
18-391 Noisy Signal Representation and Processing: Lab 4

Power Spectral Density Estimation

(weeks of 03/14/11 and 03/21/11)

Instructions: Refer to the course BlackBoard for Lab policies and procedures.

1 Introduction

An important attribute of random noise is its power spectral density (PSD). PSD character-
izes the distribution in frequency of the power of x[n], a discrete random process (a sequence
of random variables defined for every integer n where n usually is the time index). In this
Lab, you will learn about PSD and will explore several techniques for PSD estimation using
MATLAB. The noisy signals you will investigate in this Lab include the noisy signal collected
from a real application as well as the synthetic signals. Through this Lab, you can see how
PSD estimation is used for real applications.

∗ ∗ ∗

Let us first look at the fundamental principles regarding PSD. PSD is defined as a Fourier
transform of the auto-correlation function rxx(m) of the signal, i.e.,

Pxx(ω) =
∞

∑

m=−∞

rxx[m] exp(−jωm) (1)

where rxx(m) = E{x[n]x[n + m]} denotes the auto-correlation function of a wide sense
stationary (WSS) discrete random process. Note that the PSD is periodic in ω with frequency
2π. Thus, we need to show PSD only over a range of −π to +π. If x[n] is real-valued, then
the auto-correlation function is real and symmetric, i.e., rxx(m) = rxx(−m) and its Fourier
transform (namely, the PSD) is also real and even symmetric, i.e., Pxx(ω) = Pxx(−ω).
As a result, we show PSD only from 0 to π. Finally, it can be shown that PSD is non-
negative. The goal is to estimate the PSD of a random signal from a sequence of time
samples of a signal. Depending on prior information about the signal, estimation can be
divided into two categories: non-parametric and parametric approaches. Non-parametric
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approaches explicitly estimate the auto-correlation function or the power spectral density
of the process without any prior information. On the other hand, parametric approaches
assume that the underlying random process has a certain structure, for example, an auto-
regressive (AR) model, which can be described using a small number of parameters and
estimate the parameters of the model. A common non-parametric estimation approach is the
periodogram, which is based on fast Fourier transform (FT). A common parametric technique
is maximum entropy spectral estimation (MESE), which involves fitting the observed signal
to an AR model. You will additionally learn about pseudospectrum estimation such as
multiple signal classification (MUSIC) method based on eigen-decomposition.

As a reference, MATLAB has a PSD estimation function, named spectrum, which covers
most of the PSD estimation schemes, even pseudospectrum estimation, which are listed
below.

• periodogram : Periodogram

• welch : Welch

• burg : Burg, or maximum entropy spectral estimation

• music : Multiple Signal Classification

• cov : Covariance

• mcov : Modified covariance

• mtm : Thompson multitaper

• yulear : Yule-Walker

• eigenvector : Eigenvector

You can explore various methods using spectrum.(estimation method), such as spectrum.

periodogram for periodogram estimation. You can use spectrum to check your result and
for debugging. In this Lab, periodogram, Welch and MUSIC methods are mainly dis-
cussed.

1.1 Periodogram

For a finite length real-valued signal x[n], n = 0, 1, ..., L− 1, an estimator for the autocor-
relation sequence is

cxx(m) =
1

L

L−|m|−1
∑

n=0

x[n]x[n + |m|] (2)
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where |m| < L. As an estimate of PSD, periodogram is the Fourier transform of the biased
autocorrelation estimate, cxx(m) in Eq. (2), i.e.,

IL(ω) =
L−1
∑

m=−(L−1)

cxx(m)e−jωm (3)

By substituting cxx(m), the periodogram can be represented as below,

IL(ω) =
1

L
|X(ejω)|2 (4)

where, the Fourier transform of the real finite-length sequence x[n], 0 ≤ n ≤ L − 1, is

X(ejω) =
L−1
∑

n=0

x[n]e−jωn (5)

