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ABSTRACT

As digital cameras become cheaper and more powerful, driven by the consumer digital photography market, we
anticipate signi�cant value in extending their utility as a general o�ce peripheral by adding a paper scanning
capability. The main technical challenges in realizing this new scanning interface are insu�cient resolution, blur and
lighting variations. We have developed an e�cient technique for the recovery of text from digital camera images,
which simultaneously treats these three problems, unlike other local thresholding algorithms which do not cope with
blur and resolution enhancement.

The technique �rst performs deblurring by deconvolution, and then resolution enhancement by linear interpolation.
We compare the performance of a threshold derived from the local mean and variance of all pixel values within a
neighborhood1 with a threshold derived from the local mean of just those pixels with high gradient.2 We assess
performance using ocr error scores.

Keywords: Scanning, digital cameras, thresholding, image restoration, OCR

1. INTRODUCTION

Devices for scanning paper are common in many work environments. Common examples range from the o�ce
photocopier to the fax machine. These two particular devices are similar in that the result of the scanning operation
is traditionally printed on paper. This has the disadvantage that if a further copy of a document is required, then
the original needs to be scanned again. The increasing importance of the internet as a communication medium
has recently led to a shift in focus within the document imaging industry. The typical destination for document
images is no longer assumed to be hard copy. Increasingly an electronic version is required for storage in a document
database that can be searched on-line. In turn, this has led to a rise in the importance of scanners. Today's scanners
typically come in one of three main forms: namely the at-bed scanner, the sheet-feed (or keyboard) scanner and
the hand-held scanner.

All three are rather cumbersome to use. The at-bed and sheet-feed scanners require that the document be moved
from its place of reading for scanning. The at-bed is worst in this respect as it takes up rather a lot of desk space
and is therefore often situated away from the reader's desk. The sheet-feed scanner usually resides on the reader's
desk but only takes single sheets of a limited range of paper sizes and therefore cannot handle newspapers, magazines,
books or bound reports. Those documents it can scan typically need staples removing, and a time-consuming manual
feed. The hand-held scanner usually requires several swipes of the scanning head to capture a desired region.

2. SCANNING PAPER WITH DIGITAL CAMERAS

Over-the-desk scanning with digital cameras3 has many advantages over traditional scanning techniques. Perhaps
the most obvious is that of convenience. Figure 1a shows a user at a desk reading a document. A camera is pointed at
the area of the desk that is usually used for reading. This camera can be thought of as a portal between the physical
desk and the electronic desk-top. Live video of the desk is displayed in a window on the electronic desk-top. This
arrangement a�ords a very convenient scanning interface. When the reader �nds something he would like to scan,
he simply selects that portion from the view of the physical desk (�gure 1b) and drags it, automatically invoking
ocr when appropriate, into a word processor or database, where the information may be stored, indexed and shared
with others.

Note that reading is minimally interrupted. Documents need not be moved from their normal place of reading as
is the case with at-bed and sheet-feed scanners. Hand-held scanners also do not require the reader to move the
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a) b)

Figure 1. Face-up scanning: a) A live view of the document that the user is reading is displayed on the workstation
monitor. b) When the reader wishes to copy something, it is copied and pasted into other applications in the normal
way. If text is copied, it is usually converted to an editable form (via ocr) before pasting into a word processor.

document, but instead it is necessary to pass the scanning head carefully over the page in strips, which is hardly
more convenient.

Of course, this new type of scanning interface is not helpful in applications where many unbound pages need to be
scanned sequentially. In these situations, one would still prefer to use the familiar at-bed scanner with a sheet
feeder, operating at as many sheets per minute as possible. However, when small amounts (say upto a couple of
pages) need to be scanned, the overhead in getting the document from the place of reading to the scanner and back
again becomes more signi�cant. This e�ect is greatest when only small parts from a page are required. Here are four
examples:

� Libraries: In library work, people regularly write out reasonably long passages from books verbatim4 because
the alternative usually involves going to a photocopier which can take longer.

� Translation: Kanji script is di�cult to enter into a computer via a keyboard, especially for non-native speakers.
Overhead scanning could be used, in conjunction with an on-line dictionary, as an invaluable reading aid.5

� Fax: Much o�ce scanning is currently performed by low resolution fax machines (200 dpi) for communication,
and many fax messages consist of only one or two sheets. Overhead scanning can be used as a very convenient
alternative to the traditional sheet-feed fax front-ends. A couple of pages may be faxed (or sent by e-mail)
with the minimum of disruption.

