§oNI

SENSOR CORPORATION

SpacePoint Fusion Game Pad Application Note

Introduction

PNI’'s SpacePoint Fusion module streams raw accelerometer, gyroscope, and
magnetometer data, as well as calculated orientation information represented as
guaternions, through a USB/HID interface. No custom drivers are needed.

This application note describes the data streaming from the SpacePoint Fusion module,
explains how to use the SpacePoint Game Pad application to display or log sensor and
calculated quaternion data, and provides sample source code for the SpacePoint Game Pad
application. You may want to skip ahead to the “Running SpacePoint Game Pad” section if
you simply want to begin logging SpacePoint Fusion data.

Interpreting SpacePoint Fusion’s Streaming Output

SpacePoint Fusion is a USB composite device with two interfaces. The first interface
contains endpoint 0x81 and the second interface contains endpoint 0x82. HID Pointer
Report is sent on endpoint 0x81, and HID Game Pad Report is sent on endpoint 0x82. The
HID Pointer Report includes 20 bytes of data, and the Game Pad Report includes 15 bytes
of data. For additional information regarding USB, refer to the USB 2.0 specification and the
USB HID specification.

Output data on endpoint 0x81 includes raw sensor data sampled on the magnetic sensors,
accelerometers and gyroscopes. Output on endpoint 0x82 includes scaled acceleration
values converted into g’s and orientation values given as quaternions. These are calculated
from the sensor data using PNI’s proprietary Spacepoint algorithm, which is embedded in
the Spacepoint firmware. Button status and PNI reserved data fields also are reported at
both endpoints. The data is updated and output at 125 Hz, except for the quaternions and
scaled acceleration values which are updated at 62.5 Hz and output at 125 Hz. All data is in
hex format, and data for each sensor axis is 2 bytes in little Endian format.

: 400-883-3391 http://www.sensorexpert.com.cn

http://www.pnicorp.com/support/downloads/spacepoint-fusion
http://www.usb.org/developers/docs/
http://www.usb.org/developers/hidpage/

§oNI

SENSOR CORPORATION

The 20 bytes of data on endpoint 0x81 is presented in little Endian format as follows:

Byte | Description

Mag X Lower
Mag X Upper
Mag Y Lower
Mag Y Upper
Mag Z Lower
Mag Z Upper
Accel X Lower
Accel X Upper
Accel Y Lower
Accel Y Upper
10 | Accel Z Lower
11 | Accel Z Upper
12 | Gyro Roll Lower
13 | Gyro Roll Upper
14 | Gyro Pitch Lower
15 | Gyro Pitch Upper
16 | Gyro Yaw Lower
17 | Gyro Yaw Upper
18 | Reserved/Buttons
19 | PNI Reserved

O O[NNI~ WINF|IO

The status of the SpacePoint Fusion’s left and right buttons are packed into the 18" byte.
The least significant bit (LSB) is the left button and the second LSB is the right button.

The SpacePoint Fusion adheres to the North-East Down (NED) orientation system.
A sample data string is given below, along with the conversion to decimal.
Endpoint Ox81 data stream: 0181fd80fa805780ae801e81fd7d007e067ee065

Raw |01 |81 |fd [80 [fa [80 |57 |80 [ae [80 [1e |81 [fd |7d [00 | 7e |06 | 7 | e0 65
Res/ PNI
Desc | Mag X Mag Y Mag Z Accel X | Accel Y | AccelZ | GyroR | GyroP | GyroY BO/B1 | Res
Hex | 8101 80fd 80fa 8057 80ae 8lle 7dfd 7e00 7e06 e0 65
Dec | 33025 33021 33018 32855 32942 33054 32253 32256 32262 | - -

: 400-883-3391 http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

The 15 bytes of data on endpoint 0x82 is presented in little Endian format as follows:

Byte | Description

0 Scaled Accel X Lower

1 Scaled Accel X Upper

2 Scaled Accel Y Lower

3 Scaled Accel Y Upper

4 Scaled Accel Z Lower

5 Scaled Accel Z Upper

6 Quaternion [0] Lower

7 Quaternion [0] Upper

8 Quaternion [1] Lower

9 Quaternion [1] Upper

10 Quaternion [2] Lower

11 Quaternion [2] Upper

12 Quaternion [3] Lower (scalar)
13 Quaternion [3] Upper (scalar)
14 Reserved/Button

The status of the SpacePoint Fusion’s left and right buttons are packed into the 14™ byte.
The least significant bit (LSB) is the left button and the second LSB is the right button.

