P*,
representing the filter’s internal calculation of the estimation error covariance. P
is an m X m matrix, where m is the dimension of the truth model. P*isann X n
matrix, where n is the number of estimated states. Usually, m is larger than n;
sometimes much larger. The principal program ouwput is the time history of P;
its value before and after each update is computed. A useful graphical output is a
collection of plots of the square roots of the diagonal elements of P versus time.
The time histories of the filter gain matrix K and covariance P* are also
computed, and may be printed or plotted if desired.

The principal program inputs are the following cotlection of system and filter
matrices:

System Inputs
Pq the initial truth model covariance matrix (m X m)
F the truth model dynamics matrix (m X m)

the truth model measurement matrix (2 X m), where % is the
vector di

Q the truth model process noise matrix (m X m)
R the truth model measurement noise matrix (2 X 2)

Filter Inputs

Po*  the initial filter covariance matrix (n X n)

F*  the filter dynamics matrix (n X n)

H*  the filter measurement matrix (% X n)

Q* the filter process noise matrix (n X n)

R*  the filter measurement noise matrix (£ X £)
The five system matrices represent a linearized description of the entire physical
situation, as understood by the person performing the evaluation. The five filter
matrices represent, usually, a purposely simplified model, which it is hoped will
produce adequate results. In the general case, F, H, Q, R, F*, H*, Q*, and R*
are time-varying matrices, whose elements are computed during the course of the

problem solution. For the special case of constant dynamics and stationary noise
statistics these eight matrices are simply held constant at their input values.
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The immediate objective in running the program is to produce:

® A quantitative measure of overall system performance, showing how the
n-state filter design performs in the m-state representation of the real
world.

® A detailed error budget, showing the contribution of each system state or
driving noise (both those that are modeled and those that are unmodeled
in the filter) to estimation errors.

An underlying objective is to gain insight into the various error mechanisms
involved. Such insight often leads the way to improved filter design.

TRUTH MODEL AND FILTER COVARIANCE EQUATION
RELATIONSHIPS

Two sets of covariance equations, involving P and P*, are presented below.
The relationship between these two sets is explained with the aid of an
information flow diagram. This relationship is 2 key element in determining the
organization of the covariance analysis computer program.

Both sets of equations are recursion relations which alternately propagate the
covariance between measurements and update the covariance at measurement
times. The truth model covariance equations used in the example program are a
special case of equations given in Section 7.2. For propagation between
measurements

P ()= B PR T + Q (7.6-1)
For updating
P (+) = (-WTK; *Hy ) P(-) WK *H)T + WK RKTW  (7.6.2)

where W is an m X n transformation matrix {I !0} as defined in Section 7.4, The
transition matrix &, and noise matrix Qy are found using matrix series solutions
to

@, =eFat
and
At

Q= A (81, 7) Q By (AL, 7)T dr

where At is the time interval between measurements. Equations (7.6-1) and
(7.6-2) are appropriate forms of Eqs. (7.2-20) and (7.2-21), accounting for the
difference between filter state size and actual state size, when one of the two
following situations obtains: (1) when AF = AH = 0 — i.e., when the part of the
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truth model state vector that is estimated by the filter is correctly modeled; or
(2) when a feedback filter is mechanized and the estimated states are
immediately corrected, in accordance with the filter update equation. When
neither of the above conditions hold, the more complicated equations involving
the V and U matrices should be used.

Except for one missing ingredient, the five system matrix inputs along with
Egs. (7.6-1) and (7.6-2) would completely determine the discrete time history of
Py, the estimation error covariance. The missing ingredient is the sequence of
filter gain matrices K, *. The filter covariance equations must be solved in order
to produce this sequence. These equations are, for propagation

P *() = B Pt (0T + Qi * (16-3)
for gain calculation
Ky* = PO T [H PO T + Ry (7.6-9)

and for updating

P *(4) = (I-K *H )P () (-K *H )T + K *R *Ky *T (7.6-5)
where

q)k* =eF*at

and

At
Q= _l; @ *At, 7) Q* *T(AL, 7) dr

Figure 7.6-1 is an information flow diagram illustrating the relationship
between these two sets of recursion formulae. The upper half of the diagram
represents the iterative solution of the filter covariance equations. These are
solved in order to generate the sequence of filter gains, Ky *, which is a necessary
input to the lower half of the diagram, representing the iterative solution of the
truth model covariance equations.

PROGRAM ARCHITECTURE

A “macro flow chart” of a main program and its communication with two
subroutines, is shown in Figure 7.6-2. The function of the main program is to
update and propagate both system and filter covariances, P and P*, in 2 single
loop. A single time step is taken with each passage around the loop. Note that
the filter gain and update calculations are performed before the system update
calculation because the current filter gain matrix must be available as an input to
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Figure 7.6-1  Covariance Analysis Information Flow

the latter. For constant dynamics problems, no subroutines are needed; the
values of F, F*, Q, Q*, H, H*, R, and R* are read in as inputs and do not change
thereafter. These constant matrices along with the initial values, P, and Po*,
completely determine the solution. For time-varying problems a subroutine
TVM is called once during each passage around the loop. Its function is to
generate the time-varying elements of the system and filter matrices.

While the main program is generally applicable to a broad class of problems,
TVM is a special purpose subroutine which is tailored to a particular
time-varying problem. TVM can be designed in a variety of ways. For example,
in the case of problems involving maneuvering vehicles a useful feature,
corresponding to the organization shown in Figure 7.6-2, is the inclusion of a
subsidiary subroutine TRAJ, which provides trajectory information. Once each
time step TRAJ passes position, velocity and acceleration vectors (T, ¥, and @) to
TVM. TVM generates various matrix elements, which are expressed in terms of
these trajectory variables. This modular organization is useful in a number of
ways. For example, once TVM is written for a particular truth model,
corresponding to a given filter evaluation problem, the evaluation can be
repeated for different trajectories by inserting different versions of TRAJ and
leaving TVM untouched. Similarly, if two or more filter designs are to be
compared over a given trajectory, different versions of TVM can be inserted
while leaving TRAJ untouched. TRAJ can be organized as a simple table-look-up
procedure, or as 2 logical grouping of expressions representing a sequence of
trajectory phases. Individual phases can be constant velocity or constant
acceleration straight line segments, circular arc segments, spiral climbs, etc. The
particular group of expressions to be used during a given pass depends on the
current value of time.

An overall system performance projection for a given trajectory can be
generated in a single run by inputting appropriate elements of Pg, Q, and R,
corresponding to the entire list of truth model error sources. The effects of
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changing the trajectory, the update interval or the measurement schedule can be
found using repeat runs with appropri hanges in the trajectory subroutine or
the parameters, such as At, which control the sequencing of the main program
loop. Contributions to system error of individual error sources, or small groups
of error sources, can be found by inputting individval or small groups of
elements of Py, Q, and R. A sequence of such runs ca. be used to generate 2
system error budget of the type discussed in Section 7.4, which tabulates these
individual contributi p ly. Such a tabulation reveals the major error
contributors for a given design. The time-history plots produced in conjunction
with these ermor budget runs are also useful in lending insight into the important
emror mechanisms involved. This information and these insights are very, helpful
in suggesting filter design improvements.
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PROBLEMS

Problem 7-1
Using Eq. (7.2-3) show that in the steady state, the error covariance for the filter using
the fixed gain k,, = \/q/r described in Example 7.1-3 is equal to \/rq, the steady-state error
covariance determined for a Kalman filter in the same example.
Problem 7.2
Using the relations
Xk+1 = Pkxk + Wk
2k = Hixk + ¥k
Bcr1() = ot E(h)
Be+1(-) = Bk+1(-) + Klzk — Hk*Zk+1())

and the definitions provided for V, U, A®k and AH, derive Eqs. (7.2-20) and (7.2-21).
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Problem 7-3
Using Eq. (7.1-1) and the equation

Bp=Fp+ PFT + GQGT - PHTR I p
derive Eqs. (7.1-2) through (7.1-4).

Problem 7-4

Using the method followed in Example 7.4-2, develop a sensitivity curve depicting the
sensitivity of the steady-state error in Examples 7.4-1 and 7.4-2 to process noise.
Problem 7-5

Using Eq. (7.3-3), show that the curve in Fig. 7.4-2 will asymptotically approach the
line — ordinate = 0.247 X abscissa — as r grows without bound.
Problem 7-6

Utilizing the equation for propagation of the error in the estimate in a linear filter
having the structure of a Kalman filter but without an explicitly defined gain matrix, show
that, for such a filter, the error quation across a is

Py(+) = (I-KgHg) P(-) 0-KgH)T + KgRyKy T

Problem 7-7

Refer to Table 4.3-1. The state esti ion there ins the essence of the
structure of the Kalman filter without explicitly defining the filter gain matrix K(t). The
definition for K(t) given in the table is that which defines the optimal gain and thus the
optimal filter. (a) Show that, for the case of a general K(t) the error differential equation is
given by Eq. (4.3-13). (b) Show that the error covariance for the filter with a general
gain matrix, in the case where v and w are not correlated, is {Eq. (7.2-3)},

P= (F—KH)P + P(F-KH)T + GOGT + XRKT

Problem 7-8

Consider the problem of estimating a random ramp function given by the 2-state set of
equations:

X3 = X;
X1 =0

with the noisy measurement
Z=Xq tv

Show that the differential equations for the elements of the error covariance matrix P:

Pé P11 P12
P12 P22
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are

L1,

Pn1 "; P12

- P12P22
P12 =Pt ares

2
B2z = 212 - pi:—
Observe that in the steady state (P11 = Py2 = P22 = 0), the elements of the errar covariance
matrix all vanish. While the process being observed is nonstationary and grows without
bound, the estimate converges on the true values of the states. Notice also that, since the
error covariance vanishes, the filter gain matrix vanishes. Show that if there is a small
amount of white noise of spectral density q forcing the state — ie.,

%y =%
X =W

and if that forcing function is not accounted for in the filter design (i.e., the gains are
allowed to go to zero), the error i grows ing to the relati

P11=9
b1z =P11

P22=2p,,

8. IMPLEMENTATION
CONSIDERATIONS

In Chapter 7, the effects of either inadvertent or intended discrepancies
between the true system model and the system model “assumed by the Kalman
filter” were described. The rms estimation errors associated with the socalled
suboptimal Kalman filter are always larger than what they would have been had
the filter had an exact model of the true system, and they are often larger than
the predicted rms errors associated with the filter gain matrix computation. In
addition, the computations associated with calculating the true rms estimation
errors are more complicated than those associated with the optimal filter. In this
chapter, these same kinds of issues are addressed from the standpoint of
real-time implementation of the Kalman filter equations. The point of view
taken is that a simplified system model, upon which a Kalman filtering algorithm
is to be based, has largely been decided upon; it remains to implement this
algorithm in a manner that is both computationally efficient and that produces a
state estimate that *“tracks” the true system state in a meaningful manner.

In most practical situations, the Kalman filter equations are implemented on
a digital computer. The digital computer used may be a small, relatively slow, or
special purpose machine. If an attempt is made to implement the “theoretical”
Kalman filter equations, often the result is that it is either impossible to do so
due to the limited nature of the computer, or if it is possible, the resulting
estimation simply does not correspond to that predicted by theory. These
difficulties can usually be ascribed to the fact that the original model for the
system was inaccurate, or that the computer really cannot exactly solve the



278  APPLIED OPTIMAL ESTIMATION

Kaiman filter equations. These difficuties and the methods that may be used to
overcome them are categorized in this chapter. The material includes a
discussion of:

& modeling problems

@ constraints imposed by the computer

@ the inherently finite nature of the computer
® special purpose Kalman filter algorithms

© computer loading analysis

When reading this chapter, it is important to keep in mind that a unified body
of theory and practice has not yet been developed in this area. Thus, the
di p ber of ideas which are not totally related. Also, it
is to be emphasized that this chapter deals with real-time applications of Kalman
filtering, and ot covariance analyses or monte carlo simulations performed on
large generalpurpose digital computers. However, many of the concepts

CTPNRY

p d here are appli to the latter situation,

jon encc a

8.1 MODELING PROBLEMS

Performance projections for data processing algorithms such as the Kalman
filter are based on assumed models of the real world. Since these models are
never exactly correct, the operation of the filter in a real-time computer and in a
real-time environment is usually degraded from the theoretical projection.
This discrepancy, commonly referred to as “divergence™, can conveniently be
separated into two categories: apparent divergence and true divergence (Refs. 1,
2, 3). In apparent divergence, the true estimation errors approach values that are
larger, albeit bounded, than those predicted by theory. In true divergence, the
;rue estimation erors eventually become “infinite.” This is illustrated in Fig.

L1-1,

-3 -3
<} 8
= TRUE &
“ w
H H
JTHEORETICAL
TIME TIME
{a) Apparent Divergence (b) True Divergence

Figure 8.1-1 Two Kinds of Divergence
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Apparent divergence can arise when there are modeling errors which cause the
implemented filter to be suboptimal — i.e., it yields a larger rms error than that
predicted by the filter covariance computations. This type of behavior was
discussed in Chapter 7. True divergence occurs when the filter is not stable, in
the sense discussed in Section 4.4 and Ref. 3, or when there are unmodeled,
unbounded system states, which cause the true estimation to grow without
bound. These concepts are illustrated in the following example.

Example 8.1-1

As shown in Fig. 8.1-2, the Kalman filter designer assumes that the state to be estimated,
Xz, is simply a bias whereas, in fact, x,(t) is a bias, x2(0), plus the ramp, x;(0)t. Recalt from
Example 4.3-1 that the filter is simply a first-order lag where the gain k(t}) - 0 as t - o,

*{0) %,(0) To
V\ ‘2

A

S oo a7 H—

¥ ¥
REAL WORLD KALMAN FILTER

Figure 8.1-2 le System Il ing True Diverg

Thus eventually, X3(t) diverges as x;(0)t. The analogous discrete filtering problem displays
" of di

similar ior, More £ §:L are given in Refs, 46 and 47,

Practical solutions to the true divergence problem due to modeling errors can
generally be grouped into three categories: estimate unmodeled states, add
process noise, or use finite memory filtering. In the first of these, if one suspects
that there are unmodeled growing states in the real world, they are modeled in
the filter for “insurance.” Thus, in Example 8.1-1, a ramp state would have been
included in the filter. However, this approach is generally considered unsatis-
factory since it adds complexity to the filter and one can never be sure that all
of the suspected unstable states are indeed modeled. The other two categories
are treated below. More sophisticated approaches are also possible. For example,
see Refs. 4 and 17.

FICTITIOUS PROCESS NOISE

An attractive solution for preventing divergence is the addition of fictitious
process noise w(t) to the system model. This idea is easily explained in terms of
Example 8.1-1. Suppose that the true system is thought to be a bias (X, = 0),
but that the designer purposely adds white noise (X = w), as shown in Fig.
8.1-3. The Kalman filter based on this model has the same form as that in Fig.
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8.1-2. However, as shown in Fig. 8.1-3, the Kalman gain k(1) now approaches a
constant nonzero value as t - o, If, as in Example 8.1-1, the true system consists
of a bias plus a ramp, the Kalman filter will now track the signal x, with a
nongrowing error.

k(t)

(o) Assumed System {b) Typicol Gain History
Figure 8.1-3  The Use of Fictitious Process Noise in Kalman Filter Design

The reason that this technique works can be seen by examining the Riccati
equation for the error covariance matrix P:

P=FP+PFT — PHTR'HP + GQGT ®.1-1)
In steady state, P=0so that
FP + PFT — PHTR'HP = — GQGT (8.1-2)

If certain elemenis of Q are zero, corresponding elements in the steady-state
value of P, and consequently K, are zero. Thus, with respect to the states
assumed not driven by white noise, the filter disregards new measurements
“non-smoothable” states, see Section 5.2 and Ref. 5). However, if these
elements of Q are assumed to be nonzero, then the corresponding elements of K
will be nonzero, and the filter will always try to track the true system.
Analogous remarks can be made about the discrete case.

The choice of the appropriate.level of the elements of Q is largely heuristic,
and depends to a great extent upon what is known about the unmodeled states.
Some examples are given in Ref. 6.

FINITE MEMORY FILTERING

The basic idea of finite memory filtering is the elimination of old data, which
are no longer thought to be meaningful (this is often called a “moving
window.”) This idea is conveniently explained in terms of an example.
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Example 8.1-2

The true system is the same as that in Example 8.1-1. The designer wishes to estimate
the assumed bias x, using a simple averager of the form

'
Ra(t) = '?J: LA

where
() = x5(t) + V(1)

Note that this averager only uses data T units of time into the past. If, in fact, x,(t) also
contains a ramp, then

Z(t) = x2(0) + X, (0) t + v(1)
1t follows that

t
R2(1) = %2(0) + %, (0) (._%)‘»LTJ; O

The estimation error is

t
- QT
%20 - x20 = 5 _[ LS not

1t is easy to show that the rms value of this error is bounded for a fixed value of the data
window T. Though an unknown ramp is present, the estimator is able to track the signal
with a bounded error.

Although this example does serve to illustrate the concept of finite memory
filtering, it does not represent a recursive filtering algorithm. In order to
correspond to, and take advantage of, the discrete Kalman filter formulation, it
is necessary to cast the finite memory filter in the form

Bier1 M = 1 2N + Ky g, (8.1-3)

where & (N} is an estimate of X at time t; based on the last N data points, ¥y is
the transition matrix of the filter, and K is the filter gain. Somehow, the finite
memory property of the filter must be embodied in ¥, and K. Also, an
additional term in Eq. (8.1-3), involving 2y, may be needed to “subtract out™
the effect of old measurements. The problem of casting the finite memory filter
in the form of Eq. (8.1-3) has not yet been satisfactorily resolved, although some
work based on leasisquares ideas has been done (Ref. 7). However, three
practically useful approximation techniques do exist; these are described in the
following paragraphs.
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Direct Limited Memory Filter Theory — If there is no process noise (Q=0),
Jazwinski (Refs. 8, 9) has shown that the equations for the limited memory
filter are (j <k)

gk(N) =pk(N) (Pku:_' - Pklj-l Xk;j)

i (8.14)
Ny -1 - -
(Pk‘ )) =Pyt~ Pyt
where
™) = best estimate of x , given last N = k—j measurements
Pk = covariance of §, — x,, that is, P (+) in “normal” nomenclature
Pksj = covariance of X lln xk where Xk is estimate of Xk given j
measurements — i.e., & ; = P(k.j) Z;(+)
() Pi(H) T (k)

@(k,j) = transition matrix of the observed system

P, M) = covariance of §, ™)— x,

From Eq. (8.14), it is seen that the limited memory filter estimate is’ the
weighted difference of two infinite memory filter esti This is T
both because the weighting matrices involve inverses of the full dimension of
X — a tedious computation — and because the computation involves two infinite
memory estimates, the very calculation sought to be avoided.

