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disorders; (3) serotonin or a long-acting derivative of it may prove capable of al-
leviating disorders similar to schizophrenia.
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DYNAMIC PROGRAMMING AND A NEW FORMALISM IN THE
CALCULUS OF VARIATIONS

BY RICHARD BELLMAN
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1. Introduction.-In a series of papers,'-" we have treated a number of mathe-
matical problems arising from multistage decision processes. Problems of this type
occur in the theory of probability;1 4 5 9 in mathematical economics; ' 2, 6, 7, 8, 11
in control processes ;2 8 in learning processes ;4 9 and in many other fields as well.

In this paper we wish to show that the functional-equation technique introduced
in the above works may be used to provide a new approach to some classical prob-
lems in the calculus of variations. In addition to furnishing a new analytic weapon,
we feel that the method has great potentialities as a computational tool. As we
have pointed out previously,", 3 4 this approach seems ideally suited to the handling
of variational problems involving stochastic processes. This point will be further
enlarged upon in some forthcoming publications.
To illustrate the approach in its simplest setting, we shall consider first the prob-

lem of maximizing fol F(x, z) du, subject to the constraint dx/du = G(x, z), x(O) =
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c, where the analytic detail is at a minimum, and then turn to the eigenvalue prob-
lem derived from

d2X + X4(t)x = 0, x(O) = x(1) = 0, (1.1)
dt2

which is rather less straightforward.
In both cases we shall derive a partial differential equation for the desired quan-

tity. The method we sketch below is also applicable to multidimensional eigen-
value problems whenever the underlying space has certain symmetry properties.
Further results, together with a detailed exposition of the results contained herein,
will appear in another publication.

2. The Maximization Problem.-Let us now consider the maximization problem
described in the first section. We shall consistently assume that all functions that
appear possess all the differentiability properties required to make our operations
legitimate, since we are primarily interested here in presenting the basic formalism.
The essence of our method lies in considering the maximum value as a function of
the parameters which describe the state of the process, the "state variables." In
this case these are c and t. We write

Max fot F(x, z) du = f(c, t). (2.1)
2

The classical approach regards c and t as fixed and considers fJt F(x, z) du as a
functional of z. In contrast, we regard c and t as parameters and seek to determine
z(O) as a function of c and t.

Speaking in terms of a multistage process, in place of determining the optimal
continuation from one fixed position, we try to find the optimal first step from any
position.

Let us proceed to the analysis which will clarify the above general remarks. We
have

f(c, s + t) = Max f08 + ' F(x, z) du =
2

Max (fo8 F(x, z) du + f8 + t F(x, z) du]. (2.2)
2

It is clear that whatever the choice of z(u) in 0 < u < s. if wAe wish to maximize
the right side of (2.2) we must choose z(u) in s < u < s + t so as to maximize
f8 + ' F(x, z) du subject to the constraints dx/dt = G(x, z), x(s) = c(s). Here c(s)
is the new initial value obtained from the differential equation dx/dt = G(x, z),
X(0) = C. '

In view of the invariant nature of the problem with respect to translations, we
see that we must have

J8 + F(x, z) du = [fc(s), 1] (2.3)
Hence (2.2) yields the fundamental functional equation

f(c, s + t) = Max I fo8 F(x, z) du + f[c(s), t1 }* (2.4)
Z [0, S]

The notation z[O, s] indicates that the maximization is over all z(u) taken over
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o < u < s. As s shrinks to 0, the choice of a function reduces to a choice of z(O), a
quantity which we shall call w for typographical convenience. A straightforward
calculation yields

= Max [F(c, w) + G(c, w)f0] (2.5)
to

as the limiting form of (2.4) as s -O 0. The maximizing w is obtained by equating
the partial derivative with respect to w to zero, 0 = F,, + GUf0."2 Combining this
with (2.5), we obtain the system of equations

f = (FG,, - GF,,)/G,, = K(c, w),
fc = -Fwl/Gw, = L(c, w). (2.6)

To derive a partial differential equation for w, we employ the identity (fIX = (fC)t.
The result is

Kc + Kwwc = Lwwt. (2.7)

As is well known,'3 the general solution of this equation may be obtained from the
general solution of a system of first-order ordinary differential equations. Since
c is known for t = 0, to complete the solution we require only the value of w at t = 0.
For small t we have

fot F(x, z) du = F(c, w)t + 0(t2). (2.8)
Hence w at t = 0 is determined by Fw = 0.
Taking G(x, z) = z, we are reduced to the familiar problem of maximizing

Jfot F(x, x') du. It is readily verified that the characteristic equations obtained
from (2.7) are equivalent to the usual Euler equation.
The general problem of maximizing fo' F(x,, x2, . . ., Xn; Zl, Z2, . . ., Zm)du sub-

ject to the constraints dxi/dt = Gi(x, z), xi(O) = c1 may be attacked in the same
fashion.

