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patients.
experience or the cost of care. This could lead to treatments that ultimately extend the lives of tens of thousands of
continuously collected from the patient. It can be done in line, in real time with no overt change in the patients' clinical 

The power of this approach is that these biomarkers can be extracted from clinical data that are already

functioning.
clinical course. The third, heart rate motifs, determines patterns of heart rate in the EKG that reveal autonomic
second, symbolic mismatch, quantifies the difference in the EKG of a particular patient from others with the same 
tracings. The first, morphologic variability, quantifies energy differences between consecutive heart beats. The
in the tracings of the EKG. But they are clearly visible to a computer using time-series algorithms on those same 

The biomarkers derived from the EKG do not correspond readily to features easily recognizable by an observer

syndrome patients by 7 to 13%.
to existing predictors, the three derived computational biomarkers improve the classification of acute coronary 
computational methods, from the continuous EKG readings obtained from these patients in the hospital. When added
quickly and reliably is inadequate for optimal care. Syed and his colleagues have extracted three biomarkers, by 
treated aggressively; others are of relatively lower risk. Our ability to correctly assign patients to one of these groups
events, collectively termed acute coronary syndrome. Some of these put patients at high risk for death and must be 

can actually signal several serious coronary−−chest pain, sweating, etc.−−The symptoms of a heart attack
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R E S EARCH ART I C L E
CARD IOVASCULAR D I S EASE
Computationally Generated Cardiac Biomarkers for Risk
Stratification After Acute Coronary Syndrome
Zeeshan Syed,1* Collin M. Stultz,2,3 Benjamin M. Scirica,2,4 John V. Guttag3
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The existing tools for estimating the risk of death in patients after they experience acute coronary syndrome are
commonly based on echocardiography and clinical risk scores (for example, the TIMI risk score). These identify a
small group of high-risk patients who account for only a minority of the deaths that occur in patients after acute
coronary syndrome. Here, we investigated the use of three computationally generated cardiac biomarkers for risk
stratification in this population: morphologic variability (MV), symbolic mismatch (SM), and heart rate motifs (HRM).
We derived these biomarkers from time-series analyses of continuous electrocardiographic data collected from
patients in the TIMI-DISPERSE2 clinical trial through machine learning and data mining methods designed to
extract information that is difficult to visualize directly in these data. We evaluated these biomarkers in a blinded,
prespecified, and fully automated study on more than 4500 patients in the MERLIN-TIMI36 (Metabolic Efficiency
with Ranolazine for Less Ischemia in Non–ST-Elevation Acute Coronary Syndrome–Thrombolysis in Myocardial
Infarction 36) clinical trial. Our results showed a strong association between all three computationally generated
cardiac biomarkers and cardiovascular death in the MERLIN-TIMI36 trial over a 2-year period after acute coronary
syndrome. Moreover, the information in each of these biomarkers was independent of the information in the
others and independent of the information provided by existing clinical risk scores, electrocardiographic metrics,
and echocardiography. The addition of MV, SM, and HRM to existing metrics significantly improved model dis-
crimination, as well as the precision and recall of prediction rules based on left ventricular ejection fraction. These
biomarkers can be extracted from data that are routinely captured from patients with acute coronary syndrome
and will allow for more accurate risk stratification and potentially for better patient treatment.
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INTRODUCTION

In 2010, about 1.25 million new and recurrent coronary attacks oc-
curred in the United States, with an additional 195,000 estimated silent
first heart attacks (1). These events caused nearly 1 of every 6 deaths,
with more than 150,000 of these deaths taking place in patients less
than 65 years old (1). Despite improvements in survival rates, one in
four men and one in three women continue to die within a year of a
first heart attack. This burden is similar in most of the developed
world, and increasingly in the developing world, where it is estimated
that 40% of all the deaths by the year 2020 will be attributable to
cardiovascular disease (2).

The burden of coronary heart disease can be reduced, in part, by
accurately identifying high-risk patients at early stages after an acute
coronary syndrome (ACS) and by matching these patients to treat-
ment and monitoring regimens appropriate for their individual risk.
Indeed, early risk stratification is important because immediate coro-
nary angiography and revascularization provide substantial benefit to
high-risk patients who present with either ST-segment elevation ACS
or non–ST-segment ACS (NSTEACS) (3–6). In addition, patients who
fall into a high-risk subgroup warrant close clinical follow-up monitor-
ing (5). Unfortunately, patients who present with ACS have a wide
and highly variable spectrum of risk for cardiovascular death (CVD)
(7), and accurately identifying those at the highest risk remains a
persistent and challenging clinical dilemma.

All current practice guidelines for ACS emphasize risk stratification
to appropriately gauge the intensity of therapy needed to reduce the
1University of Michigan, Ann Arbor, MI 48109, USA. 2Harvard Medical School, Boston,
MA 02115, USA. 3Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
4TIMI Study Group, Brigham and Women’s Hospital, Boston, MA 02115, USA.
*To whom correspondence should be addressed. E-mail: zhs@umich.edu
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risk of cardiovascular complications (8). Although the use of standard
biochemical markers such as C-reactive protein (CRP) and brain na-
triuretic peptide (BNP) can identify high-risk patients in certain clin-
ical settings, these markers do not identify all patients with an elevated
risk of adverse cardiovascular events. In particular, the latest American
College of Cardiology/American Heart Association guidelines for the
management of non–ST-elevation myocardial infarction are not clear
about how to use the existing set of biochemical markers in routine
clinical practice (8). Additional studies are needed to more precisely
define the exact role of these biomarkers in assessing patient risk on a
routine basis after ACS (9, 10).