� Hypertext: when the user selects a printed url in the live window, the new scanning interface can automat-
ically invoke a web browser

Overhead scanning thus enhances the value of printed information. By making scanning more convenient, we are
a�ecting the role of paper in traditional work processes. We are making printing less of a one-way process by
concentrating on the mechanics of getting small amounts of information o� paper as easily as possible. We call this
type of scanning casual scanning. This is not common in today's o�ce because existing scanner interfaces are too
cumbersome. However, with the advent of high quality digital cameras, casual scanning has the potential to become
an increasingly frequent activity.

The resolution of today's consumer digital cameras has been largely determined by the resolution of current computer
displays and the legacy of the analogue TV standards. As a consequence, images are typically as small as 640� 480.
If such a device is used to capture a full 8" � 11" page then a resolution of approximately 60 pixels per inch (ppi)
is obtained. If it is assumed for the moment that a camera pixel is equivalent to a contact scanning dot, then it is
clear that a typical consumer digital camera is only capable of scanning a sheet of paper at about 60 dpi. This is
insu�cient for most scanning tasks. For example, resolutions in the range of 200-300 dpi are required for reasonable
ocr.
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However, it is likely that the resolution of digital cameras will continue to improve, and it is not inconceivable that 200
dpi cameras with 2200� 1600 (3.5 MPixel) arrays will become common in the relatively near future. Such cameras
will largely replace chemical �lm for large market sectors. Our aim is to investigate the emerging image processing
and user-interface issues that will in turn enable the scan-as-you-read interface between paper and electronic media.

3. DOCUMENT IMAGE DEGRADATION

Convenience in the sense of temporal e�ciency is, of course, not the only relevant measure of a scanning system.
The other principal measure is quality, usually measured in dots per inch (dpi). We would like to maintain the
convenience that overhead scanning a�ords, and address the resulting problem of poor image quality. Our problem is
to restore the original printed page from a low-resolution camera image, making the best use of the available camera
pixels. To understand how to restore these images, it is necessary to understand the nature of the degradation caused
by the channel between the paper source and the digitised image shown in �gure 2.

Figure 2. Degradation channel

3.1. Lighting variation

This e�ect is caused by uneven illumination and also the shape and orientation of the page relative to the light source
(�gure 3b).

3.2. Blur

There are two main sources of blur.6 The �rst is lens imperfections or aberrations. The second is displacement
between the sensor array and the focal plane: the camera is said to be out-of-focus if the image formed by the lens
does not coincide with the sensor array or �lm. The sensitivity of a camera to this e�ect is often referred to as depth
of �eld.

The depth of �eld is improved with a smaller aperture. In other words, the psf radius reduces with the aperture
radius, until a di�raction limit is reached. However, reducing the size of the aperture also reduces the amount of light
reaching the imaging sensors. This means that longer exposure times are required in order to record the same snr
for given lighting conditions. Focal length also a�ects the depth of �eld. As focal length increases, or equivalently,
angular �eld of view decreases, the depth of �eld increases.

It is clear that lens aberrations and a small depth of �eld could combine to give a spatially varying psf. However,
for the rest of this paper, we will assume a spatially invariant cylindrical psf, parameterised by radius. This model
is based on geometric optics, and is common in the engineering literature7 (�gure 3c).

3.3. Quantisation

Light is integrated over small rectangles into pixels whose area determines the level of quantisation. If the total �eld
of view of the camera is �xed, say to be the size of a normal 8" � 11" page, then the severity of the quantisation
of the page image is inversely proportional to the number of pixels in the array, which is usually referred to as the
resolution of the digital camera (�gure 3d).
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Figure 3. The e�ect of the di�erent degradations a) Original printed image, b) ligthing variation, c) blur, d)
quantisation, e) noise.

3.4. Noise

The sensor noise in an image has many sources.8 The arrival of photons is usually best modeled by a Poisson process
parameterised by a mean arrival rate � that corresponds to the intensity of the incident light. The resulting variance
of the number of arrivals in a sensor integration period of T seconds is also �T : the variance of the recorded charge
in the integration period T increases with the mean intensity �.

