

 User Manual

 SpacePoint Fusion

 Demonstration Motion-Tracking Module

Table of Contents

1 COPYRIGHT & WARRANTY INFORMATION .. 3

2 INTRODUCTION .. 4

3 GETTING STARTED .. 5

4 USING THE DEMO PROGRAMS .. 6

4.1 GETTING STARTED WITH THE DEMO PROGRAMS 6

4.2 FUSIONPOINTER DEMO PROGRAM ... 7

4.3 SEAGULL ISLAND DEMO PROGRAM .. 7

5 INTERPRETING SPACEPOINT FUSION’S OUTPUT .. 9

6 FUSION GAME PAD SAMPLE PROJECT & DATA LOGGER 11

6.1 RUNNING FUSION GAME PAD DATA LOGGER .. 12

6.2 INTERPRETING FUSION GAME PAD OUTPUT ... 14

7 SAMPLE CODE ... 15

7.1 FUSIONGAMEPAD.CPP ... 15

7.2 USBHIDAPI.H .. 17

7.3 QUATERNION TO EULER ANGLES – C CODE .. 23

7.4 QUATERNION TO EULER ANGLES – MATLAB ... 24

List of Tables

Table 5-1: Endpoint Outputs ... 9

Table 5-2: Sample Endpoint Output ... 10

Table 6-1: Sample Fusion Game Pad Log Output .. 14

3D MagIC User Manual – June 2010 Page 3 of 25

1 Copyright & Warranty Information

© Copyright PNI Sensor Corporation 2010

All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under copyright laws.

Revised June 2010: for the most recent version visit our website at www.pnicorp.com

PNI Sensor Corporation
133 Aviation Blvd, Suite 101
Santa Rosa, CA 95403, USA
Tel: (707) 566-2260
Fax: (707) 566-2261

Warranty and Limitation of Liability. PNI Sensor Corporation ("PNI") manufactures its Products from parts and components that are new or

equivalent to new in performance. PNI warrants that each Product to be delivered hereunder, if properly used, will, for ninety (90) days following the

date of shipment unless a different warranty time period for such Product is specified: (i) in PNI’s Price List in effect at time of order acceptance; or (ii)

on PNI’s web site (www.pnicorp.com) at time of order acceptance, be free from defects in material and workmanship and will operate in accordance

with PNI’s published specifications and documentation for the Product in effect at time of order. PNI will make no changes to the specifications or

manufacturing processes that affect form, fit, or function of the Product without written notice to the Customer, however, PNI may at any time, without

such notice, make minor changes to specifications or manufacturing processes that do not affect the form, fit, or function of the Product. This warranty

will be void if the Products’ serial number, or other identification marks have been defaced, damaged, or removed. This warranty does not cover wear

and tear due to normal use, or damage to the Product as the result of improper usage, neglect of care, alteration, accident, or unauthorized repair.

THE ABOVE WARRANTY IS IN LIEU OF ANY OTHER WARRANTY, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT

LIMITED TO, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. PNI NEITHER ASSUMES NOR AUTHORIZES ANY PERSON TO ASSUME

FOR IT ANY OTHER LIABILITY.

If any Product furnished hereunder fails to conform to the above warranty, Customer’s sole and exclusive remedy and PNI’s sole and exclusive liability

will be, at PNI’s option, to repair, replace, or credit Customer’s account with an amount equal to the price paid for any such Product which fails during

the applicable warranty period provided that (i) Customer promptly notifies PNI in writing that such Product is defective and furnishes an explanation of

the deficiency; (ii) such Product is returned to PNI’s service facility at Customer’s risk and expense; and (iii) PNI is satisfied that claimed deficiencies

exist and were not caused by accident, misuse, neglect, alteration, repair, improper installation, or improper testing. If a Product is defective,

transportation charges for the return of the Product to Customer within the United States and Canada will be paid by PNI. For all other locations, the

warranty excludes all costs of shipping, customs clearance, and other related charges. PNI will have a reasonable time to make repairs or to replace

the Product or to credit Customer’s account. PNI warrants any such repaired or replacement Product to be free from defects in material and

workmanship on the same terms as the Product originally purchased.

Except for the breach of warranty remedies set forth herein, or for personal injury, PNI shall have no liability for any indirect or speculative damages

(including, but not limited to, consequential, incidental, punitive and special damages) relating to the use of or inability to use this Product, whether

arising out of contract, negligence, tort, or under any warranty theory, or for infringement of any other party’s intellectual property rights, irrespective of

whether PNI had advance notice of the possibility of any such damages, including, but not limited to, loss of use, revenue or profit. In no event shall

PNI’s total liability for all claims regarding a Product exceed the price paid for the Product. PNI neither assumes nor authorizes any person to assume

for it any other liabilities.

