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I Introduction 
 

The medical Ultrasound B-scan (brightness scan) echo imaging is acquired by 
summation of the echo signals from ultrasound scatterers in the ultrasound beam range. 
The scatterers are from structures, tissue interfaces and tissue microstructures etc. in the 
body, these scatterers are locally correlated. And the coherent summation of signals 
include the structures and interfaces information which are useful for diagnosis purpose, 
as well as some locally correlated multiplicative noises from scatterers smaller than 
ultrasound beam wavelength (resolution size), which corrupts medical ultrasound 
imaging and makes visual observation difficult. These noises are commonly called 
“speckles”.  

 
Even though in some cases the speckle are essential information to track features, 

many cases the speckle noise deteriorates the image quality, degrades the fine details and 
edge definition. It also limits the contrast resolution, limiting the detectability of small, 
low contrast lesions in body. Speckle is always considered as a primary source of medical 
ultrasound imaging noise, and it should be filtered out.  

 
A simple example is shown in Fig. 1 to demonstrate the impact of speckle noise 

on information content (image from Duke University). The object of interest is a 
hypoechoic lesion of 5 mm diameter with -9 dB contrast. The echogenicity map 
corresponding to this object is shown in the top left panel of Fig.1. The scattering 
function represents the population of sub-resolution scatterers being imaged, which is 
shown in the top right panel of Fig. 1. The RF echo data is shown in the lower left panel. 
It is zero-mean and thus does not show a map of local echo magnitude. The low right 
panel shows the envelope detected image, which produces the desired image of echo 
magnitude. From the images, it is easy to see how speckle noise obscures the information 
in the image.  

 
Usually in clinical application, the B-mode images shown on ultrasound machine 

monitor are logarithm compressed envelope-detected image, as shown in the bottom right 
image shown in Fig. 1. While for research application, usually Radio-frequency (RF) data 
are collected directly from ultrasound machine, which can be considered as “raw” data 
from transducer and amplifier circuits. To convert RF data into B-mode images, the data 
are first Hilbert transformed to detect envelope, and then do logarithm. Due to such 
operation, the multiplicative speckle is converted into additive noise after logarithm 
compression, and the signal created has a Rayleigh amplitude PDF: 
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For images with speckles, removing speckles while not affecting important 

features is the purpose of despeckle. Many methods are proposed to alleviate the speckles. 
Spatial compounding method attempts to reduce the noise by averaging several images 
(Li and O’Donnell 1994). Filtering methods are practical alternatives. In this project, we 
implemented and tested several despeckle filters.   
 



 
Figure 1. The ultrasound image of a hypoechoic lesion of 5 mm diameter with -9 dB 
contrast. (Top Left) The echogenicity map. (Top Right) The scattering function. (Lower 
Left) RF echo data. (Lower Right) Envelope detection Image. 

 
 
 
II Methods and Results 

 
(0) Test images 

 
In this project, we use the following figures to test our filters. 
(A) 4 simulated inclusion phantoms with different contrast. The simulation 

program is based on a previous research in our laboratory (Li and Zagzebski, 1999). The 
simulated ultrasound beam has center frequency 3MHz, band width 40%, no attenuation. 
We simulate phantom with three different size inclusions embedded in the background 
gelatin, the signal contrast (inclusion to background) for four phantoms are 10dB, 5dB, -
5dB and -10dB respectively.  The images of these 4 phantoms are shown below. 
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Figure 2 Four simulated phantoms with different contrast (a) 10dB, (b) 5dB, (c) -5dB, (d) -10dB 

 
(B) We acquired RF data of a uterine phantom from Aloka SSD2000 Medical 

Ultrasound System. The transducer is a linear transducer with center frequency 7.5MHz, 
sampling rate is 100MHz, the image then is down sampled to reduce the computation 
time. The phantom shown has a uterine tube and three lesions at the wall.  
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Figure 3 B-mode image of a Uterine phantom 

