Writing MATLAB C/MEX Code

S (T{\ad \{
\

d

Pascal Getreuer, April 2010

Contents

Page
1 Introduction 1
2 GGetting Started 2
3 Inputs and Outputs 3
4 Numeric Arrays 5
5 Creating an Uninitialized Numeric Array 8
6 Calling a MATLAB function from MEX 9
7 Calling a MATLAB function handle from MEX 11
8 Calling MATLAB from a non-MEX Program 14
9 Memory 15
10 Non-Numeric Variables 19
11 FFTs with FFTW 23
12 Miscellaneous 27

13 Further Reading 28

o Introduction

It is possible to compile C, C++4, or Fortran code so that it is callable from MATLAB. This kind of
program is called a Matlab Executable (MEX) external interface function, or more briefly a “MEX-
function.” MEX enables the high performance of C, C++, and Fortran while working within the
MATLAB environment. We will discuss C/MEX functions, which also applies directly to C++/MEX.
Fortran/MEX is quite different and we do not discuss it here.

Warning This is not a beginner’s tutorial to MATLAB. Familiarity with C

and MATLAB is assumed. Use at your own risk.

C++

MATLAB

Fortran

MEX

the spooky beast

MEX is often more trouble than it is worth. MATLAB’s JIT interpreter in recent versions runs M-
code so efficiently that it is often times difficult to do much better with C. Before turning to MEX
in an application, optimize your M-code (see my other article, “Writing Fast MATLAB Code”). MEX-
functions are best suited to substitute one or two bottleneck M-functions in an application. If you

replace all functions in an application with MEX, you might as well port the application entirely to C.

o Getting Started

The following program demonstrates the basic structure of a MEX-function.

hello.c
#include "mex.h" /x Always include this «/
void mexFunction (int nlhs, mxArray =*plhs[], /+ Output variables =/
int nrhs, const mxArray xprhs[]) /x Input variables «/

mexPrintf ("Hello, world!\n"); /* Do something interesting =*/

return;

Copy the code into MATLAB’s editor (it has a C mode) or into the C editor of your choice, and save it

as hello.c.

The next step is to compile. On the MATLAB console, compile hello.c by entering the command

>> mex hello.c

If successful, this command produces a compiled file called hello.mexa64 (or similar, depending on
platform). Compiling requires that you have a C compiler and that MATLAB is configured to use it.
MATLAB will autodetect most popular compilers, including Microsoft Visual C/C++ and GCC. As a
fallback, some distributions of MATLAB come with the Lee C compiler. Run mex -setup to change the

selected compiler and build settings.

Once the MEX-function is compiled, we can call it from MATLAB just like any M-file function:

>> hello

Hello, world!
Note that compiled MEX files might not be compatible between different platforms or different versions
of MATLAB. They should be compiled for each platform/version combination that you need. It is
possible to compile a MEX file for a target platform other than the host’s using the -<arch> option,

for example, mex -win32 hello.c.

MATLAB comes with examples of MEX in matlab/extern/examples. For detailed reference, also see

matrix.h and the other files in matlab/extern/include.

o Inputs and Outputs

Of course, a function like hello.c with no inputs or outputs is not very useful. To understand inputs
and outputs, let’s take a closer look at the line

void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray xprhs([])

Here “mxArray” is a type for representing a MATLAB variable, and the arguments are:

C/MEX Meaning M-code equivalent
nlhs Number of output variables nargout

plhs Array of mxArray pointers to the output variables varargout
nrhs Number of input variables nargin

prhs Array of mxArray pointers to the input variables varargin

These MEX variables are analogous to the M-code variables nargout, varargout, nargin, and varargin.
The naming “lhs” is an abbreviation for left-hand side (output variables) and “rhs” is an abbreviation

for right-hand side (input variables).

For example, suppose the MEX-function is called as

[X,Y] = mymexfun (A,B,C)

Then nlhs = 2 and plhs [0] and plhs[1] are pointers (type mxArray*) pointing respectively to X and Y.
Similarly, the inputs are given by rlhs = 3 with prhs[0], prhs[1], and prhs[2] pointing respectively
to A, B, and C.

The output variables are initially unassigned; it is the responsibility of the MEX-function to create
them. If nlhs =

represents the ans variable.

0, the MEX-function is still allowed return one output variable, in which case plhs[0]

The following code demonstrates a MEX-function with inputs and outputs.

normalizecols.c

/* NORMALIZECOLS.C Normalize the columns of a matrix
Syntax: B = normalizecols (A)
or B = normalizecols (A, p)

The columns of matrix A are normalized so that
#include <math.h>

"mex.h"

norm(B(:,n),p) = 1. =/

#include
#define IS_REAL_2D_FULL_DOUBLE (P)

mxGetNumberOfDimensions (P)
#define IS_REAL_SCALAR (P)

(!mxIsComplex (P) && \
== 2 && !mxIsSparse(P) && mxIsDouble (P))
(IS_.REAL_2D_FULL_.DOUBLE (P) && mxGetNumberOfElements (P) == 1)

void mexFunction (int nlhs, mxArray xplhs[], int nrhs, const mxArray =*prhs[])

{

/* Macros for the ouput and input arguments =/
#define B_OUT plhs[0]

#define A_IN prhs (0]
#define P_IN prhs[1]
double %B, %A, p, colnorm;
int M, N, m, n;

if(nrhs < 1 || nrhs > 2) /x Check the number of arguments x/
mexErrMsgTxt ("Wrong number of input arguments.");

else if (nlhs > 1)
mexErrMsgTxt ("Too many output arguments.");

if (!IS_.REAL_2D_FULL_DOUBLE (A_IN)) /% Check A «/
mexErrMsgTxt ("A must be a real 2D full double array.");

if (nrhs == 1) /» If p is unspecified, set it to a default value x/
p =2.0;
else /x If P was specified, check that it is a real double scalar =/
if (! IS.REAL_SCALAR (P_IN))
mexErrMsgTxt ("P must be a real double scalar.");
else
p = mxGetScalar (P_.IN); /* Get p «/

M = mxGetM(A_IN); /* Get the dimensions of A x/
N = mxGetN (A_IN);
A = mxGetPr (A_IN); /* Get the pointer to the data of A x/

B_OUT = mxCreateDoubleMatrix (M, N, mxREAL); /* Create the output matrix =/
B = mxGetPr (B.OUT) ; /* Get the pointer to the data of B x/

for(n = 0; n < N; n++) /* Compute a matrix with normalized columns x/
for(m = 0, colnorm = 0.0; m < M; mt+) colnorm += pow(A[m + Mxn], p);

colnorm = pow(fabs(colnorm),1.0/p); /* Compute the norm of the nth column =/

for(m = 0; m < M; m++) B[m + Mxn] = A[m + Mxn]/colnorm;

return;

Much of the code is spent verifying the inputs. MEX provides the following functions to check datatype,
dimensions, and so on:

C/MEX Meaning M-code equivalent
mxIsDouble (A_IN) True for a double array isa (A, "double')
mxIsComplex (A_IN) True if array is complex ~isreal (A)
mxIsSparse (A_IN) True if array is sparse issparse (A)

mxGetNumberOfDimensions (A_IN) Number of array dimensions ndims (A)

mxGetNumberOfElements (A_IN) Number of array elements numel (A)

The normalizecols.c example simplifies input parsing by combining some of these checks into a
macro IS_REAL_2D_FULL_DOUBLE. Notice how we check nrhs==1 to see if the function was called as
normalizedcols(A) or normalizedcols(A,p).