An approximate method of solving Eq. (8.1-4) has been devised, that
largely avoids the above difficulties. This method is illustrated in the following
(see Fig. 8.14), for a hypothetical example where N = 8: (1) Run the regular

z(t)

A J_Al_l A l‘i 1l k
f— »l— >l >
(a} {b) e} (d)

Figure 8.1-4  Measurement Schedule for the Limited Memory Example
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Kalman filter rrom (a) to (b) in Fig. 8.14, obtaining s, Psz = Ps(*);
(2) Continue to run the regular Kalman filter from (b} to (c). obtaining %,4,
Pisiis = P16(#); (3)Calculate %65 = P(16,8)%s, Pioss = ®(16,8)P5(+) -
®7T(16,8); (4) Calculate %) and P, 4(®) from Eq. (8.14); and (5) Run the
regular Kalman filter from (c) to (d) using £16® and P,®) as initial
conditions, etc. Note that for k> 8, %, is conditioned on the last 8 to 16
measurements.

Jazwinski (Refs. 8, 9) has applied this technique to a simulated orbit
determination problem. The idea is to estimate the altitude and altitude rate of a
satellite, given noisy measurements of the altitude. The modeling error in the
problem is a 0.075% uncertainty in the universal gravitational constant times the
mass of the earth, which manifests itself as an unknown bias. Scalar
measurements are taken every 0.1 hr and the limited memory window is N = 10
(1.0 hr). The results are shown in Fig. 8.1-5. Note that the “regular” Kalman
filter quickly diverges.

The ¢ Technique — As indicated earlier, filter divergence often occurs when
the values of P and K, calculated by the filter, become unrealistically small and

™
-
-

7’
y
/7 ERROR =450m of t270hrs
6F JKALMAN. FILTER

DATA GAP

i 1 1 I 73 1
0 10 20 30 40 60 70
TIME (hrs)

POSITION ESTIMATION ERROR x 10~ 4 EARTH RADII

ORBIT - BETWEEN B8and 34 EARTH RADH
OBSERVATION NOISE = 1,1nm

Figure 8.1-5  Position Estimation Error for the Regular and Limited Memory
Kalman Filters (Refs. 8, 9)
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the filter stops “paying attention” to new data. These ideas motivate the
addition of a correction term to the regular Kalman filter update equation,
which is based on the current measurement. This concept, which is due to
Schmidt (Refs. 9, 10, 11), can be expressed mathematically as

B () — &)= [Xkﬂ(") - ‘1’kik(")] +EAR L (H) B
reg
where the subscript reg denotes “regular” — i.e.,

[Xxn(“) - q’kik(*)] =Ky4y [Zkﬂ_ Hyyy “’kik(*)] @®.16)

reg
and where

. _ - # - .
Afyy ()= (Hk+1Tfk+1 ‘Hkﬂ) HygyTry g™ [lkﬂ-ﬂkﬂd’kxk(*')]

@17

In Eq. (8.1-6), Ky, is the “regular” Kalman gain based on the assumed values of
F, Hy, Qq, 1y, and P, In Eq. (8.1-7), # denotes the pseudoinverse, 2y, must
be a scalar (Hy is a row matrix, 1 is a scalar), and €’ is a scalar factor to be
determined. Since Hy is a row vector, Eq. (8.1-7) reduces to

ARy, y (D =Hy, T (Hk+ 1 HkHT) - [Zkﬂ —Hkud’kix(*)] 8.18)

Equations (8.1-7) and (8.1-8) represent the best estimate of Xy, ; — ®pXx(+),
based only on the current measurement residual (Ref. 12). Note that this
estimate retains the desirable property that A&y, = 0 if zy,q = Hy &y £,(+).
Since xp generally has more components than the scalar measurement 2, the
problem is underdetermined, and use of the pseudo-inverse is required.

It is convenient to define a new scalar, €, where

¢= Ty (8.19)
Hia t Pea g () Hyyy T #1504y
Note that the or and d inator of Eq. (8.1-9) are scalars. If Egs.

(8.1-8) and (8.1-9) are substituted into Eq. (8.1-5), the update equations become

tice1 Hirr ¥

P () H, THe _kt1 k]
k+1 k+]

Hyy1Hye T

Hys Prag (D) Hpey T4y

Rear ()= BB () + [zm—HkHd»kxk(ﬂ}

(8.1-10)
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From this equation, it is seen that the effective gain of this modified filter is
K=Kep t Koy (8.1-11)

where K, is an “overweight™ gain proportional to €. Meaningful values of ¢ lie
in the range of O to 1, and are usually chosen by experience or trial and error. Of
course, € = 0 corresponds to the “regular” Kalman filter. When e =1, Hg4 -
gk+l(+) =2y4) — ie., the esti of the equals the

Using the techniques in Chapter 7, it can be shown that the covariance matrix
of the estimation error is

e’n 2H THy
[H P (T ] [ T)?

Pt = [Py g * @112)

assuming that the modeled values F, Qy, Hy, ry, and P are correct. Practically

peaking then, this technique prevents Py (+) from becoming too small, and thus
overweights the last measurement. This is clearly a form of a limited memory
filter. A practical application of the “e technique” is given in Ref. 10.

Fading Memory Filters and Age-Weighting (Refs. 9, 13-16} — Discarding old
data can be accomplished by weighting them according to when they occurred,
as illustrated in Fig. 8.1-6. This means that the covariance of the measurement
noise must somehow be increased for past measurements. One manner of
accomplishing this is to set

Ry * =si-kR,, k=j,j-1,j-2,... ®143)
11
s=1

where j is some number greater than or equal to one, Ry is the “regular” noise
covariance, Ry * is the “new” noise covariance and j denotes the present time.

CONFIDENCE IN DATA

)

PRESENT TIME

Figure 8.1-6  Age-Weighting Concept
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For example, suppose Ry, is the same for all k —i.e.,, Ry = R. A convenient
way to think of the factor s is

s=edt/T (8.1-14)

where At is the measurement interval and 7 is the age-weighting time constant. It
then follows that

Rf_pm =(2YTR, m=0,1,2,... (8.1-15)

This is iHustrated in Fig. 8.1-7.

Tew
1
: PRESENT TIME
1
L - . >
k-3 k-2 k1 k )

Figure 8.1-7  Conceptual lllustration of Age-Weighted Noise Covariance Matrix Behavior

A recursive Kalman filter can be constructed under these assumptions. The
equations are:

R ()= Oy Xy () + Ky gy —Hy Ry Ky (1))
Ky =P H T HPY (O HT + R ]!
P =Pi(0) - PO BT P HT + Ryl HiPy(-)

Pu)=s®y_y P (D T+ Qy

(8.1-16)

Comparison of this set of equations with the set for the Kalman filter will show
that they are nearly identical. The only difference is the appearance of the
age-weighting factor, s, in the equation for P'k(—). There is, however, a
conceptual difference between these sets. In the case of the Kalman filter (s=1),
P (usually denoted by P, ) is the error covariance, E[@x — 2x) Gk — 271 If
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s#1, it can be shown that in general P'k is not the emror covariance. The true
error covariance can easily be calculated using the tect in Chapter 7.

Example 8.1-3

The age-weighted filter will now be applied to the simple example, used several times
previously in this section and illustrated again in Fig. 8.1-8. For this case, it follows from
Eq. (8.1-16) that the necessary equations are

Pi(-) = spk-1(+)

, : p(-)»?
PE(+) = Pk(—) - 5 —

k )
ok 1’4

=spk—1(+) ~ -
k-1 a’+spk_1(+)

o2 spk—1(+)
o*+spi_1(9)

where a lower case p' is used to emphasize the scalar nature of the example. For steady
state, p'’x(+) = p'x—] (+) = p,, and the solution is

Note that k_, > 0 for all s > 1. This is exactly the desired behavior; the gain does not “tumn
off™ as it does in the “segular” Kalman filter.

Xo v

Figure 8.1-8  Bias System and Matrices (lower case y, q,
1, h denote scalars)
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1t can also be shown that for this problem as k becomes large the error covariance,
Pk(+) = E[(Xk(+) - xk) ], approaches the limit

—-

01

. _ 5=
p.,,—lgnm k(Y = 5y

when s > 1. This equation is summarized in Table 8.1-1 for s=] and s>, Note that when
s>, Xi equals the measuxement This implies that the filter also dlsrmlds the initial
condition mfotma!lon,E[x (0)]; hence, the caption, “one-stage estimator.”

TABLE 8.1-1  LIMITING CONDITIONS OF THE AGE-WEIGHTED
FILTER EXAMPLE

Regular Kalman Filter One-Stage Estimator
s 1 L
Poo 0 o?
| 9% [ 1

8.2 CONSTRAINTS IMPOSED BY THE COMPUTER

Generally speaking, the class of digital computers available for a particular
mission is largely constrained by considerations (e.g., weight and size restric-
tions) other than the complexity of the Kalman filter equations. This leads one
to attempt to reduce the number of calculations performed in the implemen-
tation of the filter as much as possible. To accomplish this, the following
techniques are often used: reducing the number of states, decoupling the
equations (or otherwise simplifying the F matrix), and prefiltering.

DELETING STATES

Deleting states implies eliminating states in the system model upon which
the filter is based, thus automatically reducing the number of states in the filter.
Presently, state reduction is largely based upon engineering judgement and
experience. However, some general guidelines (also see Section 7.1) are:
(1) states with small rms values, or with a small effect on other state
measurements of interest, can often be eliminated; (2) states that cannot be
estimated accurately, or whose numerical values are of no practical interest, can
often be eliminated; and (3) a large number of states describing the errors in 2
particular device can often be represented with fewer “equivalent” states. These
ideas are illustrated below.

Example 8.2-1

The error dynamics of an externally-aided inertial navigation system can be represented
in the form shown in Fig. 8.2-1 (Refs. 18-21). Typically, 25 to 75 states are required to
describe such a system. However. long-term position error growth is eventually dominated
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REFERENCE
ACCELEROMETER POSITION
ERRORS ERROR
FOSIION
ERRORS
Grha 24- HOUR 24- MINUTE MENT
:):";; — DYNAMKS — DYNAMICS MEASUREMENTS
VELOCITY
ERRORS
GRAVITY REFERENCE
UNCERTAINTIES VELOCITY
ERROR

Figure 8.2-1  Error Fiow in an Inertial Navigation System

by gyro drift rates and the a:wcm.ed 24-1\: dynamics. Thus, if external position and velocity

are not il errors, gravity uncertainties, and
the 84-minute (Schuler) dynamlcs can genemlly be neglected in the filter. Of course,
estimates of the high frequency components of velocity error are lost in this simplified
filter. Even if measurements are available frequently, optimal covariance studies will often
show that alth the 84-minute d ics must be deled in the filter, error sources
such as accelerometer errors, vertical deflections, and gravity anomalies cannot be estimated
accurately relative to their @ priori tms values. Thus, states representing these errors need
not be modeled in the filter.

DECOUPLING STATES

One method of simplifying’ the Kalman filter equations is to decouple the
equations. As mentioned in Section 7.1, the rationale here is that there are
always fewer computations involved in solving two sets of equations of
dimension n/2, as opposed to one set of dimension n. For example, suppose the
model equations are

X1 Fir Fud] &0 W,
1= + : 8.21)
X2 Fa1 Faa X2 w2
If the elements of Fy, and F,, are small, and if w, and w, are uncorrelated, it
may be possible to uncouple x; and x, and work with the simplified set

1=Fux tw

B (8.2:2)
X =Fx) + W,

Of course, covariance studies would have to be performed to determine whether
Eq. (8.2-2) was a reasonable approximation to Eq. (8.2-1).
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Example 8.2-2

A more isti to the d pling problem was recently taken with
regard to an Apollo application (Ref. 26). in general, the system cquations can be
partitioned to read

X1 Pii Pig Ky
x= . P= » H=[H, H.].K=
X2 P21 Py K2

The goal is to eliminate the states x, from the filter, thus reducing its complexity, but still
somehow compensating for their loss. The true gain equation for K| can be written

Ky = (P Hy T+ PypH,T) [Hl (P H, T+ PpH,T)
+Hy (P T+ Py, Ty + R] ™

If Py is small and P, is dominated by its diagonal elements (and they only vary slightly
about their initial conditions), then the following approximations can be made:

P30
P2z = Py2(0)
The gain equation reduces to
Ky =Py H, T [HlPllHlT +R+ Hzl’n(O)HzT] o

This is the “normal” equation for K, when x, is neglected, plus the extra term
HaPa(0)H,T.

For the Apollo application in ion, X the position and velacity of the
orbiting t, and X ten i biases. The measurements are range,
range-rate, and pointing error. In Table 8.2-1, the performance of the optimal and reduced
state filters are compared. Note that 80% of the performance loss, realized when %, was
deleted, is recovered by the inclusion of the term H, Py (0) H,T.

TABLE 8.2-1 COMPARISON OF OPTIMAL AND REDUCED-STATE FILTERS

1ms Filter Accuracy
X y z X y z
3] (1) (fty (fps) (fps) (dps)
Optimal Filter 1096 7417 919 0410 8.21 1.51
No Compensation
HoPon(OH,T = ¢ 12711 8779 1768 0.637 9.63 2.67
Full Compensation 1112 9186 1015 0.442 9.46 1.63

Often, other kinds of simplifications can be made in the F matrix *“assumed”
by the filter. For example, it is common to approximate broadband error
sources by white noise, thus eliminating certain terms in the F matrix. Even if
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this simplification does not actually decouple certain equations, it offers
advantages in the computation of the transition matrix, particularly if use is
made of the fact that certain elements in the F matrix are zero,

PREFILTERING

The concept of “prefiltering,” (also referred to as “measurement averaging,”
or “data compression”) is motivated by cases where measuremnents are available
more frequently than it is necessary, desirable, or possible to process them. For
example, suppose measurements of a state x are available every At. Suppose
further that the time required by the computer to cycle through the Kalman
filter equations (obtain %, and Py, from %, P, and z) and to perform
other required operations is AT, where AT = nAt for n > 1. Clearly each
individual measurement cannot be used. However, it is generally wasteful to use
the measurement only every AT seconds. This problem is often resolved by using
some form of average of the measurement (over AT) every AT seconds.

To illustrate what is involved, consider the scalar measurement

=XtV (8.23)

After every AT seconds, an averaged measurement 2, is used, where

;1
Zm =, Z;

i=1
(8.2-4)
BR< 1<
PPN
i=1 i=1

where the index i runs over the measurements collected during the previous AT
interval. In order to use the standard Kalman filtering equations, 2, must be
put in the form (state) + (noise). Therefore, by definition, the measurement
noise v';, must be (measurement) — (state), or

T
Vm=Zm ~ Xm

2% b S 029

i=1 i=1
S— - e e
Reduced Noise Additi
Due to Noise Due to
g hing the hing
Original Noise the Signal

As indicated in Eq, (8.2-5), the original noise v, is indeed smoothed but there is
an additional error due to smoothing the signal x, .
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To use the Kalman filter, the variance of v'm must be specified. Since Vic and
Xy are d independ: this calculation red to specifying the variance
of the “reduced noise” and the “‘additional noise.” Since vy is an uncorrelated

sequence, and if E{v; ?} = 0,2, then

E [C]— z; vk) ]: ”_‘[': 826

Properties of the *“additional noise” depend on statistical properties of x,. For
example, suppose that n =2, and that

Efpy) = 0,7 etimilat 82D

It then follows that

1 ; 0,2 At
E 3 _lxk—x, =—2—(1—e ) (8.2-8)

It is very important to realize that the measurement noise v'y,, associated
with the averaged measurement, is not white noise and —in addition — is
correlated with the state x; both facts being due to the presence of the
“additional noise.” This must be accounted for in the Kalman filter mechaniza-
tion or serious performance degradalion may result. An approximate method for

g this is indicated in Ref, 10. A more exact technique involves the
so-called “delaycd state” Kalman filter (Refs. 27, 28).

Recent work by Joglekar (Refs. 51 and 52) has attempted to quantify the
concept of data compression and presents examples related to aircraft navigation.
For example, Joglekar shows that the accuracy lost through data compression
will be small if the plant noise w is small compared to the observation noise v.
Other examples of prefiltering and data compression are given in Ref. 24
(inertial navigation systems), Ref. 48 (communication systems), Ref. 49
(trajectory estimation) and Ref. 50 (usage in the extended Kalman filter).

8.3 THE INHERENTLY FINITE NATURE OF THE COMPUTER

A digital computer cannot exactly solve analytic equations because numerical
algorithms must be used to approximate mathematical operations such as
integration and different:ation (thus leading to truncation errors) and the word
length of the computer is finite (thus leading to roundoff errors). The nature of
the resultant errors must be fully idered prior to comp
tation. Here, these errors are described quantitatively along with methods for
reducing their impact.
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ALGORITHMS AND INTEGRATION RULES
Kalman Filter Equations — In practical applications, the discrete form of the
Kalman filter is always used, However, the discrete equations arise from
sampling a continuous system. In particular, recall from Chapter 3 that the
continuous system differential equation is “replaced” by
Kyeay = Ppedye t Wy (83-1)

Similarly, the covariance matrix Q, of wy is related to the spectral density
matrix Q by the integral

Q =Efwy wiT]
tk+1
= [ D(ty41,7 QM @T(tk.,l ,7)dr (8.32)
k

Further, recall that the discrete Kalman filter equations are
B 1 ()= &y (1) + Ky [z — B 3 (4]

Pr()= QkPk(+)<I>kT +Qp

(8.3-3)

where
Ky = Pp(OH,T [H P (T + R, )™ (834)

Thus, exclusive of other matrix algebra, this implementation of the Kalman filter
mcludes a matrix inverse operation and determination of &y and Q. Algorithms
igned to calculate matrix i are not peculiar to Kalman filtering and
they are well-documented in the literature (see for example, Ref. 30).
Consequently, these calculations will not be discussed further here, although a
method for avoiding the inverse is given in Section 8.4,
The state transition matrix  is obtained from

0D ke, o=l (835)
and Qy is given by Eq. (8.3-2). Diffe iation of this equation using Leibniz’
formula yields

3“ =FQy + QkFT +Q, Ql0=0 (8.3-6)

Thus, solutions to matrix differential or integral equations are required.
Excluding those cases where the solution is known in closed form, Eqgs. (8.3-5)
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and (8.3-6) may be solved by either applying standard integration rules that will
solve differential equations in general, or by developing algorithms that exploit
the known properties of the equations in question. It is to be emphasized that
the following discussion is slanted towards real-time applications. However, the
results can generally be extrapolated to the offline situation, where computer
time and storage considerations are not as critical.

Integration Algorithms — Standard integration rules typically make use of
Taylor series expansions (Refs. 31 and 32). To illustrate, the solution to the
scalar differential equation

x = f(x, t) 83D

can be expressed as

X(t.,)g—to)’ R ')'('(to)(t—to)3+

x(1) = x(to) + X(to)(1—to) + 3 s+ (838)

where the initial condition x(to) is known. The two-term approximation to Eq.
(8.3-8)is

X1 = Xg XAty

(8.39)
=xy + f(xy, ty) Bty
where the subscript k refers to time t, and where
Aty =ty — 1ty (8.3-10)

The integration algorithm represented by Eq. (8.3-9) is called Euler’s method.
For many problems, this method is unsatisfactory — the approximate solution
diverges quickly from the true solution.

