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Biological motion—that is, the movement patterns of animals and 
humans—provides a rich source of information that helps us to quickly 
and reliably detect the presence of another living being; to identify it as 
a predator, prey, or conspecific; and to infer its actions and intentions 
in order to respond with adequate behavior. Once we know that we are 
being confronted with another person, we are able to use motion as a 
source of information about identity, gender, age, emotional state, and 
personality traits and as a complex means for signaling and communi-
cations. 
     More than 30 years ago, the Swedish psychologist Gunnar Johans-
son (1973) introduced a stimulus into experimental psychology that 
allows us to disentangle to a large degree the information contained in 
the kinematics of a moving body from other sources of information 
about action and identity. His work showed that a few light dots placed 
strategically on a moving human or animal body are instantaneously 
organized into the coherent percept of a living creature (also see Chap-
ter 11 in this volume). The observation goes back to the earlier work 
of the pioneers of cinematography (Muybridge, 1887/1979) and bio- 
mechanics (Marey, 1895/1972), but it was Johansson (1973) who first
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appreciated the signifi cance of the tremendous saliency of biological 
motion point-light displays, and the eff ortless perceptual organization 
with which the visual system responds to them. Fewer than 10 isolated 
dots and display times of 200 ms are suffi  cient for a vivid percept of the 
articulated structure of a human body (Johansson, 1976). 

Subsequent research concentrated on several aspects of this general 
phenomenon. It was shown that biological motion perception is very 
robust in the presence of many types of distracting masks (Cutting, 
Moore, & Morrison, 1988) and that it reveals more than just the pres-
ence of a person: point-light displays convey information about sex 
(Barclay, Cutting, & Kozlowski, 1978; Cutting, Proffi  tt, & Kozlowski, 
1978; Kozlowski & Cutting, 1978) and identity of an agent (Cutting & 
Kozlowski, 1977), as well as emotional attributes (Dittrich, Troscianko, 
Lea, & Morgan, 1996; Pollick, Paterson, Bruderlin, & Sanford, 2001). 
Infants can perceive biological motion (Bertenthal, Proffi  tt, & Kramer, 
1987; Fox & McDaniel, 1982), and it has been shown that at least pi-
geons and cats respond specifi cally to point-light displays (Blake, 1993; 
Dittrich, Lea, Barrett, & Gurr, 1998).

While the early work mainly concentrated on demonstrating the 
abilities of the visual system in processing biological motion, more re-
cent studies have helped us understand how this is being achieved and 
which parts of the brain are involved. Recording from single cells in 
macaque cortex, Oram and Perrett (1994) fi rst identifi ed structures in 
the upper bank of the superior temporal sulcus (STS) as selectively re-
sponsive to human form and motion. A number of more recent brain 
imaging studies corroborate this fi nding and show that the posterior 
part of STS (STSp) is particularly active when looking at point-light 
displays of an upright human walker (Bonda, Petrides, Ostry, & Evans, 
1996; Grossman, Blake, & Kim, 2004; Grossman et al., 2000; Peuskens, 
Vanrie, Verfaillie, & Orban, 2005). While STS is clearly responsive to 
biological motion, it is not clear how specifi c this area is. Stimuli such 
as speech (Beauchamp, 2005) or the sound of footsteps (Bidet-Caulet, 
Voisin, Bertrand, & Fonlupt, 2005), as well as motion confi ned to 
specifi c limbs, the eyes, or the mouth (Grezes, Costes, & Decety, 1998; 
Puce, Allison, Bentin, Gore, & McCarthy, 1998), also result in STSp 
activation. Besides STSp, other areas have been identifi ed that are re-
sponsive to biological motion. They include the ventral surface of the 
temporal lobe (Vaina, Solomon, Chowdhury, Sinha, & Belliveau, 2001), 
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the fusiform gyrus (Beauchamp, Lee, Haxby, & Martin, 2002), and the 
fusiform face area (Grossman & Blake, 2002; Peelen & Downing, 2005). 
For all these areas, it is rather unclear if  they respond specifi cally to 
human motion or if  they are triggered generally by biological motion. 
Very few imaging studies have contrasted responses to representations 
of humans versus nonhumans, and none of these used standard biologi-
cal motion point-light displays (Buccino et al., 2004; Downing, Jiang, 
Shuman, & Kanwisher, 2001).

For a long time, biological motion has been treated as a single phe-
nomenon. Only during the past few years has it become obvious that 
there are a number of diff erent mechanisms involved that need to be 
distinguished both conceptually as well as experimentally. Here I am 
suggesting at least four diff erent stages of information processing in-
volved with biological motion perception. 