Another approach to input parsing is to rename this MEX-function as “normalizecolsmx.c” and create
an M-function wrapper:

normalizecols.m

function B = normalizecols (A, p)
% M—function wrapper for parsing the inputs
if nargin < 2
if nargin < 1
error ('Not enough input arguments');

p = 2; % p 1s unspecified, set default value

if ~isreal(A) || ndims(A) ~= 2 || issparse(A) || ~isa(A, 'double')

error ('A must be a real 2D full double array.');
elseif ~isreal(p) || ~isa(p, 'double') || numel(p) ~= 1
error ('P must be a real double scalar.');

end

normalizecolsmx (A, p); % Call the MEX—function with the verified inputs

M-code is much more convenient for input parsing, especially for majestic calling syntaxes like proper-

ty/value pairs or option structures.

The actual dimensions and data of array A are obtained by

M = mxGetM(A_IN); /* Get the dimensions of A */
N = mxGetN (A_IN);
A = mxGetPr (A_IN); /* Get the pointer to the data of A =/

Array elements are stored in column-major format, for example, A[m + M*n] (where 0 <m <M—1 and

0 <n < N-—1) corresponds to matrix element A(m+1,n+1).

The output MxN array B is created with mxCreateDoubleMatrix:
B_.OUT = mxCreateDoubleMatrix (M, N, mxREAL); /% Create the output matrix =/
B = mxGetPr (B_.OUT) ; /* Get the pointer to the data of B =/
A double scalar can be created by settingM = N = 1, or more conveniently with mxCreateDoubleScalar:

B_.OUT = mxCreateDoubleScalar (Value); /+ Create scalar B = Value x/

o Numeric Arrays

The previous section showed how to handle real 2D full double arrays. But generally, a MATLAB
array can be real or complex, full or sparse, with any number of dimensions, and in various datatypes.
Supporting all permutations of types is an overwhelming problem, but fortunately in many applications,
supporting only one or a small number of input types is reasonable. MATLAB’s Bessel functions do not

support uint8 input, but who cares?

4.1 Complex arrays

If mxIsComplex(A_IN) is true, then A has an imaginary part. MATLAB represents a complex array as

two separate arrays:

double *Ar = mxGetPr (A_IN);
double *Ai = mxGetPi (A_IN);

/* Real data x/

/+ Imaginary data =/

And Ar[m + M*n] and Ai[m + Mxn] are the real and imaginary parts of A(m+1,n+1).

To create a 2-D complex array, use

B_.OUT = mxCreateDoubleMatrix (M, N, mxCOMPLEX) ;

4.2 Arrays with more than two dimensions

For 2-D arrays, we can use mxGetM and mxGetN to obtain the dimensions. For an array with more than
two dimensions, use

size_.t K = mxGetNumberOfDimensions (A_IN);
const mwSize *N = mxGetDimensions (A_IN);

The dimensions of the array are N[0] x N[1] x --- x N[K-1]. The element data is then obtained as

double *A = mxGetPr (A_IN);

or if A is complex,

double *Ar = mxGetPr (A_IN);
double *Ai = mxGetPi (A_IN);

The elements are organized in column-major format.

C/MEX M-code equivalent
3-D array A[nO + N[0]*(n1 + N[1]*n2)] A(nO+1,n1+1,n2+1)
K—1
K-D array Al Z(H;—:&I\T[j])nk] A(ng+1l,ni+1,...,ng_1+1)
k=0

To create an N[0] x N[1] X --- x N[K-1] array, use mxCreateNumericArray:

B_.OUT = mxCreateNumericArray (K, N, mxDOUBLE_CLASS, mxREAL) ;

Or for a complex array, replace mxREAL with mxCOMPLEX.

4.3 Arrays of other numeric datatypes

Different kinds of MATLAB variables and datatypes are divided into classes.

Class Name Class ID Class Name Class ID
"double" mxDOUBLE_CLASS "intg8" mxINT8_CLASS
"single" mxSINGLE_CLASS "uint8" mxUINT8_CLASS
"logical" mxLOGICAL_CLASS "intle" mxINT16_CLASS
"char" mxCHAR_CLASS "uintle" mxUINT16_CLASS
"sparse" mxSPARSE_CLASS "int32" mxINT32_CLASS
"struct" mxSTRUCT_CLASS "uint32" mxUINT32_CLASS
"cell" mxCELL_CLASS "int64" mxINT64_CLASS
"function_handle" mxFUNCTION_CLASS "uinte4" mxUINT64_CLASS

The functions mxGetClassID, mxIsClass, and mxGetClassName can be used to check a variable’s class,
for example,

switch (mxGetClassID (A_IN))

{

case mxDOUBLE_CLASS: /* Perform computation for a double array =/
MyComputationDouble (A_IN) ;
break;

case mxSINGLE_CLASS: /* Perform computation for a single array =/
MyComputationSingle (A_IN);
break;

default: /* A is of some other class x/
mexPrintf ("A is of %s c'ass\n", mxGetClassName (A_IN));

}

For a double array, we can use mxGetPr to get a pointer to the data. For a general numeric array, use

mxGetData and cast the pointer to the type of the array.

float *A = (float x)mxGetData (A_IN); /* Get single data x/
signed char *A = (signed char *)mxGetData (A_IN); /* Get int8 data */
short int xA = (short int x)mxGetData (A_IN); /* Get intl6 data */
int *A = (int *)mxGetData (A_IN); /* Get int32 data */
int64.T A = (int64.T »)mxGetData (A_IN); /% Get int64 data *x/

For a complex array, use mxGetImagData to obtain the imaginary part. Aside from the datatype,

elements are accessed in the same way as with double arrays.