The recorded pixel value f is not generally a linear function of the charge q in the sensor bin. Typically the response
is described by a model f = �q� where � and � are device dependent constants.9 This camera response clearly
a�ects the noise variance over the intensity range of the sensor.

Despite these observations, we will assume in this paper that the noise is a zero mean additive Gaussian process that
is independent of pixel value and time: the noise process is assumed spatially and temporally invariant (�gure 3e).

4. DOCUMENT IMAGE RESTORATION

Restoration is di�cult without some assumptions about both the original image and the degradation process, and
the techniques that do exist are usually computationally expensive and improvements are often limited. We therefore
need to make some reasonable simplifying assumptions that are well grounded in the application that we have thus
far described.

4.1. Assumptions about the channel

It is di�cult to restore images without prior knowledge of the blur and noise characteristics of the channel. This
process known as blind deconvolution10 would involve simultaneous estimation of the original image together with
the blur and noise parameters. There are many proposed techniques for doing this11{13 but they are all unnecessarily
computationally intensive for this application. In section 3.2 it was shown how the psf was dependent upon the
aperture of the camera. The aperture need only vary if the amount of incident light on the document changes
signi�cantly. However, light levels in o�ces tend to change slowly. In section 3.4 we argued that noise levels are
mainly dependent upon camera characteristics, and also do not vary signi�cantly over time.

We therefore claim that it is not necessary to infer the blur and noise characteristics of the degradation process each
time that the user performs a scan. Here, blur and noise parameters are best estimated by a background process
using techniques such as those described in.7,14{16 This means that the restoration process can assume that these
parameters are known, and so it will be more e�cient. Note however that lighting variation across the page (section
3.1) is expected to change from page to page, and as such needs to be treated at each scan.
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4.2. Document images

In section 2 we described applications of overhead scanning that involve ocr which requires in the region of 200-300
dpi. We also noted that much scanning in the o�ce is performed by fax machines, which are typically only 200 dpi.
This observation suggests that much useful casual scanning can be performed with lower resolutions than the 600
dpi that is standard with today's contact scanners.

The widespread use of the fax machine suggests that much document information can be successfully communicated
in binary form (black and white). This is not to say that photographs, graphics and text in full colour are not
important, but rather that much useful information can be inferred from binary representations of the document.
For example, if it can be assumed that the image contains text, then for many ocr applications it is unimportant
what colour the text is as long as the text can be reliably recognised.

With this in mind, the �rst important assumption that we shall make is that the document image is binary { that is
that there are only two colours in the original printed image. These are typically the foreground and a background
colour, although in fact we do not make any assumptions about polarity. Images which contain more than one
foregrond/background pair are a assumed to have been segmented into bimodal regions.

Figure 4 shows how a binary edge can be reconstructed to sub-pixel accuracy from its low-resolution grey-scale
image. If the image is binarised at the same resolution then much information will be lost. We need a process for
generating a higher resolution binary image from the grey-scale original �. Our task is to do this in two dimensions
in the presence of lighting variation, blur and noise. In essence, we are attempting to trade the unwanted grey-
scale resolution for increased spatial resolution, making optimal use of the degradation parameters. Computational
e�ciency is signi�cant in our application because the scanning interface is designed to be a labour-saving tool: the
longer the user has to wait between copying and pasting ocrd text, the less satisfying will be the result.

a) b)

f f

Figure 4. Super-resolution reconstruction. a) The quantised low-resolution grey-level input, and b) the super-
resolution binary reconstruction.

4.3. OCR as a metric for binary image restoration

We choose to test our approach using ocr performance for three main reasons. The �rst reason, as discussed in
section 2, is that many of the tasks that would most bene�t from the convenience of camera scanning are likely to
be based around copying text into computers. The second reason is that the bimodality assumption made in section
4.2 is more likely to be satis�ed by text than line-art where the more complex use of colour is common. The third
reason is that ocr performance is a pertinent task-based metric18 with which we can compare the performance of
camera scanning with that of at-bed scanning; the equivalent for line-art is not so obvious.