 1. Detection of animate motion. A fast and reliable system is re-
quired to detect the presence of an animal in the visual envi-
ronment. Ideally, this mechanism should be independent of the 
particular nature of the animal, and in particular independent 
of its shape. It should respond to biological motion in the 
whole visual fi eld, including the visual periphery. The evolu-
tionary signifi cance of such an early “life detector” is obvious. 
It is required either to trigger fast behavioral responses (fl ight, 
attack) or to guide attention to potentially threatening or oth-
erwise interesting events. Troje and Westhoff  (2006) identifi ed 
the ballistic movements of the limbs of a terrestrial animal to 
provide such an invariant. The cue seems to work well not only 
for foveal vision but also in the visual periphery, and probably 
directs attention to an event of potentially vital signifi cance. 
The underlying visual fi lter mechanism shows a pronounced 
inversion eff ect: if  presented upside-down, our visual system 
is no longer able to retrieve information from the local motion 
of the limbs. The visual fi lter is expected to be evolutionarily 
old, innate rather than learned, and shared by other animals. 
Behavioral experiments on visually naïve, newly hatched chicks 
suggest that they in fact use the same cue to identify the object 
of fi lial imprinting (Vallortigara & Regolin, 2006; Vallortigara, 
Regolin, & Marconato, 2005). 
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 2. Structure from motion. Once a living creature is detected, its 
movements can be used to perceptually organize it into a co-
herent, articulated body structure, resulting in “basic-level” 
(Rosch, 1988) agent recognition (e.g., Is this a human, a cat, 
a bird?). This mechanism does not work very well in the 
visual periphery (Ikeda, Blake, & Watanabe, 2005) and prob-
ably requires attention (Cavanagh, Labianca, & Thornton, 
2001; Thornton, Rensink, & Shiff rar, 2002). In contrast to the 
early “life detection” stage, it requires learning and individual 
experience (Jastorff , Kourtzi, & Giese, 2006). It is also subject 
to an inversion eff ect, which, however, is independent of the 
one operating on the “life detection” mechanism and is instead 
similar to the orientation dependency of confi gural processing 
observed in face recognition (Farah, Tanaka, & Drain, 1995).

 3. Action perception. On this level, structural and kinematic in-
formation is integrated into a system that classifi es and catego-
rizes actions and events. Ideally, effi  cient classifi cation on this 
level should be invariant to actor, viewpoint, and the particular 
style of the action. Many of the chapters in this section of the 
book specifi cally address this processing level (see especially 
Chapters 10 and 11). 

 4. Style recognition. Once both agent and action are identifi ed, 
pattern recognition at a “subordinate” (Rosch, 1988) level helps 
to retrieve further information about the details of both. For 
instance, once we know we are confronted with a human walker 
(rather than, say, a hunting tiger), we are able to use motion as 
a source of information about individual identity, gender, age, 
emotional state, and personality traits, and as a complex means 
for signaling and communications. Depending on the particular 
property, the results of initial data processing required to char-
acterize and isolate diagnostic features might eventually feed 
into diff erent neuronal circuits, and in that respect “style recog-
nition” might not be due to a single mechanism but to several. 
Yet, at least from a computational point of view, it is likely that 
all of them share certain processing principles.

For the remainder of this chapter, I will concentrate on style rec-
ognition. The ability of the human visual system to sensitively detect 
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and adequately interpret subtle nuances in the way people move is both 
a prerequisite and a consequence of the fact that the complex social 
structures characterizing our species require us to identify one another 
individually and to attribute emotion, personality, and intentions to our 
peers. 

A number of diff erent approaches to understanding style in human 
movement come both from the computer-vision community and from 
experimental psychology, and a large part of this work is well sum-
marized in Chapter 11. In the present chapter, I want to present and 
discuss a particular computational framework that we used to retrieve 
stylistic information from visual human locomotion patterns over the 
past years. It was fi rst developed to identify and analyze sex-specifi c dif-
ferences between walkers (Troje, 2002a). We then changed and further 
improved the algorithm and applied it to a number of diff erent prob-
lems and questions in the context of pattern recognition from biological 
motion. In the next section, I will fi rst outline the general framework 
and then provide the details of the algorithm. In the third section, I will 
summarize some of the studies in which we applied the algorithm. In 
the fi nal section, I will discuss the role of the proposed framework in 
understanding the very complex class of stimuli that our visual system 
copes with so easily, its value as a model for human perception, and 
potential ways to generalize and improve it.

A Framework for the Analysis and Synthesis of Human 
Walking Patterns

Our approach to understanding the mechanisms underlying biological 
motion perception focuses on the information provided by the stimulus 
itself. Understanding how information is encoded in biological motion 
patterns is a prerequisite for designing artifi cial vision systems, but is 
also helpful for understanding biological vision systems by means of 
“reverse engineering.” How can we possibly retrieve structure from the 
complex spatiotemporal patterns of animate motion? Approaching bio-
logical motion perception as a pattern-recognition problem can teach us 
about principles and constraints that any system, regardless of whether 
it is artifi cial or biological, has to cope with when analyzing biological 
motion patterns. 
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The general idea of  our approach is as follows. Starting with data 
obtained by means of  a motion capture system (i.e., with the 3-D 
trajectories of  discrete points on a person’s body), the fi rst step of  the 
subsequent data processing is to transform the data into a representa-
tion that would allow us to apply standard methods from linear sta-
tistics and pattern recognition. Such representations have been termed 
“morphable models” (Giese & Poggio, 2000; Jones & Poggio, 1999; 
Shelton, 2000) in the computer-vision community, expressing the fact 
that the linear transition from one item to a second item of  the data 
set represents a well-defi ned, smooth metamorphosis such that all in-
termediate stages maintain the structural characteristics defi ning the 
object class and are therefore qualitatively indistinguishable from the 
start and end points. Other terms that have been used in object rec-
ognition for similar kinds of  models are “linear object classes” (Vet-
ter & Poggio, 1997) and, in the context of  human face recognition, 
“correspondence-based representations” (Troje & Vetter, 1998; Vetter 
& Troje, 1997). This latter term focuses on the fact that morphable 
models rely on establishing correspondence between features across 
the data set, resulting in a separation of  the overall information into 
range-specifi c information on the one hand and domain-specifi c in-
formation on the other (Ramsay & Silverman, 1997). We also use the 
term “linearization” for the nonlinear transformation that is required 
to establish a representation that then enables us to treat the data as 
objects in linear space.