Some states and provinces do not allow limitations on how long an implied warranty lasts or the exclusion or limitation of incidental or consequential

damages, so the above limitations or exclusions may not apply to you. This warranty gives you specific legal rights and you may have other rights that

vary by state or province.

PNI Sensor Corporation DOC #1015481 r01

SpacePoint Fusion User Manual –June 2010 Page 4 of 25

2 Introduction

Thank you for purchasing PNI Sensor Corporation’s SpacePoint Fusion demonstration motion-

tracking module. We’re certain you’ll be impressed with its incredibly accurate and repeatable

tracking performance and its low latency.

The SpacePoint Fusion module is intended for demonstrating the capabilities of PNI’s

SpacePoint motion-tracking technology. The module incorporates a 3-axis accelerometer, 3-axis

gyroscope, and 3-axis magnetometer. These 9 outputs are internally processed using PNI’s

SpacePoint algorithm to provide calculated orientation data in the form of quaternions. The

USB/HID interface seamlessly integrates with a user’s system to provide calculated quaternion

orientation data. Because the SpacePoint Fusion demonstration module incorporates a USB/HID

interface, no drivers are necessary, and no batteries are required since the host computer powers

the module via the USB port.

3D MagIC User Manual – June 2010 Page 5 of 25

3 Getting Started

To use the SpacePoint Fusion demonstration module, simply plug it into your computer’s USB

port. It is important to ensure the module is fully at rest for 5 seconds when plugging it into the

computer’s USB port, as the gyros initialize during this time. Once the module is connected to

the USB port, its red and green LEDs will light up.

If using Windows, and this is the first time plugging in a SpacePoint Fusion demonstration

module, Windows will automatically launch the “Found New Hardware” wizard, then indicate it

has found the module and install the device.

If the LEDs do not come on or Windows otherwise does not seem to recognize the device, check

the Device Manager, under Universal Serial Bus Controller – USB Composite Device. The

SpacePoint Fusion demonstration module should be identified with “Location 0 (SpacePoint

Fusion)”, and under the Details tab it should indicate “VID_20FF&PID_0100”. Alternatively

you can check under Game Controllers on the Control Panel, where it should be recognized as a

“7 axis 2 button device”. Here, under Properties, you should observe changes in the 7 axis states

as the device is moved, although these 7 states are not correlated to their description.

That’s about it. The device now will be streaming orientation data in the form of quaternions to

your computer via the USB/HID interface. Things you can do next include:

• Run a PNI demo program to demonstrate the performance of the SpacePoint Fusion

demonstration module (and have a little fun). Two web-based Unity demo programs are

available at PNI’s website, and instructions for how to use these are found in Section 4 of

this manual.

• Observe or log sensor data or calculated orientation data. PNI’s Fusion Game Pad

program allows you to do this and can be downloaded at PNI’s website. Instructions for

logging data using the Fusion Game Pad program are found in Section 6.

• Develop code to integrate the SpacePoint Fusion demonstration module’s output into

your application. Section 5 includes an explanation of the streaming data at the

USB/HID interface, while Section 7 provides sample hard-copy source code.

Additionally, PNI’s Fusion Game Pad project, found on PNI’s website, provides a

complete Visual C++ program to leverage.

PNI Sensor Corporation DOC #1015481 r01

SpacePoint Fusion User Manual –June 2010 Page 6 of 25

4 Using the Demo Programs

PNI provides two demo programs that work with the SpacePoint Fusion demonstration motion-

tracking module. These are the FusionPointer and Seagull Island programs. They are web-based

Unity programs which have been shown to run on Windows XP, Windows Vista, Windows 7,

and Macintosh OX operating systems, and should work on Linux systems. As these programs

are free and principally intended to demonstrate the possibilities enabled with PNI’s SpacePoint

technology, no guarantees are made regarding their ability to operate on any specific computer

configuration. Also note that performance can vary depending on the computer’s graphics card.

The FusionPointer demo is well suited for demonstrating the capabilities of SpacePoint

technology, while the Seagull Island demo is more for entertainment. This is because the

FusionPointer demo provides an orientation rendering mode (mimic mode) and a pointing mode,

both of which provide absolute orientation referencing. In contrast, the Seagull Island demo

couples both heading and roll to control the seagull’s orientation, which provides an intuitive feel

for gameplay, but sacrifices the inherent absolute orientation aspect of SpacePoint technology

4.1 Getting Started with the Demo Programs

For Windows computers, ensure Microsoft’s .NET Framework is installed. Please use

dotnetx35setup.exe to install this package if it is not already installed. This can be

downloaded at http://msdn.microsoft.com/en-us/netframework/cc378097.aspx. If it does not

install correctly, uninstall all versions of Microsoft .NET Framework, then try again.

Demo programs are available at www.pnicorp.com/support/downloads/spacepoint-fusion.

Download the desired demo program’s zip file and extract it.