A more accurate algorithm can be derived by retaining the first three terms of
Eq. (8.3-8),

] % AL3
Shep =X + Aty + KK (83-11)
The second derivative can be approximated according to
o _ Xpe1— X
%y = k+17 Tk (8.3-12)

Aty
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so that
Aty . .
Kot = X+ =% G +50) ©8.313)

However, this is not satisfactory since X, ,; is not known. Recalling that %, =
(%, ty) exactly, and approximating x 4, by

Xee =X + XDty (8.3-14)
we see that X,y can be approximated as
Kieep = H0g + R B, by (8.3-15)

Substitution of Eq. (8.3-15) into Eq. (8.3-13) yields the algorithm
At . .
Xge1 =X + 3 [£0xy + Xy By, 1) + X ] (8.3-16)

This algorithm is known as the “modified Euler method”. All of the more
sophisticated integration algorithms are extensions and modifications of the
Taylor series idea. For example, the Runge-Kutta method uses terms through the
fourth derivative.

The important point to be made is that theoretically, the accuracy of the
algorithm increases as more terms of the Taylor series are used. However,
comp storage requi execution time, and roundoff errors also
increase. This tradeoff is illustrated in Fig. 8.3-1. In this figure, “truncation
error” refers to the error in the algorithm due to the Taylor series

approximation.

4 STORAGE REQUREMENTS |
CALCULATION TIME ;
ROUNDOFF ERROR |

TRUNCATION
ERROR

COMPLEXITY OF INTEGRATION RULE
(No of terms in faylor senies used)

Figure 8.3-1  Integration Algorithm Tradeoffs
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Special Algori for the Transition Matrix — As opposed to general
integration algorithms, consider now the special case of the equation for the
transition matrix

do _
S -Fe (8317

If F is constant, it is well-known that
G(tz, ;) =2(A)
= gAtF

AtRER
=y = (8.3-18)

n=0

where At =1, — t,. When At is less than the dominant time constants in the
system, n on the order of 10 or 20 will furnish six to eight place decimal gigit
accuracy. For At much smaller, just two or three terms may suffice. For larger
time intervals, At, the property

Q(t3, 1) = B(t3, t2) P12, 1)) (8.3-19)
is used so that
B(AT) = 0P (A—}) (8.320)

In most realistic cases, F is not time-invariant. However, the exponential
time-series idea can stili be used — i.c.,

B(ty, 1) =

w F(t,) 8.321)

when t; ~ 1, is much less than the time required for significant changes in F(t).
Equation (8.3-19) can then be used to propagate ®.

Example 8.3-1
Consider the case where F(t) is the 1 X 1 matrix sin £2t, where Q2 is 15 deg/hr {earth
rate). Suppose the desired quantity is the ition matrix (0.5 hr, 0). Equations (8.3-21)

and (8.3-19) are applied for an increasingly larger number of subdivisions of the 0.5 hr
interval. The calculated value of (0.5 hr, 0) is plotted in Fig. 8.3-2, and it is seen that an
acceptable interval over which the F matrix approximation can be used is less than
6 minutes. *
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o

Imin
Y

CALCULATED VALUE OF & (0.5hr,0)

A
[¢] 5 10
NUMBER OF SUBDIVISIONS OF 0.5hr INTERVAL

Figure 8.3-2  Calculated Value of ¢

Other examples of the “constant F approximation” are:

a) &;= 1+ At F(ty)

n
Ot +nbe, )= T @

i=1
A,
b) &;=1+At F(ti)+7 F2(t;)
n
S(t+nat, = T &
i1
¢) Multiplying out (a),

@(t +nAt, 1) =1+ At ) F(t;) + O(At*)
=1

=1+t Y R()

1

n
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where O(At?) indicates terms of order At? or higher. Of these algorithms, (b) is
more accurate than (a) because more terms are used in the series, (a) and (b) are
more accurate than (c), but (c) requires the least computer space and
computation time.

Example 8.3-2

An algorithm considered for @ in the C-SA aircraft navigation program (Ref. 10) is a
modification of (b) and (c) just discussed. Multiplying (b) out,

n n
wtnatn=1+atY Fap+Lat Y P
i1 i1

n i-1
+(a0% 3R 3 Fitg_1) +0(at®)
par

n n
=1+a0 ) F(p+5al 3 RS2
i1 =1

where F is the time-invariant portion of F(tj) — ie.,
F(tj)=Fs+ F' (1)

and F' (t;) is time varying. Note that the cross-product term has been neglected. This term is
both small and computationally costly.

Algorithms for Q, — The design of algorithms that calculate Qy is motivated
by the same considerations just outlined for ®, Consider first the case of
applying standard integration rules to Eq. (8.3-6). Suppose, for example, it is
desired to obtain Q by breaking the interval (1, t,.,,) into N equal steps of

‘length” At, and then applying Euler’s method. Denote calculated values of Qy
atter each integration step by Qy(At), Q(241), etc., where Q(NAt) = Qy, and
let F (ty +iAt) = F;. Then according to Eq. (8.3-6) and Eq. (8.3-9),

Qu(At) = Qy(0) + {FoQu(0) + Qk(O)FqT +Ql At
- oac (8.322)

and
Qu(2A1) = Qu(A) + [F,Qu (A1) + Qu(AHF,T + Q] At
=QAt + (F,Q4t + QAt F,! + Q) At
=2QAt+(F,Q+QF,T) At (8.3-23)
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where Q is assumed constant. If this process is continued, one obtains

N- N-1
Q; =NQAt +( 2 iF,Q+Q Z iFiT) At +0(A) (8.3-24)
i=1

i=1

In addition, like the equation for ®, the equation for Q has certain known
properties which can be exploited. In particular, note that Eq. (8.3-6) for Q is
identical to the matrix Riccati equation with the li term absent.
Therefore, it follows from Section 4.6 that if F and Q do not change appreciably
over the interval ty ,; —t,, then

Q= Py (tger = 1) P Tllye1 — ) (8325

where @, and ®,, are submatrices of the transition matnx

b 1D
o= |10 (8.3-26)

Dy | B4,

corresponding to the dynamics matrix

—-FTl o
—t— (8.327)
QIF

Thus, the problem reduces to determining algorithms to evaluate transition
matrices. A more sophisticated application of the relationship between Qy and
the matrix Riccati equation is given in Ref. 33,

WORD LENGTH ERRORS

Computer errors associated with finite word length are best visualized by
considering multiplication in a fixed-point machine. As illustrated in Fig. 8.3-3,
the calculated value of the product a x b is

(@b)aye = (@b)yyye + 1 (8.3-28)

where 1 is a remainder that must be discarded. This discarding is generally done
in two ways: symmetric rounding up or down to the nearest whole number or
chopping down to the next smallest number (Ref. 34).
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]

|
b |
D)

MUST BE DISCARDED

o

Figure 8.3-3  Multiplication in a Fixed-Point Machine

Symmetric rounding and chopping are illustrated in Fig. 8.34. Note that in
symmetric rounding, the probablhty dlsmbutlon p(r) of the remainder is
symmetric about r = 0; wh in g, the inder r is either positive or
negative depending upon the sign of ab, Thus if the products are in fact
consistently positive or negative, truncating tends to produce systematic and
larger errors than symmetric rounding. This is illustrated in Fig. 8.3-5.

4 No of bits

oir]
4 SYMMETRIC ROUNDING, e 9,
2 13 7 = 14 {for 2decimal digas}
B33+13
ya 2 >
2 27
oir} elr)
A A CHOPPING, ¢ 9 ,
137 =13, ¢ :-0.7
2 X
2 24 133+ 13,7 :-03
A7 w3 07
, B3I+ Dz 03
24 0 0 274
PRODUCT POSITIVE PRODUCT NEGATIVE
Figure 8.34  Distribution of the i for Sy ic Rounding and Chopping

{2 = number of bits)
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+50
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® »
z
- O
9 -
H [ TIME ——=
-
-50!
{a} CHOPPING
+05:

ERROR IN FEET

-05
{b} SYMMETRIC ROUNDING

Figure 8.3-5  Errors Due to Finite Word Length (Ref. 34)

The errors caused by finite word length can be determined in two ways. One
is to solve the Kalman filter equations by direct simulation on a machine with a
very long word length, then solve the filter equations again using the shorter
word length machine in question {(or on a short word length machine simula-
tion), and compare the results. The other is to use the probability distribution in
Fig. 8.34 and theoretically compute the roundoff error. The choice of methods
depends upon the availability of computers and the iradeoff between engi-
neering time and computer time.

Analytic Methods (Ref. 34) — The basic idea of using probability distribu-
tions in Fig. 8.34 is the following. Suppose, for example, it is desired to
calculate

y=Hx , H(mn) (8.3-29)
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The value of y calculated by the computer is

Wearc=Hate, &y (nx1)
. (8.330)

where

€ =1y t1, +...+ 1, (per component)

1 = word length error at each muitiplication

If it is assumed that all r’s have the same distribution, symmetric rounding is
used, and the r's are independent, then it follows from the central limit
theorem (see Section 2.2) that € is approximately gaussian and has the variance

6.2=no?= 1% 2722 (per component) (8.331)

From this equation, it is seen that roundoff error increases as the number of
calculations (n) increase and decreases as the word length () increases, an
intuitively satisfying result.

With respect to Kalman filter applications, these concepts can be used to
calculate the mean and covariance of the error in the calculated value of %, due
to word length errors. These ideas can also be extended to floating-point

hi Ithough the ipulations become more cumbersome.

' 4

EFFECT OF WORD LENGTH ERRORS

In Kalman filter implementations, word length errors tend to manifest
themselves as errors in the calculation of the “filter-computed” covariance
matrix P (+) and in %. Since the equation for Py(+) does not account for word
length errors, Py(+) tends to assume an unrealistically small value and perhaps
even loses positive-definiteness and thus, numerical significance.* This causes
inaccuracies in the calculation of the gain K, which in turn may cause the
estimate X, to diverge from the true value Xg-

There are several ways in which sensitivity to word length errors can be
reduced. These include minimizing the ber of calculations, increasing word
length (double precision), specialized Kalman filter algorithms, € technique,
choice of state variables, and good a priori estimates. The first of these involves
techniques described elsewhere in the text (decoupling, reduced state filters,
etc.), while the second is an obvious solution limited by computer size. Special-
ized Kalman filter algorithms are discussed in Section 8.4. The remaining alterna-
tives are discussed separately in what follows.

*Positive-definiteness is generally only lost if the filter model is uncontrollable and thus the
filter is not asymptotically stable.
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The ¢ Technique — The e technique was discussed in Section 8.1, in
conjunction with finite memory filtering. Recall from that discussion that this
technique consists of increasing the Kalman gain in such a manner so as to give
extra weight to the most recent measurement. The resultant theoretical P matrix
is increased according to Eq. (8.1-12). Therefore, the € technique also produces
the desired result for the problem at hand, preventing Py from becoming
unrealistically small, Often a modification of the technique is used, where the
diagonal terms of Py (+) are not allowed to fall below a selected threshold.

The effectiveness of the € technique is illustrated in Table 8.3-1. Note that
without the e technique, and contrary to the previous discussion, symmetric
rounding is inferior to chopping. This is commented upon in Ref. 35 as being
curious and points out that each problem may have unique characteristics which
need to be examined closely.

TABLE 8.3-1 TYPICAL ERRORS FOR AN ORBITAL ESTIMATION PROBLEM FOR
20 ORBITS (REF. 35) — 150 NM CIRCULAR ORBIT, 28 BIT MACHINE

Error
Without e Technique With e Technique
Symmetric Rounding 32,000 ft 153 ft
Chopping 12,000 ft 550 fi

Choice of State Variables (Ref. 36) — Consider a spacecraft orbiting the
moon and attempting to estimate altitude with an altimeter as the measurement
source. There are three variables, two of which are independent and should be
included as state variables: the radius of moon, R, the radius of orbit, r, and the
altitude h = r — R. After a number of measurements, h can theoretically be
determined with great accuracy. However, uncertainties im R and r remain large;
thus, R and h or r and h should be used as state vau'ia\bles’.~ Otherwise, h =7 — R
tends to have a large error due to roundoff errors in f and R.

Good A Priori Estimates (Ref. 36) — For a fixed-point machine, roundoff
causes errors in the last bit. Therefore, it as advantageous to fill the whole word
with significant digits. For example, suppose the maximum allowable number is
1000 with a roundoff error of + 1. Thus, if all numerical quantities can be kept
near 1000, maximum error per operation = 1/1000 = 0.1%. It follows that it is
advantageous to obtain a good initial estimate, X,. Then Py and %, will not
differ greatly from P, and 20, and all of the quantities can be scaled to fill the
entire word.

8.4 ALGORITHMS AND COMPUTER LOADING ANALYSIS

This chapter has emphasized the fact that in any real-time application of
Kalman filtering, key issues are the accuracy of the implemented algorithm in
the face of finite word length and other “noise” sources, and the associated
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computer burden in terms of memory and execution time. In this section,
certain specialized algorithms are di d from this perspective, including an
example of “computer loading analysis.”

PROCESSING MEASUREMENTS ONE AT A TIME

As early as 1962, it was known that the Kalman filter algorithm was in such a
form as to avoid the requirement for taking the inverse of other than a scalar
(Refs. 37 and 38). This is because the update equation for the covariance matrix,

Pe(®) =Py (-) - P(-) BT [H P (<) H, T+ R 1™ HiPy(-) (84-1)

contains an inverse of the di ion of the t vector z, and this
dimension can always be taken to equal one by considering the simultaneous
measurement components to occur seriglly over a zero (i.e., very short) time
span.

Example 8.4-1
Suppose a system is defined by
.
(1 2 10 10
P(-)= 1 , H= . R=
3 1 01 o1

L 4

where the subscripts k have been dropped for convenience, It follows from Eq. (8.4-1) that

1 1 17! 1
13 1312 3 13
T NI L
|2 2 2 2
(l 2
i5s 15
2 1
Lis 15 (8.4-2)

On the other hand, let us now assume that the two measurements are separated by an
“instant” and process them individually. For this case, we first assume

H=[1 0}, R={1}
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and obtain the intermediate result (denoted Pi(+))

i 1 L

Paf |t |t 2

=1y P-f 113

2 2! 272
11
2 4
11
4 8

Utilizing this result, the desired value of P(+) is calculated by next assuming
H=[0 1], R=(1]

1t is easily verified that this yields Eq. (8.4-2). The advantage of this method is that only a
1 X 1 matrix need be inverted, thus avoiding the p i of a matrix inverse
routine. However, some penalty may be incurred in jon time. Similar ipulati
can be performed to obtain i

Although this example considers a case where the elements of the measurement vector
are uncorrelated (i.e., R is a diagonal matrix), the technique can be extended to the more
general case (Ref, 39).

MATHEMATICAL FORM OF EQUATIONS
Recall that the covariance matrix update equations are, equivalently,

P(+)= (1-KH) P(-) (84-3)
and

P(+) = (I-KH) P(-) (I-KH)T + KRKT (844)
where

K =P(-) HT [HR(-) HT + R}
and the subscripts have again been dropped for convenience. Bucy and Joseph
(Ref. 36) have pointed out that Eq. (8.4-3), although simpler, is computationally
inferior to Eq. (8.4-4). If K- K + 8K, it is easily shown that

§P(+) = —8K HP(-) (8.4-5)
for Eq. (8.4-3). For Eq. (8.4-4), we instead find

8P(+) = SK[RKT — HP(-) (I-KH)T] + [KR — (I—KH) P(-) HT] 6KT (8.4-6)
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Substituting for K, we obtain

8P(H) =0 84-7)
to first order. Equation (8.4-4) is sometimes referred to as the “Joseph

algorithm.” Of course, despite its inherent accuracy, Eq. (8.4-4) consumes
iderably more computation time than Eq. (8.4-3).

SQUARE-ROOT FORMULATIONS

In the square-root formulation, a matrix W is calculated instead of P, where P
= WWT. Thus, P(+) is always assured to be positive definite. The square-root
formulation gives the same accuracy in single precision as does the conventional
formulation in double precision. Unfortunately, the matrix W is not unique, and
this leads to a proliferation of square-root algorithms (Refs. 11, 39-42, 53, 54).
The square-root algorithm due to Andrews (Ref. 41) takes the form:

Update  W(+)=W([l - ZUT) " (U +Vy* 2] (8.4-8)

Extrapolation ‘% W(-) = FW(-) + (%)Q[WT(—)]-I (8.49)
where

2=WT(-)HT

UUT=R+ZTZ (8.410)

VWI=R

and where the subscripts have been dropped for convenience. Note that Eq.
(8.4-9) can be verified by expanding the time derivative of P:

P=wwT + WWT
= [FW+ %Q(WT)"]WT + W[WTFT +%W“ qQl

. . (8.4-11)
=F(WWT)+EQ+(WWT)FT+5Q

=FP+PFT+Q

sjchmidt (Ref. 11) has shown how to replace the differential equation in Eq.
8.4-9) with an equivalent difference equation.
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Of course, a penalty is paid in that the “square root” of certain matrices such
as R must be calculated; a somewhat tedious process involving eigenvalue-
eigenvector routines. An indication of the number of extra calculations required
to implement the square-root formulation can be seen from the sample case
illustrated in Table 8.4-1, which is for a state vector of dimension 10 and a scalar
measurement. This potential increase in computation time has motivated a
search for efficient square root algorithms. Recently, Carlson (Ref. 53) has
derived an algorithm which utilizes a lower triangle form for W to improve
computation speed. Carlson demonstrates that this algorithm approaches or
exceeds the speed of the conventional algorithm for low-order filters and
reduces existing disadvantages of square-root filters for the high-order case.

TABLE 8.4-1 COMPARISON OF THE NUMBER OF CALCULATIONS INVOLVED
IN THE CONVENTIONAL AND SQUARE-ROOT FORMULATIONS
OF THE KALMAN FILTER (REF. 11)

Update: T
[ .
Square 2 Equivalent
Roots M&D  +  A&S M&D
Conventional 0 310 21t 352
Square-Root 1 322 302 387
Extrapolation:
Square I l Equivalent
Roots M&D  +  A&S M&D
Conventional 0 2100 2250 2550
Square-Root 10 4830 4785 5837

Note: M&D = multiplications and divisions
A&S = additions and subtractions

Example 8.4-2 illustrates the manner in which square-root algorithms mini-
mize roundoff error.
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Example 8.4-2 (Ref. 39)
Suppose

10
)= = =t
P()[o l],H[loLle

where € < 1 and to simulate computer word length roundoff, we assume 1 + € # 1 but
1+ = L It follows that the exact value for P(+) is

2

€
0
P 1+¢?
4y =
(+) 0 1
whereas the value d in the p using the Kalman filter algorithm in
Eq.(8.4-1)is

P [o o]
01

Using the square-root algorithm in Eq, (8.4-8), the result is

[Ez 0]
P(#) =
0 1

Since
K = B(+) HTR™!
it follows that:
1
Exact = 1ee
0

Conventional K= o
0
1

Square-Root K= [ ]
[

Clearly the i formulation may lead to divezg b

COMPUTER LOADING ANALYSIS

The burden that Kalman ﬁltermg algorithms place on real-time digital

p is iderable. Meaningful of this burden are storage and
computation time. The first item impacts the memory requirements of the
computer, whereas the second item helps to determine the rate at which
measu can be accepted. If a Kalman filter algorithm is to be programmed
in real time, it is generally necessary to form some estimate of these storage and
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time requi These can then be used to establish
lradeoffs between computer size and speed and algorithm complexity. Of
course, the constraints of the situation must be recognized; frequently the
computer has been selected on the basis of other considerations, and the Kalman
filter algorithm simply must be designed to “fit.”