To create an array of a numeric datatype, use either mxCreateNumericMatrix (for a 2-D array) or
generally mxCreateNumericArray:

mxArrayx mxCreateNumericMatrix (int m, int n,
mxClassID class, mxComplexity ComplexFlag)

mxArray* mxCreateNumericArray (int ndim, const int xdims,

mxClassID class, mxComplexity ComplexFlag)

4.4 Sparse arrays

Sparse data is complicated. Sparse arrays are always 2-D with elements of double datatype and they
may be real or complex. The following functions are used to manipulate sparse arrays.

C/MEX Meaning

mwIndex *jc = mxGetJc (A) Get the jc indices

mwIndex xir = mxGetIr (A) Get the ir indices
mxGetNzmax (A) Get the capacity of the array
mxSetJc (A, Jjc) Set the jc indices

mxSetIr (A, ir) Set the ir indices
mxSetNzmax (A, nzmax) Set the capacity of the array

See the example MEX-function fulltosparse.c in matlab/extern/examples/refbook to see how to

create a sparse matrix.

o Creating an Uninitialized Numeric Array

This trick is so effective it gets it own section. The array creation functions (e.g., mxCreateDoubleMatrix)
initialize the array memory by filling it with zeros. This may not seem so serious, but in fact this zero-

filling initialization is a significant cost for large arrays. Moreover, initialization is usually unnecessary.
Memory initialization is costly, and can be avoided.

The steps to creating an uninitialized array are:
1. Create an empty 0 x 0 matrix
2. Set the desired dimensions (mxSetM and mxSetN or mxSetDimensions)

3. Allocate the memory with mxMalloc and pass it to the array with mxSetData. Repeat with
mxSetImagData if creating a complex array.

For example, the following creates an uninitialized MxN real double matrix.

mxArray =*B;

B = mxCreateDoubleMatrix (0, 0, mxREAL); /* Create an empty array */
mxSetM (M) ; /* Set the dimensions to M x N */
mxSetN (N) ;

mxSetData (B, mxMalloc (sizeof (double)*MxN)); /» Allocate memory for the array =/

This code creates an uninitialized N[0] x N[1] x --- x N[K-1] complex single (float) array:

mxArray =*B;

B = mxCreateNumericMatrix (0, 0, mxSINGLE_CLASS, mxREAL); /* Create an empty array */
mxSetDimensions (B, (const mwSize)N, K); /x Set the dimensions to N[0] x ... x N[K—1] */
mxSetData (B, mxMalloc (sizeof (float) *NumEl)); /+ Allocate memory for the real part */
mxSetImagData (B, mxMalloc (sizeof (float) *NumEl)) ; /+ Allocate memory for the imaginary part */

where above NumE1 = N[O]*N[1]* --- *N[K-1].

Often it is useful to create an uninitialized array having the same dimensions as an existing array. For

example, given mxArray *A, an uninitialized int32 array of the same dimensions is created by

mxArray =*B;

B = mxCreateNumericMatrix (0, 0, mxINT32_CLASS, mxREAL); /* Create an empty array */
mxSetDimensions (B, mxGetDimensions (A), mxGetNumberOfDimensions(A)); /* Set the dimensions */
mxSetData (B, mxMalloc (4*xmxGetNumberOfElements (A))); /* Allocate memory */

If you want to initialize B as a copy of A, just use mxDuplicateArray:

mxArray *B = mxDuplicateArray(A); /= Create B as a copy of A x/

Section 9.2 will explain mxMalloc and other memory allocation functions in more detail.

@ Calling a MATLAB function from MEX

6.1 mexCallMATLAB

MEX-functions are useful because they enable calling C code from MATLAB. The reverse direction is
also possible: mexCallMATLAB enables a MEX-function to call a MATLAB command. The syntax is

int mexCallMATLAB (int nlhs, mxArray *plhs[], int nrhs,

mxArray xprhs[], const char xfunctionName);

The first four arguments are the same as those for mexFunction (see section 3). The fifth argument is

the MATLAB function to call. It may be an operator, for example functionName = "+".

callgr.c

#include <string.h>
#include "mex.h"

void DisplayMatrix (char xName, double *Data, int M, int N)
{ /+ Display matrix data =/
int m, n;
mexPrintf("%s = \n", Name);
for(m = 0; m < M; m++, mexPrintf ("\n"))
for(n = 0; n < N; n++)
mexPrintf ("$8.4f ", Data[m + M*n]);

void CallQR(double xData, int M, int N)

{ /* Perform QR factorization by calling the MATLAB function =/
mxArray *Q, %R, *A;
mxArray *ppLhs[2];

DisplayMatrix ("Input", Data, M, N);
A = mxCreateDoubleMatrix (M, N, mxREAL); /* Put input in an mxArray %/
memcpy (mxGetPr (A), Data, sizeof (double) *MxN);

mexCallMATLAB (2, ppLhs, 1, &A, "gr"); /+ Call MATLAB's gr function =/
Q = ppLhs[0];

R = ppLhs[1];

DisplayMatrix ("Q", mxGetPr(Q), M, N);

DisplayMatrix ("R", mxGetPr(R), M, N);

mxDestroyArray (R) ; /* No longer need these x/
mxDestroyArray (Q) ;
mxDestroyArray (A) ;

}
void mexFunction (int nlhs, mxArray xplhs[], int nrhs, const mxArray *prhs/[]
{
#define M_IN prhs[0]
if (nrhs != 1 || mxGetNumberOfDimensions (M-IN) != 2 || !mxIsDouble (M-IN))
mexErrMsgTxt ("Invalid input.");
CallQR (mxGetPr (M_IN), mxGetM(M_IN), mxGetN(M_IN));
}

>> M = round(rand(3) *3);

>> callqgr (M)

Input =
2.0000 2.0000 0.0000
2.0000 1.0000 1.0000
1.0000 2.0000 0.0000

0 =
—0.6667 0.1617 —0.7276
—0.6667 —0.5659 0.4851
—0.3333 0.8085 0.4851
R =

—3.0000 —2.6667 —0.6667
0.0000 1.3744 —0.5659
0.0000 0.0000 0.4851

It is possible during mexCallMATLAB that an error occurs in the called function, in which case the
MEX-function is terminated. To allow the MEX-function to continue running even after an error, use
mexCallMATLABWithTrap.