(C) An in-vitro B-mode image for a plaque in human carotid artery. The plaque is 
removed by surgery operation, and embedded into gelatin phantom. The RF data is also 
acquired with Aloka SSD 2000 system, linear transducer with center frequency 7.5MHz, 
sampling rate 100MHz. The B-mode image is shown in Fig. 4. The plaque is at the center 
of the image. 
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Figure 4 B-mode image of a carotid artery plaque 



From Figures above we can see the image qualities for B-mode image are usually 
very poor. And thus the despeckle filtering is necessary. In the following section we will 
show the filtering results by 4 methods: (1) Wiener filter; (2) Anisotropic diffusion filter; 
(3) K-distribution based adaptive filter; (4) Wavelet filter.  
 

 
(1) Wiener Filter 
 

Wiener filter equation in frequency domain is written as: 
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Where g is the filter convolve the input image, Sww is the power spectrum of the 
noise, Sss is the power spectrum of the input image. In this problem, we only assume the 
input image is only added with noise, so the filter g=1 in frequency domain. The Wiener 
filter now is simplified into 
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The power spectrum of the input image Sss is unknown. An easy way is to model 

the power spectrum of the input image as 
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Where σs
2 is the mean variance of the input image S, which is also unknown. 

However, we usually use the mean variance of the noised image σx
2 to replace the σs

2. µx 
and µy are frequency coordinators, the range is [-π, π).  

 
The power spectrum of the noise Sww is also unknown. Since the noise is not 

Gaussian White Noise, we can’t simply choose a relative uniform region in the noised 
image and calculate the power of the region. However, we continue taking advantage of a 
simulation program developed by our laboratory (Li and Zagzebski 1999), we simulate 
the noise pattern and directly calculate the power spectrum of the noise.  

 
In detail, the noise pattern image is firstly zero-meaned, and then the image is 

divided into small region (pixel size 128*128), for each region, we calculate the power 
spectrum, and average power spectrums of all regions of the noise pattern image. This 
operation makes the power spectrum smoother. Note in MatLab, the 2D Fourier 
transform is not symmetric, so the power spectrum calculated by MatLab should be 
divided by MN (in this case it’s 128 since M=N=128) again to get the correct power 
spectrum of the noise pattern. The power spectrum of the noise is shown in Fig. 5. 
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Figure 5 The averaged power spectrum of simulated noise 

 
The noised image is also zero-meaned before applying Wiener filter, and the 

mean value is added back after Wiener filter. Some results are shown in following figures. 
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(c) (d) 

Figure 6 Four Wiener filter restored images for simulated phantoms with different contrast  
(a) 10dB, (b) 5dB, (c) -5dB, (d) -10dB 

 
We see the restored images by Wiener filter are excellent. Most speckles are 

removed, and the inclusions are shown up clearly, even for 5dB contrast case, and the 
background is uniform as we simulated. The main reason is that the parameters of 
simulated noise (such as scatterer distribution etc) are known, therefore the averaged 
power spectrum of the noise is very close to the noise power in the noised images, so we 
can restore images well. 

Is this noise power spectrum applicable on the real noised B-mode ultrasound 
images? We tested the Wiener filter on uterine phantom and plaque sample B-mode 
images. The results are shown in Fig. 7 and Fig. 8. 
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Figure 7 Wiener Filter Restored B-mode image of a Uterine phantom 
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Figure 8 Wiener Filter Restored B-mode image of a carotid artery plaque 

 
From Fig. 7 and Fig. 8, we see the averaged power spectrum of simulated noise 

can be applied well onto the real B-mode images, the speckles are also removed 
efficiently, and the structure of the materials are clearly restored. It implies that the 
speckle (noise) power spectrum in B-mode ultrasound images has similarity, even if we 
don’t know specific scatterer distribution in one material, we can still use simulated noise 
power spectrum to restore image. 

Meanwhile, we notice there are still some speckles in Fig. 7 and Fig. 8, which 
means the simulated noise power spectrum is not perfectly matched with the real ones. 
And the images are still blurring, the contrasts are low. To solve this problem, median 
filter, unsharp mask and histogram stretch can be applied on these images to get better 
visualization effect, these methods are out of scope of this project, we don’t discuss here. 
 
