18-551 FINAL REPORT, SPRING 2012

Smartphone-based Mobile Robot Navigation

Nolan Hergert, William Keyes, and Chao Wang
18-551 Group 3

Abstract—Physical systems are subject to noise and other
environmental issues not present in most academic versions of
these systems. To understand these issues, we created a mobile
robot that can follow a white line, outdoors, in varying lighting
and pavement conditions using the video processing and motion
sensing capabilities of an Android smartphone. A custom vision
algorithm takes as input the smartphone camera feed and outputs
control data to a motor controller connected to the motors of a
hobby radio-controlled vehicle. We competed in the eighteenth
annual Mobot competition, completing the course and taking first
place.

I. INTRODUCTION

For the past eighteen years, on an afternoon in the spring,
people gather near the sidewalk in front of Wean Hall to
watch robots. Not any robots, but robots specially designed
to complete a course running the length of the building along
the sidewalk. This is the Mobot (from Mobile Robot) [1]
competition, where groups of students and members of the
community build autonomous vehicles that can drive through
a series of fourteen gates in the correct order, passing over
two steep hills in the process. The gates lie along a white line
painted on the sidewalk which provides helpful guidance for
the vehicles. See Figure 1 for a map of the course. Vehicles
are ranked by how many gates they successfully clear and then
by time in the event of a tie.

Though it may seem like a simple problem to solve with
a robot, examining the event closely reveals subtleties that
make it much more difficult. Primary among these is that
the course is outdoors, whereas most robotics competitions
take place in a carefully controlled and specified environment.
The problems of line following changes from detecting a high
contrast line on a consistent background, to detecting a noisy
line in changing contrast on a noisy background, where parts
of the line may be missing and parts of the background can
be very similar to the target. Each Mobot must be able to
overcome these problems of the performance surface under
changing lighting and weather conditions.

Building a vehicle for the Mobot competition is an excellent
way to gain practical experience dealing with noisy data and
other constraints imposed by the need to create a physical,
function system. We believe that this makes it an ideal
candidate for an 18-551 project. It includes a significant signal
processing component in detecting the line, basic elements
of control theory, and requires integrating these parts into a
electromechanical system. This integration component should
not be underestimated, as many important signal processing
problems are motivated by the needs of real devices. In

Submitted May 9th, 2012
Department of Electrical and Computer Engineering
Carnegie Mellon University

building a Mobot, we hope to develop reliable, reusable
solutions to the problems of noisy data and control and provide
a foundation for future 18-551 groups attempting mobile
robotics problems.

A. Terminology

We refer to the device we built interchangeably as the
“vehicle”, “robot”, or “Mobot”. The “line” is always the
white line painted on the course. The “vision problem” is the
problem of detecting the line. The “decision problem” and
“decision points” refer to the final section of the course, from
gate 8 to gate 14 where the line diverges into multiple paths
and the robot must choose the correct paths in order to pass
through the correct gates. A “split” or “decision point” is a
point where the line splits into two lines. “Android” refers
to the Android operating system, an open-source smartphone
operating system developed by Google [2].

B. History

Because the Mobot event is a competition, there are few
sources of detailed information about previous attempts, de-
spite the events long history. However, general information is
available, as are videos of most past competitions, and we
used this information while developing our strategy.

While many groups start thinking about the vision problem
in terms of how to solve the decision problem, we were aware
that it is a more important problem to have reliable vision on
the upper part of the course. Similarly, we were warned to
solve the problem of control on the hills early, as this is a
common point of failure. [3] In fact, following the single line
and maintaining control on hills is so significant a problem
that in many years no teams finish the course, let alone reach
the decision points.

From video of previous runs, we saw that many groups
choose to create their own base from scratch and design
their own microcontroller and sensing system. These custom
sensing systems are commonly a strip of infrared sensors
pointed at the ground in front of the vehicle. While update
speeds are very fast for these sensors, they need to be shielded
from sunlight, a difficult problem with the changing terrain
of the course. While we know several past teams have used
camera systems with varying levels of success, we have
no details of their vision algorithms. We also know that at
least one previous group used an Android smartphone as the
processing device. To the best of our knowledge, no previous
18-551 groups attempted similar imaging tasks.