Linearization of the walker data mainly involves matching them in 
terms of frequency and phase. We do this by fi rst computing the Fourier 
transform and then matching the data directly in the frequency domain. 
Note that this is slightly diff erent from the way we have described data 
processing in earlier work (Troje, 2002a), where we used principal com-
ponents analysis (PCA) to reduce dimensionality of the set of poses of 
a single walker. We found that the weights of the resulting Eigenposes 
(that is, the characteristic poses spanning the space of poses of an indi-
vidual walker) vary sinusoidally with time. The decomposition resulting 
from PCA is therefore very similar to the one resulting from Fourier 
analysis. The main diff erence is that the roles of the terms that repre-
sent the basis functions and the terms that constitute the coeffi  cients on 
these basis functions are interchanged (Troje, 2002b). 
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Once the data are linearized we apply PCA—however, this time we 
apply it not to the pose space but to the whole Fourier-based represen-
tations of  a set of  walkers. This reduces dimensionality of  the linear 
walker space to the degree that the number of  dimensions is much 
smaller than the number of  data points that we use to establish this 
space. This step is important to avoid overfi tting in the subsequent 
classifi cation and to eventually construct a classifi er that has predic-
tive value.

The classifi er itself is a very simple one. Based on the low-dimensional, 
linear space resulting from the previous two steps, we compute a linear 
discriminant function (LDF) by means of linear regression of the class in-
dicator (e.g., indicating whether a particular walker in a training set is male 
or female) on the projections of the walkers into the resulting space.

One interesting feature of our approach is the fact that the transfor-
mations that map the time series of original motion capture data onto 
the morphable, low-dimensional walker space are more or less lossless 
and are therefore invertible. Consequently, any point in the morphable 
space—even points that do not correspond to original walkers—can be 
transformed back into a time series of marker positions and visualized 
as a point-light display. We will use this to exaggerate and caricature 
the set of diagnostic features that the classifi er extracts, and to generate 
walking patterns with the respective properties and attributes.

The procedures described in the present study contain elements of ear-
lier work on parameterizations of animate motion patterns (Bruderlin 
& Williams, 1995; Giese & Poggio, 2000; Guo & Roberge, 1996; Rose, 
Bodenheimer, & Cohen, 1998; Unuma, Anjyo, & Takeuchi, 1995; Urta-
sun, Glardon, Ronan, Thalmann, & Fua, 2004; Witkin & Popovic, 1995). 
Perhaps the most important one in the context of this paper is Unuma 
et al.’s (1995) study, which showed that blending between diff erent human 
movements works much better in the frequency domain. At least for peri-
odic motions, such as most locomotion patterns, Fourier decomposition 
can be used to achieve effi  cient, low-dimensional, linear decompositions. 
The fact that PCA applied to a time series of poses of a single walking 
person basically results in a discrete Fourier decomposition demonstrates 
that Fourier decomposition of walking data is nearly optimal in terms of 
explaining a maximum of variance with a minimum number of compo-
nents (Troje, 2002b).
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Data Collection

Most of our current work is based on data obtained by means of optical 
motion capture (Vicon 512, Oxford Metrics) from human subjects 
walking either on a treadmill or over ground. An array of 9 to 12 high-
speed (120 Hz) cameras tracks the 3-D position of small (14 mm in 
diameter), passively refl ecting markers with a spatial acuity in the order 
of 1 mm. Typically, participants wear swimsuits, and most of the mark-
ers are taped directly to their skin. Others, like the markers for the head, 
the ankles, and the wrists, are fi xed to elastic bands, and the ones on 
the feet are taped onto the subjects’ shoes. Currently, we are using a 
set of 41 markers (often referred to as the Helen-Hayes marker set; 
Davis, Ounpuu, Tyburski, & Gage, 1991). This set is designed such 
that, together with a few anthropometric measurements (such as the 
width of the knee, elbow, ankle, etc.), it provides the input to a bio-
mechanical model that outputs accurate estimates for the location of 
the major joints of the human body. For most of our work, we use 
a set of 15 derived, “virtual” markers. They are located at shoulder 
joints, elbows, wrists, hip joints, knees, and ankles, and at the centers of 
the pelvis, clavicles, and head. The motion data that provide the input 
for the subsequent processing are therefore time series of poses (sam-
pled at 120 Hz), each consisting of the 3-D Cartesian coordinates of 
15 virtual markers. We call the 45-dimensional vector specifying their 
current location in space a “pose.”  

Whether data were collected from subjects walking on a treadmill 
or freely on the ground, we always asked our participants to walk for 
at least 5 minutes before we started data collection. On the treadmill, 
we allowed them to try diff erent belt speeds to make sure that they felt 
as comfortable as possible. We did not tell the participants when actual 
data collection started. On the treadmill, we recorded a sequence of at 
least 10 full gait cycles. The volume available for free over-ground walk-
ing covered about four full gait cycles, and we typically recorded four 
passes throughout this volume for every participant. 