(2) Anisotropic Diffusion 
 

Anisotropic diffusion is an efficient nonlinear technique for simultaneously 
performing contrast enhancement and noise reduction. It smoothes homogeneous image 
regions and retains image edges. The main concept of anisotropic diffusion is the 
introduction of a function that inhabits smoothing at the image edges. This function is 
called diffusion coefficient. The diffusion coefficient is chosen to vary spatially in such a 



way to encourage intraregion smoothing in preference to interregion smoothing (Perona 
and Malik 1990).  

In this area, the most widely cited and applied filters include the Lee (Lee 1980), 
Frost (Frost et. al., 1982) filters. Yu and Acton (2002) proposed a new speckle reducing 
anisotropic diffusion filter. Here we only implement the method by Perona and Malik. 
 

Perona and Malik (1990) proposed the following nonlinear partial differential 
equation to smooth image on a continuous domain: 
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Where ∇ is the gradient operator, div is the divergence operator, || is the magnitude, c(x) 
is the diffusion coefficient, and I0 is the initial image. For c(x), they have two coefficients 
options: 
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Or 
( ) ( )[ ]2/exp kxxc −=   

 
Where k is the edge magnitude parameter. Physically, this model is like the 
thermoconduction. c(x) is the conduct coefficient along four directions. In practical 
design, the diffusion coefficient ( )Ic ∇  is anisotropic, and thus it’s called anisotropic 
diffusion. The option 1 of the diffusion coefficient favors high contrast edges over low 
contrast ones. The option 2 of the diffusion coefficient favors wide regions over smaller 
ones. 
 

The edge magnitude parameter k controls conduction as a function of gradient.  If 
k is low, then small intensity gradients are able to block conduction and hence diffusion 
across step edges.  A large value of k can overcome the small intensity gradient barrels 
and reduces the influence of intensity gradients on conduction. Usually k ~ [20,100]. 

 
This method can be iteratively applied to the output image, and the iteration 

equation is: 
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Where I(n) is the output image after n iterations. λ is the diffusion conducting speed, 
usually we set λ<=0.25. 
 
The anisotropic diffusion results of the images are shown in Fig. 9, Fig. 11 and Fig. 12.  
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Figure 9 Four Anisotropic diffusion filter restored images for simulated phantoms with different 
contrast  (a) 10dB, (b) 5dB, (c) -5dB, (d) -10dB 
 

From Fig. 9, we see the anisotropic diffusion filter can restore noised image well. 
Speckles are removed and inclusions show clearly. For different parameter k, λ, the final 
images after long iterations are different; here we only present one combination.  

In Anisotropic diffusion method, we don’t need know the noise pattern or power 
spectrum, the method can automatically remove noises, and it’s the advantage over 
Wiener filter.  

Meanwhile, the anisotropic diffusion method needs many iteration loops to reach 
satisfied results, usually it needs more computation time than Wiener Filter method 
(which only needs one inverse Fast Fourier Transform given the noise power spectrum 
known).  

In anisotropic diffusion, parameter selection, iteration loop selection all affect the 
final results, which provides more control to the final images, which also gives more 
uncertainties to the final images. 

 
Fig. 10 shows an example of 10dB inclusion phantom iteration results. 
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Figure 10 Iteration results of Anisotropic diffusion filter method for simulated 10dB inclusion 
phantoms (a) Original image, (b) After 10 step, (c) After 20 step, (d) After 40 step, (e) After 60 step, 
(f) After 100 step. 
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Figure 11 Anisotropic Diffusion Filter Restored B-mode image of a Uterine phantom 
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Figure 12 Anisotropic Diffusion Filter Restored B-mode image of a carotid artery plaque 
 



Compare Fig. 11, Fig. 12 with Wiener filter results Fig. 7 and Fig. 8, we found the 
anisotropic diffusion method delivers better contrast while removing speckles effectively. 
In fact, because the parameters in anisotropic diffusion method are adjustable, we can 
control parameters and decide if the program should be terminated or not according to the 
visualization effect. While in Wiener filter method, we don’t have adjustable parameter, 
thus the resulted images are fixed.  