63 Gate Locaton: Gate opening 18°18"

Fig. 1. The Mobot course [1].

II. SYSTEM OVERVIEW

Our Mobot is made of four main components: an Android-
powered smartphone, a USB interface board, a motor con-
troller, and the wheelbase of a radio-controlled hobby model
tank.

Given the unreliable nature of protecting infrared sensors
from sunlight, we chose a camera-based approach. This was
also influenced by the easy access to the built-in camera on
our smartphone. Given our knowledge of signal processing we
were confident that we could overcome any challenges that
image processing might present.

We chose to build on the Android platform for several
reasons. First, like most smartphone platforms, Android de-
vices provide a powerful processor paired with a variety
of sensors in a compact, energy-efficient format. For our
purposes, this meant we would only need external hardware
to handle output, not input. Android also provides an open,
easy to use development environment and is compatible with
the powerful OpenCV computer vision library [4]. Finally,
Android was the chosen platform for the lab component of
our course and we were encouraged to use it in our projects.

Android provides several options for interfacing with hard-
ware. Until recently, these were limited to wireless technolo-
gies like Bluetooth and WiFi. However, in the last year, Spark-
fun Electronics released a USB interface board called the IOIO
(“yo-yo”) and Google released an officially supported USB
platform called the open Accessory Development Kit (ADK).
Given the potential unreliability of wireless interfacing, we
preferred a USB solution. Ultimately the IOIO proved to be

Java
Application

‘ INI/ C++

OpenCV

Android

!

IOIO

Motor
Controller

Fig. 2. High-level view of system architecture

18-551 FINAL REPORT, SPRING 2012

the simplest and most easily available device that met our
interface needs.

Because no one on our team has significant mechanical
engineering experience, we chose to modify an existing wheel-
base instead of building our own. The tank base has excellent
torque and traction at a reasonable speed. Although we would
like a higher top speed, the torque provided by the base makes
the hills in the course a trivial problem and successful traversal
of the hills proved more important than speed.

III. VISION

A central problem to building a successful Mobot is devel-
oping a technique to identify and locate gates in the proper
sequence, allowing the robot to traverse the course. While it
is theoretically possible to identify the gates themselves, this
significant computer vision problem can be avoided by instead
developing a method to detect the white line painted through
the course. By following the line, a robot is guaranteed to
pass through all gates in the proper sequence, provided the
correct lines are chosen at the final decision points. This is
the approach most competitors use, and is the approach we
adopted for our system.

This is not to say that the problem of detecting a line
is simple. While finding a line in an image is easier than
finding gates against widely varying background, recall that
the detection must be invariant to local and global illumination
changes, invariant to changing contrast between the line and
the background, tolerant of missing line sections, and resistant
to the textural noise of outdoor concrete. Further, the detection
must run in real time on our Android device. Given our per-
formance constraints, we found that many existing techniques
from the computer vision literature were ill-suited for our
application.

The line detection problem is fundamentally a segmentation
problem: some section of an incoming frame is the concrete
(background) and some section is the line (foreground). We
must extract the foreground and use its properties to compute
an error value for input to the control system.

The first and most basic segmentation technique we tried
was binary thresholding. This quickly failed on our test scenes
because light reflectance decays linearly with a decreasing
angle of reflection, and binary thresholding assumes a constant
threshold that will work across the entire scene. For example,
a threshold that segmented the line at the top of the frame
had too low of a threshold for the bottom of the frame,
classifying everything as a line. Block-based adaptive thresh-
olding, which computes a possibly different threshold for each
pixel in the image, is a standard solution for this illumination
problem. However, we found that an adaptive threshold not

GROUP 3: SMATRPHONE-BASED MOBILE ROBOT NAVIGATION

only highlighted the line, but also enhanced the details in
the background concrete texture. The failure of these basic
methods lead us to research more advanced techniques, such
as graph-cut algorithms, the Hough transform, and k-mean
clustering. While these may have produced excellent results,
we did not actually implement any for testing; the apparent
complexity combined with a new insight into the nature of
our problem prompted us to pursue a different approach.