Data Processing

The walk of an individual subject can be regarded as a time series 
of poses. Each pose can be described in terms of the position of the 
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15 markers in 3-D space. A single pose is therefore represented by a 
45-dimensional vector:

P = (m1x, m1y, m1z, m2x, ...m15z)
T (1)

The time series of poses of a particular walker i can be decomposed into 
a discrete second-order Fourier series,

Pi (t) =  pi,0 + pi,1 sin(ωit) + qi,1 cos(ωit) + pi,2 sin(2ω i t) 
+ qi,2 cos(2ωit) + erri  (2)

where ω is the angular frequency derived from the gait frequency f as 
ω = 2Π f. The fi rst term pi,0 describes the time-invariant average pose 
of walker i. It contains anthropometric structural information, for in-
stance about the length of the limbs, the width of the shoulders, etc. The 
next two terms specify amplitudes and phases of the fundamental fre-
quency, and the fi nal two terms contain information about the second 
harmonic. Pairs of pi , j and qi , j can be translated directly into amplitudes 
ai , j and phases ϕi,j.

a p q
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i j i j i j i j

i j

i j
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Here, Fourier analysis serves two purposes. First, it very eff ectively re-
duces redundancy and therefore provides compression of the data. For 
walking, the power carried by the residual term err in Equation 2 is less 
than 1% of the overall variance of the input data, and we usually dis-
card it in all further computations. 

Second, we use the Fourier representation to register the data in order 
to defi ne correspondence between individual walking sequences. This 
is done by simply adjusting the phase and the frequency of the indi-
vidual walking sequences. While the frequency of the walk is expressed 
in terms of the fundamental frequency ωi , the absolute phase of the 
sequence and the relative phases between the 15 markers are contained 
in the relative contributions to the sine and the cosine terms (see Eq. 3). 
The absolute phase of a walking sequence depends only on the time at 
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which we started data collection and contains no further information. 
We therefore adjusted the absolute phase of all sequences such that the 
average phase angle of the two ankle markers is 0 degrees.

A walk of a particular subject i is now approximated by specifying 
the average pose pi,0, the four characteristic poses pi,1, qi,1, pi,2, and qi,2, 
and the fundamental frequency ωi. The average pose and characteristic 
poses are all 45-dimensional vectors, while the fundamental frequency 
is a scalar. Thus, the dimensionality of the model at this stage is 5 × 45 
+ 1 = 226.

Although this number already refl ects a considerable reduction in 
dimensionality as compared to the raw motion capture data, we expect 
the number of eff ective degrees of freedom within the database to be 
much smaller. For classifi cation purposes it is necessary to reduce the 
dimensionality of the representation such that the number of dimen-
sions becomes much smaller than the number of items represented in 
the resulting space.

The advantage of the above “linearized” representation (Eq. 2) is 
that it makes it possible to successfully apply linear operations to the 
set of motion data. At this stage, our representation has become a mor-
phable model. Linear combinations of existing walking patterns result 
in new walking patterns that meaningfully represent the transitions be-
tween the constituting patterns (Troje, 2002a; Unuma et al., 1995). We 
can treat the 226-dimensional vector describing the walk wi of  walker 
i as an object in linear space.

Classifi cation

This representation also makes it possible to use PCA in order to further 
reduce dimensionality. Applying PCA to the set of walkers W results in a 
decomposition of each walker into an average walker v0 and a weighted 
sum of Eigenwalkers vj,

  (4)

or, in matrix notation,

 W = V0 = VK (5)

w k vi i j j
j

m

=
=

,
1

∑
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V0 denotes a matrix with the average walker v0 in each column. The 
matrix V contains the m Eigenwalkers as column vectors vj. Matrix K 
contains the weights (or the coeffi  cients) ki,j and is obtained by solving 
the linear equation system

 VK = W − V0 (6)

Given a set of n walkers, this procedure yields a total of n – 1 Eigenwalkers. 
However, the variance covered by the fi rst m Eigenwalkers is generally 
much larger than the fraction m/n of  the overall variance. For instance, 
with the set of 100 walkers that we currently use, only four components 
are required to cover 50% of the overall variance, and 22 are required to 
cover 90%. The fi nal choice of the number of Eigenwalkers m depends 
on the particular application. For classifi cation purposes, it is recom-
mended to use a relatively low number, resulting in better generalization. 
With a set of 100 walkers, we typically use 10 principal components 
for classifi cation. For visualization purposes a larger number might be 
more suitable, since reconstruction is more accurate.1

Within the space spanned by the fi rst m Eigenwalkers, a linear dis-
criminant function can now be computed by simply regressing the class 
indicator (or any other variable quantifying an attribute of interest) on 
the projections of the walkers in the Eigenwalker space. This is achieved 
by fi nding the best (according to a least-square criterion) solution d of 
the overdetermined linear system

 KΤ d = r (7)

KT is the transpose of matrix K, which contains the coeffi  cients of each 
walker in the Eigenwalker space (Eq. 5). r is the column vector contain-
ing the n values ri indicating the class to which walker i belongs (e.g., ri 

1. In our implementations, rather than submitting the matrix W − V0 to the 
PCA, we fi rst normalized each row of this matrix to get unit variance for each 
of them. The reasons for doing this, and the consequences it has for the subse-
quent computations and the way the resulting principal components are used, 
are beyond the scope of this chapter, and I chose to omit this detail here.
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equals 1 if  walker i is male and –1 if  the walker is female) or another 
attribute that encodes the property of interest (e.g., a Likert scale rating 
given by an observer). The resulting column vector d then contains the 
coeffi  cients of the linear discriminant function in the Eigenwalker space 
best accounting for the gender of the walkers.