Endpoint 0x82 data: 2f85238a5b90ac9f496a126alef8d0

Raw 2f [85[23[8a[5b |00 |ac|of [49 [6a|12]6a]1e |8 |do
Scaled Scaled | Scaled Res/

Desc AccelX | AccelY | Accelz | Q01 | all] a2l |al8l | goe1

Hex 852f 8a23 905b 9fac 6a49 6al2 f81e do

Dec 34095 | 35363 | 36955 | 40876 | 27209 | 27154 | 63518 | -

Offset 32768 | 32768 | 32768 | 32768 | 32768 | 32768 | 32768 | -

Counts | 1327 2505 | 4187 |8108 |-5559 |-5614 | 30750 |-

Scale

oo 6 6 6 1 1 1 1 -

gca'ed 7962 | 15570 | 25122 |8108 |-5550 | -5614 | 30750 | -

ounts

';';’Cr{‘;";" 32768 | 32768 | 32768 | 32768 | 32768 | 32768 | 32768 |-

Value 0.2430 | 0.4752 | 0.7667 | 0.2474 | -0.1697 | -0.1713 | 0.9384 | -
Where:

“Offset” the middle of the sensor’s total range, or 32768.

“Counts” “Dec” - “Offset”

“Scale Factor”
“Scaled Counts”
“Normal. Factor”

“Value”

the ‘g’ rating of the accelerometer

“Counts” * "Scale Factor”

the normalization factor for the sensor, or 32768
“Scaled Counts” / “Normalization Factor”

1 400-883-3391

http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

Overview of SpacePoint Game Pad

The SpacePoint Game Pad zip file includes a complete Visual C++ project, with a
functioning build in the “Release” folder. (The “Release” folder is created when the zip file is
extracted.) The executable file in the “Release” folder can be used to display or log sensor
or calculated data from the module. The overall project folder can act as a guide for
generating new programs that utilize the SpacePoint Fusion. Note that SpacePoint Game
Pad was developed on a Windows XP platform.

To view the source code in native format, Visual C++ Express can be downloaded at
www.microsoft.com/express/vc/. Conversely, much of the source code is provided in hard-
copy at the end of this document.

The key resources and source code in this project are:

SpacePointGamePad.cpp
UsbHidApi.h
UsbHidApi.dll
UsbHidApi.lib

Solution Explorer - Spac x|
- l
= | A [Solution Explorer - Spacepainti
[d Salution 'SpacepointGamePad' (1 pro
- 35 acepointGamePad
= L7 Header Files
] stdafich
- |h] targetver.h
o [n] UshHidapi.h
Bl L= Resource Files
e % UsbHidapilib
Bl L% Source Files
¢ SpacepointGamePad.cpop
“ &) stdafk.cpp
----- 5] ReadMe.tt

< | | .

Visual C++ Tree

SpacePointGamePad.cpp is the main source code to read sensor data from the SpacePoint
Fusion USB interface. This data can be output to the display or logged to a text file. Hard-
copy source code is provided at the end of this document.

UsbHidApi.h includes the UsbHidApi library functions. Hard-copy source code is provided at
the end of this document.

: 400-883-3391 http://www.sensorexpert.com.cn

http://www.pnicorp.com/support/downloads/spacepoint-fusion
http://www.microsoft.com/express/vc/

Running SpacePoint Game Pad

§oNI

SENSOR CORPORATION

Instructions for running SpacePoint Game Pad follow. Note it is important to ensure the
SpacePoint Fusion module is fully at rest for 3 seconds when plugging it into the computer’s

USB port, as the gyros initialize during this time.
1. Open a Command window by running cmd

Click on “Start”, then “Run”

‘ ' F4 Administrator

/% Internet d_} My Documents
Inkernet Explorer

-) g My Recent Documents #

sl- E-mail
d Outook Express ,,J
, Pictures
-+, | Microsoft Yisual C++ : i
21 2008 Express Edition | Music

g._' My Computer
Q Uity

g My Metwork Places
Micrasaft Yisual C# 2008
— E Editi
*press Eation E’ Control Panel

Motepad Set Program Access and
B @ Defaults
% Printers and F
Remote Desktop Connection | L) FTINHERs and Faxes

. :isual tStuclio 2008 Command g_)) Help and Suppart
ramp

ﬂ‘s’ LUSE Hid Demo

All Programs D

omputer

velopment, .