6.2 mexEvalString

Two related functions are mexEvalString and mexEvalStringWithTrap, which are MEX versions of
MATLAB’s eval command. They accept a char* string to be evaluated, for example

eval ('x = linspace(0,5); for k = 1:200, plot(x, cos(x+k/20)); drawnow; end');
can be performed in MEX as

mexEvalString("x = linspace(0,5); for k = 1:200, plot(x, cos(x+k/20)); drawnow; end");

10

0 Calling a MATLAB function handle from MEX

This example solves the partial differential equation
Optt — Oggu = 0, u(0,t) = u(l,t) =0,

and plots the solution at every timestep. It demonstrates passing a function handle to a MEX-function

and allocating temporary work arrays with mxMalloc.

heateq.c

#include "mex.h"

#define IS_REAL_2D_FULL_DOUBLE (P) (!mxIsComplex(P) && \
mxGetNumberOfDimensions (P) == 2 && !mxIsSparse(P) && mxIsDouble (P))
#define IS_REAL_SCALAR(P) (IS_-REAL_2D_FULL_DOUBLE (P) && mxGetNumberOfElements (P) == 1)

mxArray xg.-PlotFcn;

void CallPlotFcn (mxArray xpu, mxArray *pt)
{ /+ Use mexCallMATLAB to plot the current solution u */
mxArray *ppFevalRhs[3] = {g.PlotFcn, pu, pt};

mexCallMATLAB (0, NULL, 3, ppFevalRhs, "feval"); /% Call the plotfcn function handle =/
mexCallMATLAB (0, NULL, O, NULL, "drawnow"); /* Call drawnow to refresh graphics x/

void SolveHeatEq (mxArray =*pu, double dt, size_t TimeSteps)
{ /* Crank—Nicolson method to solve u-t — u.xx = 0, u(0,t) = u(l,t) = 0 «/
mxArray =*pt;

double *u, =*t, *cl, xcu, =*z;
double dx, lambda;
size_t n, N = mxGetNumberOfElements (pu) — 1;

pt = mxCreateDoubleMatrix(l, 1, mxREAL);
u = mxGetPr (pu);
t = mxGetPr (pt);

ul0] = u[N] = 0.0;

*t = 0.0;

CallPlotFcn (pu, pt); /* Plot the initial condition =/

dx = 1.0/N; /* Method initializations x/

lambda = dt/ (dx*dx) ;

cl = mxMalloc(sizeof (double) *N); /* Allocate temporary work arrays */

cu = mxMalloc (sizeof (double) %N);
z = mxMalloc (sizeof (double) *N) ;

cl[1l] = 1.0 + lambda;
cul[l] = —lambda/ (2.0%cl[1]);
for(n = 2; n <= N—1; n++)
{
cl(n] = 1.0 + lambda + cul[n—1]«(lambda/2.0);
cu[n] = —lambda/(2.0*xcl([n]);
}
while (TimeSteps—) /* Main computation loop */
{

11

z[1] = ((1.0—lambda)+*u[l] + (lambda/2.0)=*ul[2]) / cl[1l];
for(n = 2; n <= N—1; n++)

z[n] = ((1.0—lambda)*u[n] + (lambda/2.0)* (u[n+1l] + u[n—1] + z[n—1])) / cl[n];
for (u[N—1] z[N—=1], n = N—=2; n >= 1; n—)
uln] = z[n] — culnl*uln+1];
*t += dt;
CallPlotFcn(pu, pt); /+ Plot the current solution x/
}
mxFree (z); /* Free work arrays =/

mxFree (cu) ;
mxFree (cl);
mxDestroyArray (pt) ;

}
void mexFunction (int nlhs, mxArray xplhs[], int nrhs, const mxArrays*prhs|[]
{ /+* MEX gateway =/
#define UO_-IN prhs[0]
#define DT_IN prhs[1]
#define TIMESTEPS_IN prhs[2]
#define PLOTFCN_IN prhs[3]
#define U_OUT plhs[0]
if (nrhs != 4) /% Input checking =/
mexErrMsgTxt ("Four input arguments required.");
else if (nlhs > 1)
mexErrMsgTxt ("Too many output arguments.");
else if (! IS_REAL_2D_FULL_DOUBLE (UO_IN) || !TS_REAL_SCALAR(DT_IN) \\ !TS_REAL_SCALAR (TIMESTEPS_IN))
mexErrMsgTxt ("Invalid input.");
else if (mxGetClassID(PLOTFCN_IN) != mxFUNCTION_CLASS && mxGetClassID(PLOTFCN_IN) != mxCHAR_CLASS)
mexErrMsgTxt ("Fourth argument should be a function handle.");
U_OUT = mxDuplicateArray (UO_IN); /+ Create output u by copying u0 =/
g-PlotFcn = (mxArray =)PLOTFCN_IN;
SolveHeatEqQ (U_OUT, mxGetScalar (DT_.IN), mxGetScalar (TIMESTEPS_IN));
return;
}

In MATLAB, heateq can be used as

N = 100;

x = linspace(0,1,N+1);

u0 = 1./ (le—2 + cos(x%5).72);
plotfcn = @(u,t) plot(x, u, 'r');
heateq(u0, le—4, 100, plotfcn);

Create the initial condition
Create plotting function

a0 o0 o

Solve heat equation

Initial condition wug After 10 timesteps After 100 timesteps
100 50 20
80 15 L
60 -
10
40 r
20 | 5T
0 1 L O | | | |

0 0.2 0.4 0.6 0.8

For more control over the plot function, we can write it as an M-function:

myplot.m

function myplot (u,t)

% Plotting function for heateq.c

plot (linspace (0,1, length(u)), u, 'r');
ylim([0,1001]); % Freeze the y axis
title(sprintf ('t = $.4£',t)); % Display t in the plot title

Calling neateq(u0, 1e—4, 100, 'myplot') produces

t = 0.0000 t = 0.0010 t = 0.0100

100 100 100

80 r 80 80 -
60 60 60 -
40 r 40 - 40
20 r 20 20

0 1 1 0 1 1 O | | | |
0 02 04 06 038 1 0 02 04 06 038 1 0 0.2 0.4 0.6 0.8 1

The actual figure is animated—try it to get the full effect.

In the example, the plotfcn function handle is called in CallPlotFcn:
mxArray *xg-PlotFcn;
void CallPlotFcn (mxArray =*pu, mxArray *pt)

{ /* Use mexCallMATLAB to plot the current solution u =/
mxArray *ppFevalRhs([3] = {g.PlotFcn, pu, pt};

mexCallMATLAB (0, NULL, 3, ppFevalRhs, "feval"); /% Call the plotfcn function handle x/
mexCallMATLAB (0, NULL, 0O, NULL, "drawnow"); /* Call drawnow to refresh graphics =/
}
The trick is to pass the function handle to feval, which in turn evaluates the function handle. The first
mexCallMATLAB call is equivalent to feval (plotfcn, u, t). The second mexCallMATLAB calls drawnow
to refresh graphics; this is necessary to watch the plot change in realtime during the computation. See

section 9.3 for another example of calling a function handle.