Although the term biomarker is typically restricted to biochemical
substances, such as CRP and BNP, that are correlated with adverse
outcomes, a biomarker can be any metric obtained from a patient that
is an index of increased risk. For example, a depressed left ventricular
ejection fraction (LVEF) indicates an increased risk of congestive heart
failure and death (11). Nevertheless, despite the availability of many
parameters to risk stratify post-ACS patients, including patient demo-
graphics, comorbidity, laboratory, imaging, and electrocardiographic
(ECG) data, finding biomarkers that provide accurate estimates of risk
is challenging. For instance, although a depressed LVEF is a commonly
used clinical marker of increased risk of CVD after ACS (12–15), there
is no good biomarker for risk stratifying most of the patients with
nondepressed LVEF (16).

Most biomarkers are derived from instantaneous data (for exam-
ple, a single measurement of the concentration of a molecule like BNP
in the blood) that are typically analyzed and combined in simple ways
with limited or no computational aid. Supplementing these biomarkers
with biomarkers generated by applying algorithms to physiological
time series such as the ECG, which provide valuable longitudinal data
anslationalMedicine.org 28 September 2011 Vol 3 Issue 102 102ra95 1
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related to cardiac health, can lead to a more accurate evaluation of the
current state of a patient and the likely impact of various therapies. We
refer to the information generated by such algorithms as computational
biomarkers, which we define as a characteristic that is not directly mea-
surable but that can be computationally derived from measurable data.

Our research leverages advanced analytical techniques from ma-
chine learning and data mining to extract potentially valuable infor-
mation that is often overlooked in large volumes of cardiovascular
data, but that may identify high-risk patients after ACS. We have de-
veloped three computational biomarkers [morphologic variability
(MV), symbolic mismatch (SM), and heart rate motif (HRM)], using
sophisticated machine learning and data mining techniques, that can
be used to risk stratify post-ACS patients. Each metric is derived from
long-term Holter ECG signals and its derivation is fully automated.
Morphological variability (MV) assesses myocardial instability by quan-
tifying low-amplitude probabilistic variability in the shape of the ECG
waveform over long periods of time (17). SM quantifies the degree to
which long-term ECG signals of individual patients are anomalous
relative to those of other patients with a similar clinical history. It is
based on detecting shifts in the morphology and dynamics of func-
tional units of cardiac activity over long periods (18). HRM integrate
the frequency with which high- or low-risk heart rate patterns reflect-
ing autonomic function appear in a patient’s ECG over long time
periods (19). Each of these computational biomarkers uses time-series
analytical techniques to extract new types of information that are
presently unappreciated in large volumes of continuous cardiovas-
cular data. These computational biomarkers measure subtle features
of long-term ECG data that are outside the scope of human visual-
ization but are consistently associated with future risk.

Here, we assess the prognostic ability of these biomarkers in a
blinded, prespecified, and fully automated study on more than 4500
patients in the MERLIN-TIMI36 (Metabolic Efficiency with Ranolazine
for Less Ischemia in Non–ST-Elevation Acute Coronary Syndrome–
Thrombolysis in Myocardial Infarction 36) trial. We evaluate MV, SM,
and HRM in a population with detailed follow-up data and rich clin-
ical metadata for all patients. This allows us to compare the ability of
these computationally generated biomarkers to that of other metrics
such as the TIMI risk score (TRS) (20), LVEF, and several other metrics
that are based on long-term ECG time series (described in more detail
in the Supplementary Material): heart rate variability (HRV), heart
rate turbulence (HRT), deceleration capacity (DC), severe autonomic
failure (SAF), and a fully automated version of modified moving
average T-wave alternans (TWA). We also study the incremental in-
formation provided by computational biomarkers relative to existing
metrics through orthogonal statistical approaches to assess their effect
on discrimination and reclassification of CVD after ACS.
RESULTS

Population characteristics
The study population comprised all patients in the MERLIN-TIMI36
trial for whom continuous ECG was available. The baseline clinical
characteristics of these patients are presented in Table 1. The patients
with available continuous ECG data did not have baseline characteris-
tics that were significantly different from the entire MERLIN-TIMI36
population. One-half of the patients were diagnosed with a non–ST-
elevation myocardial infarction, and almost three-quarters were at mod-
www.ScienceTr
erate to high risk according to the TRS. The different HRVmetrics, DC,
TWA, and TRS were determined for all 4557 patients, whereas HRT
and SAF were measured in all patients with premature ventricular con-
tractions (n = 3873, 85%). Of the computationally generated biomarkers,
MV and HRM were measured for all 4557 patients. SM was measured
for 4033 (89%) of the patients and indeterminate in the rest (Supple-
mentary Material). Three thousand seventy-one (67%) of the patients
with continuous ECG data had LVEF assessed by the local investigator
during the index hospitalization. Of the patients with available LVEF
data, 2805 (91%) had LVEF ≥ 40%. There were a total of 195 cases of
CVD during follow-up.