Plug the SpacePoint Fusion demonstration module into the computer’s USB port prior to

launching the demo program. It is important that the module is fully at rest for 5 seconds

after plugging it into the computer’s USB port, as the gyros initialize during this time. Once

the module is connected to the USB port, its red and green LEDs will light up.

Launch a demo program by double-clicking the program’s .html icon. With the program

running, point the module at your computer display and press “P” on your keyboard to set the

viewpoint. You can reset the rendered viewpoint at anytime by pressing “P” again.

In the upper left corner of the screen you will see a box containing a series of numbers. The

row labeled “q” displays the instantaneous calculated quaternion values; the row labeled

“acc” displays the calculated acceleration values, in g, for each axis; while “acc.magnitude”

is the magnitude of the acceleration vector (~1.0 g when the module is at rest)..

3D MagIC User Manual – June 2010 Page 7 of 25

4.2 FusionPointer Demo Program

The FusionPointer program provides a 3-D rendering of the SpacePoint Fusion

demonstration module. By simultaneously pressing the module’s right button and twisting

the module about its X-axis, you can zoom in or out on the rendered image. (i.e. the image

can be enlarged or shrunk.)

The FusionPointer program operates in either Mimic or Pointer mode, as described below.

• Mimic Mode: In Mimic mode the image can be rotated about its center such that the

rendered module will closely mimic the orientation of the module. (This assumes the

viewpoint is initially aligned by pressing the “P” button when pointing straight at the

screen).

• Pointer Mode: In Pointer mode the image on the screen acts as if it were attached by

a stick to the module, such that changing the orientation of the module results in the

image translating on the screen. When operating in Pointer mode, the image will

have a bright red “+” superimposed over it. Note that the image only responds to

changes in orientation, and not changes in position.

Since the rendered image does not know the actual distance of the SpacePoint Fusion

demonstration module from the screen, the length of the virtual stick is set by how far the

image is zoomed out. PNI generally recommends fully zooming out on the object (making it

as small as possible) when operating in Pointer mode.

The program will start in Mimic mode. To temporarily switch to Pointer mode, hold down

the left button: when the left button is released the program will be back in Mimic mode.

To semi-permanently put the module in Pointer mode, double-click the left button. To exit

Pointer mode, press the left button once.

4.3 Seagull Island Demo Program

The Seagull Island program is a 3
rd
 person game in which the player controls the flight of a

seagull around an island. A few points about the program:

To turn the seagull, you can either turn the module in the horizontal plane (adjust yaw) or

you can roll the module around its X-axis (similar to banking an airplane).

To go faster, press the module’s left button. (Pressing the right button has no effect.)

The “3
rd
 person eye” acts as though it is attached to an elastic cord which is attached to the

seagull at the other end. Consequently, when you start you’ll see the seagull from behind.

When the seagull turns, you’ll see the seagull from a different viewpoint, but if the seagull

PNI Sensor Corporation DOC #1015481 r01

SpacePoint Fusion User Manual –June 2010 Page 8 of 25

then continues on a straight course you’ll soon be viewing it from behind again. Likewise,

pressing the left button to go faster causes the seagull to move well ahead of you, and

releasing the left button allows you to catch up.

As previously mentioned, the Seagull Island program primarily is intended for entertainment

purposes by providing an intuitive feel for gameplay. But, since it couples both heading and

roll to control the seagull’s orientation, it does not demonstrate the absolute orientation

capabilities of SpacePoint technology as effectively as the FusionPointer demo program..

3D MagIC User Manual – June 2010 Page 9 of 25

5 Interpreting SpacePoint Fusion’s Output

The SpacePoint Fusion demonstration module is a USB composite device with HID Game Pad

Report output on endpoint 0x82. The Game Pad Report includes 15 bytes of data. For

additional information regarding USB, refer to the USB 2.0 specification and the USB HID

specification.

The output includes scaled acceleration values converted into g’s and orientation values given as

quaternions. These are calculated from sensor data using PNI’s proprietary Spacepoint

algorithm, which is embedded in the module’s firmware. Button status and PNI reserved data

fields also are reported. Data is updated and output at 125 Hz and all data is in hex format.

The 15 bytes of data on endpoint 0x82 is presented in little Endian format as follows:

Table 5-1: Endpoint Outputs

Byte Description

0 Scaled Accel X Lower

1 Scaled Accel X Upper

2 Scaled Accel Y Lower

3 Scaled Accel Y Upper

4 Scaled Accel Z Lower

5 Scaled Accel Z Upper

6 Quaternion [0] Lower

7 Quaternion [0] Upper

8 Quaternion [1] Lower

9 Quaternion [1] Upper

10 Quaternion [2] Lower

11 Quaternion [2] Upper

12 Quaternion [3] Lower (scalar)

13 Quaternion [3] Upper (scalar)

14 Reserved/Button

The status of the module’s left and right buttons are packed into the 14
th
 byte. The least

significant bit (LSB) is the left button and the second LSB is the right button.