The amount of  variance explained by the regression (R2) depends 
on the number of  Eigenwalkers that have been used to span the walker 
space (m in Eq. 4). If  all Eigenwalkers are used (m = n – 1), the value 
of  R2 will equal 1. However, in this particular case the predictive value 
of  the classifi er will be very low. The R2 value, therefore, is not a good 
statistic to assess the quality of  the classifi er. A more useful way to 
do this is based on a leave-one-out cross-validation. A single walker 
is taken out, the discriminant function is computed on the set of  the 
other n – 1 data samples, and the remaining walker is then used to test 
the classifi er. This procedure is repeated for every single data sample. 
The classifi er can then be evaluated in terms of  the percentage of  mis-
classifi cations.

Feature Extraction

The vector d in Equation 7 describes the discriminant function in the 
low-dimensional space spanned by the fi rst m Eigenwalkers. Given the 
matrix V containing the Eigenwalkers themselves, the corresponding dis-
criminant function in the 226-dimensional representation is revealed as

 vd = Vd (8)

The discriminant walker vd has the same format as any of the input 
walkers ωi (see Eq. 4). It can therefore be decomposed into its compo-
nents according to Equation 2. Note that all of the components describe 
increments—that is, positive or negative additive terms that modify the 
average walker v0. As described above, pd,0 encodes structural, anthro-
pomorphic features, whereas pd,j and qd,j represent kinematic informa-
tion. Particularly, if  the individual Fourier terms are transformed into 
amplitudes and phases (Eq. 3), the contribution of single body parts 
can also be quantifi ed. Markers that are associated with large numbers 
in the discriminant walker vd are strongly aff ected by the attribute of 

3070-059-012.indd   3193070-059-012.indd   319 10/7/2007   12:56:15 AM10/7/2007   12:56:15 AM



320 PERCEIVING AND SEGMENTING EVENTS

interest, whereas those associated with small numbers do not change as 
the attribute changes.

Visualization

The decomposition of the time series of pose data into its Fourier com-
ponents (Eq. 2) is invertible. A walking pattern that has been manip-
ulated in the frequency domain can be transformed back into a time 
series of poses, which in turn can be animated in terms of a point-light 
display. This is a very useful property that helps to create well-defi ned 
stimuli for psychophysical experiments and provides tools to explore 
the nature of the discriminant function and linear classifi ers described 
above. For instance, walkers wα corresponding to a point that is α stan-
dard deviations away from the mean walker are represented as

 wα = v0 + αvd (9)

As above, vd denotes the discriminant walker and v0 is the average 
walker. As α changes from negative to positive values, an animation of 
the walker vα appears to change with regard to the attribute on which the 
classifi cation was based. Large positive or negative α values can be used 
to generate exaggerated caricatures that help visualize these attributes.

An interesting additional feature of the methodology described here 
is the option to apply it to walking data that are reduced in information 
by normalizing it with respect to certain properties while retaining diag-
nostic information only in others. Below, I will describe a study in which 
we did that to explore the role of static versus kinematic information for 
sex classifi cation. Similar manipulations have been used to investigate 
which parts of the overall information are being used for person identi-
fi cation (Troje, Westhoff , & Lavrov, 2005).

Examples

Sex Classifi cation

Men and women show diff erent walking patterns, and the human visual 
system is well able to distinguish between them (Barclay et al., 1978; 
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Cutting et al., 1978; Kozlowski & Cutting, 1977; Mather & Murdoch, 
1994). A number of diff erent features have been suggested that are 
possible candidates for conveying sex-specifi c diagnostic information. 
One of them was the “center of moment” (CoM) of the upper body. 
In an attempt to identify the point of maximal torsion, Cutting (1978) 
approximated the CoM as the point at which the diagonal lines connect-
ing the shoulder with the contralateral hip intersect. This point is higher 
in women than in men. Even though the term “center of moment” 
suggests that this is a dynamic feature, its defi nition is basically struc-
tural. Cutting (1978) demonstrated that the CoM indeed aff ects sex 
classifi cation, but later it was shown that this is the case only if  no other 
information is available. A second cue that was investigated by Mather 
and Murdoch (1994) is the lateral sway of the upper body, which is more 
pronounced in male walkers than in female walkers. In experiments in 
which both cues were set into confl ict, lateral body sway entirely domi-
nated the CoM.

We applied the framework outlined above to the sex-classifi cation 
problem (Troje, 2002a). The analysis was based on 20 male and 20 female 
walkers recorded while walking on a treadmill. The best classifi er was 
based on the fi rst four Eigenwalkers and produced only three misclassifi -
cations (out of 40 items), corresponding to an error rate of 7.5%. We then 
conducted the same analysis using only parts of the overall information. 
Rather than presenting all the available information to the classifi er, we 
fi rst normalized the data with respect to the size of the walkers and then 
ran classifi cations based either only on the remaining structural informa-
tion (pi,0 in Eq. 2) or only on the kinematic information (pi,1, qi,1, pi,2, qi,2). 
It turned out that size alone was a very good predictor for the sex of the 
walker. When normalized for size, the classifi cation error increased to 
17%. Depriving the data of other structural information did not have any 
eff ect; however, when kinematic information was removed, misclassifi ca-
tions further increased to 27% (Fig. 12.1). The fi nding that kinematic 
information is much more informative than structural information con-
fi rms Mather and Murdoch’s (1994) results and suggests that the CoM 
plays only a minor role in sex classifi cation from point-light displays.