Univariate association of computationally generated
biomarkers with CVD
We determined the Kaplan-Meier event curves for all three computa-
tionally generated cardiac biomarkers (Figs. 1 to 3). Each biomarker
was strongly associated with CVD after non–ST-elevation ACS. The
association was strongest for MV [hazard ratio (HR), 3.31; 95% con-
fidence interval (CI), 2.49 to 4.40; P < 0.001] followed by SM (HR,
2.36; 95% CI, 1.73 to 3.22; P < 0.001) and HRM (HR, 2.21; 95% CI,
1.65 to 2.97; P < 0.001). Table S1 presents the univariate association of
the other risk variables considered in this study with the endpoint of
CVD after ACS.
Table 1. Baseline clinical characteristics for patients (none of the differences
between the continuous ECG analysis cohort and the entire MERLIN-TIMI36
cohort were statistically significant at the 5% level). IQR, interquartile range;
BMI, body mass index.
anslationalMedicine.org 28 Sept
Continuous ECG
analysis cohort

(n = 4557)
ember 2011 Vol 3 Issue
Entire
MERLIN-TIMI36

cohort
(n = 6560)
Age, years, median (IQR)
 63 (55–72)
 64 (55–72)
Age ≥75 years (%)
 17
 18
Female sex (%)
 35
 35
BMI, median (IQR)
 29 (25–31)
 28 (25–32)
Diabetes mellitus (%)
 34
 34
Hypertension (%)
 73
 74
Hyperlipidemia (%)
 67
 68
Current smoker (%)
 26
 26
Previous myocardial
infarction (%)
33
 34
Index event
Unstable angina (%)
 47
 47
Myocardial infarction (%)
 53
 53
ST depression ≥1 mV (%)
 36
 35
TIMI risk score
Low (1–2) (%)
 27
 27
Moderate (3–4) (%)
 53
 53
High (5–7) (%)
 20
 20
LVEF <40% (%)
 9
 9
102 102ra95 2
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Multivariate association of computationally generated
biomarkers with CVD
Table 2 presents the correlation of MV, SM, and HRM with TRS,
LVEF, and the other ECG-based risk metrics. All three computation-
ally generated biomarkers had low correlation with TRS (Ρ = 0.059 to
0.101) and LVEF (Ρ = 0.055 to 0.139). MV showed low to moderate
correlation with all of the other ECG-based metrics, whereas both SM
and HRM had low correlation with the other ECG-based metrics.

The results of multivariate analysis are presented in Tables 3 and
4. MV, SM, and HRM were each independently associated with CVD
www.ScienceTr
during follow-up even after being adjusted for TRS, LVEF, and all of
the other ECG-based metrics (MV-adjusted HR, 1.67; 95% CI, 1.02 to
2.73; P = 0.043; SM-adjusted HR, 1.94; 95% CI, 1.27 to 2.98; P = 0.002;
HRM-adjusted HR, 2.14; 95% CI, 1.40 to 2.36; P < 0.001) (Table 3).
On stepwise backward elimination, only TRS, LVEF, and the three com-
putationally generated cardiac biomarkers remained in the multivariate
model (MV-adjusted HR, 2.04; 95% CI, 1.33 to 3.12; P = 0.001; SM-
adjusted HR, 1.89; 95% CI, 1.24 to 2.86; P = 0.003; HRM-adjusted
HR, 2.26; 95% CI, 1.51 to 3.39; P < 0.001) (Table 4). Identical results
were obtained on stepwise forward selection with only TRS, LVEF,
and the three computationally generated cardiac biomarkers selected
in the multivariate model. The results of creating multivariate models
with stepwise backward elimination and stepwise forward selection
from only the different ECG-based metrics (including the computa-
tionally generated biomarkers) and LVEF, when TRS was excluded,
are also presented in table S2.

Figure 4 presents the C-indices of the multivariate models produced
by stepwise backward elimination as variables are removed. The
C-index decreased from when all variables were used (0.808) to when
only the variables retained by stepwise elimination were used for
model construction (0.791). None of the multivariate models produced
by stepwise elimination when the computationally generated cardiac
biomarkers were excluded from the initial set achieved a C-index
higher than 0.776.