PNI Sensor Corporation DOC #1015481 r01

SpacePoint Fusion User Manual –June 2010 Page 10 of 25

Table 5-2: Sample Endpoint Output

Data stream: 2f85238a5b90ac9f496a126a1ef8d0

Raw Data 2f 85 23 8a 5b 90 ac 9f 49 6a 12 6a 1e f8 d0

Description
Scaled
AccelX

Scaled
AccelY

Scaled
AccelZ

q[0] q[1] q[2] q[3]
Res/
B0/B1

Hex 852f 8a23 905b 9fac 6a49 6a12 f81e d0

Decimal 34095 35363 36955 40876 27209 27154 63518 -

Offset 32768 32768 32768 32768 32768 32768 32768 -

Counts 1327 2595 4187 8108 -5559 -5614 30750 -

Scale
Factor

6 6 6 1 1 1 1 -

Scaled
Counts

7962 15570 25122 8108 -5559 -5614 30750 -

Normal.
Factor

32768 32768 32768 32768 32768 32768 32768 -

Value 0.2430 0.4752 0.7667 0.2474 -0.1697 -0.1713 0.9384 -

Where:

• “Offset” = the middle of the sensor’s total range, or 32768.

• “Counts” = “Dec” - “Offset”

• “Scale Factor” = the ‘g’ rating of the accelerometer

• “Scaled Counts” = “Counts” * ”Scale Factor”

• “Normal. Factor” = the normalization factor for the sensor, or 32768

• “Value” = “Scaled Counts” / “Normalization Factor”

3D MagIC User Manual – June 2010 Page 11 of 25

6 Fusion Game Pad Sample Project & Data Logger

The FusionGamePad.zip file includes a complete Visual C++ project, with a functioning build in

the “Release” folder. (The “Release” folder is created when the zip file is extracted.) The

executable file in the “Release” folder can be used to display or log sensor or calculated data

from the module. The overall project folder can act as a guide for generating new programs that

utilize the SpacePoint Fusion demonstration module. Note that Fusion Game Pad was developed

on a Windows XP platform.

To view the source code in native format, Visual C++ Express can be downloaded at

www.microsoft.com/express/vc/. Conversely, much of the source code is provided in hardcopy

format in Section 7.

The key resources and source code in this project are:

• FusionGamePad.cpp

• UsbHidApi.h

• UsbHidApi.dll

• UsbHidApi.lib

Visual C++ Tree

PNI Sensor Corporation DOC #1015481 r01

SpacePoint Fusion User Manual –June 2010 Page 12 of 25

FusionGamePad.cpp is the main source code to read data from the module’s USB interface. This

data can be output to the display or logged to a text file. Hardcopy source code is provided in

Section 7.1.

UsbHidApi.h includes the UsbHidApi library functions. Hardcopy source code is provided in

Section 7.2.

6.1 Running Fusion Game Pad Data Logger

Instructions for running Fusion Game Pad follow. Note it is important to ensure the

SpacePoint Fusion demonstration module is fully at rest for 5 seconds when plugging it into

the computer’s USB port, as the gyros initialize during this time.

• Open a Command window:

Click on “Start”, then “Run”.

3D MagIC User Manual – June 2010 Page 13 of 25

This will open the Run window. Type “cmd” then press <enter>.

This will open the Command window.

• In the Command window, type “cd \[file path]” to set the directory to the “Release”

folder where FusionGamePad.exe resides.

PNI Sensor Corporation DOC #1015481 r01

SpacePoint Fusion User Manual –June 2010 Page 14 of 25

• Run the executable file:

In the Command window (and in the “Release” directory) type the following:

FusionGamePad.exe [Nsample]

This will display the results on the computer screen. To store the data to a log file use

the pipe command “>>” as in the example below:

FusionGamePad.exe 100 >> test.log

This creates a file named test.log with calculated orientation data from 100 samples,

and this file will be saved in the “Release” folder. The data will not be displayed at

the same time it is obtained. This data can be imported into a spreadsheet if desired.

6.2 Interpreting Fusion Game Pad Output

The displayed and logged outputs have the same format, as shown below. The first line of

output identifies the program, the second line is the header line for the data, and subsequent

lines are the data.