4.4. Binary image restoration by thresholding

Many adaptive thresholding algorithms18,19 only attempt to classify pixels in the presence of lighting variation.1,2

They often assume that the image has come from source where the blur is at a much smaller scale than the objects,
and is thus irrelevant. We note that the optimal level of a local threshold in our application is very much a�ected
by blur (�gure 3). An exception is to be found in the work of Mitchell et al.20 who address the application of
image coding of frozen frames in video-conferencing. They assume that the original image is binary. They perform
high-frequency boosting to compensate for blur. They quantise the video image to three levels to enable e�cient
compression ratios, while maintaining legibility.

Most thresholding algorithms assume also that resolution is in abundance. This is usually a good assumption for
document applications18 where the image source is typically a at-bed scanner. Other applications using camera

�One can think of quantised binary images as having been crudely anti-aliased.17
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images include segmentation for automatic visual inspection of object silhouettes.2 Here the object size is usually
very large compared to the size of a pixel and resolution is not a concern.

4.5. Other approaches to binary image restoration

Geman and Geman21 use MAP estimation to restore images using Markov random �eld models. These techniques
have been used for binary image restoration with limited success.22 The binary models are di�cult to form and
the resulting optimisation problems are extremely computationally expensive to solve, usually involving a simulated
annealing process.

Wang and Pavlidis23 assume that reliable knowledge about the degradation is di�cult to use. Hence they do not
attempt to restore to the original binary image space but instead attempt to extract topographical features for ocr
directly from the degraded grey-scale image.

5. OUR APPROACH

We adopt the philosophy that any knowledge of the degradation of the binary image can and should be used in any
process that tries to ascertain the content of the original: valuable prior information such as blur and noise and
background and foreground colours should be used to increase the performance of the restoration algorithms.

The method we adopt for restoring binary document images has the following three steps: deblurring, interpolation
and adaptive thresholding.

5.1. Deblurring

Deblurring is a huge �eld6,24 that is principally concerned with the problem of deconvolution. Initially we have decided
to use Tikhonov-Miller regularisation.25 The solutions to the ill-posed inverse problem of deblurring are regularised
with a smoothness constraint. If the degraded image g and the deblurred image f̂ are written as lexicographically
ordered vectors, then this constraint can be written as a block-circulant matrix S which is designed to behave like
a high-pass �lter, thus penalising unwanted high frequencies that would otherwise not a�ect the cost J because the
blur B behaves like a low-pass �lter:

J
�
f̂
�
=
g �Bf̂

2 + �
Sf̂2 : (1)

The least squares solution is:

f̂(�) =
�
BTB + �STS

��1
BTg: (2)

This can be computed e�ciently in the frequency domain via the dft by approximating the block-circulant matrices
by Toeplitz matrices. Note that f̂ depends upon the regularisation parameter �. Intuitively, the deblurred image
will depend upon the relative weighting between the measurement error and the smoothness term in J . We use a
standard technique (appendix A) for determining a suitable value.26

A smoothness regularisation operator is clearly not ideal for images in which much pertinent information is non-
smooth. For example, images of text contain many edges which would tend to be smoothed in the regularised
solution. This observation has yielded two possible extensions to this basic technique. The �rst concerns the study
of regularising functionals which penalise non-smoothness in a convex but non-quadratic manner.27,28 This has a
clear computational disadvantage as the regularisation operator is no longer linear.

A second approach is to make � spatially variant.29 The idea here is to make � adapt to the local properties of the
image, reducing regularisation near edges, and increasing it in homogeneous regions of background and foreground
colour. This has the e�ect of under-regularising in the vicinity of edges, but this is reasonable since it is known
from psychophysical experiments that the human visual system is rather insensitive to noise around sharp intensity
gradients.30

We achieve a similar e�ect in an e�cient way. In a post-processing step, we use a statistical test on the local variance
to decide whether the original camera image (i.e. before deblurring) is near an edge or not. We do this by calculating
the sample variance s in the local M-pixel neighbourhood. The statistic (M � 1)s=�2 is distributed as �2M�1, where
�2 is the variance of the additive noise. If it is less than a certain con�dence limit, then the null hypothesis that the
local neighbourhood is a homogeneous region is accepted, and we replace the deblurred pixel with the local average
in the original camera image. This has the e�ect of suppressing the noise in the background (�gure 5) where it is
most noticeable.30
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Figure 5. Regularisation and background noise suppression. a) The original image from �gure 3a subsampled
and blurred with a cylindrical point spread function with radius r = 1:5 pixels and additive Gaussian noise with
standard deviation of � = 3 grey-levels. b) The result of regularisation. c) After background noise suppression

5.2. Interpolation

We next perform bilinear interpolation. This is achieved by a separable operation where extra pixels are �rst �tted
on a straight line between original pixels along a row, and then similarly for the pixels down each column. Arbitrary
increases in the size of the image are possible, but we only attempt a factor of three in both dimensions.