There are two ways to compute the PSD: Estimate the autocorrelation function (ACF) of
the signal and then take a Fourier transform of the ACF as shown in Eq. (2); Take a Fourier
transform of the signal first and square its magnitude as shown in Eq. (4). These two
are equivalent and will be investigated later. Here, we will use the one taking the Fourier
transform of the signal, since it is easy to implement using MATLAB. Periodogram can
be obtained by using the fast Fourier transform (FFT), an algorithm that enables a faster
computation of discrete Fourier transform (DFT) for the sequences of length n = 2k, where
k is an integer. As an example, a signal of fc Hz, embedded in additive white Gaussian noise
(AWGN) of N (0, σ2) is generated using MATLAB with parameters as follows: fc = 200 Hz,
σ2 = 10−2, fs = 1 kHz (sampling frequency), and L = 300. Fig. 1 illustrates the signal,
which can be represented as below,

x[n] = cos(2πfcnTs) + r[n], n = 0, 1, ..., L − 1 (6)

where, Ts = 1/fs = 1ms and r[n] is the AWGN noise sequence, ∼ N (0, σ2). The periodogram
of the signal can be obtained from Eq. (4), which is shown in Fig. 2. The periodogram
is plotted in double-sided form, i.e., from zero frequency to sampling frequency. There are
two peaks at 200 Hz and 800 Hz (=-200 Hz) and other small values are contributed from
the added white Gaussian noise. If there is no noise, the periodogram will exhibit two delta
functions at 200 Hz and 800 Hz (=-200 Hz). An example of the MATLAB source code for
generating the signal and periodogram is shown in the following.

%% Example 1 - periodogram *******************************

% 1.1) Signal generation

randn(‘state’,0); % initialize randn

f_c = 200; % signal frequency (Hz)

sig_sq = 0.01; % variance of random noise N(0,n_var)

Fs = 1000; % sampling frequency, 1 kHz
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Figure 1: 200 Hz signal with additive noise, ∼ N (0, 10−2)

L=300; % no. of samples

t = 0:1/Fs:1/Fs*(L-1); % time index, w/ sampling period Ts=1/Fs

x = cos((2*pi*f_c).*t)+sqrt(sig_sq).*randn(size(t));

% f_c Hz signal with additive noise ~ N(0,sig_sq)

figure(1); plot(t,x);

axis([0 0.3 -1.2 1.2]);

xlabel(‘Time (sec)’); ylabel(‘Magnitude (A/U)’);

title(‘200 Hz signal embedded in additive noise {\itN}(0,10^{-2})’);

% 1.2) Periodogram using spectrum

n_t=numel(t); % length of sequence

Hs=spectrum.periodogram; % set method to periodogram

psd_period=psd(Hs,x,‘Fs’,Fs,‘NFFT’,n_t,‘SpectrumType’,‘twosided’);

% Hs : method (periodogram)

% Fs : sampling frequency

% NFFT : number of FFT

% SpectrumType : either ‘twosided’ (0~Fs) or ‘onesided’ (0~Fs/2)

figure(2); plot(psd_period); % Display PSD

1.2 Averaging Modified Periodogram (Welch’s Method)

The raw periodogram is not a statistically stable spectral estimate since there is not much
averaging. The periodogram is computed from a finite-length observed sequence (length L
in the previous description), that is sharply truncated at 0 and L − 1, of the infinite length
sequence, −∞ ∼ ∞. This sharp truncation effectively spreads the original signal spectrum
into other frequencies, which is called spectral leakage. The spectral leakage problem can be
reduced by multiplying the finite sequence by a window function before FFT, which reduces
the sequence values gradually rather than abruptly. Spectral leakage and window functions
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Figure 2: Periodogram PSD estimate

will be further investigated later. The variance can be reduced by averaging the periodogram.
This modified algorithm is called Welch’s method. A signal of length N is divided into K
segments of length M , K = N/M , and K modified periodograms with window functions are
averaged. This leads to a decrease in the variance of the estimate.

The modified periodogram for a segment of length M can be represented as below,

J
(i)
M (ω) =

1

MU
|

M−1
∑

n=0

x(i)[n]w[n]e−jωn|2 (7)

where w[n] is the window function (to be discussed below in more detail) and

U =
1

M

M−1
∑

n=0

w2[n]

The spectrum estimate is defined as below,

Bw
xx(ω) =

1

K

K
∑

i=1

J
(i)
M (ω) (8)