Table 6-1: Sample Fusion Game Pad Log Output

AX AY AZ Q0 Q1 Q2 Q3 LButton RButton

0.9126 0.0837 0.1106 0.1061 -0.6336 0.0611 0.7639 1 0

0.9126 0.0837 0.1106 0.1061 -0.6336 0.0611 0.7639 1 0

0.9018 0.0782 0.1053 0.1059 -0.6336 0.0616 0.7639 1 0

0.9018 0.0782 0.1053 0.1059 -0.6336 0.0616 0.7639 1 0

0.9099 0.0837 0.1106 0.1055 ,-0.6335 0.0621 0.7640 1 0

AX, AY, and AZ are the 3-axis normalized acceleration values in g. Q0, Q1, Q2, and Q3 are

the normalized quaternion values. LButton and RButton represent the status of the module’s

buttons: “1” is pressed, “0” is not pressed.

3D MagIC User Manual – June 2010 Page 15 of 25

7 Sample Code

7.1 FusionGamePad.cpp

The FusionGamePad.cpp defines the entry point for the console application. The sample

code below demonstrates how to communicate with PNI's SpacePoint. It is provided "as is"

without any express or implied warranty.

#include "stdafx.h"
#include <windows.h>
#include "UsbHidApi.h"
#include <math.h>
#include <iostream>

using namespace std;

const int DATALEN = 15;

void displayindata(unsigned char indata[DATALEN],int Nbytes){
 int i, byteindex = 1;
 int rawaxes[14];
 float acc_scaled[3];
 float q_scaled[4];
 int buttons[2];

 // Parse indata
 for (i = 0; i < 7; i++)
 {
 rawaxes[i] = (int)indata[byteindex] +
256*(int)indata[byteindex+1];
 byteindex += 2;
 }
 buttons[0] = indata[byteindex]&1;
 buttons[1] = (indata[byteindex]>>1)&1;
 rawaxes[7] = (indata[byteindex]>>4)&0xf;

 //16 bit raw values centered at 32768
 //acc_scaled = 6*(acc_received - 32768)/32768;
 for(i=0;i<3;i++)
 acc_scaled[i] = 6.0f* (rawaxes[i]-32768) / 32768.0f;
 printf("%7.4f,%7.4f,%7.4f,",acc_scaled[0],acc_scaled[1],acc_scaled[2]);

 //16 bit raw values centered at 32768
 //q_scaled = 3.0518e-005*(qraw - 32768)
 for(i=0;i<4;i++)
 q_scaled[i] = 3.0518e-005f*(rawaxes[3+i]-32768);

 printf("%7.4f,%7.4f,%7.4f,%7.4f,",q_scaled[0],q_scaled[1],q_scaled[2],q
_scaled[3]);
 printf(" %1i,\t%1i\n",buttons[0],buttons[1]);
}

PNI Sensor Corporation DOC #1015481 r01

SpacePoint Fusion User Manual –June 2010 Page 16 of 25

int main(int argc, char* argv[])
{
 int connected = 0;
 int sample = 0;
 int mode = 0;
 int interfaceid = 0;
 int Nbytes = 0;
 int Nsamples = 10;
 int VID = 0x20ff;
 int PID = 0x0100;
 unsigned char indata[DATALEN];

 printf("\nPNI Corp, Fusion Game Pad data logger V3.00\n");
 if((argc != 2)&&(argc != 4)){
 cout << "\nusage: FusionGamePad Nsamples <VID:8447=0x20ff>
<PID:256=0x0100>\n" << endl;
 }
 else{
 Nsamples = atoi(argv[1]);
 if(argc>2){
 VID = atoi(argv[2]);
 PID = atoi(argv[3]);
 }
 //cout << VID << "\t" << PID << endl;
 }

 SetInterface(1);
 printf("\n AX, AY, AZ, Q0, Q1, Q2, Q3,
LButton, RButton\n");

 if(connected = Open(VID,PID,NULL,NULL,NULL,1)){
 //printf("Connected\n");
 sample = 0;

 while(connected){
 if(sample < Nsamples){
 if(Nbytes = Read(indata)>0){
 displayindata(indata,Nbytes);
 sample++;
 }
 }
 else{
 CloseRead();
 connected = 0;
 }
 }
 }

 return 0;
}

3D MagIC User Manual – June 2010 Page 17 of 25

7.2 UsbHidApi.h

This DLL provides the client application an easy method for accessing an HID device via

USB link. The acts of reading from and writing to a USB device under Windows are

significantly different and more involved than for other communication devices, such as

serial comm ports. For this reason, PNI has encapsulated the complexity of the interface

within a DLL. This DLL provides all the required functions for accessing the device, while

hiding the details of the implementation.

The USB link is implemented as a Human Interface Device (HID) class function. As such,

the DLL is dependent on the following Windows drivers:

• hidclass.sys

• hidparse.sys

• hidusb.sys

In addition to being USB-compliant, the host PC should have the latest versions of the

drivers listed above.

The module was built using Microsoft Visual C++, 6.0 as a Win32, non-MFC DLL. Since

there is no dependence on the Microsoft Foundation Class (MFC), there is no need to copy

additional MFC DLLs to your Windows system folder. Also, no dependence on MFC means

the size of the DLL itself is minimal. (Although the DLL does not internally use the MFC,

the client application is not restricted. Exported functions in the DLL may be called by either

MFC or non-MFC applications.)

