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Abstract—Measuring heart rate traditionally requires special
equipment and physical contact with the subject. Previous work
has shown that consumer-grade web cameras can provide useful
signals for remote heart rate measurement. We present our im-
plementation of a system that allows automated measurement of
heart rate using a standard web camera and laptop computer. We
also discuss environmental factors which presented difficulties for
our methods and compare our methods to previously published
results.

I. INTRODUCTION

Heart rate (HR) is an important indicator of the general
health of a patient. Further, it is a useful measure for doctors to
have available when determining a proper course of treatment.
One standard method for determining heart rate, particularly
in patients with cardiac irregularities, is the electrocardiogram
(ECG). While very accurate, ECGs requires specialized equip-
ment operated by trained technicians and as such are not
practical outside of dedicated care centers.

Developments in photoplethysmography (PPG) have helped
reduce dependence on such specialized equipment for routine
measurement of heart rate. PPG refers to a set of techniques for
measuring vital signals and organ function using non-invasive
light emitters and receivers. Like ECG, PPG traditionally
requires dedicated hardware, here placed on a subject’s finger
or earlobe. While non-invasive and less complicated than
ECG, these forms of PPG still require physical contact with
the subject and the necessary hardware may not be easily
accessible.

Recently, other research groups have demonstrated that
video recorded with a consumer-grade web camera can be used
as an input signal for PPG. This is an important development
for several reasons. First, standard PPG devices often use
specialized light sources and detectors in the infra-red (IR)
or near-infra-red range. Second, web cameras are now com-
modity hardware, particularly on modern laptop computers;
an accurate and robust software PPG solution for measuring
heart rate would have a large potential user base.

We present a system that builds on and combines ideas
developed by Verkruysse, et al. [1] and Poh, et al. [2]. We
believe our system finds a good balance between the simplicity
of the first approach and the robustness of the second. While
the outcome is not at a level suitable for use by the general
public, it is a good demonstration of the basic principles and

a reaffirmation that simple techniques can lead to surprisingly
strong results.

A. Principles

Because skin is translucent, many properties of the light
reflected off the body are determined by subcutaneous factors.
PPG, at least for heart rate measurement, is concerned with the
volume of blood in the veins in a region of skin at any given
time. As the blood volume pulse travels through the body, the
reflectance and transmittance of light oscillates with the same
period as the heart rate [3].

Finger-tip sensors typically measure the blood volume pulse
by measuring how light in the IR or near-IR spectrum is
transmitted through the finger as a function of time. It is
also possible to measure changes in reflected light [3]. This is
the approach favored by our system and other systems based
on unmodified consumer cameras. In particular, we examine
variations in the red, green, and blue (RGB) color channels
returned by the camera.

Previous work by both Verkruysse, et al. [1] and Poh, et
al. [2] is fundamentally based on spatial averaging of pixel
values in a region of interest (ROI) in a video. However the
methods of selecting the ROI and the additional processing
that is performed after averaging differ.

B. Fixed ROI and Frequency Analysis

Verkruyssee, et al. recorded video of subjects lying down or
sitting upright, then manually selected a ROI from a still frame
of the video. After the pixel values in the ROI were spatially
averaged, the discrete Fourier transform (DFT) of the variance
signal was used to determine the frequency with highest power.
This frequency was chosen as the heart rate. Applying this
technique to each color channel individually determined that
the green channel variance most often contained the strongest
heart rate signal.

C. Dynamic ROI and Independent Component Analysis

Poh, et al. took recorded video or live streams of subject
engaged in normal computer use and automatically selected a
ROI using the face detection routines provided by the OpenCV
[4] computer vision library. The spatial average pixel values
for all three color channels were computed and independent
component analysis (ICA) was applied to the variance signals.
ICA is a method of blind source separation (BSS), in which the



measured signals are assumed to be the result of mixing some
set of source signals using an unknown system. BSS attempts
to reconstruct the original source signals using the measured
signals and a set of constraints. One of the resultant signals
from ICA was selected as containing the strongest heart rate
signal. The heart rate was chosen using a frequency-domain
method similar to the one described above.