The insight, which became a critical assumption underlying
our vision system, is that when our robot is correctly oriented
on the line, the line will always enter the camera’s field of view
at the top of the frame and exit at the bottom of the frame. This
effectively eliminates one dimension of our problem; the two
dimensional problem of finding a line region in the full image
is now the one dimensional problem of finding horizontal
position of the line in each row of the image. Additionally,
we can assume that light reflectance will be constant across
this horizontal line as the angle from the camera to the surface
is constant. Horizontal positions are also natural predecessors
to our chosen error value, the angle from the vertical of the
line in our view.

Our first attempt at applying these ideas simply found the
location of the maximum pixel value in each row of a down-
sampled grayscale version of the input frame. This worked
surprisingly well on our test images, but we soon realized
it was quite susceptible to outliers caused by illumination
changes and texture noise. With this in mind, we developed
the final algorithm used in our Mobot.

A. Algorithm

For each grayscale frame, first blur the frame significantly,
through a combination of downsampling to M x N and appli-
cation of a box filter of size k;. Next, extract L, 1 < L < N
evenly spaced pixel rows from the blurred frame. Note that
each row of pixels effectively contains information from
adjacent rows in the original frame because of the blurring
operation. For each row r;, compute the mean pixel value, r;.
Rows are indexed from 0 to L — 1, with rg at the top of the
frame.

Let n; = truncnorm(r; — 13, 0), where x = 21,22, . ..
and truncnorm(x, ¢) is defined as

7xN]

0 if v; <e,
truncnorm(x, ¢) =

x;/ max(x) else

Thus, each n; contains the amount each pixel value was
greater than the average intensity, normalized to lie in the
range [0, 1]. We assume here that the white line will be the
brightest section relative to the other pixels in the row. This
generally holds, but can be violated by small shadows in bright
sunlight that block the line and make the background brighter
than the line. This failure case was not encountered in the
course, but is important to consider.

Now, blur each n; by convolving with a gaussian kernel of
size k, and variance o2 to produce a smoothed pixel intensity
curve, c;. Let P; be the set of the horizontal locations of
local maxima (peaks) in c;. Peaks are found using a modified
version of Billauer’s procedure [5]; we have no need to report

local minima, so this information is not stored. We expect that
each peak is approximately centred on the intersection of the
row and the target line. When there are multiple target lines
that intersect a row, as is the case during the decision point
section of the course, we expect to find a peak for each line,
assuming ky, kg, and o2 are appropriately set to avoid merging
unique lines.

Subject to the validity constraints discussed in the next
section, we now compute an error angle using the peak
locations. Let P/ be the possibly empty set of valid peaks
for row 7. Note that in the multiple line case, P/ is empty if
P; has only one peak. If P; has multiple peaks, P/ will contain
the leftmost or rightmost peak dependant on the desired turn
direction. Define

N-1
rP={J P
=0

to be the set of all valid horizontal locations. Compute P,
the average horizontal position. The error angle is defined as

m —1 (Ymid — Yanchor
o 2 tan < P - Zanchor)

where Zanchor = N/2, Yanchor = 3M /L, and ymia = M/2.
We subtract the tangent from /2 because we require the angle
from the vertical, not from the horizontal. This angle finding
procedure is shown in Figure 3.

While this angle computation technique proved effective, it
is important to note that it is not theoretically ideal. When the
robot is heading off course, the line will appear near the edges
of the frame and we would like the corresponding error value
to also be large. Unfortunately, because the anchor point and
the vertical separation used to compute the angle are fixed,
the angle changes slower when P is near the edges of the
frame than when P is near the center of the frame. This could
possibly avoided by using a peak in Pj,_; as the anchor

|~ |
L |
.
/Y_re:\
T
| T~

Fig. 3. Angle computation. The angle, 0, is defined as the angle from the
vertical of the line from a center point near the bottom of the frame to the
average horizontal component, Z, located at half the frame height

instead of a fixed value. However, because the fixed-point
method worked in practice, other methods remain untested.

B. Rejection

Because we select multiple lines from our image, there is
redundancy in our representation of the target line location.
This allows us to discard peaks that are likely the result of
noise without reducing the accuracy of our error angle.