The client application may link implicitly or explicitly with the DLL. In explicit linking, the

client application makes function calls to explicitly load and unload the DLL's exported

functions. In implicit linking, the application links to an import library (UsbHidApi.lib) and

makes function calls just as if the functions were contained within the executable.

//
#ifndef __USBHID_API_H__
#define __USBHID_API_H__
#define USBHIDAPI_DLL_NAME "UsbHidApi.dll"

// The following ifdef block is the standard way of creating macros which
make exporting
// from a DLL simpler. All files within this DLL are compiled with the
USBHIDAPI_EXPORTS
// symbol defined on the command line. this symbol should not be defined
on any project
// that uses this DLL. This way any other project whose source files
include this file see
// USBHIDAPI_API functions as being imported from a DLL, whereas this DLL
sees symbols

PNI Sensor Corporation DOC #1015481 r01

SpacePoint Fusion User Manual –June 2010 Page 18 of 25

// defined with this macro as being exported.
#ifdef USBHIDAPI_EXPORTS
#define USBHIDAPI_API __declspec(dllexport)
#else
#define USBHIDAPI_API __declspec(dllimport)
#endif

 // This structure defines an entry in a device list
 // The list describes the parameters associated with
 // a device. It is mainly used with the GetList()
 // function.
 // modified 3/12/07
 typedef struct {
 char DeviceName[50]; // Device name
 char Manufacturer[50]; // Manufacturer
 char SerialNumber[20]; // Serial number
 unsigned int VendorID; // Vendor ID
 unsigned int ProductID; // Product ID
 int InputReportLen; // Length of HID input report (bytes)
 int OutputReportLen; // Length of HID output report (bytes)
 int Interface; // Interface
 int Collection; // Collection
 } mdeviceList;

 // This structure was created to ease VB access. It alleviates
 // some of the issues associated with inter-compiler data handling
 // such as alignment.
 // added 3/8/05
#pragma pack (push, 4)
 typedef struct {
 char *DeviceName; // Device name
 char *Manufacturer; // Manufacturer
 char *SerialNumber; // Serial number
 unsigned int VendorID; // Vendor ID
 unsigned int ProductID; // Product ID
 int InputReportLen; // Length of HID input report (bytes)
 int OutputReportLen; // Length of HID output report (bytes)
 int Interface; // Interface
 int Collection; // Collection
 } mdeviceList2;
#pragma pack (pop,4)

//
////////////////
 // These declarations define special non-member functions for VB
access.

//
////////////////

 extern "C" int _stdcall SetInstance(int instance); // Set
object instance

 extern "C" int _stdcall GetLibVersion(char *buf); // Get DLL
version string

3D MagIC User Manual – June 2010 Page 19 of 25

 extern "C" void _stdcall ShowVersion(void); // Show a
message box containing version

 extern "C" int _stdcall Read(void *pBuf); // Read the
from the HID device.

 extern "C" void _stdcall CloseRead(void); // Close
the read pipe

 extern "C" void _stdcall CloseWrite(void); // Close
the write pipe

 extern "C" int _stdcall Write(void *pBuf); // Write to
the HID device

 extern "C" void _stdcall GetReportLengths (int *input_len, // Pointer
for storing input length
 int *output_len); //
Pointer for storing output length

 extern "C" void _stdcall SetCollection(int); //
Specifies a collection (call prior to Open()) (0xffff = unspecified)

 extern "C" int _stdcall GetCollection(); //
Retrieves collection setting (0xffff = unspecified)

 extern "C" void _stdcall SetInterface(int); //
Specifies an interface (call prior to Open()) (0xffff = unspecified)

 extern "C" int _stdcall GetInterface(); // Rerieves
interface setting (0xffff = unspecified)

 extern "C" int _stdcall Open (unsigned int VendorID, // Vendor
ID to search (0xffff if unused)
 unsigned int ProductID, //
Product ID to search (0xffff if unused)
 char *Manufacturer, //
Manufacturer (NULL if unused)
 char *SerialNum, //
Serial number to search (0xffff if unused)
 char *DeviceName, // Device
name to search (NULL if unused)
 int bAsync); // Set
TRUE for non-blocking read requests.

 extern "C" int _stdcall GetList(unsigned int VendorID, // Vendor
ID to search (0xffff if unused)
 unsigned int ProductID, //
Product ID to search (0xffff if unused)
 char *Manufacturer, //
Manufacturer (NULL if unused)
 char *SerialNum, // Serial
number to search (NULL if unused)
 char *DeviceName, // Device
name to search (NULL if unused)