In order to increase the number of segments being averaged in a finite-length sequence,
the sequence can be segmented with overlap; for example, 50 % overlap can increase the
number of segments of same length M from K to 2K − 1. In this Lab, the effect of window
functions, number of segmentations, and overlap percentages in the PSD estimate will be
explored using MATLAB. MATLAB has various windows including, ‘Bartlett’, ‘Bartlett-
Hanning’, ‘Blackman’, ‘Blackman-Harris’, ‘Bohman’, ‘Chebyshev’, ‘Flat Top’, ‘Gaussian’,
‘Hamming’, ‘Hann’, ‘Kaiser’, ‘Nuttall’, ‘Parzen’, ‘Rectangular’, ‘Triangular’, and ‘Tukey’.
The raw periodogram is a special case of Welch’s method, with rectangular window, 0%
overlap and no average (K = N/M = 1). One of the commonly used windows is a Kaiser
window, which has a parameter that can change the properties of the window. In this Lab,
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Figure 3: PSD estimate by Welch’s method with the Hamming window, segment length of
100, and 50% overlap.

the Hamming window and Kaiser window will be investigated for PSD estimates. As an
example of Welch’s method, the PSD of the signal generated in the previous example is
estimated with the Hamming window, segment length of 100, and 50 % overlap, and shown
in Fig. 3 as below:

% Example 2 - Welch method (continued from example 1) *************

seg_lth=100; % segment length

ovl_per=50; % 50 % of overlap

Hs = spectrum.welch(‘Hamming’,seg_lth,ovl_per);

psd_welch=psd(Hs,x,‘Fs’,Fs,‘NFFT’,n_t,‘SpectrumType’,‘twosided’);

% Hs : method (Welch)

figure(11); plot(psd_welch); % Display PSD

1.3 Multiple Signal Classification (MUSIC) Method

When a signal consists of a few tones and the differences between these frequencies are
small, conventional PSD estimates may not be able to resolve these components. MUSIC
is a pseudospectral estimate of the signal based on an eigenspace analysis, to improve the
frequency resolution in PSD estimates. This method assumes that a signal, x[n], consists
of K complex exponentials in the presence of Gaussian white noise. Given an M × M
autocorrelation matrix, Rxx, if the eigenvalues are sorted in decreasing order, the eigenvectors
corresponding to the K largest eigenvalues span the signal subspace. The other eigenvectors
span the noise subspace, which is orthogonal to the signal subspace. A pseudospectrum can
be obtained from the inverse of the Fourier transform of the noise subspace basis vectors. This
provides higher resolution than the conventional PSD estimates and can be used to estimate
the frequency components of the signal from the noisy samples. We will first introduce the
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Pisarenko harmonic decomposition method, which is a basic frequency estimation method
based on eigen-decomposition. The signal consists of K complex exponentials in the presence
of Gaussian white noise and can be represented as below,

x[n] =
K

∑

k=1

αk exp(j2πfkn) + r[n] (9)

Here, fs is assumed to be 1 Hz and r[n] is a white noise sequence. The signal of current
and future M − 1 values, the time-window vector of a signal, x[n] = [x[n] x[n + 1] x[n +
2] ... x[n + M − 1]]T , can be denoted as below,

x[n] =
K

∑

k=1

αkvfk
exp(j2πfkn) + r[n] = s[n] + r[n] (10)

Note that vfk
= [1 exp(j2πfk) exp(j2π2fk) ... exp(j2π(M − 1)fk)]

T , which corresponds to
a length M DFT vector at frequency fk. Assuming that the signal and noise components
are uncorrelated, the autocorrelation matrix, Rxx can be represented as below,

Rxx = E(x[n]x[n]H) = Rss + Rrr (11)

=
K

∑

k=1

|αk|
2vfk

vH
fk

+ σ2I

= VAVH + σ2I

where H denotes a conjugate transpose, V = [vf1
vf2

... vfK
] and A is a diagonal matrix

with diagonal terms |α1|
2, |α2|

2, ..., |αK |2. Here, Rrr = σ2I has rank M (i.e., of full rank),
while Rss has rank K (i.e., rank-deficient). Thus, the eigen-decomposition of Rxx will have
K large eigen-values corresponding to the signal made up of complex exponentials, while the
remaining eigenvalues are equal and correspond to the noise.