This will open the Run window. Type “cmd” then press <enter>.

= Type the name of a program, folder, document, ar
Internet resource, and Windows will open it For wou,

Cipen: | crmd

¥

[Ok] [Cancel] [Erowse. .

-

: 400-883-3391

http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

This will open the Command window. If you are unfamiliar with commands available
for the Command window, see http://commandwindows.com/command3.htm for an
overview or http://technet.microsoft.com/en-us/library/bb490890.aspx for a more
complete list.

2. Inthe Command window, change the directory to the “Release” folder where
SpacepointGamePad.exe resides.

3. Run the executable file:
In the Command window (and in the “Release” directory) type the following:
SpacePointGamePad.exe [mode] [Nsample] [VID] [PIN]

Where [mode] is either “0” for sensor data or “1” for calculated date, [Nsample] is the
number of samples, [VID] is the vendor ID number, and [PID] is the product ID
number. The VID and PID are 8447 and 256, and actually can be left blank.
Example commands to obtain calculated data for 10 samples would be:

SpacePointGamePad.exe 1 10 8447 256
or
SpacePointGamePad.exe 1 10

This will display the results on the computer screen. To store the data to a log file
use the pipe command “>>” as in the example below:

SpacePointGamePad.exe 1 100 >> test.log

This will create a file named test.log with calculated orientation data from 100
samples, and this file will be saved in the “Release” folder. The data will not be
displayed as it is obtained. This data can be imported to a spreadsheet if desired.

Interpreting SpacePoint Game Pad Output

The displayed and logged outputs have the same format. The first line of output identifies
the program, the second line is the header line for the data, and subsequent lines are the
data. Example header and data lines are given below for the sensor data and for the
calculated data, as well as explanations for the data.

Note that this section deals with data presented on the display or in the log file. The first
section of this application note covers interpreting the USB/HID data streaming from the
SpacePoint Fusion module, which is manipulated by the VC++ program to generate the data
on the display or in the log file.

: 400-883-3391 http://www.sensorexpert.com.cn

http://commandwindows.com/command3.htm
http://technet.microsoft.com/en-us/library/bb490890.aspx

§oNI

SENSOR CORPORATION

Sample sensor data is as follows:

MagX | MagY | MagZ | AccX | AccY | AccZ | GyroR| GyroP| GyroY| Resl | Res2 | LButton| RButton
32785 | 33020 | 33445 | 32772 | 32766 | 33115 | 32240 | 32249 | 32242 | 1 211 0 0
32781 | 33017 | 33444 | 32772 | 32766 | 33114 | 32241 | 32250 | 32242 | 2 210 0 0
32779 | 33020 | 33445 | 32772 | 32766 | 33115 | 32240 | 32249 | 32243 | 3 208 0 0
32784 | 33016 | 33444 | 32772 | 32766 | 33115 | 32241 | 32250 | 32242 | 4 214 0 0
32780 | 33022 | 33445 | 32772 | 32766 | 33115 | 32240 | 32249 | 32243 | 5 222 0 0

All sensor outputs are 16-bit integers centered at 32768, and are representative of the raw
sensor output. Resl and Res2 are PNI reserved fields. LButton and RButton represent the
status of the module’s buttons: “1” is pressed, “0” is not pressed.