To what extent does this result predict how the human visual system 
processes gender information from walking? We tested this by creating 
walker stimuli that were normalized with respect to either their structure 
(kinematics-only) or their kinematics (structure-only) (Troje, 2002a). For 
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the kinematics-only stimuli, for each individual walker i we replaced the 
component pi,0 (Eq. 2) with the average of these components computed 
over all 40 walkers. Similarly, for the structure-only stimuli, we replaced 
the walker-specifi c components pi,1, qi,1, pi,2, qi,2 with their population 
averages. We then displayed these walkers as point-light displays from 
three diff erent viewpoints and asked observers to guess the sex of the 
walkers. The results confi rmed that kinematic information is more impor-
tant than static, structural information for this task (Fig. 12.2). The eff ect 
of these manipulations is relatively small when the walkers are shown in 
frontal view but becomes very substantial for the half-profi le and profi le 
views. The results also confi rm earlier fi ndings (Mather & Murdoch, 1994) 
that sex-classifi cation performance is better when walkers are shown in 
frontal view as compared to the half-profi le and profi le views.

The diff erences between male and female walkers can be visualized by 
animating point-light displays according to Equation 9. Animations of 
a sex-discriminant function based on the 40 walkers discussed here can 
be viewed at http://biomotionlab.ca/Demos/BMLgender.html. Visual 
inspection reveals a number of features that change between men and 
women. Several diff erences in the fronto-parallel plane are due to pose 
and anthropometric structure. Men have wider shoulders and slimmer 
hips, and their elbows are held farther away from their bodies. In terms 
of the kinematics, we observe that the upper body of the male shows 
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FIGURE 12.1. Percentage errors produced by the linear sex classifi er when 
provided with all available information, size-normalized data, kinematic infor-
mation only, or structural information only. Note that the information available 
to the classifi er is three-dimensional.
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more pronounced lateral sway and that the movement of the hips, 
though not much larger in amplitude, is diff erent in terms of the phase 
of its rotation with respect to the other parts of the body. Particularly 
in the exaggerated animations, it can be seen that the vertical movement 
of the hip is in counterphase with the vertical motion of knee and foot 
of the ipsilateral leg in women, while the hip moves almost in phase with 
the ipsilateral leg in men.

In contrast to previous work, our approach is not primarily hypothesis 
driven. Rather than focusing on a particular cue (e.g., CoM or lateral body 
sway), the discriminant function picks up on any feature that distinguishes 
between male and female walkers, and particularly on the correlations 
between them. Yet particular hypotheses can be tested and quantifi ed by 
inspecting the numbers contained in the average walker v0 and the dis-
criminant function vd (Eq. 9). For instance, in the average walker, the 
distance between the two shoulder markers is 350 mm and the distance 
between the two hip markers is 190 mm. The corresponding diff erences in 
the discriminant function are 19 mm for the shoulder and –5 mm for the 
hip, which means that a walker at a distance of 1 standard deviation (std) 
into the male part of the space has shoulders that are 19 mm wider and 
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FIGURE 12.2. Percentage error rates (means and standard errors) of human 
observers who tried to determine the sex of point-light walkers. Point-light dis-
plays were shown from three diff erent viewpoints (0 degrees: frontal view; 30 
degrees: half-profi le view; 90 degrees: profi le view). Diff erent groups of observ-
ers saw walkers that contained all available information (except size, which was 
normalized in all displays), kinematic information only, or structural informa-
tion only. Data are based on 24 observers.
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hips that are 5 mm narrower than in the average walker. Compared to a 
walker representing a point at a distance of 1 std into the female part of 
the space, the male walker’s shoulders are 38 mm wider and his hips are 
10 mm narrower. Transforming the sine and cosine terms of Equation 2 
into amplitudes and phases (Eq. 3), we can determine the diff erence in 
amplitude of the lateral movement of the shoulders. While the shoulders 
sway with an amplitude of 20 mm on average (that is, a 40 mm diff erence 
between the leftmost and rightmost position) across all 40 walkers, a 1 std 
male walker sways with an amplitude that is 2.5 mm larger, and a 1 std 
female walker sways with an amplitude that is 2.5 mm smaller.

Retrieving Information about Other Attributes

In our previous example, the entry ri of  vector r in Equation 7 indicated 
the sex of walker i. As sex is a binary property, we used the number +1 
(for male) and –1 (for female). Since our classifi er is based on linear re-
gression, we are not restricted to binary codes. In principle, the vector r 
can contain any score encoding any attribute. Scores can be derived from 
other information directly associated with the walkers—for instance, 
their weight or their age. However, the scores can also be based on ques-
tionnaires completed by the subjects themselves, or by their physicians 
or therapists. This allows for a number of applications in biomechan-
ics, clinical psychology, and neurology. For instance, it is well known 
that patients suff ering from depression show walking patterns that dif-
fer from those of healthy controls (Lemke, Wendorff , Mieth, Buhl, & 
Linnemann, 2000). In an ongoing study we are currently quantifying 
these diff erences with our method, and we are developing tools to ob-
jectively assess the success of diff erent therapies for depressive disorders 
(Michalak, Troje, Fischer, Heidenreich, & Schulte, in preparation).

In vision research, we are particularly interested in the perception 
of biological motion with respect to emotional attributes, personality 
traits, and other characteristics that we seem to be able to derive visu-
ally from the way a person moves. In an animation available at http://
biomotionlab.ca/Demos/BMLwalker.html, we show examples of axes 
driven by the results of perceptual rating experiments. In addition to 
a “gender axis” and one that is based on the body mass index of the 
walker, we show two axes that were obtained by means of an experiment 
in which observers were shown a total of 80 diff erent walkers displayed 
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as point-light displays on a computer monitor. Each display consisted 
of 15 white dots on a black background and was rendered from one 
of three diff erent viewpoints (0 degrees = frontal view, 30 degrees, 90 
degrees). A single rating session consisted of 80 trials, with each walker 
shown once for 7 s in a randomized order. All walkers within one ses-
sion were shown from the same viewpoint. In order to indicate their 
rating, observers had to click one of six buttons displayed on the screen. 
Six observers participated in the experiments. For three of them the 
leftmost and rightmost buttons were labeled “nervous” and “relaxed,” 
respectively. The other three observers were presented with the labels 
“happy” and “sad.” Each observer carried out three sessions, one for 
each viewpoint, with short breaks between the sessions. The order of 
the three sessions was counterbalanced across observers.