Recall and precision combining LVEF and TRS
with MV, SM, and HRM
Table 5 presents the recall and precision of predictive rules based
on LVEF compared to predictive rules that combined LVEF with
MV, SM, and HRM. The prediction rule of either LVEF < 40% OR
(MV AND SM AND HRM) improved upon both the precision and
recall of LVEF < 40% alone. The prediction rule of LVEF < 40% OR
(MV AND HRM) increased the precision to almost 49% from 32%
while maintaining roughly the same level of recall. The addition of
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Fig. 3. Association of HRM with CVD in the MERLIN-TIMI36 trial (vertical
lines denote censoring).
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Fig. 2. Association of SM with CVD in the MERLIN-TIMI36 trial (vertical lines
denote censoring).
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Fig. 1. Association of MV with CVD in the MERLIN-TIMI36 trial (vertical
lines denote censoring).
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computationally generated cardiac biomarkers also improved both
the recall and the precision of prediction based on the combination
of LVEF < 40% and TRS = 3 (that is, high risk) (Table 5).
www.ScienceTr
Net reclassification improvement combining LVEF
and TRS with MV, SM, and HRM
The addition of the computationally generated cardiac biomarkers
provided net reclassification improvement (NRI) for both predic-
tion rules based on only LVEF and on LVEF and TRS combined
(Table 5). The NRI was greatest for the rule LVEF < 40% OR (MV
AND HRM) (13.5% NRI; P < 0.001) and the related rule (LVEF <
40% AND TRS = 3) OR (MV AND HRM) (13.5% NRI; P < 0.001).

Computationally generated cardiac biomarkers in
LVEF >_ 40% population
Each of the computationally generated cardiac biomarkers showed a
strong association with CVD in the LVEF≥ 40% population (MV HR,
3.20; 95% CI, 2.07 to 4.95; P < 0.001; SM HR, 2.06; 95% CI, 1.28 to
3.34; P = 0.003; HRM HR, 2.71; 95% CI, 1.75 to 4.19; P < 0.001). On
multivariate analysis, the biomarkers were independently associated
with CVD in a model constructed using all the risk variables (Table 6).
On stepwise backward elimination using the Wald statistic (Table 7A),
all three computationally generated biomarkers were retained along
with TRS and HRV-ASDNN. Both MV and HRM were independently
associated with CVD in the stepwise multivariate model. Similar results
were obtained using stepwise forward selection, although in this case
only TRS and the three computationally generated biomarkers were
selected (that is, without HRV-ASDNN in the model) (Table 7B).

Figure 5 presents the C-indices of the multivariate models produced
by stepwise backward elimination as variables are removed. The C-index
decreased from when all variables were used (0.786) to when only the
variables retained by stepwise elimination were used for model construc-
tion (0.762). None of the multivariate models produced by stepwise
elimination when the computationally generated cardiac biomarkers
were excluded from the initial set achieved a C-index higher than 0.740.

Risk stratification in the placebo group of
MERLIN-TIMI36 trial
The results of evaluating the computationally generated cardiac bio-
markers among the placebo group patients in theMERLIN-TIMI36 are
presented in tables S3 and S4. Similar results to those presented earlier
for the entire patient cohort were obtained on multivariate analysis for
MV and HRM in placebo group patients. Both these biomarkers were
independently associatedwithCVDafterACS in themultivariatemodels
Table 3. Multivariate model for computationally generated cardiac
biomarkers, TRS, LVEF, and ECG-based metrics (single model with all
variables). Computationally generated biomarkers are shown in bold.
HR, hazard ratio; CI, confidence interval.
Adjusted HR
 95% CI
 P
TRS 3
 4.90
 2.16–11.09
 <0.001
LVEF
 3.28
 2.08–5.20
 <0.001
HRM
 2.14
 1.40–2.36
 <0.001
SM
 1.94
 1.27–2.98
 0.002
TRS 2
 2.48
 1.11–5.55
 0.027
MV
 1.67
 1.02–2.73
 0.043
HRV-HRVI
 0.64
 0.33–1.22
 0.171
HRV-ASDNN
 1.45
 0.80–2.62
 0.226
HRV-SDANN
 1.58
 0.74–3.40
 0.240
HRT 2
 1.79
 0.61–5.25
 0.289
TWA
 1.20
 0.74–1.95
 0.465
DC 2
 1.24
 0.63–2.47
 0.533
HRT 1
 1.14
 0.70–1.86
 0.587
HRV-SDNN
 0.81
 0.36–1.82
 0.617
HRV-PNN50
 0.85
 0.43–1.71
 0.657
DC 1
 1.11
 0.64–1.95
 0.707
HRV-RMSSD
 0.89
 0.44–1.80
 0.746
HRV-LFHF
 1.07
 0.64–1.80
 0.793
SAF
 0.91
 0.28–2.98
 0.875
Table 2. Correlation of the computationally generated cardiac bio-
markers with TRS, LVEF, and ECG-based risk metrics. Data are expressed
as r values.
MV
 SM
 HRM
HRV-SDNN
 0.037
 0.021
 0.053
HRV-SDANN
 0.081
 0.015
 0.022
HRV-ASDNN
 0.041
 0.036
 0.147
HRV-RMSSD
 0.085
 0.017
 0.11
HRV-PNN50
 0.135
 0.021
 0.086
HRV-HRVI
 0.094
 0.009
 0.046
HRV-LFHF
 0.369
 0.069
 0.112
HRT
 0.211
 0.044
 0.133
DC
 0.416
 0.065
 0.188
SAF
 0.185
 0.017
 0.1
TWA
 0.058
 0.021
 0.038
TRS
 0.083
 0.059
 0.101
LVEF
 0.139
 0.059
 0.055
Table 4. Multivariate model for computationally generated cardiac bio-
markers, TRS, LVEF, and ECG-based metrics (single model constructed
with stepwise backward elimination using the Wald statistic; identical
results obtained using stepwise forward selection). Computationally gen-
erated biomarkers are shown in bold. HR, hazard ratio; CI, confidence
interval.
anslationalMedici
Adjusted HR
ne.org 28 September 2011
95% CI
Vol 3 Issue 102 102ra9
P