PNI Sensor Corporation DOC #1015481 r01

SpacePoint Fusion User Manual –June 2010 Page 20 of 25

 mdeviceList2 *pList, //
Caller's array for storing matching device(s)
 int nMaxDevices); // Size
of the caller's array list (no.entries)

// This class is exported from the UsbHidApi.dll
class USBHIDAPI_API CUsbHidApi {
public:

 // The serial number for the open device
 char m_SerialNumber[20];

 // These variables define the required lengths for reading and writing
 // the device.
 unsigned short m_ReadSize;
 unsigned short m_WriteSize;

 // These variables define optional interface and/or collection values
search purposes
 // added 3/12/07
 int m_Interface;
 int m_Collection;

 // Constructor
 CUsbHidApi(void);

 // Destructor
 ~CUsbHidApi(void);

 // Get list of devices and their availability. Caller must supply a
 // pointer to a buffer that will hold the list of structure entries.
 // Must also supply an integer representing maximum no. of entries
 // his buffer can hold. Returns total number stored.
 int GetList(unsigned int VendorID, // Vendor ID to search (0xffff
if unused)
 unsigned int ProductID, // Product ID to search (0xffff
if unused)
 char *Manufacturer, // Manufacturer
(NULL if unused)
 char *SerialNum, // Serial number to search
(NULL if unused)
 char *DeviceName, // Device name to search
(NULL if unused)
 mdeviceList *pList, // Caller's array for storing
matching device(s)
 int nMaxDevices); // Size of the caller's array
list (no.entries)

 // Opens a USB comm link to a HID device. Returns non-zero
 // on success or 0 on failure. (Individual read and write handles
 // are maintained internally.) If the caller desires to open
 // a specific HID device, he must provide one or more
 // specifiers (i.e., vendor ID, product ID, serial number,
 // or device name. If a successful open occurs, the function
 // returns TRUE. It returns FALSE otherwise.
 int Open (unsigned int VendorID, // Vendor ID to search
(0xffff if unused)

3D MagIC User Manual – June 2010 Page 21 of 25

 unsigned int ProductID, // Product ID to search
(0xffff if unused)
 char *Manufacturer, // Manufacturer (NULL
if unused)
 char *SerialNum, // Serial number to search
(0xffff if unused)
 char *DeviceName, // Device name to search (NULL
if unused)
 int bAsync); // Set TRUE for non-
blocking read requests.

 // Sets an optional device interface ID (e.g., 0) for search purposes.
 // This method is used to pin-point a device to be opened.
 // Use this method when a USB device has multiple interfaces.
 // Must be called prior to calling the Open() method.
 // added 3/12/07
 void SetInterface (int iface); // Interface (-1 if unused)

 // Returns the device interface ID that was set using SetInterface().
 // added 3/12/07
 int GetInterface (void);

 // Sets an optional collection ID (e.g., 0) for search purposes.
 // This method is used to pin-point a device to be opened.
 // Use this method when a USB device has multiple collections.
 // Must be called prior to calling the Open() method.
 // added 3/12/07
 void SetCollection (int col); // Collection (-1 if unused)

 // Returns the collection ID that was set using SetCollection().
 // added 3/12/07
 int GetCollection (void);

 // Close the read pipe
 void CloseRead(void);

 // Close the write pipe
 void CloseWrite(void);

 // Read the from the HID device. The number of bytes read is
 // determined by the input report length specified by the device.
 // Depending on how the device was opened, the call may perform
 // blocking or non-blocking reads. Refer to Open() for details.
 // On success, the call returns the number of bytes actually read.
 // A negative return value indicates an error (most likely means
 // the USB cable has been disconnected or device was powered off).
 // (Note: The first byte location is usually a report ID
 // [typically = 0]. The caller must account for this value in
 // the read buffer.)
 int Read(void *pBuf); // Buffer for storing bytes

 // Write a report to the HID device. The number of bytes to
 // write depend on the output report length specified by the
 // device. Returns number of bytes actually written. A negative
 // return value indicates an error (most likely means the
 // USB cable has been disconnected or device was powered off).
 // (Note: The first byte location is usually a report ID

PNI Sensor Corporation DOC #1015481 r01

SpacePoint Fusion User Manual –June 2010 Page 22 of 25

 // [typically = 0]. The caller must ensure this value is
 // prepended to the buffer.)
 int Write(void *pBuf); // Buffer containing bytes to
write

 // This function retrieves the lengths of input- and output-reports
 // for the device. These values determine the I/O lengths for the
 // Read() and Write() functions. The device must be opened prior
 // to calling this routine. Alternatively, you can just use m_ReadSize
 // and m_WriteSize.
 void GetReportLengths (int *input_len, // Pointer for storing input
length
 int *output_len); // Pointer for storing output
length

 // This function retrieves the current library version and populates a
string
 int GetLibVersion(LPSTR buf);