The average of the ratings (across the three observers in each group 
and across the three diff erent viewpoints) was used to form a vector r 
which in turn was used to compute the respective discriminant function 
vd according to Equations 7 and 8. Animations along both the happy–sad 
axis and the nervous–relaxed axis give a clear percept of a change in the 
respective emotions of the walker. Visual inspection of the exaggerated 
walkers as well as quantitative examination of the discriminant function 
reveals the features that carry information about these attributes. Many 
of the diff erences between the nervous and the relaxed walker are due 
to the average pose and structure: walkers are perceived to be nervous 
when they have a skinny appearance with narrow pelvis and shoulders 
and when their shoulders and arms are pulled up tightly, whereas they 
are rated to be relaxed if  they have wider frames and lower shoulders. 
With respect to their kinematics there is a shift of power for the horizon-
tal movement of the markers, which is almost exclusively carried by the 
fundamental frequency in the relaxed walkers, to an increasing contri-
bution of the second harmonic in the nervous walkers. Comparison of 
walkers along the happy–sad axis and inspection of the corresponding 
discriminant function shows that the main diff erence between walkers 
perceived to be sad or happy is the contribution of the second harmonic 
to the vertical movements. Here, the power of the second harmonic is 
relatively low for the sad walkers, while it is responsible for the appear-
ance of bounciness in the happy walkers.

The data reported here are based on the relatively low number of 
only three observers per attribute. In fact, the power of the proposed 
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method is so strong that it produces reasonable results from very short 
experiments run with single, individual observers. We therefore designed 
a Web-based system in which users can generate their own axis based on 
ratings of a set of walkers (http://biomotionlab.ca/Demos/BMLrating). 
Upon entering the system, users are presented with an input mask that 
requests a few personal data (age, sex, country of origin) and then asks 
them to input an attribute of their choice along with two labels indicat-
ing the two ends of a Likert rating scale. For instance, users might input 
the attribute “sex” and then the labels “male” and “female” for the two 
ends of the scale. However, they are free to choose any attribute and any 
labels. Once this is done, the user will be presented with individual point-
light walkers on half  of the screen and a Likert scale with six buttons 
on the other half  of  the screen. The whole display will be titled with 
the attribute the user chose (e.g., “sex”) and the fi rst and last buttons 
contain the chosen labels (Fig. 12.3; also see color insert). After rating 
at least 20 walkers (but being encouraged to complete many more rat-
ings), the user clicks a “fi nish” button; the system will then compute and 
display a discriminant function based on the obtained ratings. A point-
light walker is displayed along with a slider that allows the viewer to 
interactively change the position of the walker on the axis (α in Eq. 9).

The success in revealing an axis that really refl ects the intended at-
tribute depends on how it gets mapped into our motion space. Not all 
attributes are expected to be represented linearly. For instance, con-
sider a case in which the user chooses the attribute “symmetry,” la-
beling the two ends of  the Likert scale with “very asymmetric” and 
“very symmetric.” He or she would probably attribute a high value 
(“very symmetric”) to walkers that are very close to the average walker 
v0 (Eq. 4). A walker with a strong asymmetry—for instance, the right 
arm swinging with a much larger amplitude than the left arm—would 
probably be at some distance from the average walker and would be 
assigned a low symmetry rating. However, a walker that is as asym-
metric but with the left arm swinging more than the right arm would 
be located as far away from the average walker as the fi rst asymmetric 
walker, but in the opposite direction, and would be assigned with the 
same rating. Fluctuating asymmetry is not distributed linearly in our 
space but rather concentrically, and any attempt to capture it with lin-
ear regression will fail.
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Given this last consideration, it is surprising how many attributes 
are being successfully represented. While most users of our Web-based 
demonstration try attributes such as “sex,” “attractiveness,” “confi dence,” 
“mood,” “weight,” “age,” “strength,” “sportiness,” etc., some came up with 
very creative ideas. For instance, we saw observers rate walkers according 
to their voting behavior (with labels “conservative” versus “liberal”), with 
very consistent outcomes, the discussion of which is beyond the scope of 
this chapter. One of my favorite axes was created by a user from Munich 
who rated walkers according to whether he would expect to see them in 
the rich and trendy neighborhood around Munich’s Isartor or rather in a 
particularly shabby and rundown neighborhood characterized by cheap 
bars and plenty of nightlife.

We use this system t  o demonstrate the richness of information con-
veyed by human motion to the public visiting our Web site, as well as to 

FIGURE 12.3. Layout of a Web-based demonstration. Observers can choose 
any attribute (e.g., “sex”) along with two labels for the beginning and the end of 
a scale (e.g., “male” and “female”) and then have to apply ratings to a series of 
individual point-light walkers. At the end they are presented with an animation 
that refl ects their ratings in terms of a linear discriminant function.
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students in lab courses. In addition, however, we use it to obtain ratings 
for a large number of trait terms, which eventually can be applied to 
factor-analytic procedures. This will help us to understand the topology 
and extract the cardinal dimensions of the perceptual space spanned by 
biological motion walking patterns.