13

o Calling MATLAB from a non-MEX Program

We have discussed using mexCallMATLAB to call a MATLAB command from within a MEX-function.
But is it possible to call MATLAB from a program that is not a MEX-function? The answer is yes, it is
possible! But beware my approach is quite inefficient and roundabout.

The key is that MATLAB can be started to run a command, for example
matlab —r "x=magic (6);save('out.txt','x', '—ascii');exit"

This starts MATLAB, creates a 6 x 6 magic matrix, saves it to out.txt, then promptly exits. More
practically, you should start a script containing the actual commands.

matlab —r makemagic

Under UNIX, you can add the -nodisplay flag to hide the MATLAB window.
The following is a simple C program that calls MATLAB to create magic matrices of a specified size:

makemagic.c

/* Run as "makemagic N" to make an NxN magic matrix =/
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char =xargv[])

{

float v;

int n, N = (argc > 1) ? atoi(argv([l]) : 6;

/* Write a MATLAB script =/

FILE xfp = fopen ("makemagic.m", "wt");

fprintf (fp, "x = magic(%d);\n" /% Make an NxN magic matrix =/
"save magic.txt x —ascii\n" /x Save to magic.txt x/
"exit;", N); /% Exit MATLAB x/

fclose (fp);

/% Call MATLAB to run the script =/

printf("Calling MATLAB...\n");

system("matlab —r makemagic");

/+ Read from the output file */

fp = fopen("magic.txt", "rt");

while (!feof (fp))

{

for(n = 0; n < N && fscanf (fp, "%f", &v) == 1; n++)
printf("%4d ", (int)v);
printf ("\n");

¥

fclose (fp);

return 0O;

}

14

o Memory

9.1 Remembering variables between calls

C variables that are declared globally are remembered between calls. The following MEX-function

counts the number of times it was called.

remember.c

#include "mex.h"

/* Count 1is a global variable, so it will be remembered between calls x/
static int Count = 1;

void MyExit ()

mexPrintf ("MyExit () cal;edl\n");
/+* Do cleanup here ... */
return;
void mexFunction (int nlhs, mxArray xplhs[], int nrhs, const mxArray =*prhs[])
mexAtExit (§MyExit); /* Register MyExit () to run when MEX—function is cleared x/
mexPrintf ("Count=%d\n", Count);
Count++; /* Increment Count x/
return;

This MEX-function also demonstrates mexAtExit, which allows us to run a cleanup function when the
MEX-function is cleared or when MATLAB exits.

>> remember
Count=1

>> remember
Count=2

>> remember
Count=3

>> clear remember
MyExit () called!
>> remember
Count=1

A MEX-function can be explicitly cleared by ciear function or clear ail.

9.2 Dynamic memory allocation

The MEX interface provides several functions for managing dynamic memory:

C/MEX Meaning Standard C equivalent
mxMalloc (Size) Allocate memory malloc (Size)

nxCalloc (Num, Size) Allocate memory initialized to zero calloc (Num, Size)
nxRealloc (Ptr, Newsize) Change size of allocated memory block realloc (Ptr, NewSize)
mxFree (Ptr) Release memory allocated by one of the above free (ptr)

15

It is also possible to use the standard C malloc, etc., or C++ new and delete within a MEX-function.
The advantage of mxMalloc, etc. is that they use MATLAB’s internal memory manager so that memory

is properly released on error or abort (Ctrl+C).

A useful function when allocating memory is mxGetElementSize, which returns the number of bytes

needed to store one element of a MATLAB variable,

size.t BytesPerElement = mxGetElementSize ((const mxArray =)A);

9.3 Persistent Memory

By default, memory allocated by mxMalloc, etc. is automatically released when the MEX-function com-
pletes. Calling mexMakeMemoryPersistent (Ptr) makes the memory persistent so that it is remembered
between calls.

The following MEX-function wraps feval to remember function evaluations that have already been

computed. It uses mexMakeMemoryPersistent to store a table of precomputed values.

pfeval.c

#include "mex.h"
#define INITIAL_TABLE_CAPACITY 64

/+ Table for holding precomputed values =/

static struct {

double *X; /+ Array of x values */
double xY; /* Array of corresponding y values */
int Size; /+ Number of entries in the table */
int Capacity; /* Table capacity */

} Table = {0, 0, 0, 0};

void ReallocTable (int NewCapacity)
{ /* (Re)allocate the table x/
if (! (Table.X = (double x)mxRealloc(Table.X, sizeof (double)xNewCapacity))
|| ! (Table.Y = (double x)mxRealloc(Table.Y, sizeof (double)*NewCapacity)))
mexErrMsgTxt ("Out of memory");
mexMakeMemoryPersistent (Table.X); /* Make the table memory persistent =/
mexMakeMemoryPersistent (Table.Y); /% Make the table memory persistent =/
Table.Capacity = NewCapacity;

void AddToTable (double x, double y)
{ /* Add (x,y) to the table x/
if (Table.Size == Table.Capacity)
ReallocTable (2+xTable.Capacity);
Table.X[Table.Size] = x;
Table.Y[Table.Size++] = y;

mxArray* EvaluateFunction(const mxArray xpFunction, const mxArray *px)
{ /* Evaluate function handle pFunction at px =/

const mxArray *ppFevalRhs[2] = {pFunction, px};

16

mxArray *py;

mexPrintf ("Evaluating f(x = %g)\n", mxGetScalar (px));
mexCallMATLAB (1, &py, 2, (mxArray xx)ppFevalRhs, "feval");
return py;

void MyExit ()

{ /* Clean up */
mxFree (Table.X);
mxFree (Table.Y);

void mexFunction (int nlhs, mxArray xplhs[], int nrhs, const mxArray =*prhs[])

{

#define FCN_IN prhs[0]

#define X_IN prhs[1]

#define Y_OUT plhs[0]

double x, *y;

int 1i;

if (nrhs != 2)
mexErrMsgTxt ("Two input arguments required.");

else if (mxGetClassID(FCN_IN) != mxFUNCTION_-CLASS && mxGetClassID (FCN-IN) != mxCHAR-CLASS)
mexErrMsgTxt ("First argument should be a function handle.");

else if (!mxIsDouble (X-IN) || mxGetNumberOfElements (X_IN) != 1)

mexErrMsgTxt ("X must be a real double scalar.");

x = mxGetScalar (X_IN);
mexAtExit (&§MyExit); /+ Register MyExit () to run when MEX function is cleared */

if (!Table.X || !Table.Y) /+ This happens on the first call */
ReallocTable (INITIAL_TABLE_CAPACITY); /+ Allocate precomputed values table */