Before any further processing, we mark rows ry_r, to
r;,_1 as invalid. These rows are too close to the front of the
robot to be useful in computing the error and likely have
interference from the robot’s shadow. The first criteria we
consider for the remaining rows is the maximum to mean
ratio. Let mmr; = max(r;)/f; for i = 0...N — 1. If
mmr; > aunmy then the peaks in P; are valid. This check is
based on the idea that the maximum value in a row intersecting
the line will be significantly higher than the average value of
the row, in comparison to the maximum and average values
of a row that does not intersect the line. Also, because this is
a ratio, the threshold can be set independent of illumination.

Second, we ensure that peaks that meet the ratio criteria
have realistic relations to each other in the frame. Assuming
that P; contains only one point for all i, compute A; = |P; —
Piyq|. f A; > Apax, then mark P;yq as invalid. Formally,
this constrains the maximum slope that the line can have in
the frame, but practically it rejects single outlier peaks, most
commonly caused by the white paint circles that mark potential
gate locations, as shown in Figure 4a.

A similar method is used to reject incorrect splits when rows
have multiple peaks. We note that the dual peaks representing
a valid split will always move together from the top of the
frame to the bottom of the frame. That is, if a split is in
the field of view, it is split at the top of the frame and
joined at the bottom. The inverse split, depicted in Figure
4b, exhibits divergence while moving from the top of the
frame to the bottom. Therefore, when we have two peaks per
row, if dist(P;) < dist(P;4+1), where dist(P;) is the distance
between the two peaks in P;, the split must be invalid and we
consequently mark all dual peaks invalid.

Lastly, after the previous rejections measures are applied, we
require at least V) rows to have valid peaks before computing
a new angle. If this threshold is not met, the previous error is
maintained, allowing us to potentially rediscover the line.

C. Implementation and Performance

The algorithm is implemented in C++ and uses functionality
from the OpenCV library. While it is unclear if a C++
implementation is necessary for performance, we found that
C++ and the OpenCV C++ API allowed for cleaner implemen-
tations of our algorithms when compared to Java, which was
used to implement the remainder of our Android application.
Our implementation runs as fast as the camera frame rate will
allow, making explicit optimizations unnecessary. As a general
principle, we tried to avoid allocating and copying memory
whenever possible to keep our implementation performant.

18-551 FINAL REPORT, SPRING 2012

(a) Slope constraint

(b) Inverse split rejection

Fig. 4. Two rejection methods. If the distance between peaks in adjacent
rows is greater than Apax, mark the peak as invalid (a). In an invalid split,
dual peaks diverge while moving from top to bottom, meaning A1 > Ag

(®).

IV. CONTROL

In order to be useful, error angles produced by the vision
algorithm must be converted into motor commands that can
correct the error; this is the purpose of a control system.
Because we are controlling a tank, steering is achieved by
running the treads on one side of the tank slower than or in
the opposite direction of the treads on the other side. The tank
will turn towards the side running slower or backwards.

We use a proportional derivative (PD) controller, a simpli-
fication of the more general proportional integral derivative
(PID) controller, for our Mobot. The proportional term maps
the error angle directly to motors speeds. In other words,
it is a unit conversion term. This worked well on gradual
curves, but was not sufficient for the sharper curves near
the end of the course without over-steering. To correct this,

GROUP 3: SMATRPHONE-BASED MOBILE ROBOT NAVIGATION

we introduced the derivative component, which corrects for
a smaller proportional term by amplifying errors that change
quickly. We had no use for an integral component, because
our system has very little steady-state error; the line is rarely
straight, meaning error is never constant. Our implementation
is based on that described by Wescott [6].

V. HARDWARE
A. Electronics

Our application requires a camera with a reasonably high
frame rate (15 - 30 fps) and an ARMv7 processor running
at 1 GHz or faster. The ARMv7 platform includes hardware
support for floating point operations, which is critical for the
performance of our filtering operations.

We used a Samsung Galaxy S II for all processing because
it was available to us and exceeded our requirements. In fact,
our algorithm was limited by the camera shutter speed rather
than processing time. We also tried running our algorithm on
a Motorola Droid and Samsung Nexus S, where we were
limited by processing time rather than camera parameters.
As there were no incentives to perform well on these older
and slower devices, no attempts were made to optimize our
implementation.