5.3. Adaptive thresholding

The main task of this stage of the processing is to select a threshold for each pixel that separates local foreground
from local background. This threshold surface typically has large scale structure due to lighting gradients, and small
scale structure due to the blur still remaining after regularisation.

Niblack1 assumes that the background/foreground polarity is known. He calculates the sample mean �M and
standard deviation sM in a small M �M neighbourhood, and then uses the threshold:

tM (x; y) = �M � ksM (3)

where k � 0:2 and M � 15 are found to yield good results for dark objects on a light background.18 From (3) it
can be seen that the value of k is used to adjust how much of the total print object boundary is taken as part of the
given object. Negative values for k tend to make the dark objects thinner.

In homogeneous regions larger than M it is clear that (3) cannot be applied. Here the expected sample variance
E[s2M ] quickly drops to �2, and the threshold becomes �M �0:2�, producing noisy homogeneous regions. Negative k
would make dark and light regions predominantly white. To prevent this, it is common to perform a post-processing
operation where connected components are removed if the mean gradient of the grey-scale image around their
boundaries is smaller than some threshold.18

Yanowitz and Bruckstein2 �t a potential surface that passes through local maxima of gradient pixels, and use
this to threshold the image. This surface is constructed with an iterative interpolation scheme that is somewhat
computationally intensive to compute, but can potentially cope well with both small and large scale threshold surface
structure.

6. EXPERIMENTS

We generate a binary image of 10 point Times New Roman text at 300 dpi. This is then degraded arti�cially to
simulate the e�ect of a camera sampling at 100 ppi without lighting variation, but with di�erent blurs and noise.
We perform regularisation and interpolation, followed by adaptive thresholding. We set out to investigate whether
the information pertinent to threshold estimation is best inferred from the local mean of all pixels after Niblack or
from the edges after Yanowitz and Bruckstein. Having found the best information to use, we asses the sensitivity of
the ocr error rate to blur and noise.
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Figure 6. Estimation of local thresholds. a) All pixels. b) Pixels with a local gradient above a threshold
T = 100. c) Local maxima of gradient found using the Deriche operator. d) A dilated version of c) with dilation
radius d = 1.

6.1. Choice of local threshold

Figure 6 shows various alternatives for selecting pixels from which we can estimate a suitable local average. Figure
6a shows all the pixels in a region after interpolation. Figure 6b shows just those pixels with a Sobel gradient9 that
is greater than 160. Figure 6c shows edge pixels found by use of the Deriche operator,31 and �gure 6d shows these
edge pixels after a dilation operation of radius d = 1. A local threshold for each pixel is estimated by calculating the
mean of the non-zero pixels within a small neighbourhood (7 � 7) of the images shown in �gure 6. This threshold
is bounded so that the local threshold is not permitted to come within 3� of the background or foreground levels to
avoid noisy results in homogeneous regions. The thresholded images are sent to an ocr enginey, and the resulting
text �le is compared with ground truth to produce an ocr error rate E.

The �rst experiment, shown in table 1, shows how E is a�ected by the gradient threshold T . The best results are
obtained when T = 0 (�gure 7a) corresponding to Niblack's method with k = 0. In this case, E = 2:5% which is
similar to that obtained by using a at-bed scanner at 200 dpi or a fax machine. Figure 7b shows the thresholded
result with T = 160 where it can be seen that more characters are being split. This highlights the fundamental
compromise between splitting single characters and merging neighbouring characters.

Table 1. Ocr error rate, E, as a function of gradient threshold, T (r = 1:5, � = 3:0).

T 0 10 40 160

E (% ) 2.5 3.1 4.6 7.6

The second experiment, shown in table 2, shows how E is a�ected by the radius of the dilation operation d performed
on the edges. The best results are obtained when d > 3 (�gure 7d). This level of dilation covers most of the pixels

yTextBridge from Xerox
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Figure 7. Thresholded results, using a local average of: a) all pixels, b) pixels with a local gradient above a
threshold T = 160. c) Local maxima of gradient found using the Deriche operator, d) a dilated version of c) with
dilation radius d = 1.

around the characters and thus closely approximates Niblack's method with k = 0. Figure 7c shows the thresholded
result using just the edge pixels (d = 0). Here again it can be seen that characters are being split.