Computation time can be estimated by inspecting Kalman filter algorithm
equations — ie., counting the number of “adds,” “multiplies,” and “divides,”
multiplying by the individual computer execution times, and totalling the
results. Additional time should also be added for logic (e.g., branching
instructions), linkage between “executive” and subprograms, etc. An example
of the results of such a calculation for several airborne computers is shown in
Table 8.4-2 for a 20-state filter with a 9-state measurement. “Total cycle time”

TABLE 8.4-2 TYPICAL CYCLE TIME FOR KALMAN FILTER EQUATIONS
(20 STATE FILTER, 9 STATE MEASUREMENT)

1982 1974 1965 1963
p C Comp Comp
(Fast) (Moderate) (Slow) {Slow—No Floating
Point Hardware)

{(usec) {(usec) (usec) (usec)
Load 04 1 8 120
Multiply 1.0 6 100 800
Divide 4.0 7 130 1000
Add 0.8 2 50 300
Store 04 2 8 120
Increment
Index Register 0.4 1 8 80
Estimated Cycle
Time (sec) 0.18 0.9 1.8 97.5

refers to the time required to compute the Kalman filter covariance and gain,
update the estimate of the state, and extrapolate the covariance to the next

time. Considering the nature of the Kalman filter equations, one
can see from the execution times in Table 8.4-2 that the computer multiply time
tends to dominate the algebraic calculations. In Ref. 44, it is shown that logic
time is comparable to multiply time.

Storage, or computer memory, can be divided into the space required to store
the program instructions and the space required to store scalars, vectors,
matrices, etc. If one does not have past experience to draw upon, the first step in
determining the space required for the program instructions is to simply write
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the program out in the appropnate language. Then, using the knowledge of the
particular hine in the ber of storage locations can be
determined. For example. the instruction A + B = C requires I 1/2 28-bit words
in the Litton LC-728 Computer.

When determining the storage required for matrices, etc., care must be taken
to account for the fact that many matrices are symmetric, and that it may be
possible to avoid storing zeros. For example, any n X n covariance matrix only
requires n(n + 1)/2 storage locations. Similarly, transition matrices typically
contain many zeros, and these need not be stored. Of course, overlay techniques
should also be used when possible; this can be done for Py (+) and Py(-), for
example.

For the example illustrated in Table 8.4-2, 3300 32-bit words of storage were
required. Of these, 900 words were devoted to storage of the program
instructions. A further example of storage requirements is illustrated in Table
8.4-3. The total storage requirement (exclusive of program linkage) is 793 32-bit
words. The computer in question is the Raytheon RAC-230 and the speed of this
machine is comparable with the “1968 computer” in Table 8.4-2 (Ref. 45). The
Kalman filter equation cycle time is computed to be 9.2 msec.

TABLE 8.4-3 COMPUTER OPERATIONS REQUIRED FOR A 5-STATE FILTER
WITH A 3.STATE MEASUREMENT*
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Note that for the S5-state filter in Table 8.4-3, program instructions
comprise the major portion of computer storage, whereas the opposite is
true for the 20-state filter in Table 8.4-2. The reason for this is that the matrix
storage space tends to be proportional to the square of the state size. Conversely,
program instruction storage is relatively independent of state size, so long as
branch-type instructions are used. Branch instructions are those that set up
looping operations. Thus, for matrix multiplication, it would require the same
number of machine instructions to multiply a 2 X 2 matrix as a 20 X 20 matrix.

Gura and Bierman (Ref. 43), Mendel (Ref. 44) and others have attempted
to develop parametric curves of computer storage and time requirements, for
several Kalman fiiter algorithms (“‘standard” Kalman, Joseph, square-root, etc.).
A partial summary of their storage results for large n (n is the state vector
dimension) is shown in Table 8.4-4, where m is the dimension of the measure-
ment vectors. Mendel has considered only the “standard” Kalman filter
algorithm, and has constructed plots of storage and time requirements vs. the
dimension of the filter state, measurement, and noise.*

TABLE 8.4-4 KALMAN FILTER STORAGE REQUIREMENTS FOR LARGE N
(PROGRAM INSTRUCTIONS NOT INCLUDED) (REF, 43)

Eraseable; Permanent{ Program
Operation Storage | Storage |[Instruction|Divide |Multipty] Add

1. Compute ® 5 23 6 - 2 -
2. Compute

Pi(-) = @Pg_1 (1) - 29 58 - | 250 | 300
3. Compute H 3 - 345 54 92 5t
4, Compute

Ki = B(HT -

[HPK(-HT + R} 59 9 164 9 | 144 | 173
5. Compute

Pic(+) = [1- KH] Pg(-) . 2 22 - 75 | 125
6. Compute Xy (+) = Kizk 3 2 35 - 18 21

Total 98 65 630 63 581 670

*There is no process noise in this example (Q = 0).

Storage Locations
n=m

Algorithm n»m n=1 n»1l m»n
Standard Kalman* 2502 3.5n(n+1.3) 3507 m?
Josepht 2502 L5n(n+ 1 150 m?
Andrews Square-Root 3n? 5.5 n(n +0.8) 55n° 2.5m?
Standard Kalman*
{no symmetry) 3n? 5 n{n+0.6) sn? 2m?
JosephT
(no symmetry) 3n? 6 n(n +0.6) 6n? 2m?
*Eq. (8.4-1)
TEq. (8.44)

nis the state vector dimension
m is the measurement vector dimension

*Recall R may be singular — i.e., the dimension of yx may be less than the dimension of zy.
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PROBLEMS
Problem 8-1

Verify that Eq. (8.1-12) does yield the correct covariance matrix when the e technique is
employed.

Problem 8-2
In Example 8.1-3, derive the equation for p
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Problem 8-3

Show that when the second measurement in Example 8.4-1 is processed, the correct
covariance matrix is recovered.
Problem 84

Show formally why the filter in Example 8.1-1 is not asymptotically stable.

Problem 85

Apply the o technique to the system in Examples 8.1-1 and 8.1-3, Compare the result
with the other two techniques in the examples.

Problem 8-6

Show the relationship between the exponential series for the transition matrix {Eq.
(8.3-18)] and the Euler and modified Euler integration algorithms in Section 8.3.

Problem 8-7
Using the definition P = WWT, set up the equations for W, the square root of the matrix

21
P=
1 2
Note that the equations do not have a unique solution. What happens when W is constrained

to be triangular?



9. ADDITIONAL TOPICS

This chapter presents brief treatments of several important topics which are
closely related to the material presented thus far; each of the topics selected has
practical value. For example, while it has been assumed until now that the
optimal filter, once selected, is held fixed in any application, it is entirely
reasonable to ask whether information acquired during system operation can be
used to improve upon the a priori assumptions that were made at the outset.
This leads us to the topic of adaptive filtering, treated in Section 9.1. One might
also inquire as to the advantages of a filter chosen in a form similar to that of the
Kalman filter, but in which the gain matrix, K(t), is specified on a basis other
than to produce a statistically optimal estimate. This question is imbedded in the
study of observers, Section 9.2, which originated in the treatment of state
reconstruction for linear deterministic systems. Or, one might be interested in
the class of estimation techniques which are not necessarily optimal in any
statistical sense, but which yield ive esti P ing certain well-
defined convergence properties. These stochastic approximation methods are
examined in Section 9.3. The subject of real-time parameter identification can be
viewed as an application of nonlinear estimation theory; it is addressed in
Section 9.4, Finally, the very important subject of optimal control — whose
mathematics, interestingly enough, closely parallels that encc d in optimal
estimation - istreated in Section 9.5.
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9.1 ADAPTIVE KALMAN FILTERING

We have seen that for a Kalman filter to yield optimal performance, it is
necessary to provide the correct a priori descriptions of F, G, H, Q, R, and P(0).
As a practical fact, this is usually impossible; guesses of these quantities must be
advanced. Hopefully, the filter design will be such that the penalty for
misguesses is small. But we may raise an interesting question — ie., “Is it
possible to deduce non-optimal behavior during operation and thus improve the
quality of a priori information?” Within certain limits, the answer is yes. The
particular viewpoint given here largely follows Mehra (Ref. 1); other approaches
can be found in Refs. 2-4.

INNOVATIONS PROPERTY OF THE OPTIMAL FILTER

For a continuous system and measurement given by
Xx=Fx+Gw .1-1)
z=Hxty (9.1-2)
and a filter given by
i=F§+Ke 9.13)
p=z-H} .14
the innovations property (Ref. 5) states that, if K is the optimal gain,
EQ(t)2(t)T} =0, t,#1t 9.15)
In other words the innovations process, p, is a white noise process. Heuristically,
there is no “information” left in p, if X is an optimal estimate.
Equation (9.1-5) is readily proved. From Eqgs. (9.1-2) and (9.1-4) we see that
E=X~3)
2=H(g-X)+y=~Hi+y 9.1-6)
Thus, for t, > t,, we get
Efu(t:)2(t1)T} = H(t2) EI%(t2) £7(t:)] HT (1))
—H(t) B[f(t)¥" ()] +R(t)8(ta —t))  (9.17)
From Egs. (9.1-1, 2, 3, 4) it is seen that § satisfies the differential equation

%=(F-KH)%~ Gy +Ky ©.18)
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The solution to this equation is

12
X(t2) = B(ts,t )X (1) — _’; B(t2.7) [GE) W) - KM ()} dr  (9.19)

where ®(t,, t,) is the transition matrix corresponding to (F — KH). Using Eq.
(9.1-9), we directly compute

Ef&(t2) £T(t)] = &(tz, t,) P(t;) (9.1-10)
E[&(t2) £F ()] = &(tz, t.) K(t:)R(t1) (9.1-11)
Therefore, from Egs. (9.1-7, 10, 11)
Efp(tz) 27 (t)] = H(ta) ®(t2, t1) [P(t ) HT(t1) — K(t:) R(t1))
+R(t;)8(t: — 1) (9.1-12)
But for the optimal filter K(t, )= P(t;) HT(t,) R™'(t,), therefore,
Efu(t;)2T(t)] =R(t:) 8(ts — t2) (9.1-13)

which is the desired result. Note that Eq. (9.1-12) could have been employed in
a derivation of the Kalman gain as that which “whitened” the process (t).

ADAPTIVE KALMAN FILTER

At this point we restrict our attention to time-invariant systems for which
Egs. (9.1-1) and (9.1-3) are stable. Under this condition the autocorrelation
function, E[#(t, ) 2T(t, )], is a function of 7 = t,—t; only, viz.:

Elp(t; +7)2T(t;)] = He(F ~KH)irl (pHT _ KR) + R&(7) (9.1-14)
In the stationary, discrete-time case, corresponding results are

Eiyz ;T1=HP(-)HT+R forj=0

= H[®(—KH)}~! &(P-) HT ~ K[HP(-)HT +R])
forj>0 (9.1-15)

which is independent of k. Here, ¢ is the discrete system transition matrix. Note
that the optimal choice, K = P(—) HT [HP(-) HT + R]™", makes the expression
vanish for all j#0.

In an adaptive Kalman filter, the innovations property is used as a criterion to
test for optimality, see Fig. 9.1-1. Employing tests for whiteness, mean and
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covariance, the experimentally measured steady-state correlation function
E[gk,zk_,-T] is processed to identify unknown Q and R, for known F, G and H.
It can be shown that, for this case, the value of K which whitens the innovations
process is the optimal gain. If F, G, and H are also unknown, the equations for
identification are much more complicated. Care must be exercised in the
identification of unknown system matrices from the innovations sequence; for
example, it is known that whiteness of the innovations sequence is not a
sufficient condition to identify an unknown system F matrix. Thus, non-unique
solutions for the system F matrix can be obtained from an identification scheme
based on the innovations sequence. The following simple example demonstrates
use of the innovations sequence for adaptive Kalman filtering,

IDENTIFIER
e e —
| |
{ TESTS ON THE |
| INNGVATION |
i SEQUENCE |
|
E CHANGES TO K, i
| |
L _J
Y
y « b 10
3
NS
B e Dy DELAY

Figure 9.1-1  Adaptive Kalman Fiiter

Example 9.1-1
Suppose we have the continuous (scalar) system and measurement given by
X=w, w ~ N(0,9)
z=x+v, v~N(@Or)

and utilize the data to esti X ing to

):E=k(z'—§)

where k is based on a set of incorrect assumed values for q and r. The true values of qand r
can be deduced as follows.
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First, for steady-state system operation, the process »(t) = z — X is recorded and its
lation function ined. For a sufficient amount of information, this yields [f=0,"
h=1, in Eq. (9.1-12)] :

Efp(t) o(t — 1] = gpp(r) = e KI7l (p, — kr) +18(7)

Next, this experimental result is further processed to yield the numbers r and (p,, — kr).
Here, p,, is the steady-state value of p; it is the solution to the linear variance equation
associated with Eq. (9.1-8),

B=0= —2kp, +q +k’r
or

_g+Kr
Pos 2%

With the values of k, 1, and p,, already known, this equation is solved for q. Thus, we have
identified r and q based on analysis of data acquired during system operation, for this simple
example.

In practice, the crux of the matter is processing ELEkaij] to yield the
quantities of interest. For the high-order systems of practical interest, the
algorithms proposed in Refs. 1 and 3 may not work as well as theory would
predict; other more heuristically motivated approaches may be both com-
putationally simpler and more effective (e.g., Ref. 6). Nevertheless, the
viewpoint presented herein is enlightening, and thus worthwhile. Extensions of
the viewpoint to non-real-time adaptive smoothing may be accomplished
through application to the forward filter. Here again, heuristically motivated and
computationally simpler approaches may have a great deal to offer in practice.

9.2 OBSERVERS

In some estimation problems, it may be desired to reconstruct the state of a
deterministic, linear dy ical system — based on exact observations of the
system output. For deterministic problems of this nature, stochastic estimation
concepts are not directly applicable. Luenberger (Refs. 7 and 8) formulated the
notion of an observer for reconstructing the state vector of an observable
deterministic linear system from exact measurements of the output.

Assume that m linearly independ noise-free s are
from an nh-order system (m < n). The initial system state, Xo» is assumed to be
a random vector. Then an observer of order (n—m) can be formulated which, by
observing the system output, will reconstruct the current state of the system
exactly in an asymptotic sense. Hence, an observer is a reduced-order estimator.
A major application of observer concepts has been to deterministic feedback
control problems, where the control law may depend on knowledge of all the
system states, while only limited combinations of the states are measurable (Ref.
9).

1ahl,
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As formulated by Luenberger, an observer is designed to be an exp ial
estimator, - i.e., for a time-invariant linear system, the estimation error will
decay exponentially. Since there is no stochastic covariance equation which can
be used to specify a unique optimal observer in the minimum mean square error
sense, the eigenvalues of the observer can be chosen arbitrarily to achieve desired
response characteristics. The observer response time chosen should be fast
enough to provide convergence of the estimates within the time interval of
interest. Observers can also be constructed to provide accurate state estimates
for time-varying, deterministic systems — provided the observer response time is
chosen to be short, relative to the system time variations.

In the sequel, the theory of reduced-order observers for continuous
deterministic dynamic systems is presented. These results are then generalized to
continuous stochastic estimation problems, containing both noisy and noise-free
measurements. The stochastic observer unifies the concepts of deterministic
Luenberger observer theory and stochastic Kalman filtering theory (Refs. 10 and
11). Only continuous linear systems are treated herein; however, analogous
results have also been derived for discrete systems (Refs. 12, 13 and 14).

OBSERVERS FOR DETERMINISTIC SYSTEMS

In this section, Luenberger’s theory of reduced-order observers is described in
a form which facilitates extension to stochastic state estimation for time-varying
systems. Consider a linear deterministic n*t-order system described by

KO)=FOxO+LOu®;  2t,)=1%, 9.2-1)

where u(t) is a deterministic (control) input. Observations of the state are
available according to

Zt)=H(1) x(t) 9.2-2)

H(t) is an m x n measurement matrix (m < n) which is assumed to be of full
rank. Thus, z(t) represents m linearly independent combinations of the state
vector, x(t). It is also assumed that the system described by Egs. (9.2-1) and
{9.2-2) is completely observable (the observability condition is defined in
Section 3.5).

It is desired to provide an estimate of the state vector, %(t), employing an
(n — m)th-order observer. To do this, introduce an (n — m) dimensional vector

&),

D =T(t) x(t) (9.2-3)
such that
T(t)
=== (9.24)

H(t)
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is a nonsingular matrix. The vector g(t) represents (n — m) linear combinations
of the system states which are independent of the measurements, z(t). It is
therefore possible to obtain the inverse transformation

-1
RGN FC) i
x(t)—[H(‘)] [—1(_‘)_] (9.2-5)

For convenience, define

-1
M| a f .
[H(t) = [A(D) B(Y] (9.2-6)
so that
(=AM KO + B ) 9.2.7)

The concept of observers is based on devising an (n ~ m)t-order estimator for
the transformed state vector {(t), which can then be used to reconstruct an
estimate of the original state vector x(t), according to the relationship of Eq.
(9.2-7). In the following development, the form of the dynamic observer is
presented and the corresponding error equations derived.

At the outset, some constraint relationships can be established between the
A, B, T and H matrices, viz*:

AT+BH=1 (9.2-8)

and
[—;—] [AlB] =1 9.29)

These constraints, which are a direct consequence of the inverse relationship
defined in Eq. (9.2-6), are useful in what follows.

A differential equation for £ can be easily obtained by differentiating Eq.
(9.2-3) and substituting from Eqs. (9.2-1) and (9.2-7). The result is

E=(TFA+TA);+(TFB+TB)z+ Ty (9.2-10)

By differentiating the appropriate partitions of Eq. (9.29), it is seen that the
relationships TA = —TA and TB = —TB must hold. It is convenient to substitute
these relationships into Eq. (9.2-10) to obtain an equivalent differential equation
for £, in the form

*Henceforth, the time arguments are dropped from variable quantities, except where
necessary for clarification.
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£=(TFA~TA) £+ (TFB—TB)z+ TLy (9.2-11)

In order to reconstruct an estimate, §, of the vector £, it is appropriate to design
an observer which models the known dynamics of £ given by Eq. (9.2-11),
utilizing z and u as known inputs. We are therefore led to an observer of the
form

§=(TFA—TA)§+UFB- TB)z + TLu (9.2-12a)
£=Af+Bz (9.2-12b)

A block diagram of this observer is illustrated in Fig. 9.2-1.

z{t)

Figure 9.2-1  Deterministic Observer Block Diagram

It is important to note that for every initial state of the system, x(t,), there
exists an initial state £(t,) of the observer given by Eq. (9.2-12) such that ¥(t) =
A(t) for any w(t), for all t3> t,. Thus, if propery initialized, the observer will
track the true system state exactly. In practice, however, the proper initial
condition is not known, so it is appropriate to consider the propagation of the
observer error. As mentioned previously, observers exhibit the property that the
observer error, defined by

E=f-¢ (9.2-13)

decays exponentially to zero. This is easily demonstrated by subtracting Eq.
(9.2-11) from Eq. (9.2-12a), to obtain the differential equation

E=(TFA-TA)E ©.214)
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Note that if the observer is chosen to be asymptotically stable, then g(t) will
tend uniformly and asymptotically to zero for arbitrary £(t,)- The stability of
the observer and the behavior of £ are both determined by the properties of the
matrix TFA — TA; the eigenvalues of this matrix can be chosen arbitrarily by
appropriate specification of T, A and B, subject to the constraints of Egs. (9.2-8)
and (9.2-9).