TRS 3
 5.60
 2.50–12.53
 <0.001
LVEF
 3.60
 2.33–5.56
 <0.001
HRM
 2.26
 1.51–3.39
 <0.001
MV
 2.04
 1.33–3.12
 0.001
SM
 1.89
 1.24–2.86
 0.003
TRS 2
 2.64
 1.19–5.86
 0.017
5 4

http://stm.sciencemag.org/


R E S EARCH ART I C L E

8,
 2

01
1

developed by using stepwise backward elimination or stepwise forward
selection. In contrast, SM did not show a statistically significant associa-
tion in multivariate models in this reduced patient population (roughly
half of the patients from the analyses presented earlier).

When assessed in terms of improvements to existing prediction
rules, the computationally generated biomarkers provided similar
magnitudes of improvements to both precision and recall as the re-
sults reported earlier. The addition of MV, SM, and HRM led to a
higher precision and recall, whereas MV and HRM achieved an even
larger increase in recall while providing precision that was comparable
to rules based on LVEF or the combination of LVEF and TRS. The
highest NRI was obtained for the prediction rules combining MV and
HRM with LVEF and the TRS. The results for the NRI achieved with
the addition of MV and HRM showed statistical significance despite a
reduction in the size of the patient population from earlier analyses.

Competing risk analysis for CVD and myocardial infarction
Table S6 presents the results of competing risks regression for CVD
and the endpoint of myocardial infarction in the entire MERLIN-
www.ScienceTr
TIMI36 cohort. The results of this analysis closely parallel the findings
reported earlier on survival analysis of the different computationally
generated biomarkers (Table 4).
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DISCUSSION

In this report, we explored the potential utility of computationally
generated biomarkers to improve risk stratification after non–ST-
elevation acute coronary syndrome (NSTEACS). We constructed these
computationally generated biomarkers from time-series data using
techniques drawn from machine learning and data mining. In par-
ticular, we focused on three technical ideas we have recently developed
in preliminary investigations on patients in the TIMI-DISPERSE2 trial,
and evaluated the clinical utility of these computational biomarkers
in a fully automated, prespecified, and blinded study on patients in
the MERLIN-TIMI36 trial.

The results of our investigation confirm the earlier promise shown
by MV, SM, and HRM in smaller populations, both when evaluated
separately and when evaluated in conjunction with an extensive set of
other clinical variables (for example, LVEF). In our experiments, we
consistently found that all three of the computationally generated car-
diac biomarkers were strongly associated with CVD after NSTEACS.
These biomarkers were independent of information in clinical risk
scores such as the TRS, echocardiographic measurements such as LVEF,
and an extensive panel of other ECG-based metrics. The use of com-
putationally generated biomarkers simultaneously improved dis-
crimination, net reclassification, precision, and recall over existing
approaches to predicting the risk of CVD after NSTEACS. We inves-
tigated this impact through an evaluation of our biomarkers using
complementary statistical methods on one of the largest long-term
ECG data sets in existence while accounting for information provided
by commonly used clinical variables.

Our results confirm the utility of TRS and LVEF, but indicate that
optimal models to risk stratify patients should combine TRS and LVEF
with complementary information in long-term ECG.We found, for ex-
ample, that information in the shape of the long-term ECG signal, the
dynamics of functional units in the ECG, and the rate of cardiac ac-
tivity are all independently valuable in improving risk stratification.
D
ow

n

Table 5. Precision and recall of prediction rules combining LVEF with computationally generated cardiac biomarkers. The NRI and the associated
significance of the improvement are also provided relative to LVEF < 40% or the rule LVEF < 40% AND TRS = 3 baseline predictive rules.
Precision
anslationalMedicine.o
Recall
rg 28 September 2011
NRI
Vol 3 Issue 102 102ra9
NRI P
LVEF < 40%
 31.7%
 14.7%
 —
 —
LVEF < 40% OR (MV AND SM AND HRM)
 38.7%
 16.8%
 7.6%
 0.008
LVEF < 40% OR (MV AND SM)
 42.5%
 13.3%
 7.9%
 0.021
LVEF < 40% OR (MV AND HRM)
 48.8%
 14.5%
 13.5%
 <0.001
LVEF < 40% OR (SM AND HRM)
 41.5%
 13.9%
 7.7%
 0.019
(LVEF < 40% AND TRS = 3)
 28.4%
 15.5%
 —
 —
(LVEF < 40% AND TRS = 3) OR (MV AND SM AND HRM)
 35.9%
 18.0%
 7.5%
 0.008
(LVEF < 40% AND TRS = 3) OR (MV AND SM)
 39.6%
 13.7%
 7.8%
 0.023
(LVEF < 40% AND TRS = 3) OR (MV AND HRM)
 45.5%
 14.8%
 13.5%
 <0.001
(LVEF < 40% AND TRS = 3) OR (SM AND HRM)
 39.6%
 14.7%
 8.6%
 0.012
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
-i