Rxx =
∑K

m=1 λmqmqH
m +

∑M

m=K+1 λmqmqH
m

= QsΛsQ
H
s + QrΛrQ

H
r

(12)

where Qs and Qr are matrices of signal and noise eigenvectors, respectively. The projections
to each subspace are

Ps = QsQ
H
s , Pr = QrQ

H
r (13)

where two subspaces are orthogonal as below,

PrQs = 0, PsQr = 0 (14)

Pisarenko Harmonic Decomposition (PHD) uses the eigenvector associated with the smallest
eigenvalue to estimate the frequencies of the complex exponentials. The autocorrelation
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matrix of M × M size, M = K + 1, is estimated from the noisy sequence as represented
below,

R̂xx =
1

M
XHX (15)

where X is a matrix defined as,

X =









x[0] x[1] ... x[M − 1]
x[1] x[2] ... x[M ]
... ...

x[N − 1] x[N ] ... x[N + M − 2]









From the eigen-decomposition of R̂xx, the noise subspace consists of a single eigenvector,
qM , which corresponds to the minimum eigenvalue. Using this noise eigenvector, the pseu-
dospectrum is estimated as below,

P̂PHD(f) =
1

|vH
f qM |2

(16)

where vf = [1 exp(j2πf) exp(j2π2f) ... exp(j2π(M − 1)f)]T and the denominator is the
Fourier transform of the Mth eigenvector. Since the signal is orthogonal to the noise,

vH
fk

qM ∼ 0, , k = 1, 2, ..., K (17)

Thus, the resulting pseudospectrum shows peaks at the signal frequencies fk. Because the
method uses a single noise eigenvector, the result is very sensitive to any errors in the
estimation of the noise eigenvector. MUSIC method uses more than one noise eigenvector
by increasing M , M > K + 1 for pseudospectrum, as below.

P̂MUSIC(f) =
1

∑M

m=K+1 |v
H
f qm|

2
(18)

Fig. 4 shows an example of pseudospectrum based on the MUSIC method. Here, the signal
has two sinusoids at 200 Hz and 220 Hz and the pseudospectrum is plotted in a single sided
form. The MUSIC estimate shows two components clearly, although the difference between
two components is small. In the problems, we will see that MUSIC shows better frequency
separation capability than other PSD estimates such as modified periodograms.

% Example 3 -MUSIC method ************************

f_c1=200; % signal frequency (Hz)

f_c2=220;

x = cos((2*pi*f_c1).*t)+cos((2*pi*f_c2).*t)+sqrt(sig_sq).*randn(size(t));

Hs = spectrum.music(3,50);

psd_music=pseudospectrum(Hs,x,‘Fs’,Fs,‘NFFT’,n_t); %,‘SpectrumType’,‘twosided’);

% Hs : method (Welch)

figure(21); plot(psd_music); % Display PSD
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Figure 4: Pseudospectrum based on the multiple signal classification (MUSIC) method

2 Optional Reading

• A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing, 2nd Edition,
Chapter 10.6 ∼ 10.7, Prentice Hall

• S.M. Kay, S.L. Marple, Jr., “Spectrum analysis: A modern perspective,” Proc. IEEE,
vol. 69, no. 11, pp. 1380-1419, 1981.

• Wikipedia article on Power Spectral Density (PSD). http://en.wikipedia.org/wiki/ Spec-
tral density

3 Week 1 milestones [100 Points]

1. [Pre-Lab, 15 Points] The fast Fourier transform (FFT) of a signal provides the sampled
Fourier transform of a signal. Generate a signal of 400 Hz cosine wave with additive
noise N (0, σ2 = 10−1) with a sampling frequency of 2 kHz and acquisition time of 0.2
sec, similar to the example in Section 1.1. Plot the magnitude of the FFT result of the
generated signal, where the x-axis denotes the frequency (in Hz) and y axis denotes
the FFT magnitude. You should see a spectral peak at 400 Hz. You can use the
signal generation part of the example code and MATLAB FFT function, fft. Type
help fft to learn how to use this function.

2. [10 Points] Write your own MATLAB function that computes a periodogram based
on fast Fourier transform (FFT), as shown in Eq. (4). Use the signal generated
from the previous problem for periodogram computation. Display the results by
power/frequency (dB/Hz) as a function of frequency and compare the result to Fig.
2. Make sure that you use fft instead of spectrum.periodogram for this problem
and the rest of the problems in this lab. Note, it is HIGHLY recommended that your
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functionalize all of your periodogram code in this lab, as you will be using it several
times both this week and next week. Writing functions will save you a lot of time.