 // This function displays the current library version in a standard
message box
 void ShowVersion(void);

// Private (internal) declarations
private:

 // This function reads an input report from an open device.
 // The call will block until any number of bytes is retrieved,
 // up to the maximum of nBytesToRead. On successful completion,
 // the function returns an integer representing the
 // number of bytes read (usually the input report length
 // defined by the device). (Note: The read buffer must
 // be large enough to accommodate the report length. This
 // number is located in m_ReadSize.)
 int ReadSync(void *pBuf); // Buffer for storing bytes

 // Read input report from an open device. If no data
 // is currently available, the call will not block,
 // but will return 0. On successful completion,
 // the function returns an integer representing the
 // number of bytes read (usually the input report length
 // defined by the device). The function returns -1 if
 // disconnect is detected. (Note: The read buffer must
 // be large enough to accommodate the report length. This
 // number is located in m_ReadSize.)
 int ReadAsync(void *pBuf); // Buffer for storing bytes

 // Read/write handles. While a single handle could suffice for
 // both operations, 2 handles have been created to allow the client
 // application to utilize separate threads for reading and writing.
 HANDLE ReadHandle;
 HANDLE WriteHandle;
};

#endif // #ifndef __USBHID_API_H__

3D MagIC User Manual – June 2010 Page 23 of 25

7.3 Quaternion to Euler Angles – C Code

Often it is desirable to have outputs in Euler angles (yaw, pitch, and roll), rather than as

quaternions. The sample C Code below provides an example for how to do this conversion.

#include "stdio.h"
#include "stdlib.h"
#include "math.h"

#define PI 3.14159265

/*
This routine converts the q0 through q4 from the SpacePoint
Fusion to Yaw, Pitch, and Roll.
*/

struct ypr
{
 float yaw;
 float pitch;
 float roll;
};

//Inputs: Pointer to quaternion array q from the device
//Outputs: Struct ypr containing Yaw, Pitch, and Roll results.
struct ypr q2ypr(float * q)
{
 struct ypr result;
 float sqx, sqy, sqz, sqw;

 sqx = q[0]*q[0];
 sqy = q[1]*q[1];
 sqz = q[2]*q[2];
 sqw = q[3]*q[3];

 result.yaw = (180/PI)*atan2(2.0 * (q[0]*q[1] + q[2]*q[3]),(sqx - sqy -
sqz + sqw));

 result.pitch = (180/PI)*asin(-2.0 * (q[0]*q[2] - q[1]*q[3]));

 result.roll = (180/PI)*atan2(2.0 * (q[1]*q[2] + q[0]*q[3]),(-sqx - sqy
+ sqz + sqw));

 return result;
}

int main(void)
{
 //
 //4 elements for the quaternions read from the SpacePoint Fusion
 float q[3];
 //
 //Struct for the result
 struct ypr result;

PNI Sensor Corporation DOC #1015481 r01

SpacePoint Fusion User Manual –June 2010 Page 24 of 25

 //
 //example input
 q[0] = -0.0055220;
 q[1] = 0.0278969;
 q[2] = 0.9983865;
 q[3] = 0.0491494;

 result = q2ypr(q);

 //example result
 //Yaw: 174.385117
 //Pitch: 0.788897
 //Roll: 3.162396
 printf("Yaw:\t%f\r\n", result.yaw);
 printf("Pitch:\t%f\r\n", result.pitch);
 printf("Roll:\t%f\r\n", result.roll);

 return 0;
}

7.4 Quaternion to Euler Angles – Matlab

Often it is desirable to have outputs in Euler angles (yaw, pitch, and roll), rather than as

quaternions. The sample Matlab code provides an example for how to do this conversion.

function [y,p,r] = q2ypr(q)
% Q2DCM(Q) converts a quaternion into heading(y), pitch(p) and roll(r)
% Inputs: q1 through q4 from SpacePoint Fusion (in that order)
% Ouputs: Y,P,R

%example
if nargin<1
 q(1) = -0.0055220;
 q(2) = 0.0278969;
 q(3) = 0.9983865;
 q(4) = 0.0491494;
end

 sqx = q(1)*q(1);
 sqy = q(2)*q(2);
 sqz = q(3)*q(3);
 sqw = q(4)*q(4);

%example result
%
%y =
% 1.743851191837815e+002
%p =
% 0.788896841796396
%r =
% 3.162395846657551

3D MagIC User Manual – June 2010 Page 25 of 25

 y = (180/pi)*atan2(2.0 * (q(1)*q(2) + q(3)*q(4)),(sqx - sqy - sqz +
sqw));

 p = (180/pi)*asin(-2.0 * (q(1)*q(3) - q(2)*q(4)));

 r = (180/pi)*atan2(2.0 * (q(2)*q(3) + q(1)*q(4)),(-sqx - sqy + sqz +
sqw));

end