Conclusion

Biological motion perception involves a complex hierarchy of visual 
information processing. A particularly interesting level is the one re-
ferred to as style recognition. Once an actor and the performed action 
are recognized on a basic level, style recognition can potentially reveal 
information about the specifi cs of an actor’s identity, personality, and 
emotions. The framework we outlined in this chapter serves mainly two 
diff erent functions. On the one hand, it helps us understand the com-
plexity of the stimulus itself—a stimulus that is handled so eff ortlessly 
by our visual system. Understanding how our visual system solves the 
sophisticated problems involved in style recognition requires a compre-
hensive understanding of the constraints contained in the statistics of 
movement data and the encoding schemes for information in biologi-
cal motion. Here, we approached the question of information encoding 
and retrieval from a pattern-recognition perspective. While we learned 
plenty about the way information is encoded in biological motion, the 
particular way it is retrieved by the human visual system may be very 
diff erent from the way we did it here.

On the other hand, however, if  considered as a model for information 
processing in the human visual system, our approach creates a number 
of hypotheses about its functioning that can well be tested.  For instance, 
an artifi cial walker located 6 std away from the average walker on the 
sex axis is perceived completely unambiguously as male or female, even 
though such a walker probably has never been seen before in reality. 
Apparently, linear extrapolations in the proposed space result in walk-
ers that are perceived as caricatures representing certain attributes even 
better than the real walkers—a strong argument for the idea that our vi-
sual system operates with similar representations. An item analysis with 
a close comparison between the artifi cial classifi cation of individual 
walkers and the psychophysically obtained ratings also reveals striking 
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similarities. The same walkers that are misclassifi ed by the linear system 
tend to be misclassifi ed by human observers, and this also argues for 
similar representational spaces and metrics within these spaces.

While we are working here with human walking patterns, the frame-
work described here can be extended to other movements as well. Each 
class of movements, however, requires its own description. A model for 
running could be obtained similarly to the way we obtained the walking 
model. However, at least within the framework outlined here, it would 
not make sense to try to describe both walking and running patterns 
within the same model. Our model is based on morphability. Each item 
in the space must match any other item in a canonical, unambiguous 
way. The correspondence between two items defi nes the “morph” be-
tween them (i.e., a smooth transition from one item to the other). Of 
course, it is possible to blend a walking pattern into a running pattern, 
but the blending is not unique, since the correspondence between the 
two patterns can be defi ned in several diff erent ways. Dynamic models 
of gait production (Alexander, 1989; Golubitsky, Stewart, Buono, & 
Collins, 1998, 1999) show that the transition between walking and run-
ning is characterized by a singularity, and therefore these gaits represent 
two principally diff erent motion patterns.

Similarly to other implementations of morphable models, our frame-
work relies on establishing correspondence between features across the data 
set, resulting in a separation of the overall information into range-specifi c 
information on the one hand and domain-specifi c information on the 
other hand (Ramsay & Silverman, 1997). Applied to the current model, 
the range-specifi c information is the positional information contained 
both in the average pose and in the Eigenposes. The domain-specifi c in-
formation is the information about when things are happening. This in-
formation is contained in the fundamental frequency and in the phase of 
the walk. The domain-specifi c (i.e., temporal) part of the walking infor-
mation therefore has a comparatively simple description.

For nonperiodic motions, a more complex formulation has to be 
employed. A very explicit way to do this is to defi ne the temporal be-
havior of a motion in terms of the deviations with respect to a pro-
totype. The prototype can be any typical example of the respective 
motion pattern. The temporal behavior of any other item can then be 
formulated explicitly in terms of the time warp required to minimize 
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the distance between the prototype and the time-warped version of the 
item. Implementations of such models have been described by Giese 
and Poggio (2000) and Ramsay and Silverman (1997). They could be in-
corporated in the framework described here in order to isolate informa-
tion carrying biologically or psychologically relevant traits from actions 
that require more complex temporal descriptions, and to use it in turn 
to attribute personality and emotion to digital characters.

A number of modifi cations to the proposed model might further im-
prove its value in classifying stylistic attributes and in identifying the 
features they are based on. Our approach is based on the attempt to 
linearize the data—that is, to transform it into a representation that de-
scribes it in terms of a low-dimensional convex linear manifold. Once 
this is achieved, we classify them by means of simple linear regression. 
Both the representation that we use as well as the classifi er operating on 
it might not be optimal. For instance, there exist nonlinear methods for 
dimensionality reduction (e.g., Roweis & Saul, 2000) that might lead to 
latent variable representations that eventually result in a closer approxi-
mation to linearity than the combination of Fourier decomposition in 
the pose space and PCA in the walker space. There is also plenty of 
potential for improving the classifi er. Linear regression is very sensitive 
to outliers. Even if  we were assuming that the optimal classifi er is even-
tually linear, methods like linear support vector machines (Cristianini & 
Shawe-Taylor, 2000) or robust PCA (De la Torre & Black, 2001) might 
improve classifi cation. Nonlinear methods off er even more options.

By using these nonlinear methods, however, we might also have to 
sacrifi ce the ability to use the very same framework for the analysis of 
motion data on the one hand and synthesis and visualization on the 
other, which turn out to be of great help in combining pattern recogni-
tion approaches to biological motion perception with psychophysical 
methods. This combination, however, provides the basis for a mapping 
between a well-controlled, parameterized stimulus space and the per-
ceptual spaces that biological motion research aims to explore.    
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