The IOIO interface board connects to Android devices using
USB and a custom protocol build on Androids USB debugging
capabilities. An open-source Java library handles communica-
tion from within an Android application, providing a simple
interface for programmers. Standard function calls turn digital
pins on and off and control the pulse-width modulation (PWM)
pins used for motor speed control.

We use a L298 H-Bridge [7] to allow us to control the
high-current, high-voltage motor load with the low-current,
low-voltage pins on the IOIO. The h-bridge also provides
easy methods to change motor direction or enable electronic
braking.

B. Vehicle Bases

Finding an appropriate vehicle base for our Mobot proved
more difficult than we expected; the final tank base was the
third base we tested. In choosing a base, we were concerned
primarily with available torque, traction, and top speed. High
torque and traction are necessary to smoothly navigate the hills
in the course. Speed was important because we hoped to not
only finish well below the maximum allowed time, but to beat
the previous undergraduate course record.

With speed in mind, the first base was a modified hobbyist
radio-controlled (RC) car (Figure 5a). Designed for racing, the
car’s top speed far exceeded the maximum speed we would
be able to control on the course. However, the motor and
gear system provided little torque, which meant that the only
reliable way to slow the car was to drive the motor in reverse.
This was required on the hills to avoid accelerating out of
control while turning at the bottom. Under manual control, this
worked fairly well, but we could not automatically determine
when to do this braking procedure reliably.

We attempted to determine when to brake by measuring the
change in angle of the vehicle relative to its rest position. Most

smartphones have a built-in accelerometer to detect screen
rotations and we tried to use this capability to detect our
declination. Unfortunately, the noise caused by acceleration
down the hill and bumps in the terrain made it too difficult
to separate the acceleration component due to gravity. We
attempted to use the gyroscope in the phone to augment and
correct the acceleration data, but had difficulties integrating
the two sensors. A more straightforward option for controlling
speed is to simply measure wheel speed using rotary encoders.
However, given our time frame and the fact the attaching the
sensors required modifying the vehicle, we did not try this
method, and instead moved to a different base.

Our second platform was a basic tank, with two wheels on
each side connected by a belt. This provided the torque and
stability we needed while having a reasonable top speed. On
further testing, we found that the treads would come off the
wheels when the robot made sudden turns; the treads were
not designed to handle the increased friction of skidding on
rough pavement. In an attempt to keep the treads on, we tried
driving the inside tread backwards instead of simply driving it
slower. This allowed the treads to stay on for longer, but we
were unable to complete the entire course consistently.

With the tread problem unsolvable and the competition date
approaching, we switched to a third tank base (Figure 5b), a
modified hobby RC tank. This base has an authentic tread
system, including tensioning wheels, and has proved very
reliable with no more mechanical issues. Despite a further
reduction in speed, this base allowed us to test our full system
on all parts of the course, which proved crucial to our success.

VI. TESTING

Developing a robust system required testing in as many
different conditions as possible. To this end, we tested our

(a) First car base

-

(b) Final tank base

Fig. 5. Two of the three vehicle bases tested.

Mobot in varying levels of sunlight, on cloudy days, in the
rain, and briefly in the snow. Because the competition is
held from noon to 3:00 pm, we focused on testing in the
11:00 am to 3:00 pm window, in an effort to duplicate the
conditions we would compete under. We were also able to test
at night, thanks to the addition of a headlight on our vehicle.
Performance was similar under all conditions.

The system was designed from the beginning for ease of
testing. To this end, all important vision and control parameters
are settable dynamically using the touchscreen on the smart-
phone. This saved valuable time while determining the correct
parameters and allowed us to adjust to new condition rapidly.
We also endeavoured to keep the hardware connections non-
permanent so that the electronics could be easily moved from
one base to another. As we switched bases, we spent minimal
time getting the new base functional, leaving more time for
performance testing.

VII. SCHEDULE

The project was completed in the second half of the spring
2012 semester. While work was split between our three team
members, Nolan Hergert focused on the control and vision
algorithms, William Keyes focused on the vision algorithm
and Android application, and Chao Wang focused on vehicle
design and logistics. See Table I for an approximate schedule.