3. [10 Points] Write your own MATLAB function that computes a modified periodogram
with the Hamming window based on fast Fourier transform (FFT) from the signal you
generated in the Problem 1. You can update the previous function by multiplying the
window right before computing FFT. By applying the window, what changes do you
observe in the power levels of background noise, compared to the raw periodogram
(rectangular window)?

4. [10 Points] Write a new function where you change the Hamming window of the pre-
vious problem to a Kaiser window with the parameter β = 2. Use this function to
compute a periodogram for the signal in Problem 1. What changes do you observe in
the power levels of background noise, compared to the raw periodogram (rectangular
window)? Using the window visualization tool, wvtool, compare the frequency domain
response of these three windows - rectangular, Hamming, and Kaiser (β = 2). What
are the possible reasons of the different power levels of background noise, based on the
frequency domain responses? Note that applying a window to the signal in time do-
main is equivalent to convolving the frequency domain of the window to the frequency
domain signal.

5. [10 Points] In order to reduce the variance of the estimate, PSD can be averaged from
the segments, as illustrated in Eq. (7). Write a function to segment the Problem 1
sequence to length 100, and compute the averaged periodogram with Hamming window
using your function.

6. [10 Points] Write a new function that will apply a 50% overlap to increase the number of
segments being averaged for PSD estimation in a finite sequence. Display this averaged
modified periodogram for the sequence in Problem 1. You can check the result from
your program with that from spectrum referring to the example code in Section 1.2.

7. [15 Points] Compare the raw periodogram and Welch’s method with regard to the
resolution and variance of the estimate. What are the advantages and disadvantages
of Welch’s method by windowing and averaging compared to the raw periodogram?
Note, it may be helpful to plot all of the spectral estimates on a single plot so that
comparison is easier.

8. [10 Points] We now consider about a signal collected from a refrigerator magnet will
be used for PSD estimates. A refrigerator magnet has alternating north and south
poles on the same surface of the plane, which provides twice the magnetism on one
side and is thus more effective at keeping the large planar magnet uniformly stuck onto
the steel refrigerator. This arrangement is called the Halbach array, as shown in Fig. 5
(from Wikipedia, http://en.wikipedia.org/wiki/Halbach array). Assume that the read
sensor measures the strength of the magnetic field along the vertical direction on the
surface of the magnet and it yields a voltage value ranging from +1 to −1, proportional
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Figure 5: Halbach array (from Wikipedia)

Figure 6: Refrigerator magnet scan

to the strength of the magnetic field.

A signal is collected by scanning the refrigerator magnet with the read sensor that
measures the strength of the magnetic field, which is illustrated in Fig. 6. The mea-
sured signal reflects not only the periodic changes of the magnetic polarization of the
magnet, but also random noise due to the surface roughness, scanning speed variation,
sensor noise, etc. Load the signal fridge_mag.mat (on the course Blackboard), which
contains t, time in seconds, and x, measured voltages for 1.6 seconds at a sampling fre-
quency of 500 Hz. Plot the PSD estimate using the raw periodogram method described
in Section 1.1.

9. [10 Points] Plot the PSD of the signal using Welch’s method with a Hamming window,
segments of 200 data points, and 50% overlap. Compare the results with the raw
periodogram.

4 Week 2 milestones [100 Points]

1. [Pre-Lab, 15 Points] From the estimated PSD in the last problem of week 1, you
can identify a dominant frequency in the signal, fc, using the MATLAB command
[Pmax, if̂c

] =max(P ), where P is a PSD estimate and if̂c
is an index of corresponding
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frequency. The measured signal can be represented by a sine wave corrupted by noise,

x[n] = A sin(2πfc(nTs + δ)) + r[n]

where A is an amplitude and Ts = 1/fs(sampling frequency). δ represents the timing
offset of the measured signal, −T/2 < δ ≤ T/2, where T is the period of the signal.
For a segment of the signal of fridge_mag.mat, t(51 : 251) and x(51 : 251), find an
offset δ that minimizes the mean square error between the measured signal x[n] and
an estimated signal x̂[n] for A = 0.4, as below,

arg min
δ

Σn(x[n] − x̂[n])2

where x̂[n] = A sin(2πf̂c(nTs + δ)) and f̂c is a frequency corresponds to the if̂c
yielding

maximum value in PSD estimate. You can try δ from −T/2 to T/2 in steps of 0.001,
and select the one, δ̂, giving minimum mean square error between x and x̂. Report f̂c

and δ̂ and plot x[n] and x̂[n] together in a single plot.