II. METHODS

Our application runs in real-time on a 2009 Apple MacBook
Pro laptop and was built using Java, Processing [5], and
OpenCV. We use the integrated iSight camera, which provides
24-bit RGB data and allows us to processes 640 pixel by
480 pixel video at 30 frames per second. Most testing was
performed using streaming video, although we recorded some
video segments for more detailed off-line analysis.

Given the kth input frame F [k], we first detect faces using
the Viola-Jones object detection framework as implemented
in OpenCV [6]. This provides a list of bounding boxes which
surround faces in the image, from which we select the largest.
If this is the first time a face appears or if a new ROI is
requested, we define the ROI R to be a rectangle 5/9 the
width and 3/4 the height of the bounding box, centered in the
bounding box. This focuses our efforts on the area of the face
with the most exposed skin and helps avoid errors caused by
involuntary subject movement and boundary conditions such
as hair or the edges of the face. R has constant dimensions,
but its position in the image changes based on updated face
coordinates.

New face coordinates are integrated into the existing coordi-
nates using an exponentially-weighted moving average (EMA)
filter

y[n] = τx[n] + (1 − τ)y[n− 1] (1)

where y[n] is the averaged value at time n, x[n] is the input
at time n, and 0 < τ < 1 is the time-constant of the filter. We
use τ = 1/100 for updating the location of R.

The frame F [k] is composed of three color channels; let
FR[k], FG[k], and FB [k] represent the red, green, and blue
channels respectively. Define the instantaneous average pixel
value of the green channel, g[k] to be

g[k] =

∑
i,j∈R FG[k](i, j)

Area(R)
(2)

where FG[k](i, j) is the value of the pixel in FG[k] at location
(i, j). The values r[k] and b[k] are defined analogously for the
red and blue channels, but we are primarily concerned with
the green channel.

Define the instantaneous variance of the green channel,
vG[k] to be

vG[k] = g[k] − ḡ[k] (3)

where ḡ[k], the time-average pixel value, is the result of
applying an EMA filter (τ = 1/50) to the instantaneous pixel
values. To reduce variance noise resulting from sensor noise
in the camera, we filtered vG[k] with an EMA filter (τ = 1/3)
to produce v̄G[k].

Fig. 1. The application interface

Heart rate was determined by measuring peak-to-peak times
in v̄G[k]. A value is marked as a peak if it preceded by and
followed by a “valley” that is at least a fixed amount lower than
the possible peak value [7]. Peaks that would cause abnormal
or sudden changes in HR were discarded, and the last four
peak-to-peak timings were averaged to get the final heart rate.

The application consists of a single window which displays
v̄G[k] annotated with detected peaks, the calculated heart rate,
and the ROI used for computation. Users can press a key
to calculate a new ROI; this is required after sudden, large
movements or when a new user first appears in front of the
camera.

III. RESULTS

An example of computed variance signals and their cor-
responding frequency plots are shown in Figure 2. We see
that the red channel variance is mostly noise, while the green
channel has clear periodic oscillations. The blue channel also
has oscillations, but they are not as clean as those in the the
green channel. Examining the frequency plots confirms our
observations of the time signal; the green channel has a clear
peak slightly below 1 Hz, which is typical for a resting heart
rate.

Peak sizes in the variance signal changed with lighting
conditions and skin tone variation. We found that our sys-
tem had little difficulty adjusting to different skin tones but
that poor lighting could significantly degrade results. Natural
or incandescent light provided the best results, most likely
because both sources have components in the IR and near IR
spectrum. While our system still functioned under primarily
fluorescent lighting, it was more susceptible to noise and false
positives and negatives in the peak detector.