n
d

ex

Number of variables removed

Fig. 4. C-index of multivariate models at each iteration of stepwise elim-
ination with the Wald statistic when all variables are used (blue top curve)

and when all variables excluding the computationally generated cardiac
biomarkers are used (red bottom curve). The elimination process is con-
tinued until all variables excluding TRS and LVEF are removed. The C-index
of the multivariate model with only LVEF, TRS, and the computationally
generated cardiac biomarkers is also shown (horizontal green line).
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We believe this is because of the ability of this information to provide
a holistic assessment of cardiovascular health related to factors exter-
nal (for example, autonomic modulation) and internal (for example,
impulse conduction) to the heart. We demonstrated that our three
computationally generated biomarkers provide information that is
complementary to each of the others, as well as to metrics that were
previously proposed to extract information from ECG time series (a
detailed discussion of these metrics is presented in the Supplemen-
tary Material).

We supplemented our analysis of the entire patient population by
also examining patients with relatively preserved left ventricular
function. We chose an ejection fraction of 40% as the cutoff because
it is the most conservative of the cutoffs typically used in practice. The
reported results suggest that the use of computationally generated
cardiac biomarkers may help identify patients who are at high risk
of CVD despite not being classified as at high risk on the basis of
echocardiographic assessment of left ventricular systolic function. We
did not separately evaluate the use of MV, SM, and HRM in patients
with LVEF < 40% in the MERLIN-TIMI36 trial, because the small
size of the group with available long-term ECG and measured LVEF
(250 patients) did not provide sufficient strength to derive any statis-
tically robust observations.

To consistently evaluate MV, SM, and HRM with previously pro-
posed ECG metrics, we dichotomized each of our computational bio-
markers to obtain a high-risk quintile of patients. (To eliminate the
possibility that the use of quintiles in both the training and the vali-
dation sample biased our results inappropriately, we also present
<
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results in the Supplementary Material where the biomarkers were re-
calculated using an alternative method where previously established
quintiles from the TIMI-DISPERSE2 trial were used for dichotomiza-
tion and then validated in the completely independent MERLIN-
TIMI36 sample.) Our results show that the addition of MV, SM, and
HRM as dichotomized variables significantly improves risk stratifica-
tion after NSTEACS. We believe, however, that the eventual use of our
computational biomarkers is not as dichotomized variables but as con-
tinuous features that may potentially be integrated by more sophis-
ticated modeling approaches than the simple AND/OR predictive
rules and the logistic regression multivariate models described here.
Risk metrics that can be measured as continuous variables (for exam-
ple, our computational biomarkers, BNP, and LVEF) can have greater
utility and collectively achieve higher levels of precision and recall if
used as continuous features and combined in more general ways. From
this perspective, we believe that the results presented here, which fo-
cus exclusively on introducing the three computationally generated
biomarkers and do not address the question of how best to construct
models with these variables, represent a lower bound on the improve-
ment possible in risk stratification after ACS. In this regard, there are a
number of sophisticated methods that might be fruitfully applied to
further improve our ability to identify high-risk subgroups. For ex-
ample, given a large enough set of data, kernel-based methods (21)
provide the ability to discover and model complex linear and non-
linear relationships among risk variables in a data-driven manner.
These methods are becoming increasingly popular in a wide variety
of biological applications (22) and offer an opportunity to improve
the results reported here further.

Although our results are encouraging, our study has limitations.
Continuous ECG data were available for only 4557 of the 6560 patients
m
.s

ci
en
Table 6. Multivariate model for computationally generated cardiac bio-
markers, TRS, and ECG-based metrics (single model with all variables)
in patients with LVEF ≥ 40%. Computationally generated biomarkers
are shown in bold.
st
m

 

Adjusted HR
 95% CI
 P
d 
fr

o

TRS 3
 8.01
 2.78–23.09
 0.001
de
TRS 2
 3.44
 1.21–9.80
 0.021
lo
a

HRM
 1.80
 1.07–3.04
 0.027
w
n

MV
 1.96
 1.06–3.63
 0.032
D
o

SM
 1.73
 1.02–2.93
 0.041
HRV-ASDNN
 1.79
 0.87–3.68
 0.111
HRV-PNN50
 0.56
 0.24–1.31
 0.179
HRT 2
 2.01
 0.57–7.13
 0.280
HRV-SDANN
 1.64
 0.64–4.18
 0.302
HRV-HRVI
 0.65
 0.28–1.48
 0.302
DC 2
 1.53
 0.65–3.62
 0.334
HRV-SDNN
 0.64
 0.23–1.78
 0.393
HRT 1
 1.27
 0.71–2.26
 0.422
TWA
 1.25
 0.70–2.21
 0.451
HRV-RMSSD
 1.16
 0.50–2.68
 0.728
DC 1
 1.10
 0.54–2.24
 0.800
HRV-LFHF
 0.96
 0.51–1.78
 0.885
SAF
 0.90
 0.22–3.74
 0.887
Table 7. Multivariate models for computationally generated cardiac bio-
markers, TRS, and ECG-based metrics (models constructed with stepwise
backward elimination and stepwise forward selection using the Wald
statistic) in patients with LVEF ≥ 40%. Computationally generated bio-
markers are shown in bold.
anslationalMedicine.or
Adjusted HR
g 28 September 2011
95% CI
Vol 3 Issue 102 102ra9
P