VIII. RESULTS

With the car base, we competed in the mini-slalom chal-
lenge, which requires completing gates 2 through 8 of the
course, the section between the two hills. We took first place
in the challenge, finishing the section in 36.74 seconds. The
following week, we competed against ten other teams in the
full competition. We completed all fourteen gates in 2 minutes,
13.84 seconds, taking first place again. We were also the only
group in the 2012 competition to complete the course and the
third-ever undergraduate team to do so.

TABLE I
SCHEDULE
Week 1 | Research image processing techniques, ADK, IOIO, and
robot hardware
Week 2 | Develop image segmentation, data collection, reach
consensus on hardware
Week 3 | Develop path extraction and improve segmentation, data
collection, bontrol hardware with 1010
Week 4 | Improve extraction and segmentation, begin porting to
Android/OpenCV, improve hardware control
Week 5 | Develop basic control algorithms (steering and hills),
data collection, integrate hardware control into Android
application
Week 6 | Tweak control algorithms, integrate all hardware on
chassis. Begin testing full system
Week 7 | Switch to first tank, testing, debugging, and improve-
ment. Compete in Mini-challenge
Week 8 | Switch to second tank, develop decision-point strategy,
testing and debugging. Compete in Mobot Races

18-551 FINAL REPORT, SPRING 2012

Despite our standing in the competition, our Mobot was
not completely successful. In particular, the vision algorithm
consistently failed to detect the decision point immediately
following gate 10. We suspect that the shadow of the gate
flag or misapplied paint are the cause of this failure, but
we were not able to determine a definite cause. Instead, we
assumed that our algorithm would miss this split and then
re-programmed the desired turns so that our vehicle would
loop around, driving through the backside of the next gate,
and then continue the course to completion. Surprisingly, this
worked, with the algorithm only missing the split at gate 10
and successfully detecting all other splits.

IX. CONCLUSION

We succeeded in developing and construction a mobile robot
that can reliably follow a white line under the conditions of
the annual Mobot competition. In doing this, we significantly
increased our understand of signal processing systems that
deal with non-ideal, noisy signals. While our robot and vision
algorithm did not perform perfectly, we believe the split
detection failure can be easily solved with some additional
development and are satisfied with the error rates of our
system, particularly when compared to other entrants in the
competition.

For future 18-551 groups, our experience developing vision
algorithms for Android devices and constructing mobile robot
platforms should be a helpful starting point. We do not expect
our vision algorithm in whole to be built on, but hope that parts
of it can be adapted to help with similar illumination problems
in different domains. At minimum, we have demonstrated the
feasibility of a mixed Java and C++ vision algorithm that is
performant on modern devices. Further, we hope our failures
in developing a reliable vehicle base will be instructive for
groups that attempt mobile robotics projects.

Given our successful attempt at completing the Mobot
course in a reliable, if traditional manner, we are excited by
the possibility of competing again in the future and completing
the course faster or in a more exotic fashion.

ACKNOWLEDGMENT

We would like to thank Professor Marios Savvides and his
lab for lending us the smartphone and electronics needed to
complete this project and Professor Thomas Sullivan and the
18-551 course staff for their support.

REFERENCES

[1] “Carnegie Mellon School of Computer Science Mobot Race,” http://www.
cs.cmu.edu/mobot/.

[2] “The Android operating system,” http://www.android.com/.

[3] J. S. Palmisano, “Robot competitions - Mobot,” 2008. [Online].
Available: http://www.societyofrobots.com/competitions_mobot.shtml

[4] “Open-source computer vision (OpenCV) library,” http://opencv.
willowgarage.com/.

[5] E. Billauer, “peakdet: Peak detection using MATLAB,” http://billauer.co.
il/peakdet.html.

[6] T. Wescott, “PID without a PhD,” Embedded Systems
Programming, October 2000. [Online]. Available: http://www.eetimes.
com/ContentEETimes/Documents/Embedded.com/2000/f- wescot.pdf

[7] “L298 data sheet,” http://www.sparkfun.com/datasheets/Robotics/L.298_
H_Bridge.pdf.