/+ Search for x in the table */
for(i = 0; i < Table.Size; i++)
if (x == Table.X[1]
{
mexPrintf ("Found precomputed value for x = %g\n", x);
y = mxGetPr (Y_.OUT = mxCreateDoubleMatrix(l, 1, mxREAL));
«y = Table.Y[1];

return;

/* x is not yet in the table */

Y_OUT = EvaluateFunction (FCN_.IN, X_IN); /+ Evaluate the function */
AddToTable (x, mxGetScalar (Y.OUT)); /+ Make a new entry in the table %/
return;

As a simple example, here is pfeval applied to f(z) = x*:
>> f = @(x) x.72; % Define the function to evaluate
>> pfeval (£, 4)
Evaluating f(x = 4)
ans =
16

>> pfeval (£, 10)
Evaluating f(x = 10
ans =

100

17

>> pfeval (£, 4)
Found precomputed value for x = 4
ans =
16
Remark: I do not recommend using pfeval in practice. It does not work correctly if called with more
than one function handle. Additionally, it would be better to use a binary search on a sorted table and

to do error checking when calling the function handle.

Persistent memory should be used in combination with mexAtExit. You should write a cleanup function
that releases the persistent memory and use mexAtExit to register it. If you do not do this, persistent

memory is never released, and MATLAB will leak memory!

9.4 Locking

A MEX-function is “unlocked” by default, meaning it may be cleared at any time. To prevent the
MEX-function from being cleared, call mexLock. Call the function mexUnlock to unlock it again. If
mexLock is called n times, mexUnlock must be called n times to unlock it. The mexIsLocked function
checks whether the MEX-function is locked.

18

@ Non-Numeric Variables

There are specialized interface functions for handling non-numeric classes. Non-numeric variables are
still represented with mxArray objects, and some functions like mxDestroyArray work on any class. Use
mxGetClassID or mxGetClassName as described in section 4.3 to determine the class of a variable. You

can alternatively use mxIsLogical, mxIsChar, mxIsCell, mxIsStruct, or mxIsFunctionHandle.

10.1 Logicals

Logicals are not so different from numeric classes. Logical elements are represented in C/MEX as
type mxLogical (a typedef for bool or unsigned char depending on platform) and are arranged in

column-major organization. The following functions are used to create and handle logical arrays.

Function Description
L = mxCreateLogicalScalar (Value) Create a logical L = Value
L = mxCreatelLogicalMatrix (M,N) Create an MxN logical matrix

L = mxCreatelogicalArray (K, (const mwSize *)N) Create an N[0] x --- x N[K-1] logical array

mxLogical sData = mxGetLogicals (L) Get pointer to the logical data
mxIsLogicalScalar (L) True if L is logical and scalar
mxIsLogicalScalarTrue (L) True if logical scalar L equals true

10.2 Char arrays

Char arrays (strings) are represented as UTF-16 mxChar elements. For convenience, there are functions

to convert between char arrays and null-terminated C char* strings in the local codepage encoding.

Function Description

S = mxCreateString ("My string") Create a 1xN string from a char* string
S = mxCreateCharMatrixFromStrings (M, (const char =x)Str) Create matrix fIOHl Str [0] gee 7S'CI‘ [M—l]
S = mxCreateCharArray (K, (const mwSize *)N) Create an N[0] X --- x N[K-1] char array
mxGetString (S, Buf, Buflen) Read string S into char* string Buf

Warning: mxGetString will truncate the result if it is too large to fit in Buf. To avoid truncation,
BufLen should be at least mxGetNumerOfElements (S) *sizeof (mxChar) + 1.

stringhello.c

/* A string version of the "Hello, world!" example */
#include "mex.h"

void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray xprhs[])
plhs[0] = mxCreateString("Hello, world!");
return;

19

The UTF-16 data may also be manipulated directly if you are determined to do so. Use mxGetData
to get an mxChar* pointer to the UTF-16 data. For example, the following MEX-function creates the

string “BHK.txt” containing Chinese characters.

mingtian.c

#include "mex.h"

void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray =*prhs|]
{
#define M_OUT plhs[0]
mxChar +*Data;
/% UTF—16LE data */
unsigned short MingTian[] = {0xFEFF, 0x660E, 0x5929, 0x002E, 0x0074, 0x0078, 0x0074};
int k, Size[] = {1, 7};

M-OUT = mxCreateCharArray (2, (const intx)Size);
Data = mxGetData (M_OUT) ;

for(k = 0; k < 7; kt+)
Datalk] = MingTian[k];

Running MEX-function mingtian on the console will show non-ASCII characters as boxes (the data is
there, but the console is limited in what it can display).

>> mingtian
ans =

00.txt
So to see this string, we need to get it out of MATLAB. This script attempts to write a file with
mingtian’s output as the filename:

Status = {'Succeeded', 'Failed'};

s = mingtian;

fid = fopen(s, 'w');

fprintf ('Creating file with UTF—16 filename: C’cs\n', Status{(fid == —1)+1});
fclose (fid);

fid = fopen(s, r');

fprintf ('Opening file with UTF—16 filename: %$s\n', Status{(fid == —1)+1});
fclose (fid);

If successful, there should be a new file called BiK.txt in the current directory.

Remark: You don’t need to use MEX to create exotic UTF-16 characters. The example above can be
reproduced on the console as

>> s = char([65279, 26126, 22825,"'.txt"']);
>> fid = fopen(s, 'w'); Status = {'Succeeded', 'Failed'}; Status{(fid == —1)+1}, fclose(fid);

ans =
Succeeded

20

10.3 Cell arrays

A cell array is essentially an array of mxArray pointers. The functions mxGetCell and mxSetCell are

used to access or change the mxArray* of a cell.

Function

Description

C = mxCreateCellMatrix (M, N)
C = mxCreateCellArray (K,
mxArray *A = mxGetCell(C, 1)

mxSetCell(C, i, A)

(const mwSize *)N)

Create an MxN cell array

Create an N[0] x --- x N[K-1] cell array
Get contents of the ith cell, o = c{i+1}
Set contents of the ith cell, c{i+1} = a

The index i in mxGetCell and mxSetCell is zero based.

10.4 Structs

Like a cell array, a struct array is essentially an array of mxArray pointers, but with an additional

dimension indexed by field names. Each field name has a corresponding field number; the fields are

numbered in the order in which they were added to the struct. Fields may be referenced either by name

or by number.

A struct array is manipulated as a whole by the following functions.