 
We also plot the profile before and after filtering. We take same line of the images 

and the plot is shown in Fig. 13. From Fig. 13, we see both filters can smooth the 
speckles well. 
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Fig. 13 the profile before and after filtering 

 
 
(3) Adaptive speckle filtering based on K distribution statistics 
 

The formation of speckle and the interference patterns in envelope image are 
caused by the coherent nature of echo ultrasound imaging systems. It will then reduce the 
image resolution and object detectability, although the speckle carries information related 
to the statistics of the scatters (Dutt, PhD thesis). Various methods have been proposed in 
the past involving frequency and spatial compounding to reduce the speckle. Here we 
will implement an adaptive speckle filter based on analyzing the statistics for echo 
envelope and speckle using a K distribution model for the envelope image density 
function [1]. 

 



K distribution statistics 
The K distribution model has been proposed as a model for speckle statistics of 

ultrasound echo speckle. The K distribution has been proved to be a good model for the 
echo envelope signal statistics when the scatter number densities are low. The model can 
accurately predict variations in the statistics with varying scatterer number densities.  

The K distribution model can be described as the following density function 
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where: b and v are parameters of the imaging system (such as position of scatters, their 
orientation, etc.) and the backscatter coefficient statistics. 
      The following is a graph about the K distribution: 

 
  
                                  Figure 14 The K distribution as a function of ∂  
 
   

The various moments of the K distribution have been shown to be: 
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The K distributed data mean can also be described as: 

                                           }{)(}( AEfAE R∂=  

where σπ
2

}{ =AER  is the mean for Rayleigh distributed data. The Rayleigh 

distribution is the limiting case of ∞→∂ . 
 
(a) The filter based on K distribution 
i. The filter working with uncompressed images 

Based on this K distribution model, an unsharp masking filter with a statistic, 
reciprocal of normalized second moment can be derived to reduce the speckle.   

First, we can estimate f(∂ ) as following: 
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ii. The filter working with log-compressed images 

The above filter is designed to work with uncompressed images. In order reduce 
the dynamic range of the envelope, the clinical imaging systems normally employ 
logarithmic compression. So it is very useful to design the filters to work directly with the 
log-compressed images. 

The following is an unsharp masking filter for B-scan images without having to 
uncompress images first. The statistical analysis is also based on the K distribution model 
for the echo envelope signal.  

The logarithmic compression transfer function as: 
                                                       X=D ln(A)+G 

The density function of log transformed data U is given by: 
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The filter designed based on the statistics is: 
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(b) The result of reducing the speckle using K distribution filter 
 

The K distribution filter is implemented based on the above statistic analysis. It 
includes two parts, the first part works with the uncompressed images and the second part 
works with the log-compressed images. The filter is then used to reduce the speckle of 
the ultrasound images. Some are the simulation images, some are the real ultrasound 
images. The following is the results compared with the original images with speckle. 

Original Image 
after filtering (decompressed) 

 
original image 

 
after filtering (uncompressed) 

  



 
Original Image and the inclusions are 5dB 

more than background 
 

after filtering 

 
Original image and the inclusions are 5dB 

less than background 
 

 
after filtering 

 
Based on some local statistic, the unsharp masking filter can smooth image 

locally.  
Compared with the adaptive filter suggested by Crawford which uses the 

following the normalized second moment as the statistic: 
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This filter is easy to implement and the statistic is easy to estimate and 

characterizes the extent to which the scatterer density variations affect the mean of the 
echo envelope. The statistic derived has finite range which means that one does not have 
to use arbitrary range limiting parameters to obtain normalized quantitative statistic. 
Therefore an optimal solution to such parameter is not necessary to get optimal filtering 
results. 
  