Now consider the total state estimation error, X, defined by

i=3-x (9.2-15)

The differential equation for X is derived in the following manner. From Eqs.
(9.2-7) and (9.2-12b), it is seen that ¥ is related to Eby

i=Af (9.2-16)

It follows from Eq. (9.2-16) that  tends uniformly and asymptotically to zero,
owing to the convergence properties of £ previously discussed. The cor-
responding relationship

E=1% 9:217)

can be obtained by premultiplying Eq. (9.2-16) by T and invoking the con-
straint TA=I from Eq. (9.2-9). Using these relationships, the differential
equation for  can be derived as

i=Af+af
=(AT +ATF — ATAT) & (9.2-18)

Notice from Eq. (9.2-18) that the estimation error behavior depends on
specifying the matrix products AT and AT. It would be more convenient, from a
design standpoint, to specify the desired observer error characteristics in terms
of fewer parameters. Fortunately, it is easy to demonstrate that Eq. (9.2-18) can
be written in the equivalent form

&=(F— BHF - BH) & 9.2-19)

The transformation from Eq. (9.2-18) to Eq. (9.2-19) is left as an exercise for
the reader. (Hint: show that AT & = %, and employ the constraints AT + BH = I
and HA = —HA).

From Eq. (9.2-19), it is apparent that for a given system desctibed by F and
H, the estimation error depends only on the choice of B. It can be shown that if
the system is completely observable, the matrix B can be chosen to achieve any
desired set of (n ~ m) eigenvalues for the error response. For the special case of
a time-invariant system, the observer may be specified according to the following
procedure:
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® Choose an arbitrary set of eigenvalues, A (complex conj pairs)

® Pick B such that F —BHF has A as its nonzero set of eigenvalues

® Choose A and T consistent with AT + BH =1
The choice of A and T which satisfies Eq. (9.2-8) is not unique. To illustrate
this, suppose that an allowable pair of matrices (A*, T*) is chosen (a met‘hod for
constructing such an allowable pair is given in Ref. 52). Then the pair (A,T)
given by

A=A*M"!
T=MT* (9.2-20)
also satisfies Eq. (9.2-8), where M is any nonsingular matrix. The set of all

allowable pairs (A, T) defines an equivalent class of observers which exhibit the
same error behavior.

Example 9.2-1
Consider the d-ords ple i d in Fig. 9.2-2. This system model might be
of a simplified i i tracking problem, where X; and X, are

porsilion and velocity of the tracked object, respectively. The system dynamics are

NRERIRER!

with of position availabl ding to

Xy
z=U0]L]
2

It is desired to construct an observer for this system.

3
E]

x,(t) x (1

—zit)

x50
v
/

. f—

u(ty—» £

8 L«

Figure 9.2-2  Second-Order Tracking System Example
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From Eq. (9.2-9), HB = I, so that B is constrained to be of the form

The error dynamics can be written as {Eq. (9.2-19)]

i=(F-BHPZ
where
0 0
F - BHF =
0 —(@+by)

Since n — m = 1 for this problem, the observer is of first order and is specified by the single
eigenvalue, A = — (8 + by). It is desirable to choose the observer time constant to be
significantly smaller than the system constant. Arbitrarily choose A = —5p, which implies by
= 48. A possible choice of A and T, satisfying Eqs. (9.2-8) and (9.2-9), is

0
A= [1] T=[-48 1]

This the cation of the first-order observer. The corresponding block
diagram 1s dllustrated in Fig. 9.2-3. Although the choice of A and T is not unique, it is
easily d that any all le choice of A and T leads to the equivalent observer
configuration of Fig. 9.2-3. This is left as an exercise for the reader.
A
z{1} —- x{t]
2 4
{0 A I
i £
+ A A
vii—] 2 [ FYO—— %o
58 L«
Figure 9.2-3  Observer Confi ion for Simpli: Tracking

The observer performance may be illustrated by a numerical example, Assume that the
system parametess are

g=1.0sec!, 2= 1.0, u(t) = 1.0 ft/sec’
X1(0) = 1.0 ft, x2(0) = 1.0 ft/sec
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The observer is initialized by choosing
£1(0)=x(0) = 1.Oft, X2(0)=0

so that £(0) = —4.0 ft/sec. The resulting system and observer outputs are plotted in Fig.
9.2-4. Note that x; is estimated without error since it is directly measured, while the error
in the estimate of x, decays exponentially to zero with a time constant of 0.2 sec.

OBSERVERS FOR STOCHASTIC SYSTEMS

The formulation for deterministic observers can be extended to encompass
stochastic systems. Stochastic observer theory forges the link between reduced-
state deterministic observers and optimal Kalman filtering; in some applications,
the stochastic observer offers a convenient approach for the design of
reduced-state filtering algorithms. In the sequel, a heuristic approach is taken to
the design of stochastic observers.

Consider the system described by

%=Fx+Gy, w~NQQ 9.2:21)

For simplicity, deterministic inputs are not included in the system model; any
deterministic inputs are d to be comp d, and can be removed from
the formulation without loss of g lity. The are assumed to be
partly deterministic and partly stochastic, viz:

Z H, v
2 === =}, v, ~N@QR, (9.2-22)
L] Rl fi] aren

Of the m measurements, m, are noisy with measurement noise spectral density
R,, and m, are noise-free (m, = m — m,). As before, we assume that H, is of
full rank.

A configuration is sought for the stochastic observer that has the form of the
(n — m)th-order deterministic observer when all the measurements are noise-free
(m, = 0), and becomes the n'M-order Kalman filter when all the measurements
are noisy (m, = 0). For combined noisy and noise-free measurements, the
conventional continuous Kalman filter cannot be implemented, due to singu-
larity of the measurement noise covariance matrix. In Section 4.5, an approach
is given for modifying the Kalman filter to circumvent the singularity of R for
certain special cases. The concept of stochastic observers presented herein is
applicable to the more general case and reduces exactly to the modified Kalman
filter of Section 4.5, under equivalent conditions.

It is immediately apparent from the deterministic observer block diagram,
Fig. 9.2-1, that the noisy measurements must be processed differently than the
noise-free measurements to avoid the appearance of white noise on the output.
It is necessary to provide additional filtering of the noisy measurements to avoid
this situation.
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x;(t) AND %, (t)

POSITION (ft)

(3] of

A

t{sec)

xa{t)
o5k

lt)

0.5 1.0 L5 2.0
t{sec)

VELOCITY {ft/sec)

-0.5}

Figure 9.2-4  Actual and Estimated States vs. Time for Simplified Tracking Example
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Define the {n - m, ) x n transformation
§=Tx (9.2:23)

Such that

T 9.2:24)
H, ’

is a nonsingular matrix. It then follows that

X=AE+B: 2 (9.2:25)
where

AT+B,H, =1 (9.2:26)

By analogy to the deterministic problem, £ can be shown to satisfy the
differential equation

£=(TFA — TA){ + (TFB, — TB;) 22 + TGw ©227)

This is the same expression previously derived in Eq. (9.2-11), except that the
deterministic input, Ly, has been replaced by the stochastic input, Gw.

1t is reasonable to postulate that the stochastic observer should be designed to
process the noise-free 23, according to the deterministic observer
formulation, while prc ing the noisy 21, ding to the
stochastic Kalman filter formulation. Accordingly, the stochastic observer can be
postulated to have the form

i=Af+Bz (9.2-28a)
£=(TFA — TA)E+ (TFB, — T,)z, + TB, (1 — Hi§) (9.2:28b)

An additional n x m, free gain matrix, B, , has been incorporated for processing
the noisy measurements, z,. Notice that the noisy measurements appear only as
inputs to the observer dynamics in a2 manner analogous to the Kalman filter
formulation, and are not fed forward directly into the state estimates, as are the
noise-free measurements. A block diagram for this stochastic observer config-
uration is illustrated in Fig. 9.2-5. The choice of the observer specified by Egs.
(9.2-28) has been constrained so that in the ab of the 22 nts, the
observer structure will be identical to the ntP.order Kalman filter. It is easily
shown that, form, =0,
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T=A=]
A=0 (9.2:29)

and Fig. 9.2-5 reduces to the continuous Kalman filter shown in Fig. 4.3-1, In
this case, the optimal choice of the gain B, corresponds to the Kalman gain. For
the other extreme, where all m measurements are noise-free (m, = 0), Fig. 9.2-5
immediately reduces to the deterministic (n — m)!-order observer depicted in
Fig. 9.2-1.

2,0t)

nxm,

{axn)

Flt) fa—

{myxn)

Figure 9.2-5  Stochastic Observer Block Diagram

The estimation error dynamics for the stochastic observer may be determined
in a manner analogous to that used to derive the deterministic observer
dynamics. From Egs. (9.2-27) and (9.2-28b), the expression for § is

£=(TFA-TA){+TB, (z;, - H,5) — TGy (9.2-30)
Noting that

E=T% (9.2-313)

z-Hig=-Hix+y (9.2-31b)

the differential equation for the estimation error, , is then obtained as
¥
= (AT + ATF - ATAT - ATB,H,) %+ ATB,v, — ATGy (9.2-32)
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Following the deterministic observer analysis, an equivalent differential equation
for § can be expressed in terms of the gain B as

&= (F-B,H,F-B,H, — ATB,H,) % + ATB,y, — (I-B,H,)Gw (9.2:33)

Consider replacing B, by ATB, in Eq. (9.2-33). Using the identity TA =1, it can
be seen that the error dynamics are unaffected by the substitution. Hence, Eq.
(9.2-33) may be simplified by replacing the term ATB, by By, yielding the
following equivalent expression for the estimation error dynamics:

§=(F—B,H,F— B;H, - B,H,)Z +Byy, - (- B;H,)Gy  (9.234)

Notice that, in the case of no measurement or process noise, Eq. (9.2-34)
reduces to the deterministic observer error dynamics of Eq. (9.2-19). In the
absence of noise-free measurements, B, and H, are zero and Eq. (9.2-34)
reduces to the standard Kalman filter error dynamics of Eq. (4.3-13), where B,
is identified as the Kalman gain matrix.

OPTIMAL CHOICE OF B; AND B,

The stochastic observer design may now be optimized by choosing B, and B,
to minimize the mean square estimation error. The error covariance equation,
determined from Eq. (9.2-34), is

P = (F—B,H,F — B,H, — B;H,) P+ P(F — B,H,F-B,H, — B,H,)T
+B,R; B, T + (I-B,H,) GQGT(1-B, H,)T (9.2-35)

Both B, and B, may now be chosen to minimize the trace of p (see Problem
4-8). Minimizing first with respect to By, yields the optimal gain

B,°Pt=PH,T R;"? (9.2-36)
Substituting B, °P! into the covariance equation gives
P = (F—B,H,F—B,H,) P + P(F—B,H,F—B,H,)T
—PH,TR,"*H,P + (I-B,H,) GQGT(I~B,H,)T (9.2:37)

The optimum choice of B, can be determined by minimizing the trace of Pin
Eq. (9.2-37), with respect to B,. This computation leads readily to

B,°Pt = [PFTH,T + GQGTH,T + PH,T] [H,GQGTH,T]™"  (9.2:38)
To complete the specification of the optimal stochastic observer, it is

necessary to properly initialize the filter estimates and the covariance matrix.
Due to the exact discontil occur at t = 0% Single stage




332 APPLIED OPTIMAL ESTIMATION

estimation theory can be used to determine the initial conditions ¥(0*) and
P(0%) from z,(0) and the prior estimates, 5(0) and P(0):

£(0%)=5(0) + PO)H, T(0) [H3(0) P(0) H, T(0)] ™" [22(0) — H2(0)3(0)]
(9.2:39)

P(0") = (0) — P(0) H, T(0) [H,(0) P(O)H, T(0)] ™ Ha(0)P(0) (9.2:40)

The initial estimate depends on the initial measurement, ;z(O), and cannot be
determined a priori. The initial condition for the observer, 5(0*), is related to
3(0") by

£0") = T(0)5(0%) 9.241)

Note that the optimal gain B, ®P!, specified according Eq. (9.2-38), depends
on the presence of process noise. In order to compute B, °PL, it is necessary to
invert the matrix H,GQGTH,T. This matrix will be nonsingular, yielding a
unique solution for B, °Pt, if the first derivatives of the noise-free measurements
contain white process noise. If some of the derivatives of the noise-free
measurements are also free of white noise, then the choice of B, is not
completely specified. Under these conditions, B; may be chosen to give
desirable error convergence properties, as in the case of completely deterministic
observers.

SPECIALIZATION-TO CORRELATED MEASUREMENT ERRORS

In many filtering problems of practical interest, the measurements may be

deled as ining correlated errors, where the measurement
errors are described by first-order differential equations driven by white noise.
Consider the nth.order system, with m measurements, described by

k=Fx+Gy

z2=Hg+y (9.242)
where the measurement noise, y, satisfies the differential equation

i=Ev+w, (9.243)
The (n + m)tM-order augmented system, with x'T = [3T} yT] is described by

K=Fx+G¥

Z=H,x (9.2-44)
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where

, [rto} |, [elo] . _ . fele
e B i) o

The nth-order optimal stochastic observer is now derived for this problem.
A useful property of observers is that the estimation error is orthogonal to
the noise-free measurements, so that
H,%' =Hi+3i=0 (9.2-46)
The proof of this result is left as an exercise for the reader. [Hint: Premultiply

the relation ' = A £ by H';, and use the constraint of Eq. (9.2-9)] . Hence, the
covariance matrix, P’ = E {§' £'T], can be expressed as

P= [—:}E’T]’E’ H_T] (9.2-47)

where P is the covariance matrix of the error X. The pertinent observer matrices
may be partitioned according to

B, = By T=[T,' T.], A= AL (9.248)
Byz] ’ e As

where B4 is n x m, T, is n x n and A, is n X n. Substituting Eqs. (9.2-45) and
(9.2-47) into the optimal gain expression of Eq. (9.2-38) gives

B, ,°Pt = [P(H+HF—EH)T +GQGTHT] [HGQGTHT +Q,]™!  (9.249)

B, %Pt =[HP(H+HF-EH)T +Q,] [HGQGTHT +Q,]™*
=1-HB,, °Pt . (9.2-50)

A possible selection of A and T that satisfies the constraint AT + B,H', =1 is
given by

A= |—]
T=[[—B;H|-B,;;] 9.2:51)

The observer dynamics are described by
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F=Af+Byz

£= (TP A-TA) £+ (TF'B,~Th, )z 9252
Substituting for T, F’, A and B, leads to the result

TFA~TA=F-B,,H,

TF'B; — TB; = FB, ,~B,,E — B,,~B,  H, B, (9.2:53)
where H, has been defined as

H, = (H + HF — EH) (9.2-54)

A block diagram of the optimal observer is illustrated in Fig. 9.2-6, for the

observer defined by Egs. (9.2-52) and (9.2-53). Since we are not interested in

estimating the noise, y, only the estimates % are shown in the figure. Assume that
the prior estimate of P' is given by

P'(0)= |[—~|— — (9.2:55)
|

For an initial estimate £(0), the discontinuities in £(0*) and P(0*) are
determined by appropriately partitioning Egs. (9.2-39) and (9.2-40), resulting in
(0%) = 3(0) + P(O)HT(0) [H(0) P(0) HT(0Q) + R(0)] ™" [2(0) — H(0)Z(0)]

0*) = P(0) — P(O)HT(0) [H(O g N
PO = 0) - HOHT(O) HO KO HT(@) + ROI ™ HOPO)

2 0pt, opt,
By (1)

+ t - kit
2t} E) { 80 () > f

Fit) het

H'(l) ——

Figure 9.2-6  Correlated Measurement Error Optimal Qbsetver
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The optimal reduced-order observer for the special case of correlated mea-
surement errors is identical to the modified Kalman filter derived in Section 4.5,
using a completely different approach. The Kalman filter approach to the
problem requires that special allowances be made to circumvent the singularity
of the R matrix. Using the structure of stochastic observer theory, however, the
solution to the correlated measurement error problem follows directly.

9.3 STOCHASTIC APPROXIMATION

Most of the material contained in this book is concerned with obtaining
optimal estimates of a random vector X, or a vector random process x(t), from
noise-corrupted measurement data. Recall that an optimal estimate is one which
minimizes an appropriate functional of the estimation error; examples of such

criteria — maximum likelihood, least squares, etc. — are discussed in the
introduction to Chapter 4. This section considers a class of estimation
techniques, called hastic approximati hods, that are not necessarily

optimal in any statistical sense, but which yield recursive estimates with certain
well-defined convergence properties.

The motivation for stochastic approximation methods is that optimal
estimation criteria often depend upon assumptions about the statistical
characteristics of x(t), and its associated measurement data, which may not hold
true in practice. For instance, the Kalman filter yields a minimum variance
estimate of x(t), provided the latter satisfies a linear stochastic differential
equation driven by ian noise and s are linearly related to x(t)
with additive gaussian noise. If the dynamics of x(t) and its observations are
dominated by nonlinear effects that cannot be accurately approximated by
linearization, or if the noise processes are nongaussian, the corresponding
optimal estimation algorithm is often too complex to mechanize. More
generally, if the noise statistics are unknown or undefined, the optimal estimate
may be indeterminate. In such circumstances it is sometimes possible, through
use of stochastic approximation methods, to obtain a sequence of estimates for
X(t) that either asymptotically approaches the true value (when x(t) is constant),
or possesses a statistically bounded error (in the time-varying case). The
mathematical assumptions needed to prove these convergence properties are
generally much weaker than those required to determine optimal estimators.
Furthermore, most stochastic approximation algorithms are recursive linear
functions of the measurement data that can be readily mechanized in a
computer. Consequently, they offer attractive alternatives to optimal estimation
techniques in some applications.