Function

Description

mxGetNumberOfFields (X)
X = mxCreateStructMatrix (M, N, NumFields,
X = mxCreateStructArray (K, N, NumFields,
mxAddField (X, (const char =x)Str)
mxRemoveField (X, k)
int k = mxGetFieldNumber (X, "myfield")

const char xName = mxGetFieldNameByNumber (X, k)

(const char *=*)Str)

(const char =%)Str

Get the number of fields in struct X
Create an MxN struct

Create an N[0] x --- x N[K-1] struct
Add a new field to struct X

Remove the kth field (if it exists)
Get the field number of a field name
Get the field name of the kth field

In the creation functions mxCreateStructMatrix and mxCreateStructArray, the field names are given
by null-terminated char* strings Str[0],..., Str[NumFields-1].

Individual fields are accessed and changed with the following functions.

Function

Description

mxArray *F = mxGetField(X, i, "myfield")
mxArray *F = mxGetFieldByNumber (X, i, k)
mxSetField (X, i, "myfield", F)

mxSetFieldByNumber (X, i, k, F)

The index i above is zero based.

Get the ith element’s field r =
Get the ith element’s kth field
Set the ith element’s field x (i+1) .myfield = F
Set the ith element’s kth field

X (i+1) .myfield

21

10.5

Function handles

Function handles are slippery creatures with very little support within MEX. Even in M-code, they

have some surprising limitations:

>> £

= @(x)cos(2xx); g = @(x)cos(2*x);

>> isequal (f, g)

ans

0

At least a function handle is equal to itself:

>> isequal (f,)

ans

1

To identify an mxArray* as a function handle, use its class ID or mxIsFunctionHandle.

To execute a function handle, use mexCallMATLAB to call feval. For example, the following evaluates

a function handle y = f(z):

mxArray* EvaluateFunction(const mxArray xf, const mxArray xx)

{

}

/* Evaluate function handle by caling y = feval (f,x) x/
mxArray *y;

const mxArray *ppFevalRhs[2] = {f, x};

mexCallMATLAB (1, &y, 2, (mxArray #x*)ppFevalRhs, "feval");

return y;

A function handle with multiple arguments can be evaluated similarly (see section 7 for an example).

Similarly, mexCallMATLAB may be used to perform other operations with function handles.

MATLAB function Description

y = feval (f, x) Evaluate a function handle

functions (f) Get information about a function handle

s = func2str (f) Convert function handle to string

f = str2func(s) Convert string to function handle (see below)

In MATLAB 2009a and newer, it is possible to create a function handle in MEX by calling str2func.

Some older versions of MATLAB have this command but do not support anonymous function creation.

mxArray* CreateFunctionFromString(const char *Str)

{

}

/* Create a function handle from a string =/

mxArray *f, xstr2func = mxCreateString("str2func"), *s = mxCreateString(Str);
const mxArray *ppFevalRhs[2] = {str2func, s};

mexCallMATLAB (1, &f, 1, (mxArray =x)ppFevalRhs, "feval");

mexDestroyArray (s) ;

return f;

For example, f = CreateFunctionFromString ("@ (x) x"2") creates the square function.

22

@ FFTs with FFTW

To perform an FFT within a MEX-function, you could use mexCallMATLAB to call MATLAB’s fft
command. However, this approach has the overhead that £ft must allocate a new mxArray to hold the
resulting FFT, as well as the overhead and nuisance of wrapping up the data in mxArray objects. It is
more efficient to perform FFTs directly by calling the FFTW library.

11.1 A brief introduction to FFTW3

The FFTW3 library is available on the web at www.fftw.org. The library can perform FFTs of any

size and dimension. It can also perform related trigonometric transforms.

To perform a transform, the type, size, etc. are specified to FFTW to create a plan. FEFTW considers
many possible algorithms and estimates which will be fastest for the specified transform. The transform
itself is then performed by executing the plan. The plan may be executed any number of times. Finally,

the plan is destroyed to release the associated memory.

Two common ways to store complex arrays are split format and interleaved format. Section 4.1 explained
how complex MATLAB arrays are represented with two separate blocks of memory, one for the real part

and the other for the imaginary part,
Spht format: 0, 7T1,725.-.,TN—-1, io,il,ig,...,iN_l.

In FFTW, such a two-block organization is called split format. Another common way to arrange complex

data is to interleave the real and imaginary parts into a single contiguous block of memory,
Interleaved format: 7q,40,71,71,72,92, ..., "N—1,IN—_1-

FFTW can handle both interleaved and split formats. Complex MATLAB arrays are always split format,

so you must use split format to store a complex FFT output directly in a MATLAB array.

11.2 FFTW3 examples

To use FFTW3, we need to include £ftw3.h. We also need to include option -1fftw3 when calling the
mex command to link the MEX-function with the FFTW3 library:

mex mymexfunction.c -1fftw3
Additional options may be necessary depending on how FFTW3 is installed on your system; see the -1
and -L options in help mex.

23

www.fftw.org

It is helpful to define DivideArray, which we will use to normalize results after inverse transforms.

#include <fftw3.h>

/* Divide an array per—element (used for IFFT normalization) =/
void DivideArray (double xData, int NumEl, double Divisor)

int n;
for(n = 0; n < NumEl; n++)
Datal[n] /= Divisor;
}

We first consider transforms with the interleaved format since FFTW3’s interface is simpler in this
case. The following function computes the 1D FFT of length N on complex array X to produce complex
output array Y.

/* FFT1lDInterleaved 1D FFT complex—to—complex interleaved format

Inputs:
N Length of the array
X Input array, X[2n] = real part and X[2n+l] = imag part of the nth element (n =0, ..., N— 1)
Sign —1 = forward transform, +1 = inverse transform
Output:
Y Output array, Y[2n] = real part and Y[2n+l] = imag part of the nth element (n =0, ..., N— 1)
*/
void FFT1DInterleaved(int N, double %X, double *Y, int Sign)
{
fftwplan Plan;
if (! (Plan = fftw.plan_.dft_1d(N, (fftw_complex)X, (fftw.complex %)Y, Sign, FFTW_ESTIMATE)))
mexErrMsgTxt ("FFTW3 failed to create plan.");
fftw_execute (Plan);
fftw.destroy-plan(Plan);
if(Sign == 1) /* Normalize the result after an inverse transform =*/
DivideArray (Y, 2N, N);
¥

Similarly, we can compute 2D FFTs as

/+ FFT2DInterleaved 2D FFT complex—to—complex interleaved format =/

/* X[2%(m + M%n)] = real part and X[2%(m + Mxn)+1] = imag part of the (m,n)th element, and similarly for Y x/
void FFT2DInterleaved(int M, int N, double %X, double *Y, int Sign)

fftw_plan Plan;
if (! (Plan = fftw.plan_.dft.2d(N, M, (fftw.complex x)X, (fftw_complex %)Y, Sign, FFTW_.ESTIMATE)))

mexErrMsgTxt ("FFTW3 failed to create plan.");
fftw_execute (Plan);
fftw_.destroy_plan(Plan);

if(Sign == 1)
DivideArray (Y, 2xMxN, MxN);

Now we consider split format. Performing FFTs on split format arrays requires using FFTW3’s more
involved guru interface.