Sample calculated data is as follows:

AX AY AZ Q0 o1 02 03 LButton| RButton
0.9126 | 0.0837 | 0.1106 | 0.1061 | -0.6336| 0.0611 | 0.7639 | 1 0

0.9126 | 0.0837 | 0.1106 | 0.1061 | -0.6336| 0.0611 | 0.7639
0.9018 | 0.0782 | 0.1053 | 0.1059 | -0.6336| 0.0616 | 0.7639
0.9018 | 0.0782 | 0.1053 | 0.1059 | -0.6336| 0.0616 | 0.7639
0.9099 | 0.0837 | 0.1106 | 0.1055 | ,-0.6335 0.0621 | 0.7640

I
o| ol ol ©

AX/Y/Z is the 3-axis normalized acceleration in g. Q0/1/2/3 are the normalized quaternion
values. LButton and RButton represent the status of the module’s buttons: “1” is pressed,
“0” is not pressed.

Sample Code: SpacePointGamePad.cpp

// SpacePointGamePad.cpp : Defines the entry point for the console
application.

// This sample code is to demostrate how to communicate with PNI's
SpacePoint.

// It is provided "as is" without express or implied warranty.

#include "stdafx.h"
#include <windows.h>
#include "UsbHidApi.h"
#include <math.h>
#include <iostream>

using namespace std;

: 400-883-3391 http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

void displayindata (unsigned char indata[21],int interfaceid,int Nbytes) {
int i, byteindex = 1;
int rawaxes[11l]; //raw has 9 axes, buttons, PNI byte
float acc scaled[3];
float g scaled[4];
int buttons([2];

if (interfaceid == 0) {
// Parse indata
for (1 = 0; 1 < 9; i++)
{
rawaxes[i] = (int)indata[byteindex] +
256* (int) indata[byteindex+1];
byteindex += 2;
}

buttons[0] = indatal[byteindex]é&l;
buttons[1l] = (indatal[byteindex]>>1)&1;
rawaxes[9] = (indatal[byteindex]>>4)&0xf;
byteindex++;

rawaxes[10] = indata[byteindex];

for (1=0;1<9;i++)
printf ("$51i\t", rawaxes([i]);

for (i=9;i<11;i++)
printf ("$31i\t", rawaxes[i]);

printf ("$1i\t%1i\n",buttons[0],buttons[1]);
}

if (interfaceid == 1) {
// Parse indata
for (1 = 0; 1 < 7; i++)
{
rawaxes[i] = (int)indatal[byteindex] +
256* (int) indata[byteindex+1];
byteindex += 2;
}

buttons[0] = indata[byteindex]é&l;
buttons[1l] = (indata[byteindex]>>1)&1;
rawaxes|[7] = (indata[byteindex]>>4)&0x£f;

//16 bit raw values centered at 32768
//acc_scaled = 6* (acc_received - 32768)/32768;
for (i=0;1i<3;i++)
acc_scaled[i] = 6.0f* (rawaxes[1]-32768) / 32768.0f;

printf ("%7.4f,%7.4£,%7.4f,",acc_scaled[0],acc_scaled[l],acc_scaled[2]);

//16 bit raw values centered at 32768
//q scaled = 3.0518e-005* (qraw - 32768)
for (i=0;1i<4;i++)
g_scaled[i] = 3.0518e-005f* (rawaxes[3+1]-32768);

: 400-883-3391 http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

printf ("%7.4f,%7.4£,%7.4£,%7.4£,",q scaled[0],q scaled[l],q scaled[2],g
_scaled[3]);
//printf ("\n");
printf (" $11i,\t%1i\n",buttons[0],buttons[1]);
//printf(".");

int main(int argc, char* argvl[])
{

int connected = 0;

int sample = 0;

int mode = 0;

int interfaceid = 0;

int Nbytes = 0;

int Nsamples = 10;

int VID = 0x20ff;

int PID 0x0100;

unsigned char indata[21];

printf ("PNI Corp, SpacePoint Game Pad data logger V1.00\n");
if((argc !'= 3)&&(argc !'= 5)){
cout << "usage: SpacePointGamePad Mode (0O=raw, l=quaternion)
Nsamples <VID:8447=0x20ff> <PID:256=0x0100>" << endl;
}

else{

interfaceid = atoi(argv[l]);

Nsamples = atoi(argv[2]);
if (argc>3) {
VID = atoi(argvI[3]);

PID = atoi(argv[4]);
}
//cout << VID << "\t" << PID << endl;