THE SCALAR CONSTANT-PARAMETER CASE

Stochastic approximation methods were first developed as iterative proce-
dures for determining a solution, X, to the scalar nonlinear algebraic equation,

#x)=0 (9.3-1)
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where g(X) ) cannot be evaluated exactly for trial values, or “estimates,” Riyoo-
Ky, - - ., of the argument, x. This is analogous to the classical deterministic
problem of obtaining a solution to Eq. (9.3-1) for aknown functlon g(x), which
can be treated by any of several classical I tech — Newton’s
method, successive approximations, etc. Most such numencal techniques have
the common property that an approximate solution for x, is obtained by
iteratively performing the calculation

Ryerq = K + Ky (%) (9.32)

where ky ,k = 1,2, ..., is an appropriately chosen sequence of “gains” (denoted
by {ky( ). In the method of successive approximations k, = —Sgn [g'(%;)]
for all values of k; in Newton’s method*

ki =— Ug'Gy) 933)

The objective at each stage is to apply a correction to the most recent estimate
of x,, which yields a better estimate. Conditions under which the sequence
)‘ik}, generated by Eq. (9.3-2), converges to a solution of Eq. (9.3-1) can be
stated in terms of restrictions on the sequence of gains, on the function g(x) in
the vicinity of the solution and on the initial “guess”, x; (see Ref. 15).
The stochastic case refers to situations where g(X;) cannot be evaluated
exactly; instead, for each trial value of x a noise-corrupted observation

my = g(®) + v (9.34)

is generated. In the sequel it is convenient to assume that g(x) is a monotonically
increasing or decreasing function having a unique solution to Eq. (9.3-1), and
{vk }is a sequence of zero mean independent random variables having bounded
variances. Furthermore it is assumed that g(x) has finite, nonzero slope as
illustrated in Fig. 9.3-1 — ie.,

0<a<lgx)i<b<>

Somewhat less restrictive conditions could be imposed; however, those given
above suffice for many applications of interest.

A practical example of the type of problem described above might be the
nonlinear control system illustrated in Fig. 9.3-2, where X represents the value of
a control gain and g(x) represents the steady state error between the system
output and a constant input, as an unknown function of x. If the objective is to

1; >0

o B a
*g'(xg) = dg(x)/dxt,‘:,‘;k, Sgnfa) = 0, a=0
-1; <0

ADDITIONAL TOPICS 337
determine the proper gain setting to achieve zero steady state error, an
experiment can be devised whereby successive gain settings are tried and the
resulting steady-state error is measured with an error vy

alx)

SLOPE: b /

Figure 9.3-1  Graphical Itlustration of the Class of Functions, g(x)

The background of iterative methods available for determining the solution to
Eq. (9.3-1) in cases where g(x) is a known function led investigators, beginning
in the early 1950°s, to inquire whether a recursion relation of the form

Ry = Rk +kgemy 9:35)

can also generate a sequence that in some sense converges to x, when g(%,) is
observable only through Eq. (9.3-4). Equation (9.3-5) has the same form as its
deterministic counterpart, Eq. (9.3-2), except that g(X) is replaced by the
measurement my.. Because my has a random component, Eq. (9.3-5) is called a
stochastic approximation algorithm.

A common definition of convergence applied to the random sequence
generated by Eq. (9.3-5) is mean square convergence, defined by

klll’ﬂ El(x,—%)’] =0 (9.3-6)
The pioneering work of Robbins and M (Ref. 16) d rates that the

solution to Eq. (9.3-5) converges in mean square, if the gains ky satisfy the
conditions
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MEASUREMENT
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Figure 9.3-2 A Control System ication Where ic Appr
, Methods can be Applied to Determine the Proper DC Gain

Sntiky) = — Sgn (g0 9.373)
lim (o) =0 (9.3.7)
i f | = oo (9.370)
k=1

2 <o (9.3-7d)
k=1

We shall not supply convergence proofs here; however, the reader should
qualitatively understand why the conditions in Eq. (9.3-7) are generally
necessary for convergence. For instance, Eq. (9.3-7a) insures that the correction
to each estimate X, is in the proper direction, by analogy with the classical
techniques for determining zeros of known functions. Hence, although g(x) is
unknown, the sign of its derivative must be known in order to choose a proper
sequence of gains. The condition that the gain sequence approaches zero [Eq.
(9.3-7b)] is needed to insure that

Jim i1 = R 9.38)

in Eq. (9.3-5), ot.herwise{ Ry } cannot converge in a mean square sense o X.
[Note that condition (9.3-7b) is implied by condition (9.3-7d).] The conditions
in Egs. (9.3-7¢) and (9.3-7d) are needed to insure that ik, | approaches zero at
the proper rate — not too fast, Eq. (9.3-7c), but not too slowly either, Eq.
(9.3-7d); an example that specifically demonstrates the necessity of these
conditions is given in the problem section.
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Following Robbins and Munroe, others derived alternative conditions for
convergence of stochastic approximation algorithms and investigated ways of
choosing the gain sequence { ky } in Eq. (9.3-5) to achieve a high rate of
convergence {Refs. 17, 18 and 19). Algorithms have been obtained for problems
in estimation (Refs. 20 through 25), optimization (Refs. 26 and 27), and pattern
classification (Refs. 28, 29, and 30). The subsequent discussion in this section
pursues the viewpoint of our main interest, viz., estimation theory.

Suppose that an unknown constant x,, is to be estimated from observations
of the form

7= h(xg) + vy 939
where (x) is a known function and{ Vk} is a sequence of independent zero
mean random variables, having otherwise unknown statistical properties. If a
new function g(x) is defined by

) 2 h(x,) - h(x) 9.3-10)
then the problem of determining x, is equivalent to finding the solution to

gx)=0 (9.3-11)

Subtracting h(X, ) from both sides of Eq. {9.3-9), using Eq. (9.3-10), and
defining

my 2 7 — h(%) 9.312)
we obtain equivalent measurements

my = gi) + vy 9.3-13)
Thus, estimation of x, is recast as the problem of approximating the solution to
Eq. (9.3-11) from the measurement data { mk} in Eq. (9.3-13). Applying the
algorithm in Eq. (9.3-5), we can estimate x,,, recursively, from the relation

Riep = Ry +kyemy,

=%y * ky (m—h(%, )] (9.3-14)

where the gain sequence { kk} is chosen to satisfy the conditions in Eq. (9.3-7).
Equation (9.3-14) is similar in form to the discrete Kalman filtering algorithm
described in Section 4.2. In particular, the new estimate at each stage is a linear
function of the difference between the new measurement and the most recent
estimate of h(x,,). However, notable differences are that h(x) can be a nonlinear
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function and the gains { ky } are determined without making any assumptions
about the statistical properties of X and {vk} .

As an example, suppose X, is observed through linear measurements of the
form

7y =Xt Vi (9.3-15)
Then Eq. (9.3-14) becomes

K1 = R+ ki (2—) (9:3-16)
Using the fact that g(x) = x,, — x, the condition in Eq. (9.3-7a) reduces to kj >

0; hence Eq. (9.3-14) becomes a linear filter with positive gains. Some gain
sequences which satisfy the other convergence conditions in Eq. (9.3-7) are

[
ke =3

[+
k= grE o B>0k=12,... 9.3-17)

a+k
kk=ﬁ+k2

The class of estimation algorithms discussed above can be extended to
situations where the observation function, h(x, ), varies with time — i.e.,

7 = hy(xo) + vy 9.3-18)

This category includes the important problem of estimating the coefficient of a
known time-varying function — e.g.,

zy =X, sin Wiy +vy 9319
Defining
800 2 By (xo) — (%) (9320)

and corresponding observations,

my & g i) + v ©.321)
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we seek the value of x that satisfies
&(x)=0 (9.3-22)

for all values of k. To this end, an algorithm having the same form as Eq.
(9.3-14) is employed, viz.:

Rye1 = Ry + Ky [y R (9.3-23)

In order for the sequence { ik} to converge to X, in the case of a time-varying
observation function, conditions must be imposed which take into account the
variations in g (x) with the index k, as well as the properties of the gain
sequence { kk}. Henceforth, attention will be restricted to linear problems — i.e.,

hy(x,) =hyx, (9:3-24)

where hy may be a function of k. For this case, the following conditions, in
addition to those in Eq. (9.3-7), are imposed (Ref. 24):

13,001 = Ihy | < d < o (9.3-252)
Z fi) T = oo (9.3:25b)
=1

The condition in Eq. (9.3-25a) is analogous to that in Fig. 9.3-1, which bounds
#(x) by a linear function with a finite slope. The condition in Eq. (9.3-25b) is a
generalization of Eq. (9.3-7c) (the latter is implied by the former) needed to
insure that the measurements contain sufficient information about x,. For
example, if the measurements in Eq. (9.3-19) are taken at uniform intervals of
length 2m/w sec, beginning at t = 0, then hy = sin {2nk) is zero for all values of k,
causing Eq. (9.3-25b) to be violated — i.e., ZIky |lhy] = 0 # °°. In this case, the
data would contain no information about x,,.

The condition in Eq. (9.3-25b) is physically similar to the concept of
stochastic observability (see Section 4.4), which describes the information
content of meast data d with linear dynamical systems. To
demonstrate this, we begin by recalling that a discrete-time dynamic system is
uniformly stochastically observable if

ql< g: ®G,XTHTR ' Hi®G,k) < ayl (9.3:26)
i*k—-N

i=
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for some value of N, with &; > 0 and @, > 0, where ®(i,k) is the transition
matrix from stage k to stage i, H; is the measurement matrix and R; is the
noise covari matrix. It follows from Eq. (9.3-26) that

D @(THTR (k) = oo (0327)
e

Applied to the problem of estimating x, in Eq. (9.3-24) for which

Wik) =1

Hy=h

% for all i,k

with the assumption that the additive measurement noise has constant variance,*
0%, Eq. (9.3-27) reduces to

_—
= Z by’ == 9.3-28)

Uk=

Now, the optimal least-squares estimate for x, in Eq. (9.3-24), obtained from a
set of k—1 measurements of the form

47ty

is given by (see the discussions of least-squares estimation in the introduction to
Chapter 4),

Xy = (9.3-29)
That is, Xy in Eq. (9.3-29) is the value of x, which minimizes the function

2 @-hx)’
1=

*This assumption is for convenience of exposition only; the analogy we are making here will
hold under much weaker conditions.
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If the additive measurement errors have bounded variance, it is easy to prove*
that %, will converge to x,, provided the denominator in Eq. (9.3-29) grows
without bound as k approaches infinity — ie., provided x, is observable
according to Eq. (9.3-28). Thus, observability implies convergence of the least-
squares estimate.

On the other hand Eq. (9.3-29) can be written in the recursive form

R . by
Xgey =X *
hjz
2,:

Comparing Eqs. (9.3-23) and (9.3-30), we can regard the latter as a specific
stochastic approximation algorithm having a gain given by

(#— %) 9.3-30)

K = L 9.331)

In order that the condition in Eq. (9.3-25b) be satisfied, it must be true that

D il tyl =
k=1

= 9.332)

=1

It can be shown that Eq. (9.3-32) will hold provided (see Ref. 31 on the
Abel-Dini Theorem)

2 b = (9.3:33)
1

which is equivalent to Eq. (9.3-28). Conseq ly, for least-square.
stochastic observability and Eq. (9.3-25b) imply the same conditions on hk

) E
xohi? +vi
=i ‘oftj k

lim Xy = lim e = lim }x, + —k—— = Xo in the mean square sense
koo koe = Kkpoo
hj2

£
provided E{vi?] is bounded.

2
o B

=
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However, Eq. (9.3-25b) has more general applicability, in the sense that it
provides convergence conditions for gain sequences that are not derived from a
particular optimization criterion.

Example 9.3-1

To il the per of hasti imati hods, consider the
estimation of a gaussian random variable x, with a mean g and variance ooiA Suppose that
Xg is observed from linear measurements defined by

Zk = Xg + vk (9.3-34)

where { vk }is a sequence of zero mean, independent gaussian random variables having

variance 02, A ly used h ation algorithm is one having gains of
the form
K = 1
K= (9.3-35)

This choice is motivated by least-squares estimators of the type given in Eq. (9.3-30), whose
gains are the same as in Eq. (9.3-35) in the special case, hy = 1. Applying this sequence of
gains, the algorithm for estimating x, becomes

el =Rk * % (- %0 k=1,2,... (9.3-36)

If the variances of xq and { vk} are known, the mean square estimation error can be
computed. In particular, for this example

Ef Gk - x0*] - "—: 9.3-37)

It is instructive to compare the result in Eq. (9.3-37) with the error that would be
achieved if an optimal Kalman filter, based upon knowledge of ug, 002, and o2, had been
used. The filter equation has the form

1

e =Ry + (2 - *k) 9.3-38)

and the corresponding mean square estimation error is given by

2
E[d - 0] = — (9.3-39)
k +L2
%o

The mean square estimation errors, computed from Eqs. (9.3-37) and (9.3-39), are shown in
Fig. 9.3-3 for the case 0,2 = 0.5 02 — ie., the error variance in the a priori estimate of x is
smaller than the measurement error. The Kalman filter takes advantage of this information
by using gains that give less weight to the first few measurements than does the algorithm in
Eq. (9.3-36), thereby providing a lower estimation error. This comparison simply
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emphasizes the fact that it is wise to take ad of any avail k dge about the
statistics of x, and { vk}.
150t

" WRONG " KALMAN FILTER [ Ac? = 20°%)

STOCHASTIC APPROXIMATION ALGORITHM

OPTIMAL KALMAN FILTER

0502

MEAN SQUARE ESTIMATION ERROR

A i 1 | L n i 1

5 10
TOTAL NUMBER OF MEASUREMENTS

Figure 9.3-3  Comparison of rms Estimation Error for
Various Filtering Algorithms

On the other hand, if a Kalman filter design is based upon assumed values for the
statistical parameters which are incorrect, the algorithm in Eq. (9.3-36) may yicld a better
estimate, To illustrate, suppose X, has zero mean and variance

E [x‘,’] = 002 + Aao2

where 002 is the assumed value and Aao2 represents an error. Then the Kalman filter in Eq.
(9.3-28) produces an actual mean square estimation error given by

Aao2

2\2
%o
1+k
< 07>

By contrast, the mean square estimation error associated with Eq. (9.3-36) remains the same
as in Eq. (9.3-37), which is independent of 04°. The mean square error computed from Eq.
(5.340) is also shown in Fig. 9.3-3, for the case Agy? = 202, Evidently, the improperly
designed Kalman filter now performs consistently worse than the stochastic approximation
algorithm, reflecting the fact that the latter generally tends to be less sensitive to changes in
a priori statistics.

B[k - x0"] = —— (9.3-40)

We conclude, from the above discussion and example, that a stochastic
approximation algorithm is a reasonable alternative to an optimal estimation
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technique when the statistical parameters on which the latter is based, are not
well known. In addition, in many nonlinear estimation problems the linear
stochastic approximation algorithm is generally more easily mechanized. Finally,
in real-time filtering applications where ts must be processed rapidly
due to high data rates, easily computed gain sequences such as that in Eq.
(9.3-35) may be preferable to the generally more complicated optimal gains.
This advantage is particularly applicable to the vector case described in the next
section. Thus this class of estimation techniques should be included within the
data processing repertoire of any engineer concemned with filtering and
estimation problems. For additional details the reader is referred to the cited
references, particularly Ref. 24.

GENERALIZATIONS

The Vector Constant-Parameter Case — To extend the preceding discussion to
the problem of estimating a set of n constant parameters arranged in a vector X,
we again consider a scalar linear measurement of the form

1 =T Ao v (9341

where hy is a time-varying vector and vy is a sequence of zero mean independent
random variables having bounded variance. The case of vector measurements can
be included within this category by considering individual ts one at
a time. By analogy with Eq. (9.3-23), the corresponding vector stochastic
approximation algorithm takes the form

Fxe1 = Bi t ki (g - BT ) 5.3-42)

Conditions for convergence of the sequence of vectors *Kk} to x, can be found
in Ref. 24. They represent a nontrivial multidimensional generalization of the
conditions required in the scalar parameter case; we do not include them here in
keeping with our purpose of presenting a principally qualitative description of
stochastic approximation methods. However, it is useful to mention a particular
gain sequence that often yields convergent estimates. In particular, if*

ke = b (9.3-43)

: g1
&

ouyn? £ Ty
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subject to the conditions

o<y, <lgl<y <=

kt

i' BhT >el;  for somea,N>0 (9.3-44)
=

then{xk} converges to X,. The form of Eq. (9.3-43) is suggested by the least-
squates gain sequence in Eq. (9.3-31) for the scalar parameter case. It has the
advantage of being easily computed and the conditions for convergence can be
readily checked.

Time-Varying Parameters — Stochastic approximation methods were first
developed for estimating constant parameters. However, analogous methods can
be applied for estimating variables that are time-varying. To illustrate, suppose it
is desired to estimate x, from the measurements

7, =h (x )+ vy (9.3-45)

where X, varies from sample to sample. Specifically the variation in x, is
assumed to be governed by the stochastic difference equation

Xy = (Xg) + Wy (9.3-46)

where @ (X) is a sequence of known functions, and {wk} is a sequence of zero
mean random variables.
By analogy with the constant parameter case, an algorithm of the form

K+ = 0(X) + Ky [z — e (Ky)) (9.347)

is suggested for estimating x,. Equation (9.3-47) differs from Eq. (9.3-23) in
that ¢(Xy ) replaces X, to account for the predicted change in x, at each stage. In
general, we cannot expect the sequence i;‘k to converge to Xy ; however, it is
often possible to achieve an estimation error that is statistically bounded
according to the conditions

E {Gy—x*} < by
im b, = b, < o (0.3.48)

k~oo

Criteria for achieving statistically bounded estimates, for a scalar nonlinear
estimation problem, are provided in Ref. 24. In the case of linear dynamic
systems, any Kalman filter whose gains may be incorrect due to errors in the
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assumed noise covariance matrices, or because of imperfect knowledge of the
system dynamics, can be viewed as a time-varying stochastic approximation
algorithm. Conditions for the boundedness of the resulting estimation error are
given in Refs. 32 and 33. Aside from these special cases, development of simple
algorithms that yield bounded estimation errors for time-varying parameters —
particularly when the dynamics and/or the measurements are nonlinear — 1s, in
many respects, still an open problem requiring further research.

9.4 REAL-TIME PARAMETER IDENTIFICATION

The problem of identifying constant parameters in a system can be regarded
as a special case of the general state estimation problem discussed throughout
this book, where the parameters are a set of random variables, 3, satisfying the
differential equation

ay=0 040

The need to estimate parameters can arise in a number of ways. For example, in
linear filtering theory it is assumed that the elements of the matrices F, H, .. .,
etc., that describe the dynamics and measurement data for the linear system, are
known. In practice, this condition is not always satisfied, and the task of
estimating certain unknown par may be included as part of the overall
state estimation problem. Similarly, in control system design, it is necessary that
we know the dynamics of the plant to be controlled, so that an appropriate
control law can be derived. If some plant parameters are unknown, a parameter
dgorithm may be a y part of the system contiol loop.

In this section, we present an example of real-time parameter identification
for a specific control system —viz, an airframe autopilot — where several
dynamic quantities are unknown. The equations of motion are nominally linear,
in the form

esti

&(1) = Fy(@) 14(1) + £(a) u(t) (94-2)

where u(t) is a known control input. In the more general case, process noise can
be included in Eq. (9.4-2); however it is omitted from this particular illustration.
For this application, real-time estimates of x,(t) and a are needed so that
satisfactory control of the system can be maintained. That is, u(t) is a feedback
control depending upon the current best estimate of ¥(t); the nature of this
dependence is discussed in the sequel. Since u(t) is assumed to be known, it is
not necessary to know how it is generated in order to design a filter for x(t); it
can simply be regarded as a time-varying known input analogous to u(t) in Table
44-1.