To test the accuracy of our system, we compared our heart
rate measurements to those determined by a commercially
available fingertip pulse oximeter. When stable, our system
consistently produced heart rate measurements within a 5
to 6 beat per minute window around the reading from the
commercial sensor. However, our measured value fluctuated



(a) Variance

(b) Variance Spectra

Fig. 2. Variance plots for the three color channels (a) and the FFT of
each variance signal (b). Note the large peak in the green channel and the
corresponding, but smaller, peak in the blue channel.

more often and more rapidly than the reference measurement.
We suspect this is mostly caused by the sensitivity of our peak
detection scheme to false-positive peaks and could be avoided
with more aggressive filtering or linear prediction.

We also attribute some of this variance to changes in frame
rate. We assume video captured at a constant 30 frames per
second when computing the heart rate, but the actual frame
rate will vary up and down depending on the demands placed
on the computer. Reducing such variations requires a careful
balance, as the ability to respond quickly to real heart rate
changes is a desirable feature of a measurement system.

Our system is also very sensitive to subject movement.

While our method for determining a ROI is fairly resistant to
involuntary motion, such as eye blinks, breathing, and small
movements of the head, we cannot successfully respond to
larger movements such as looking up or down, or moving
from side to side. This was expected given the measures that
Verkruyssee, et al. took to eliminate motion when using spatial
averaging as the primary analysis technique. We believe that
motion tolerance can be increased by tracking the face more
accurately, perhaps by using a feature tracking algorithm in
addition to standard face detection. Though there is likely
a limit to the motion tolerance that can be achieved using
our averaging technique without resorting to techniques like
those used by Poh, et al., we believe that the simplicity of our
technique has advantages for use in embedded or other low
cost devices.

IV. FUTURE WORK AND APPLICATIONS

As we have demonstrated, implementing a system which
uses a standard web camera to measure heart rate is both
possible and practical on commodity hardware. However, as
a proof-of-concept system, there are many areas in which it
could be improved or expanded.

A. Improvements

As discussed above, there are many factors that can cause
the system to produce bad readings. Any initial improvements
should be directed at increasing robustness. We would like to
further experiment with methods for reducing face bounding
box variability, possibly by tracking arbitrary feature points or
by using a correlation filter within the face region.

While our method of peak detection works well and avoids
the need to the fast Fourier transform, our current filtering
methods allow misclassified peaks to greatly distort the re-
sultant heart beat. Though our current approach of discarding
bad peaks and averaging could be extended and refined, we
believe a more advanced linearly predictive filtering technique
would give much better results. This would allow us to better
maintain a heart rate measurement in the absence of peaks or
presence of extra peaks, while still tracking the actual heart
rate when presented with enough consistent peaks.

If more advanced processing techniques are allowed, we
suspect that ICA, as demonstrated by Poh, et al., or principle
component analysis (PCA) will provide superior illumination
and motion invariance. PCA is particularly promising, as it is
designed to find the representation of a data set that maximizes
variance, our measure of heart rate. In our initial trials with
PCA, it was unclear which combination of the resulting basis
vectors best represented the variance that results from the
blood volume pulse. More experimentation is required to
discover how PCA can be applied most effectively.

B. Applications

The simple techniques required for our system make it
particularly promising for embedded devices. In fact, Phillips
Electronics recently released an application for the Apple iPad
2 tablet computer that appears to employ similar techniques to



measure heart rate [8]. In addition to the potential for simple
mobile or remote heart rate measurement, we also believe
these techniques could be useful as a liveness measure in
biometric access control systems such as face recognizers.

Other research has shown that combining an IR light source
with a modified camera can allow the visualization of blood
vessels and other subcutaneous structures [9]. Combining this
technique with our system for heart rate measurement would
produce an integrated and powerful diagnosis tool.

V. CONCLUSION

We have shown that it is possible and practical to use
a consumer-grade web camera and commodity hardware to
create a system that can measure the heart rate of a subject
remotely and using available light. Although our technique
is susceptible to interference from motion and illumination
change, it successfully automates Verkruysse, et al.’s spatial
averaging method and illustrates that the more powerful meth-
ods of Poh, et al. are not necessary to produce useful results.
Although there is much work that can be done to improve
the system, it and other photoplethysmographic techniques
based on consumer hardware show promise for cost-efficiently
increasing the availability and quality of medical care.
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