/* FFT1DSplit 1D FFT complex—to—complex split format

Inputs:
N Length of the array
XReal Real part of the input array, XReal[n] = real part of the nth element

24

*/

XImag
Sign

Outpu
YReal
YImag

Imaginary part of the input array, XImag[n]

= imag part of the nth element

—1 = forward transform, +1 = 1inverse transform

t:
Real part of the output array
Imaginary part of the output array

void FFT1DSplit (int N, double *XReal, double *XImag,

{

fftw_plan Plan;

fftw_iodim Dim;

Dim.
Dim.
Dim.

1f (!

if (s

else

{

n = N;

is =

[

os =
(Plan = fftw_plan_guru.split_dft(l, &Dim, O,
XReal, XImag, YReal, YImag, FFTW.ESTIMATE)))

mexErrMsgTxt ("FFTW3 failed to create plan.");

ign == —1)

double *YReal,

NULL

fftw_execute_split_dft (Plan, XReal, XImag, YReal,

fftw.execute_split_dft (Plan, XImag, XReal, YImag,

DivideArray (YReal, N, N);
DivideArray (YImag, N, N);

fftw_.destroy-plan(Plan);

’

YImag);

YReal);

double *YImag, int Sign)

Finally, here is a general function for the N-D FFT with split format:

/+ FFTNDSplit

ND FFT complex—to—complex split format

x N[NumDims—1]

Inputs:
NumDims Number of dimensions
N Array of dimension sizes
XReal Real part of the input, an N[0] x N[1l] x
XImag Imaginary part of the input
Sign —1 = forward transform, +1 = inverse transform
Output:
YReal Real part of the output array
YImag Imaginary part of the output array
x/
void FFINDSplit (int NumDims, const int N[], double xXReal,
{

fftw_plan Plan;
fftw_iodim Dim[NumDims];

int

for(

{

if (!

k, NumEl;

k = 0, NumkEl = 1; k < NumDims; k++)

Dim[NumDims—k—1].n = N[k];

Dim[NumDims—k—1].is = Dim[NumDims—k—1].0s = (k ==

NumEl *= N[k];

(Plan = fftw_plan_guru.split_dft (NumDims, Dim, O,

XReal, XImag, YReal, YImag, FFTW.ESTIMATE)))

25

NULL,

1

double *XImag,

(N[k—1]

double xYReal, double xYImag,

* Dim[NumDims—k]

array in column—major format

.is);

int Sign)

mexErrMsgTxt ("FFTW3 failed to create plan.");

if (Sign == —1)

fftw_execute_split_dft (Plan, XReal, XImag, YReal, YImag);
else
{

fftw.execute_split._dft (Plan, XImag, XReal, YImag, YReal);
DivideArray (YReal, NumEl, NumEl);
DivideArray (YImag, NumEl, NumEl);

}

fftw.destroy-plan(Plan);

return;

}

Remark: To perform transforms in-place, simply set Y = X (or YReal = XReal and YImag = XImag)

when calling the above functions.

Remark: The DivideArray function scales the result by 1/N. It is often possible to absorb this scale

factor elsewhere to avoid this computation.

Remark: There are many possibilities in FFTW3 beyond the scope of this document. It is possible to
perform multiple FFTs in a single plan, which may be more efficient than performing multiple plans.
Aside from complex-to-complex transforms, FFTW3 can also perform real-to-complex, complex-to-real,

and real-to-real transforms. See www.fftw.org/fftw3_doc for more details.

26

www.fftw.org/fftw3_doc

@ Miscellaneous

There are a few other interface functions in MEX that we haven’t discussed yet. They are mostly

analogues of basic M-code commands.

C/MEX

Meaning

M-code equivalent

mexPrint ("Hello")
mexPrintf ("x=%d", x)
mexWarnMsgTxt ("Trouble™)
mexErrMsgTxt ("Abort!")
mexFunctionName ()
mexGet (h, "Prop")
mexSet (h, "Prop",Value)
mexGetVariable
mexGetVariablePtr

mexPutVariable

Print a string

Print a formatted string
Display a warning message
Display a error message

Get the MEX-function’s name
Get a property on object h

Set a property on object h
Copy variable from a workspace
Get variable read-only pointer

Create variable in a workspace

disp('Hello")
fporintf ('x=%d"',

warning ('Trouble")

X)

error ('Abort!")
mfilename

get (h, 'Prop")

set (h, '"Prop',Value)
evalin (WS, 'Var')

assignin

There are also functions for manipulating MATLAB MAT files. An object of type MATFile* represents

a handle to an open MAT file.

C/MEX

Meaning

MATFile »mfp =
matClose (mfp)

const char *Str =
mxArray *V =
mxArray *V =
matGetNextVariableInfo
matPutVariable (mfp,

matPutVariableGlobal
matDeleteVariable (mfp,

Name,

matOpen ("my.mat",
matGetDir (mfp,
matGetVariable (mfp,
matGetNextVariable (mfp,

V)

Name)

Mode)

Open a MAT file

Close MAT file

&Num)
Name)

&Name)

Get list of variable names in the file
Get the variable named Name

Get the next variable and its name

Get header info about a variable

Write variable V with name Name

Write variable as global

27

Delete the variable named Name

@ Further Reading

All MEX interface functions are documented on the web in online function references (search for example
“matlab mxSetPr”). Information is otherwise limited, but there is MEX wisdom to be found scattered
through forums and buried within the dark source code of existing MEX-functions.

For more MEX-function examples, study the files in matlab/extern/examples. For instance, the
example “explore.c” shows how to read the data of a variety of different MATLAB variables. You can
open this file by entering the following on the MATLAB console:

>> edit ([matlabroot '/extern/examples/mex/explore.c'])

For detailed reference, study the files in matlab/extern/include, particularly matrix.h. These files

are thoroughly commented and explain many of the inner workings of MEX.

28

	Introduction
	Getting Started
	Inputs and Outputs
	Numeric Arrays
	Creating an Uninitialized Numeric Array
	Calling a MATLAB function from MEX
	Calling a MATLAB function handle from MEX
	Calling MATLAB from a non-MEX Program
	Memory
	Non-Numeric Variables
	FFTs with FFTW
	Miscellaneous
	Further Reading