Both a and x,(t) are to be estimated in real-time from the linear noisy
measurement data

& = Hx () % 9.4-3)
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If 2 and x(t) are combined into a composite state vector x(1), the combined
equations of motion for the system become

o) A
v= [x (tJ [‘@}gtp—g@—u@ﬂ £ 1x(), 0 ©.4-4)

In this form it is evident that the composite estimation problem is nonlinear
because the product F(a) x,(1) is a nonlinear function of g and Xs-

MODELING UNKNOWN PARAMETERS

Applications where the need for parameter identification often arises, are in
systems where the dynamics are nominally time-invariant, but where it is
expected that certain parameters will change with time, while the system is
operating. The exact nature of this time variation is frequently unknown;
however, the range of variation may be sufficiently large to require that it be
included in modeling the equations of motion. To illustrate, suppose that the
nominal equations of motijon are

£{(1) = Fy(@o, t) x,(1) (9.4-5)

with parameters, a,. One approach to allowing for time variations in the
parameters is to model a, as a truncated power series,

Qo731 taatt.. +an,, 1" (9.4-6)

If Eq. (9.4-6) is substituted into Eq. (9.4-5), the equations of motion take the
form of Eq. (9.4-4) with the vector a being composed of the constant sets of
coefficients a; , . . s Bne1

One apparent dlfﬁculty with the above modeling technique is that the
dimension of a — and hence, also, the dimension of the composite state vector in
Eq. (9.4-4) — increases with every term added in Eq. (9.4-6). Because the
complexity of the filter algorithm required to estimate a increases with the

ber of p , it is desirable that Eq. (9.4-6) have as few terms as
possible. However, a practical, finite number of terms may not adequately
describe the change in a,, over the time interval of interest.

An alternative method useful in accounting for time-varying parameters, that
avoids introducing a large number of state variables, is to assume that the
time-variation in a, is partially random in nature. In particular, we replace the
constant parameter model (4 = 0) in Eq. (9.4-1) with the expression

(1) = w, (1) (9.4-7)

where w;(t) ~ N(Q, Q, ). The strength of the noise should correspond roughly to
the possible range of parameter variation. For example, if it is known that the
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ith glement of a is likely to change by an amount Aa; over the interval of
interest, At, then require
Ag?

ith diagonal element of Q, 2 = (9.4-8)

In practice, it is frequently observed that Eq. (9.4-7) is a good model for the
purpose of filter design, even though the parameter changes may actually be
deterministic in nature. In fact, the random model often permits dropping all
but the first term in Eq, (9.4-6), thus keeping the number of state variables at a
minimum. Combining Eq. (9.4-7) with Egs. (9.4-2) and (9.4-3), we obtain the
mode}

_..___2 _____ +[_W1(91
0= (t) F ) 5,0+ 5a 1) | e
= [0} Hy(t)] {—“—"3-] % ©49)

The equations of motion and observation given in Eq. (9.4-9) have the same
form as the nonlinear system dynamics in Eq. (6.0-1) with linear discrete
measuremernts,

= Hy x(t) + ¥ ©410)

if we make the identifications

wi? [—“‘%,‘—'%I

H 0 3H,(tk)] (9.411)

In addition, if statistical models are assumed for a(t)), X(t,) and ¥, the
Bayesian nonlinear filtering methods discussed in Chapter 6 can be applied. The
extended Kalman filter, described in Table 6.1-1, is used for the application
discussed in this section. However, the reader should be aware that there are
many different methods that can be used for parameter identification — e.g.,
maximum likelihood (Refs. 34 and 35), least-squares (Ref. 36), equation error
(Refs. 37 and 38), stochastic approximation (see Section 9.3 and Ref. 24), and
correlation (Ref. 39). Some discussion of the relative applicability of these
techniques is in order.
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Some of the alternative identification methods mentioned above are
advocated for situations where the unknown parameters are assumed to be
constant with unknown statistics, and where an algorithm is desired that yields
perfect (unbiased, consistent) estimates in the limit, as an infinite number of
measurements is taken. The equation error, stochastic approximation, and
correlation methods are all in this category. However, when the parameters are
time-varying, as in Eq. (9.4-7), the convergence criteria do not apply. Whether or
not these methods will operate satisfactorily in the time-varying case can only
be ascertained by simulation.

Other methods are based upon various optimization criteria — e.g., maximum
likelihood and least-squares. The maximum likelihood estimate is one that
maximizes the joint probability density function for the set of unknown
Pparameters; however, it is typically calculated by a non-real-time algorithm that 1s
not well suited for control system applications. In addition the probability
density function can have several peaks, in which case the optimal estimate may
require extensive searching. The least-squares criterion seeks an estimate that
“best” fits the observed measurement data, in the sense that it minimizes a
quadratic penalty function; in general, the estimate is different for each
quadratic penalty function. In contrast with the minimum variance estimate, the
least-squares estimate does not require knowledge of noise statistics.

The autopilot design application treated here demonstrates the parameter
identification capability of the minimum variance estimation algorithms dis-
cussed in Chapter 6. The latter provide a logical choice of identification
techniques when the random process statistics are known and the requirement
exists for real-time filtered estimates; both of these conditions exist in this
example.

Example 9.4-1

The framework of the parameter identification problem described here is the design of
an adaptive pitch-plane autopilot for an aerodynamic vehicle having the functional block
diagram shown in Fig. 9.4-1. This example treats motion in a single plane only — referred to
as the pitch-plane. The airframe dynamics are assumed linear, with a number of unknown
time-varying parameters. The objective is to obtain a feedback control signal u(t), that
causes the airframe lateral acceleration to closely follow the input steering command c(t).

If the airframe d were known, feedback ion could be
selected to obtain the desired il p h istics using any appropriate
system dmgn technique. Becau;e certain p are unk , an ilot design is
sought that i i ) the in real time and adjusts the feedback

compensation accordingly to maintain the desired response characteristics. In this
application, the method used to determine the control input is the so~called pole assignment
technique, whereby u(1) is specified as a function of g, X, and c(t) from the relation

u(t) = ho@ c(t) ~ hT@ Xs(t) 9.412)

A ing the il are perfect, the feedback gains, h, are chosen such that
the autopilot “instantaneous closed-loop poles™ have desired values; hg is an input gain
chosen to provide a specified level of input-output dc gain, If the airframe parameters are



352 APPLIED OPTIMAL ESTIMATION

AUTOPILOT DYNAMICS

STEERING
COMMAND
LS

ACCELERATION anth.

(owmul
| oy Sutrut A
vl Hast-otoce ofmEcTion SECOND ORoE “(.0._“,
! ARFRAME | PIICH RATE
L_____‘
s name NSt
1 SENSORS
SAMPLED

State
MEASUREMENTS

.
conraor | <o ]
1
]

ADAPTIVE
GAN b

EXTENDED.
KAUMAN
FLTER

EsTimares

PARAMETER FSTIMATES

T

Figure 9.4-1  Adaptive Autopilot Including P

known and constant, hy and b will be constant; the mathematical details for deriving the
functional expressions for the gains can be found in Ref. 40. However, because a is
initially unknown and time-varying, the estimates n will vary and the control gains must St be
periodically recalculated; this is the adaptive control feature of the autopilot. For the
purpose of developing the parameter identification algorithm, we need say no more about
u(t); the fact that it is known to the designer as 2 function of the real time estimates of X
and 3 is sufficient.

The airframe configuration in this application is for the tail-controlled vehicle illustrated
in Fig. 9.4-2. The equations of motion for the airframe can be expressed in the
vector-matrix form

1 ML,
My M -8

a(t, - - — () [}
G(t) Mg VL. 5 e q
. = + u(t) (9.4-13)
HO) Vi -Lg —AVLg a(t) AVLg
B 0 0 -2 s(t) A
o1, in abbreviated notation,
A4(t) = Fagg(t) + Lu()
A Ty f12 fis A 0 0
Fs=|[fy1 f2 faa |} &= %= |- 9-4-14)
0 0 fa [ —f33

The quantity A represents known actuator dynamics, V is unknown airspeed, and Mq, Mg,
etc., are unknown stability derivatives, In the context of Eq. (9.4-9), the set of unknown
parameters is defined to be

f11

f12

f1s 9.4-15)
f21

113
[

122
23
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i WV LONGITUDAL AXIS

Figure 9.4-2  Airframe Configuration

For this demonstration, the vehicle is assumed to be thrusting longitudinally at 2 level of
25-g’s, causing rapid variations in the parameters in Eq. (9.4-14) through theis dependence
upon auspeed. The trajectory duration is three seconds. The simulation truth model uses
P linear time fi to the the filter model assumes that
the p vary d ding to Eq. (9.4-7). Measurements of the three airframe
state variables are assumed to be available in the form

= Xs(t) + ¥k (9.4-16)

where is a gaussian white With these pti Egs. (9.4-14) and (9.4-16)
fit the format of Eq. (9.4-9) and the extended Kalman filter algorithm can be direcily
applied. A digital monte carlo si ion of this model was performed under the
following conditions:

Measurement noise rms level:  pitch rate gyro, 4.5 X 10 rad/sec
accelerometer, 0.16 ft/sec?
deflection angle tesolver, 6.3 X 107 rad

Input command, c(t): square wave — amplitude = 10 fifsec? and
frequency = 1.67 Hz
Measurement interval: tk+] — tk = 0.02 sec
The p tracking racy achieved for the system in Fig. 9.4-1 is illustrated by the

curves in Fig. 9.4-3, which display both the truth model and the estimated parameter values
as functions of time.

It is observed from Fig. 9.4-3 that some are identified less ly than
others; in particular, fyy and f;, are relatively poorly estimated. This is physically explained
by the fact that these two parameters describe the open loop damping characteristics of the
missile airframe. Since the damping is very light, it has Little influence on the airframe state
variables Xs(t), and hence, on the measurement data. Thus, fy; and fy, are relatively
unobservable. However, this behavior does not adversely affect autopilot design because
Pparameters that have little influence on airframe behavior tend also to have little effect on
the airframe control law.

Another phenomenon demonstmted by this appllcauon is !hat the character of the input
signal u(t) in Eq. (9.4-13) i the — an effect that
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is not observed in truly linear filtering problems.* This occurs because the extended Kalman
filter gains are dependent upon x(t) which, in turn, is dependent upon u(t). To illustrate this
behavior, two simulations were performed under identical conditions except that different
values of the square wave signal frequency were used for c(t). One parameter in Eq.
(9.4-13), 33, ibited marked itivity to the fi changes, as d rated in
Fig. 9.44.

The above example illustrates the use of the extended Kalman filter for
obtaining estimates of state variables in problems that are inherently nonlinear.
Practical problems in parameter identification are currently receiving consid-
erable attention in many fields —e.g., high-speed aircraft, ship control and
nuclear power plant control. Work on the design of optimal inputs for system
parameter identification is also a subject of current research (e.g., Ref. 41).

9.5 OPTIMAL CONTROL OF LINEAR SYSTEMS

An important application for the estimation techniques di d in this book
is the field of control system design. The concept of control arises when the
equations of motion of a system contain a set of “free” variables u(t), whose
functional form can be prescribed by a designer to alter the system dynamic
properties. A linear stochastic system having this capability is represented by the
equation

X(8) = F(1) (8 + G(t) w(t) + L(t) (1) 9.5-1)

where L(t) is a gain matrix describing the influence of u(t) on the state vector. If
u(t) is explicitly a function of time only, it is referred to as an open loop
control. If y(t) is explicitly a function of x(t) also, it is called a closed loop or
Jeedback control.

We note that Eq. (9.5-1) has the same form as the equations for the
continuous system in Table 4.4-1, where u(t) is referred to as a deterministic
input. The linear open loop control system falls into the same category, because
the control variables are specified by the designer; therefore, they can be
considered as known (deterministic).

To mechanize a feedback control, u[x(t), t], the state variables 3(t) must be
accessible. Typically x(t) can be observed only through the available measure-
ments Z(t). In designing linear control systems, the latter are assumed to be given
by the familiar linear expression

Z(1) = H(1) 3() + ¥(v) 9.5-2)

where ¥(t) is gaussian measurement noise. As we shall subsequently demonstrate,
the role of state estimation is to process the measurement data so that an

*Note from Table 4.4-1 that the covariance matrix for a linear system is unaffected by the
presence of u(t).
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appropriate approximation to the desired feedback control law — u[&(t),t] —
can be achieved. An example of this type was treated in Section 9.4; how-
ever, in this section we are explicitly concerned with the design of the
control law.

Just as various optimization criteria have been employed to derive optimal
estimation algorithms, the concept of optimal control arises when u(t) is chosen
to minimize a performance index, or figure of merit, for the controlied system.
For linear systems with certain specific types of performance indices, there are
significant similarities in the solutions to the control and estimation problems.
This section briefly discusses the control problem, compares it with the
estimation problem, and indicates how both subjects are combined in the design
of an optimal stochastic control system.

DETERMINISTIC OPTIMAL LINEAR SYSTEMS — DUALITY

First, we discuss the control problem for deterministic linear systems where
the noise processes, w(t) and ¥(t), in Eqgs. (9.5-1) and (9.5-2) are absent. To
determine a control law for the system described by

(1) = F(1) x() + L(t) w(©) 05-3)

it is desirable to impose a performance criterion that leads to a unique choice of
u(t). An important class of problems, successfully treated from this point of
view, is the so-called regulator problem, wherein x(t) is assumed to have an
initial valve x, at time t, and the control is chosen to drive the state toward
zero. This objective is stated more precisely by requiring that y(t) minimize a
performance index, J, which provides a measure of the size of x(t). In addition,
the index should include a weighting on the magnitude of uft) to limit the
amount of control effort expended in nulling the state vector. A form of J that
is found to be convenient and useful for linear systems is the quadratic
Dperformance index, defined by

t
T= 3T Vexttp)+ _[ ETOVE 2+ aTOUEO w] & (9.54)

where Vi, V(t) and U(t) are specified weighting matrices and t; is a specified
final time. The matrices V¢ and V(t) are usually required to be symmetric and
positive idefinite; U(t) is sy tric and positive definite.

The positive quadratic terms in % in Eq. (9.54) provide performance
measures that tend to achieve the desired reduction in the state when u(t) is
chosen to minimize J. However, the amount of reduction achieved is
compromised with the control effort expended by the inclusion of a quadratic
term in y(t). The smaller the elements of U(t), relative to those of V¢ and V(t),
the larger will be the magnitude of the optimal control and the greater will be
the reduction in X(t).
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The procedure outlined above for designing a feedback control system is
referred to as an optimal control problem formulation, where a control law is
sought that minimizes a scalar index of performance, J. Such problems are
extensively treated in the control systems literature (sce Refs. 36, 42-44).
Solutions for the optimal controls are obtained by various mathematical
techniques — the principal ones being the calculus of variations, Pontryagin’s
maximum principle, and dynamic programming. It is not our intention here to
provide a detailed exposition of control theory; instead we discuss the analogy
between the control and estimation problems for linear systems, and demon-
strate the role of estimation theory in the control of linear stochastic systems.
For these purposes, a relatively simple “special-purpose” derivation (Ref. 45) of
the optimal feedback control law, which minimizes the index in Eq. (9.5-4), will
suffice.

Let us assume that a time-varying symmetric matrix S(t) exists, defined on
the interval t, <t < tg, such that

S(tr)= V¢ (9.5-5)
where V; is the weighting matrix for the terminal value of the state appearing in
Eq. (9.54). For the present, no additional conditions are imposed on S(t);
hence, its values at other times can be quite arbitrary. Observe that Eq. (9.5-5)
implies

() S(tp) x(1) = xT(tp) Vex(ty) (9.5-6)

Now we form
S TS0 =57 Sx+ aT8x+ a7 84 ©57)

where it is tacitly assumed that S(t) is differentiable. For notational convenience
the explicit dependence of x, S, and other time-varying quantities upon t is
frequently omitted in the sequel. If x is substituted from Eq. (9.5-3) into Eq.
(9.5-7), the result can be written as

i@s)_() = xT(FTS +SF +§)x +uTLT Sx +xTS Ly
= xT(FTS+SF+8+V)x +uTLT Sx+ xTS Ly +uTUn— xTVx—uTUn
(9.5-8)
The final expression of Eq. (9.5-8) is obtained simply by adding and subtracting

the terms in the integrand of the quadratic performance index 10 the right side
of Eq. (9.5-7).
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Examination of Eq. (9.5-8) reveals that it can be rewritten in the form
2 (T80 =GISL+ T U7 @Tsx+ U — xTVx-yily  ©959)
if we impose the following condition on S(t):
FIS+SF+§+Vv=SLU LTS (9.5-10)

Equation (9.5-9) is readily verified by inspection of Egs. (9.5-8) and (9.5-10).
Until now, S(t) has been an arbitrary symmetric matrix, except for its value at t;
specified by Eq. (9.5-5); hence, we have the freedom to require that S(t) satisfy
Eq. (9.5-10), recognized as the matrix Riccati equation, on the interval
to<t<tp

Finally we observe that

t
[ d%,(fsé) dt=x(t)7T S(t) x(tp) — %o T S(t)x0 (9.5-11)

Combining Eqs. (9.54), (9.5.5), (9.5-9), and (9.5-11), we obtain the following
equivalent expression for the performance index:

te
T=2x,TS(t) %0+ [ T SL + uTU)U™ (LTSx + Uy) dt (9.5-12)
0

Both S(t,) and x,, are independent of the control u(t); consequently, J can be
minimized by minimizing the integral alone in Eq. (9.5-12). Furthermore, it is
evident that the integrand in Eq. (9.5-12) is nonnegative and can be made
identically zero by requiring

LTSy +Uu=0 (9.5-13)
Solving Eq. (9.5-13) for u(t) and Eq. (9.5-10) for $(t), subject to the condition

impoxest in Eq. (9.5-5), provides the complete solution to the optimal control
blem, which is ized as follows:

w() = -U () LT() S(t) x(0)
8(t) = =FT(1) S(t) — S(t) F(t) + S(t) L{t) U™ (1) LT (1) 5(t) ~ V(©)
S(t) = V¢ (9.5-14)

Observe that the optimal control law, derived above, has the linear form

() = —C(t) x(t) (9.5-15)
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with the feedback gains C(t) given by
C(t)=U" () LT(1) () 9.5-16)

The latter are evaluated by integrating the Riccati differential equation for S(t)
backward in time from the terminal condition, S(tg) = Vy. If all of the system
state variables are measured directly [H = I in Eq. (9.5-2)] with negligible
measurement error, the control law can be mechanized as illustrated in Fig.
9.5-1. If the matrix H in Eq. (9.5-2) is singular, an approximation to x(t) can be
generated with an “observer,” as demonstrated in Fig. 9.5-2 (see the discussion
in Section 9.2). The case where appreciable measurement errors may be present
is treated in the next section.
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Figure 9.5-1 Optimal Control System Configuration, H = 1

There are important structural similarities between the linear control law,
derived above, and the Kalman filtering algorithm for continuous systems,
discussed in Section 4.3. In particular, the control gains C(t) are determined by
solution of a matrix Riccati equation in Eq. (9.5-14), similar in form to that in
Table 4.3-1 which specifies the filter gains, K(t). Therefore, all the conditions
under which solutions to the filtering problem exist, have their counterparts in
the control problem. For this reason the control and estimation problems are
said to be the duals of each other.