3. The Eigenvalue Problem.-The eigenvalue problem posed in §1 is equivalent
to that of determining the successive minima of fol x'2 du subject to the constraints
f01 Ox2 du, x(O) = x(1) = 0. To treat the problem using the functional-equation
approach, we imbed it within the more general problem of determining the minima
of J(x) = fat + t X'2 du subject to the constraints

(a) x(a) = x(a + t) = 0,
(b) fG+14,(u)X2du + k fa+l+(U) (a + t - u)x du = 1. (3.1)

Let Min J(u) = f(a, k, t). Then, if, as above, we write

f(a, k, s + t) = fa+8x2du + fa++s+IX2 du, (3.2)

we cannot derive a functional equation immediately, since x(a + s) is not neces-
sarily zero. To simplify the analysis, let us pass directly to the derivation of the
partial differential equation, assuming that s is an infinitesimal. It is sufficient to
consider only terms which are of zeroth or first order in s. Since x(a + s) =
sx'(a) + . . ., we set y(u) = x(u) -sx'(a) (a + s + t-u)/t. Then y(a + s) =

VOL. 40, 1954 233



MATHEMATICS: R. BELLMAN

y(a + X + t) = 0, to the order of our approximation, and x'(u) = y'(u) -sx'(a)/t.
Thus, to terms in 82,

,,a + 8 + t /t2 au= J sa+ + t 8/2 ufa+8+tx du = a+ iRty du.
The constraint of (3.lb) becomes

a8 + I 4(u)y2 du + [k + 2sx'(a)]faa+ + 4t(u)y(u)(a + S + t - u) du =

1 - sP[k, x'(a), t] + O(s2), (3.3)

where

[k, x'(a), t kx'(a) faa + t +(U) (a + t -U)2 du. (3.4)

Making a change of variable y = (1 - (s//2))w, to reduce the constant term in
(3.3) to 1, the constraint takes the form

Jaba + £ qS(u)w2 du + {k + s[ + 2 )]}

f + 4t(u)w(u) (a + s +tW- u) du = 1 + 0(82). (3.5)

The equation in (3.2) becomes

f(a, k,s + t)= min {fa+8 X/2 du +
xt~a, a+ 8

(1- s#)f[a + s, k + s k + 2x [a]) t]} + 0(82). (3.6)

Letting s -O 0, this yields the partial differential equation

A = M '{x(a)2 + fa + k4 + 2x(a)ik - Q4 (3.7)

Since st = x'(a)4D is independent of x'(a), the unique minimum occurs when

2x'(a) + (I +
2

fkt-f=0 (3.8)2 t/

Eliminating x'(a) by means of this last relation, we obtain a nonlinear partial differ-
ential equation forf.
The behavior of f for small t may be determined by solving the problem of mini-

mizing faa + tXt2 du subject to the constraints

x(a) = x(a + t) = 0, (3.9)

c/(a) fa +x2 du + k fa + (U) (a +tI- u)x du = 1

This problem, in turn, may be treated by the partial differential equation approach,
using the fact that the solution for k = 0 is immediate.
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1. Introduction.-A subset K of 3-space has been called tamely imbedded if there
is a homeomorphism on space throwing K onto a polyhedron. If K is a simple arc
or simple closed curve (i.e., a 1-manifold) that is contained in a plane, it follows
quickly from classical results of Schoenflies that K is tamely imbedded. If the 1-
manifold is not a subset of a plane, it is necessary to distinguish whether K is an
arc or a closed curve. If K is a polygonal arc, it is already tame and also has the
property of being equivalent to an interval under a semilinear map on 3-space. If
K is a polygonal closed curve, it is already tame, but the intermediate step of map-
ping K into a plane is neither advantageous nor possible if K is knotted.
About thirty years ago an example was given of an arc K which is not equivalent

to a subset of a plane under any homeomorphism on 3-space. This example and
others closely related to it, including some simple closed curses, were studied by
Antoine,1 Alexander,2 and later by Fox and Artin3 and serve to emphasize the path-
ological difficulties that may occur. The nature of these examples suggests that the
difficulties are of a local nature as regards the manner the 1-manifold is imbedded
in 3-space. This point of view is borne out by recent results of R. H. Bing4 and E.
E. Moise,5 who prove that a locally tamely imbedded set is tamely imbedded.
The purpose of the present paper is to characterize, by means of positional in-

variants, those 1-manifolds which are locally tamely imbedded. By the above-
mentioned result, this implies a characterization of the tamely imbedded 1-mani-

VOL. 40, 1954 235