A. Stepwise backward elimination using Wald statistic
TRS 3
 8.98
 3.15–25.60
 <0.001
TRS 2
 3.64
 1.29–10.30
 <0.001
MV
 2.50
 1.50–4.19
 <0.001
HRM
 1.81
 1.08–3.02
 0.024
SM
 1.64
 0.98–2.75
 0.061
HRV-ASDNN
 1.57
 0.94–2.64
 0.085
B. Stepwise forward selection using Wald statistic
TRS 3
 9.16
 3.21–26.10
 <0.001
MV
 2.53
 1.51–4.22
 <0.001
HRM
 1.98
 1.20–3.27
 0.007
TRS 2
 3.61
 1.28–10.23
 0.016
SM
 1.59
 1.09–2.82
 0.046
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in the MERLIN-TIMI36 trial. Although we did not find any signifi-
cant differences between patients with and without continuous ECG,
the absence of continuous recordings reduced the size of our study
population relative to the initial enrolment for the MERLIN-TIMI36
trial. LVEF, HRT, SAF, and SM values could also not be assessed in all
patients in the MERLIN-TIMI36 trial, which reduced the size of mul-
tivariate models including these data. We further note that our study
only included individuals who had experienced a recent NSTEACS.
Although the computationally generated cardiac biomarkers might have
utility in other populations such as those presenting with ST-segment
elevation and in other patients with cardiac disease such as heart failure
or even in the general population, this hypothesis needs to be evaluated
in future work.

In conclusion, we believe that the computationally generated bio-
markers discussed here could be readily integrated with clinical prac-
tice to improve both the precision and the recall of existing tools for
risk stratification after NSTEACS. The addition of computationally
generated biomarkers in our study increased by almost 50% the deaths
predicted by echocardiography after NSTEACS while simultaneously
improving precision. These improvements in precision and recall
were backed by significant improvements assessed through a variety
of other statistical measures. Each of the computationally generated
biomarkers in our study can also be computed in a fully automated
manner from Holter or telemetry data that are already routinely col-
lected during hospitalization. By incorporating the algorithms to mea-
sure MV, SM, and HRM in monitoring devices by the bedside, or
in systems where data from continuous monitoring may be uploaded,
these computational biomarkers can be automatically assessed with-
out imposing additional burden on either patients or caregivers. Ul-
timately, we envision a strategy for translating these methods to the
clinic that involves measuring computationally generated biomark-
ers from inpatients after NSTEACS. These data could then be com-
bined with more traditional indicators of high risk to effectively risk
stratify patients in the post-NSTEACS setting, with the goal of using
this information to decide how aggressively each patient should be
treated and to tailor the frequency and extent of patient follow-up
after discharge.
www.ScienceTr
MATERIALS AND METHODS

Population
The MERLIN-TIMI36 trial (23, 24) was designed to compare the ef-
ficacy of ranolazine, an antianginal drug, to placebo in 6560 patients
hospitalized with NSTEACS. Patients with moderate- to high-risk
clinical features were enrolled within 48 hours of their last ischemic
symptoms and received standard medical and interventional therapy
according to local practice guidelines. Patients were followed for a
median duration of 348 days. Continuous three-lead 128-Hz ECG
recording (Lifecard CF, DelMark Reynolds/Spacelabs) was initiated
at randomization (within 48 hours of the last ischemic discomfort)
and continued for up to 7 days. A total of 4557 patients with available
ECG data were included in this continuous ECG analysis. Full inclu-
sion and exclusion criteria for the MERLIN-TIMI36 trial, as well as
study procedures, have been published (23, 24).

ECG preprocessing
For all risk metrics, ECG signals were automatically segmented with
the Physionet SQI package (25, 26). Ectopic and nonectopic beats were
further distinguished with an automated beat classifier (EP Limited).

Computationally generated cardiac biomarkers
Each of the three computationally generated cardiac biomarkers was
measured exactly as developed in earlier investigations on the TIMI-
DISPERSE2 data and tested in a prespecific manner blinded to end-
points on the MERLIN-TIMI36 data.

Morphologic variability. MV was measured as described (17) by
first using dynamic time warping (27) to quantify time-aligned energy
differences between consecutive pairs of nonectopic heartbeats and by
then measuring energy in the power spectrum of the resulting mor-
phologic difference time series between 0.30 and 0.55 Hz (28). The
Lomb-Scargle periodogram was used for frequency-domain measure-
ments on the unevenly sampled time series resulting from the removal
of ectopy (29, 30). MV was dichotomized at the highest quintile (51.84),
consistent with the approach used in earlier studies, and used here for
the various ECG metrics (31). The Supplementary Material details the
process described in (17) through which MV was measured.