One consequence of duality is the fact that the concepts of observability and
controllability, discussed in Section 4.4, are also defined for control systems.
The control system is said to be controllable if the integral

_[ ‘ (t, 7) L(r) U™ (F)LT(D) ®T(t, 1) dr
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is positive definite for some t > 0, and observable if the integral

t
_[ ®T(r,t) V(7) ®(,t)dr

is positive definite for some t > 0. The quantity ® is the transition matrix
associated with F in Eq. (9.5-3). Comparing the above definitions with those
given in Section 4.4, we find that controllability in the control system, defined
in terms of F, L, and U™, corresponds to observability in the Kalman filter,
defined in terms of FT, HT and R'. Similarly, observability for the control
system, defined in terms of FT and V, corresponds to controllability of the
Kalman filter, defined in terms of F and GQGY. Thus, for each controllable
dynamic system in a filtering problem, there exists a corresponding observable
dynamic system for a control problem, and vice versa.

A list of duality transformations for the control and filtering problems is
given in Table $.5-1. This comparison is useful because only one body of theory
is needed to treat both situations.

OPTIMAL LINEAR STOCHASTIC CONTROL SYSTEMS —
SEPARATION PRINCIPLES

When the noise processes, w(t) and y(t), are present in Egs. (9.5-1) and
(9.52), the optimal control problem must be posed differently than for the
deterministic case treated in the preceding section. Because the exact value of
the state vector is unknown, due to the noisy measurement data, it is
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TABLE 9.5-1 DUALITY RELATIONSHIPS

P . S

F - FT
6T -——— v

H ——— LT

R ——— U

K cT

to —— tf

Observability —et——— = Controllability
Controllability ~——————————————= Qbservability

meaningless to talk about minimizing the index J in Eq. (9.54), which depends
upon x(t). Instead, a statistical measure of performance is needed; this can be
obtained by defining a new performance index J, which is the average value of J,
written as

te
T=E [&(tr)T Vi X(tp) + [ T V) + uT() Uu(n] dt]
° 9.5-17)

The optimal stochastic control problem is to choose y(t) so that Jis minimized,
subject to the equations of motion given in Eq. (9.5-1). If a feedback control is
sought, u(t) will depend upon the measurement data in Eq. (9.5-2).

To describe the solution to the control problem defined above, we first note
that regardless of what- method is used to generate y(t), the conditional mean
(optimal estimate) of the state vector £(t) can always be determined by applying
a Kalman filter to the measurement data. This is true because u(t), in Eq.
(9.5-1), is effectively a known time-varying input to the linear system when the
control law is specified. Consequently, £(t) can be determined from the
algorithm in Table 4.4-1. With this fact in mind, we can state the optimal control
law which minimizes T; it consists of two separate cascaded functions. First, a
conventional Kalman filter is employed in the manner outlined above to obtain
an optimal estimate of the state vector. Then the control command, u(t), is
generated according to the relation

u(t) = —C(1) X(1) (9.5-18)
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where C(t) is the set of control gains derived in the preceding section. A
functional diagram of the control law is shown in Fig. 9.5-3. The realization of
the optimal linear stochastic control law, in terms of distinct filtering and
control functions, is referred to as the separation principle.

PROCESS
ormmac stockastic coousk  "eSE:
L ‘ {
|
| LINEAR LINEAR =
i CONTROLLER SYSTEM
=x(||
= KALMAN
| FILTER SENSORS

|
: MEASUREMENT |
| |
e e - MEASUREMENT
NOISE

Figure 9.5-3  Optimal Stochastic Control System Configuration

The separation principle is usually derived by applying the theory of dynamic
progr ing to the minimization of J in Eq. (9.5-17) (Ref. 44). To provide
insight as to why the principle is true, we offer a relatively simple plausibility
argument, without the mathematical rigor of a complete proof. Using a
procedure similar to that described in the preceding section for deriving the
optimal deterministic control law, it can be shown that the performance index
can be written in the form

tf
T=Ex, TS(to)5,] + [ trace [SGQGT] dt
° 9.5-19)

tf
+E [f . @TSL+uTUuU™' (LTS + Uy dt]
to

where S(t) is the solution to the matrix Riccati equation in Eq. (9.5-14). The
derivation of Eq. (9.5-19) is left as an exercise. The principal difference between
Egs. (9.5-12) and (9.5-19) is that the latter contains the term SGQGT, which
arises from the process noise in Eq. (9.5-1). The first and second terms in Eq.
(9.5-19) are independent of u(t) and can be disregarded in the niinimization
Interchanging the order of expectation and integration, the third term in Eq.
(9.5-19) becomes
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- i
7,2 f E[(xTSL + gTU)U (LT Sx + Un)] =0 (9.5-20)
to

At any given time t, having collected all the measurement data up to time t,
the integrand in Eq. (9.5-20) is instantaneously minimized with respect to the
control by solving the expression

53; E[(«TSL + uTUJU™ (LTSx + Uw)} =0 9.521)

for u(t), where the expectation is conditioned on the available measurement
data, The resulting value of the control is given by

ut) =-U" (1) (1) SV &V (9.5-:22)
Observe that it is expressed in terms of the optimal state estimate, X(t).

Substituting Eq. (9.5-22) into Eq. (9.5-20) and carrying out the indicated
expectation operation produces

J, = trace

tf
f sLTy! I.SPdts (9.5-23)
to

which is independent of x(t); J,, depends only upon the trajectory-independent
quantities S, L, U and P. Therefore, if u(t) is specified by Eq. (9.5-22), the
integrand in Eq. (9.5-20) is minimized at each point in time. Consequently, the
integral itself, and hence J, is minimized by the choice of control given in Eq.
(9.5-22).

The separation principle cited above is most frequently associated with linear
gaussian stochastic systems having quadratic performance indices. However, it
has been demonstrated (Refs. 46-49) that optimal control laws for linear
stochastic systems with more general types of performance indices, including the
possibility of an explicit constraint on the control magnitude as well as
nongaussian measurement noise, also satisfy a form of separation principle. In
the latter case, the control law consists of a Kalman filter cascaded with a
controller that computes y(t) in terms of X(t). However, for nonquadratic
performance indices, the controller portion of the control law can be a nonlinear
function of X(t); furthermore, it generally depends upon the statistics of the
process and measurement noises. In many cases the resulting controller
computation cannot be carried out in closed form. The structure of this more
general separation principle is similar to that shown in Fig. 9.5-3; however, the
controller can now be nonlinear. The reader is referred to the works cited above
for further details.

The purpose of this section has been to demonstrate the role that optimal
estimation theory plays in developing optimal control laws for linear stochastic
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systems. For nonlinear systems, the optimal control laws generally do not
separate into an optimal filter cascaded with a control command computation
(Refs. 50 and 51). However, in these cases it may be possible to linearize the
nonlinearities and design an approximately optimal linearized system using the
separation principle. Thus, from this point of view, estimation theory is seen to
be exceptionally useful for a wide variety of feedback control system design
problems.
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PROBLEMS

Problem 9-1

A system and measurement are described by the set of differential equations

X=-gx+w, w ~ N(0,q)

Z=X+v, v ~N(@,n
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with measurement data processed to provide an estimate X according to
X=—pR+k(z - %)

where k is based on erroneous a priori assumptions about q and 1.

Describe a computational approach leading to the adaptive behavior of this estimator, in
which the value of k can be improved as the system operates. Detail all the relevant
equations and estimate, in terms of the given parameters, the length of time it would take to
establish the correct value of k to within 5%,

Problem 9-2

The hastic observer initial di: inuities in both the state estimates and
estimation error covariance due to the exact information provided by the noise-free
measurements at t = 0, Show that i(o’) and P(0%) satisfy Eqs. (9.2-39) and (9.240).
[Hint: First show that

X(0%) = £(0) + B2(0)]22(0) — Hy(9)£(0)]
P(0*) = (I - By(0)H2(0)} PO)[I - B,©) Hy ()] T

and then determine the optimum gain, B,9P(0), by minimizing the trace of P(0*) with
respect to B2 (0).]
Problem 9-3

Define the covariance of the observer error g, to be
n=E[ET
Show that IT and P can be related by
n=TP1T
P=AnAT
Verify this result for the special case of the colored-noise stochastic obsesver, where Aand T
are specified according to Eq. (9.2-51).

Problem 94

The stochastic observer covariance propagation and optimal gains given by Eqs. (9.2-36)
to (9.2-38) are written in terms of the n X n covariance matrix, P, As shown in Problem 9-3,
the observer errors may be i d by the reduced-order (n-m) X (»-m)
covariance matrix, I1. Starting with the differential equation for the observer error, E, given
in Eq. (9.2-30), derive the differential equation for the observes error covatiance matrix, (1
By minimizing the trace of 1, derive expressions for the optimal gains of the stochastic
observer in terms of the reduced-order covariance matrix, I1.

Problem 9-6
Prove that the modified Newton’s algorithm

. s 86%)
Xk+1= Xk — Ko ==

g3
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will converge to the solution, xg, of
8(x}=0

from any initial guess, )‘El, where g(x) is a known function satisfying
O<ailgx)<b<e

and kg is a constant which satisfies

a
o< ko < 3
(Hint: Find a recursion for the quantity, xj — Xg.)

Problem 9-6

Demonstrate that conditions in Eqs. (9.3-7¢) and (9.3-7d) are necessary in order that the
sequence { ik} generated by Eq. (9.3-5) converges to the solution of

8x)=0
(Hint: Evaluate )'Ei for the special case, g(x) = X — a, in terms of the gain sequence {kk}.)

Problem 9-7

Verify that the gain sequences defined in Eq. (9.3-17) satisfy the conditions in Eqgs.
(9.3-7¢) and (9.3-7d).

Problem 9-8
Derive Egs. (9.3-37) through (9.3-40).
Problem 9-9
Suppose that a random sequence {xk} evolves according to
Xk+] = Xk + WK k=12,...
E[x,] =0
E[x,*] = oo®

where {wk} is a sequence of independent zero mean random variables having uni-
form variance 0,2, Measurements of the form

2K = XK + VK
are available, where vk is a sequence of zero mean independent random variables having
uniform variance agz. Using the algorithm

Ria1 = Rk + kolzk — K)

to estimate Xy, where k¢ is constant, derive conditions on kg such that the mean square
estimation error is bounded. Compute the rms estimation error in terms of 6o, 012’ 012‘
and ko.
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Problem 9-10

Formulate and give the solution to the optimal control problem which is the dual of the
imation problem described in Example 4.6-1.

Problem 9-11

Prove that J in Eq. (9.5-17) can be expressed in the form given in Eq. (9.5-19) (Hint:
Mimic the development beginning with Eq. (9.5-5), replacing xTSx by E[iTSL] )3

INDEX

Abel-Dini theorem, 343
Autocorrelation techniques, 86
Adaptive filtering, 316, 317
Age-weighting, 285
Algorithms, integration, 294
Andrews, A., 306
Augmentation, see state-vector
Autopilot, 153, 351
Autoregressive (AR) process, 92
integrated moving average (ARIMA),95
moving average (ARMA), 94

Backward filter, 156, 160
Batch processing scheme, 24
Battin, R.H., 24
Bayes’ theorem, 26
Bayesian estimation, 104, 180
Bellman, R.E., 51
Bierman, A.B., 311
Bryson, A.E., 177
Bucy, R.S., 121, 143, 305

CADET, 216
Carlson, N.A., 307

Cayley-Hamilton theorem, 19, 47
Central limit theorem, 34, 302
Characteristic function, 32
Chopping, 299
Companion form, matrix, 53
Computer loading analysis, 303, 308
Controllability, 70, 360
complete, 142
stochastic controllability, 130
Convergence, mean square, 337
Cooley, J.W., 95
Correlated measurement crrors, 124, 133,
332
Correlated process noise, 124
Correlation coefficient, 32
Corrclation functions, 36
autocorrelation, 36
cross-correlation, 36
Correlation time, 43
Covariance, 31, 34
Covariance matrix, 72, 75, 127

Data compression, 291
Davenport, W.B., Jr., 24
Decoupling states, 233, 289
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Dcietng states, 235, 257, 288
Deita function
Dirag, 28,75, 121
Kronecker, 1S
Describing function, 205, 217
gain, 205
gain matriy, 207, 218
vector, 214
Deterministic (control) inputs, 130
Dafferentiator, optimal, 150
Direct simulation, 301
Diserete system representation, 66
Divergence, 278
Duality, 357, 362

€ technique, 283, 303
JFmpirical model identification, 84
Ergodicity, 37
Error budget, 230

calculation of, 260
Istintate, unbiased, 75

Bayces, 104

consistent, 103

feast-squares, 103

maximum likelihood, 103

minimuwin variance, 103

weighted-least-squares, 103
Lstimator, optimal, 105
U'xpectation, statistical, 30
xponential estimator, 321
ponentially correlated process, 81
xtended Kalman filter, 182
Euler’s method, 294

modified Luler method, 295

{-ading memory filtering, 285

1 ast 1 ourier transform, 95

i ecdback control, 356

1 ictitious process noise, 279

1 ilter design, verification of, 237

{-kter hypothesis, 222

Filtering, lincar, 2
optinal, 102

Filtering, nonhinear, 182
eviended Kadman fitter, 182, 188
iterated extended Kabman filter, 190
lincarized Kalman filter, 189
second-order filter, 191
statisticut linearization, 203, 208

Uinite duta eliect, 89

Finite memory filtering, 280

Visher, R.AL, 1

Fived-gain approvintations, 239

l-orward filter, 156, 160

1 razicr, M., 177

s, K.¥., 1

an processes, 39

Gaunssian second-order filter, 192
Gauss-markov processes, 42, 81
Gura, LA, 311

Gyroscope, 138, 166

Hessian, 22
Hiibert norm, 243
o, Y.C., 124

Inertial navigation system, 56, 98, 116, 288

Innovations process, 317

innovations property, 317
Integration algorithins, 293
1to calcuius, 181

Jacobian, 22
Jazwinski, A1, 282
Joglekar, AN, 292
Joseph, P.D., 305

Kulman, R.2., 1, 2, 51,105,121, 143
Kalman fiiter, 3,5
continuous, 19
discrete, 107
wrsitivity analysis of, 246
stability, 132
Kalman gain matniy, 108, 128
approximating optimai gains, 239
wsing steady-state gains, 240
Kolmogorov, A.N., 1

Laning, J.11., Jr., 24

Least-squares estimation, 23, 103, 214

Leibniz’ ruke, 131,171

Limited memory filtering, 282

Lincar variance equation, 78, 97,122
quasi-lincar form, 219
solution of, 137

Luenberger, D.G., 320

Lyapunov, A.M., §1

Matrix Riccati equation, 122, 359
physical interpretation of, 128, 142
solution of, 136

Matrix operations, 13

Manimum likelihood estimation, 103

Mean value, 30, 34

Mcan squared value, 30

Measurement, 3, 23, 67
measurement averaging, 291

measurement differencing, 136
measurement differentiation, 134
Mehra, R.X., 317
Mendel, J.M., 311
Minimum variance estimation, 102, 182
Modeling errors, effect of, 248
Modeling problens, 278
Modecling unknown parameters, 349
Models, choosing simplified, 232
Models, random process, 83, 85
Moments, 30
Moving average (MA) process, 94
e

Multiple-input crib 218
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Probubility, 25
density function 28
distribution function, 27
joint density function, 29
joint distribution function, 29
Pseudoinverse, matrix, 19
Pursuer-evader problem, 222

Quadratic performance index, 357
Quasi-linear system model, 219

Random constant, 79
3s

Rand

Multisensor system, 4
Muitivariate probability function, 34
Munroe, S., 337, 339

Newton’s method, 336
Nonlincar estimation, 203
least-squares, 182, 214
minimum variance, 182
Nonuniqueness of model, 71
Norm, matrix, 21, 243
Normal density function, 33

Observability, 2, 67, 361
complete, 142
stochastic observability, 131
Observers, 316, 320
for deterministic systems, 321
for stochastic systems, 327
Omega, 115
Open loop control, 356
Optimal control, 316, 356
Optimal deterministic controller, 360
Optimal estimator, 2
Optimal smoother, 2, 156
sensitivity analysis of, 266
Orbit estimation, 303

Papoulis, A., 24
Parameter identification, reul-time, 316,
348
optimal inputs for, 356
Periodic random process, 82
Phaneuf, R.J., 209
Poisson random process, 48
Polynomial tracking filter, 150
Pontryagin, L.S., 51
Power spectral density, 40
Prediction, 2
optimal, 129
Prefiltering, 291

p
Random ramp, 80

Random walk, 79

Random variables, 27

Rank, matrix, 18, 69

Rauch, H.E., 161

Rayleigh process, 49

Recursive filters, 105

Recursive processing, 1, 24
Reduced-order estimator, 320
Regulator problem, 357
Residual, measurement, 84, 106
Robbins, H.. 337, 339

Root, W.L., 24

Roundoff errors, 137, 292

Scatter matrix, 12
Schimidt, S.F., 284, 306
Second-order markov, 44
Sensitivity analysis, 2, 229
examples of, 255
minimum sensitivity design, 232, 244
sensitivity measures, 245
Separation principle, 363
Serial measurement processing, 304
Smoothability, 163
Smoothing, linear, 2
fixed-interval, 157, 160, 162, 169
fied-lag, 157,173
fixed-point, 157, 170
optimal, 156 e
Smoothing, nonliggar, 200
Spacecraft tracking, 126, 151, 165, 283,
290 5
Spectral density matriy, 78
Square-root algorithms, 306
Stability, system, 76, 132
Standard deviation, 31
State-space notation, 51
State vector, §2
augmentation of, 18, 133, 262
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Stationarity, 37
Statistical lincarization, 203
Stellar navigation system, 149
Stochastic approximation, 316, 335
Striebel, C.T., 161
Suboptimal filter, 229

design of, 230
Successive approxinations, method of, 336
Superposition integral, 40

matrix form, 63
Symmetric rounding, 299

The Analytic Sciences Corporation, 216
Time serics analysis, 90
Trace, matrix, 18
Trajectory estimation, 194, 325
Transition matrix, 57

special algorithms for, 296
Truncation errors, 292
Truth model, 269
Tukey, J.W., 95
Tung, I',, 161

Uniform distribution, 32

Vander Velde, W.E,, 213
Variance, 30

Vector-matrix operations, 20
Vector operations, 10
Vertical deflections, 87

White noise, 42, 72

Wiener, N., 1, 105

Wiener filter, 142, 242

Wiener-Hopf equation, 143

Word length errors, 299
effect of, 302

Yule-Walker equations, 93