Table 2. Ocr error rate, E, as a function of the radius of dilation of Deriche high-gradient pixels, d (r = 1:5,
� = 3:0).

Dilation radius (pixels) 0 2 4 6

E (% ) 7.2 6.5 2.5 2.5

We conclude that using maxima of gradient does not aid the estimation of local thresholds for ocr.

6.2. Sensitivity to blur and noise

Having demonstrated that the best ocr results can be obtained from a threshold calculated from the local average
of the deblurred and interpolated image, we now show how this method degrades with increasing blur and noise.
Figure 8 compares the binary output with and without deblurring. Table 3 and �gure 9a-b shows how E increases
with the radius of the cylindrical point spread function. Table 4 and �gure 9c-d shows how E increases with the
standard deviation of the additive Gaussian noise.

Table 3. Ocr error rate, E, as a function of blur radius, r (� = 3:0).

r (pixels) 1.5 1.6 1.7 1.8 1.9

E (% ) 2.5 3.8 9.0 11.0 14.0
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Figure 8. Blur radius r = 1:5 pixels and � = 3 grey-levels. a) Binary output with deblurring (E = 2:5%). b) Binary
output without deblurring (E = 26:3%).

7. CONCLUSIONS

Face-up scanning with digital cameras has the potential to provide a convenient and natural way of getting paper-
based information into a computer. This new type of scanning requires careful image restoration for successful ocr.
To this end, we have described a three stage process based upon Tikhonov-Miller regularisation, bilinear interpolation
and adaptive thresholding using a local average technique. We have demonstrated that thresholding using edges in
the grey-scale image does not aid ocr performance. Assuming that the page is scanned at 100 ppi with the blur and
noise parameters described above, the use of a local average thresholding method after deblurring and interpolation
yields an ocr performance comparable to a 200 dpi contact scanning process for bimodal images.

Table 4. Ocr error rate, E, as a function of noise standard deviation, � (r = 1:5).

� 3.0 4.0 5.0 6.0

E (% ) 2.5 8.4 11.0 14.0

APPENDIX A. CHOOSING THE SMOOTHING PARAMETER

The estimation of f̂ is most e�ciently carried out in the frequency domain. Representing the discrete Fourier
transform with bold face characters, (2) becomes:

f̂ =
H�

jHj2 + �jSj2
g: (4)

Note that (4) becomes the inverse �lter 1=H as � ! 0. In e�ect, (4) de�nes a one parameter set of regularised
solutions, parameterised by �. Writing the expected restoration error as26:

� = E

�f � f̂(�)
2� = kfk2 +E

�f̂(�)2�� 2E
h
fTf̂(�)

i
(5)

and noting that kfk
2
does not depend upon �, we note that the minimisation of � is equivalent to the minimisation

of the last two terms in (5). Using Parseval's theorem:

E

�f̂(�)2� = E

"
N�1X
u=0

N�1X
v=0

jHj2 jgj2

(jHj2 + �jSj2)
2

#
: (6)

and it can also be shown that26:

E
h
fTf̂(�)

i
= E

"
N�1X
u=0

N�1X
v=0

jHj2 jf j2

jHj2 + �jSj2

#
= E

"
N�1X
u=0

N�1X
v=0

jgj2 � �2

jHj2 + �jSj2

#
: (7)
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Figure 9. a) Blur radius r = 1:9 pixels and � = 3 grey-levels, and b) its restored binary image. c) Blur radius
r = 1:5 pixels and � = 6 grey-levels, and b) its restored binary image.

Note that the expectations (6) and (7) are independent of the unknown f . Hence, removing the expectation operators,
we can write

�̂(�) =
N�1X
u=0

N�1X
v=0

jHj2 jgj2

(jHj2 + �jSj2)
2
� 2

N�1X
u=0

N�1X
v=0

jgj2 � �2

jHj2 + �jSj2
: (8)

Note that this requires knowledge of �. It can be shown that this is unimodal and so we can use a gradient descent
optimisation algorithm on �(�) using (8) to �nd the best �.
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