 

(4) The wavelet-based denosing filter 
 

The wavelet techniques are widely used in the image processing, such as the 
image compression, image denoising. It has been shown that its performance of image 



processing is better than the methods based on other linear transformation. It has been 
embedded into the JPEG 2000.  

The wavelet de-noising method decomposes the image into the wavelet basis and 
shrinks the wavelet coefficients in order to despeckle the image. From the noisy image, 
global soft threshold coefficients are calculated for every decomposition level. After the 
thresholding, the image is reconstructed by inverse wavelet transforming and the 
despeckled image is derived.  

After the wavelet transformation, the signal energy will only concentrate on 
several wavelet coefficients and the majority of the coefficients will become zeros. Also 
the frequency domain filtering based on the DFT could not work well to the piecewise 
smooth functions.  It has been proved that the simple wavelet denosing methods could 
provide a almost optimal request to the polynomial piecewise signals. The errors of the 

estimation 
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(a) The implementation of the wavelet based filter 
 

The image of N x N can be decomposed by the wavelet transformation: 
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The calculations of the scaling coefficients and wavelet coefficients can be 
implemented using the filter bank. The lower level wavelet coefficients can be got from 
the upper level scaling coefficients. The image f(x, y) can be taken as the scaling 
coefficient at the J level where N=2J. 

The decomposed coefficients will be arranged as shown in the following diagram: 

  
 

After the decomposition, the thresholding method will be applied. This works 
because most wavelet coefficients are very small and also the noise part will also be very 
small. Usually the 3σ j can be used as the threshold. It might change with the different 
decomposition level.  
 
(b)  The denoising result by the wavelet-based filter 
 



The following is the comparison between the original image with noise and the 
image denoised by the wavelet-based filter: 

                                      

original image with noise after filtering 

 
original image with noise 

 
 after filtering 

   
 
 
 
Discussion: 
 

Despeckle filtering is an important operation in the enhancement of ultrasound 
images, in this project 4 different filters/methods are implemented and evaluated 6 
images both from simulation and real data. 

Wiener filter can reduce speckle well given the noise power spectrum is known. 
However, the speckle power information is unknown in real clinical situation. In such 
case, the simulated noise power spectrum can be used, and the results are also impressive 
comparing with the original images.  

Anisotropic diffusion method is simple to implement, the calculation is 
straightforward. The results are even better than Wiener filter method; the restored 
images usually have more contrast, while details are kept well.  

To compare the performance of 4 filters, we take the same small region with pixel 
size 64*64, and calculate the mean-standard deviation ratio, i.e. pixel-wised SNR. The 
results are listed in the following table. 



 Original Wiener Anisotropic Adaptive Wavelet 
SNR 4.295 26.885 16.841 18.866 4.655 

 
From the table above we can see that the Wiener filter, Anisotropic diffusion filter 

and k distribution based adaptive filter improve the SNR. Wavelet filter doesn’t improve 
the SNR very much, this is due to the wavelet transformed speckle coefficients are also 
larger than the threshold value, and we can’t filter it out. It is shown that the wavelet filter 
is not suitable for removing the speckle in ultrasound images. 

These methods may point out some despeckle methods in medical ultrasound 
machine before the image shown on monitor (as far as the authors know, some companys 
have already implemented despeckle methods in hardware) 
 
Conclusion: 
 

In this project, we implemented Wiener filter, Anisotropic diffusion filter, k-
distribution based adaptive filter and wavelet filter to despeckle in medical ultrasound 
images. The Wiener filter can improve the image qualities well and simulated power 
spectrum of speckle can be applied on many situations. The Anisotropic diffusion filter 
can also despeckle well as long as we choose reasonable parameters, and it doesn’t need 
extra information of noise pattern. The K-distribution based adaptive filter can improve 
the image quality, the method is easy to implement and the statistics is easy to estimate 
and characterize. The wavelet filter is not suitable for removing the speckle in ultrasound 
images. 
 

Initial findings show promising results from several filters, different clinical 
images are required to evaluate the performance of the filters. Other filtering methods 
may also be studied to compare with these filters. 
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