2. [10 Points] Estimate the sample mean and variance of the noise in the measured signal,
r[n] = x[n]−x̂[n]. Use your estimate of δ for noiseless signal x̂[n]. Plot the histogram of
r[n] for −0.5 : 0.02 : 0.5, by using hist(r,-0.5:0.02:0.5). Report the sample mean
and variance of r and compare the histogram to that of the AWGN with your sample
mean and variance (plot your Gaussian curve on top of your histogram to compare the
shape).

3. [15 Points] In this week, we will practice PSD estimates of the signal, which con-
tains multiple frequency components, mainly focused on a signal having two frequency
components (dual tone). A historical example of dual tone signal is a Dual Tone
Multi-Frequency (DTMF) keypad in the telephone. DTMF is used for instructing a
telephone switching system of the telephone number to dial, or to issue commands to
switching systems or related telephony equipment. MATLAB has a demo for DTMF
based on SIMULINK. You can type dspdtmf on your command window to launch the
DTMF demo. This demo contains a DTMF tone generator, a channel, and a DTMF
receiver. Review the help description of this demo, by clicking the Info button on the
lower left corner of the demo, to understand the fundamental principles of the DTMF
keypad. Change the telephone numbers in a Tone Generator to ‘1-412-555-2345’ and
run a demo by clicking ◮ on the menu. You will see the detected number in the Display
window with a spectrogram pop-up. Check the channel block (noise power and gain),
and report them with a print screen image showing the DTMF SIMULINK model with
the numbers you obtained.

4. [10 Points] Next, try to transmit keypad information under severe noisy conditions by
increasing the channel noise power to 1 in a channel block (Gain 2) in the DTMF demo.
The DTMF receiver fails to detect the numbers and displays all zeros. Try different
channel noise power and find the one which gives several errors (not all errors). Report
the channel noise power and the print screen image showing partial errors in the display
window.
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Table 1: The frequencies of the DTMF keypad

1209 Hz 1336 Hz 1477 Hz

697 Hz 1 2 3

770 Hz 4 5 6

852 Hz 7 8 9

941 Hz * 0 #

5. [10 Points] The DTMF keypad is laid out in a 4×3 matrix, with each row representing
a low frequency, and each column representing a high frequency, as shown in Table 1.
When any key is pressed, the tone of the column and the tone of the row are generated.
As an example, pressing the ‘1’ button generates the tones 697 Hz and 1209 Hz. The
noisy signal of keypad ‘1’ can be represented by the sum of the two tones; each can
be represented by the cosine term of Eq. (6). Generate a signal when you press the
‘5’ button with additive noise of N (0, 1). Use sampling frequency (fs) of 10 kHz and
acquisition time (Ta) of 0.02 sec and plot the noisy signal.

6. [10 Points] The spectrogram shown in the demo is a series of modified periodograms
with a Hamming window and two averages per periodogram (Welch’s method). Plot
the PSD estimate of the previously generated signal of keypad ‘5’ using Welch’s method
with a Hamming window, segment length of 50 and 50% of overlap. Make sure that
the PSD shows two peaks (and their counterparts) at the designated frequencies of
keypad ‘5’.

7. [10 Points] Using the MUSIC method, plot a pseudospectrum of the previously gen-
erated signal of keypad ‘5’. Use spectrum.music for this problem. Set the number
of harmonics to 3 and segment length of 50 in your computation. Make sure that
the frequencies of the peaks in the pseudospectrum correspond to those of ‘5’ in the
keypad.

8. [20 Points] Suppose that you are designing a modified DTMF keypad, where the fre-
quency band for communication is reduced significantly compared to the conventional
keypad. So, you are supposed to use the DTMF keypad with the frequencies listed
in Table 2. Plot the signal of ‘5’ button with the additive noise of same variance in
Problem 5 (same sampling frequency and acquisition time as well).

Plot PSD estimates of the new signal of ‘5’ button using both the Welch’s and MUSIC
methods specified in the previous problems. Compare the results of the two methods
and discuss the frequency resolution of these methods in the modified keypad example.
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Table 2: The frequencies of the modified DTMF keypad

1209 Hz 1241 Hz 1276 Hz

969 Hz 1 2 3

1006 Hz 4 5 6

1047 Hz 7 8 9

1091 Hz * 0 #
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