Symbolic mismatch. SM was measured as described (18). Long-
term ECG signals for each patient were symbolized with iterative max-
min clustering (32) with a dynamic time-warping distance metric (27),
and the morphologies of the symbol centroids and dynamics of the
symbolswere compared between pairs of patients in the study population
with the dissimilaritymeasure described (18). The resulting dissimilarity
matrix was made positive semidefinite through spectrum clipping (33),
and k-nearest neighbor-based anomaly detection was used to assign an
anomaly score to each patient by measuring the dissimilarity relative to
the closest 1% of individuals in the population. SMwas dichotomized at
the highest quintile (55.75). The Supplementary Material details the
process described in (18) through which SM was measured.

Heart rate motifs. HRM was measured as described (19). The
heart rate time series for each patient was reexpressed with symbolic ag-
gregate approximation (SAX) (34), and the frequencies of high- and low-
risk approximate patterns (that is, HRM) found in (19) were measured
and used as input to a Cox proportional hazards regression model (35)
trained ondata from theTIMI-DISPERSE2 trial.HRMwas dichotomized
at the highest quintile (5.72). The Supplementary Material details the
process described in (19) through which HRM was measured.
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Fig. 5. C-index of multivariate models at each iteration of stepwise
elimination with the Wald statistic in patients with LVEF ≥ 40% when

all variables are used (blue top curve) and when all variables excluding
the computationally generated cardiac biomarkers are used (red
bottom curve). The elimination process is continued until all variables
excluding TRS and LVEF are removed. The C-index of the multivariate
model with only LVEF, TRS, and the computationally generated cardiac
biomarkers is also shown (horizontal green line).
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Existing risk metrics
The following existing risk metrics were assessed (details of the mea-
surement of these metrics are provided in the Supplementary Material):
HRV, HRT, DC, SAF, TWA, TRS, and LVEF.

Endpoint
A clinical events committee of certified cardiovascular specialists who
were unaware of treatment assignment or continuous ECG results
evaluated all deaths. Deaths were adjudicated as either cardiovascular
or noncardiovascular. CVD was defined as any death for which there
was no clearly documented noncardiovascular cause (24).

Statistical analyses
The risk of CVD associated with computationally generated biomarker
was calculated with the HR and 95% CI estimated by use of a Cox
proportional hazards regression model. Event rates are presented as
Kaplan-Meier failure rates at 1 year. Each computationally generated
biomarker was studied for univariate association with CVD and in
two separate multivariate models. The first multivariate model in-
cluded all other risk metrics, whereas the second was constructed with
all metrics using stepwise backward elimination with the Wald statistic
(36). This stepwise approach corresponded to creating an initial model
with all the other risk metrics included, and then iteratively removing
the least significant risk metric from this model as assessed by the
probability of the Wald c2 statistic (with a removal testing threshold
of 0.1). For the second model constructed with this stepwise approach,
the C-index was also measured at each iteration of stepwise backward
elimination as metrics were removed. This was done with the concor-
dance statistic proposed by Harrell et al. (37), which measures the
probability of concordance given the comparability of observations.
A similar analysis with stepwise backward elimination was performed
without any of the computationally generated biomarkers included.
The correlation between the computationally generated biomarkers
and all other metrics was also measured.

The increased discriminative value of the model with computa-
tionally generated biomarkers was further examined by the methods
described by Pencina et al. (38). The NRI, which evaluated the de-
gree of patients appropriately assigned to a higher or lower risk, was
measured with Pencina’s approach comparing groups for predic-
tion rules. This approach measures the improvement in reclassifica-
tion between two prediction rules A and B by separately computing
the improvement in classifying patients who experienced events
(that is, the fraction of these patients who are correctly moved to
a higher-risk group by the prediction rule B versus the fraction of
patients who are incorrectly moved to a low-risk group by the pre-
diction rule B) and the improvement in classifying patients who
remained event-free (that is, the fraction of these patients who are cor-
rectly moved to a lower-risk group by the prediction rule B versus
the fraction of patients who are incorrectly moved to a higher-risk
group by the prediction rule B). The improvements in patients who
experienced events and remained event-free are then aggregated. In
addition to the NRI, the ability of the computationally generated
biomarkers to improve the precision and accuracy of prediction rules
based on LVEF was also assessed.

We studied each of the risk metrics for an association with CVD in
the entire population, as well as in the population with LVEF ≥ 40%.
All analyses were performed in Stata 11 (Stata Corp.) and PASW/SPSS
18 (SPSS Inc.).
www.ScienceTr
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Table S1. Univariate association of existing ECG-based risk variables, TIMI risk score, and LVEF
with CVD after ACS.
Table S2. Stepwise backward elimination and stepwise forward selection results with TIMI risk
score excluded.
Table S3. Stepwise backward elimination and stepwise forward selection results in patients
receiving placebo in the MERLIN-TIMI36 trial.
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in patients receiving placebo in the MERLIN-TIMI36 trial.
Table S5. Univariate association of premature ventricular contraction (PVC) frequency with
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when PVC frequency is included.
Table S6. Competing risk regression results for computationally generated cardiac biomarkers
(with myocardial infarction as competing risk).
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