//printf ("Opening SpacePoint, Interface %i\n",interfaceid);
//Interface 0 = raw, Interface 1 = Kalman filter output
if (interfaceid != 0)
SetInterface (interfaceid) ;
if (interfaceid == 0)
printf
("MagX\tMagY\tMagZ\tAccX\tAccY\tAccZ\tGyroR\tGyroP\tGyroY\tResl\tRes2\tLBu
tton\tRButton\n") ;
if (interfaceid == 1)
printf (" AX, AY, AZ, Qo0, Q1, Q2, Q3,
LButton, RButton\n");

if (connected = Open (VID,PID,NULL,NULL,NULL, 1)) {
//printf ("Connected\n") ;

sample = 0;

while (connected) {

1 400-883-3391 http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

if (sample < Nsamples) {
if (Nbytes = Read(indata)>0) {
displayindata (indata, interfaceid,Nbytes) ;
sample++;

}
else{

CloseRead () ;
connected = 0;

return 0;

Sample Code: UsbHidApi.h

/*k***********************/

/* */
/* File Name: UsbHidApi.h */
/* */
/* Description: */
/* */
/* This DLL provides a relatively simple method for accessing */
/* a USB HID device. The device must specify HID reports for */
/* transferring data. */
/* */
/* Client applications use the exported methods from the */
/* CUsbHidApi class to identify and access external */
/* HID device(s). A new instance of the class must */
/* be created for each device being accessed. */
/* */
/* */
/* Revision History: */
/* */
/* Name Ver Date Description */
/* — — —— */
/* KAD 1.10 05/30/03 1Initial version */
/* KAD 1.12 06/19/03 Corrected first-chance exception */
/* KAD 1.13 12/09/03 Corrected nag-screen bug */
/* KAD 1.14 02/19/05 Modified calling convention to stdcall */
/* instead of cdecl. */
/* (Project -> Settings -> C/C++ tab -> */
/* Category : Code Generation) */
/* KAD 1.15 03/05/05 Corrected a problem with the module */
/* definition file. */
/* KAD 1.16 03/06/05 Added structure & wrapper functions for */
/* Visual Basic access. Also added library */
/* deactivation after 30 days for shareware */
/* version. */

/* KAD 1.17 03/12/07 Added interface and collection capability.*/
/* KAD 1.18 08/28/07 Added pre-compile switch for compatibility*/
/* with ANSI C compilers like LabWindows/CVI.*/

1 400-883-3391 http://www.sensorexpert.com.cn

/*
/*
/*
/*

§oNI

SENSOR CORPORATION

KAD 1.18a 09/06/07 Removed ANSI C macro. Decided to use a */

separate header file for ANSI C use. */
KAD 1.18b 09/19/07 Changed period of registration reminder */
pop-ups from 10 minutes to 1 minute. */

/***/

//

#ifndef _ USBHID API H
#define _ USBHID API H

//
//
//
//
//
//
/7
/7
//
//
/7
/7
/7
//
//
/7
/7
/7

This DLL provides the client application an easy method for accessing
an HID device via USB link. The acts of reading and writing

a USB device under Windows are significantly different and more
involved than for other comm devices such as serial comm ports.

For this reason, it seemed necessary to encapsulate the complexity

of the interface within a DLL. This DLL provides all the required
functions for accessing the device, while hiding the details

of the implementation.

The USB link is implemented as a Human Interface Device (HID) class

function. As such, the DLL is dependent on the following Windows
drivers:
hidclass.sys hidparse.sys hidusb.sys

In addition to being USB-compliant, the host PC should have the
latest, versions of these drivers. (Initial development was done
using drivers from Windows 98, 2nd edition.)

The module was built using Microsoft Visual C++, 6.0 as a Win32,
non-MFC DLL. Since there is no dependence on the Microsoft
Foundation Class (MFC), there is no need to copy additional MFC
DLLs to your Windows system folder. Also, no dependence on MFC
means the size of the DLL itself is minimal. (Although the DLL
does not internally use the MFC, the client application is not
restricted. Exported functions in the DLL may be called by either
MFC or non-MFC applications.)

The client application may link implicitly or explicitly with the
DLL. 1In explicit linking, the client application makes function
calls to explicitly load and unload the DLL's exported functions.
In implicit linking, the application links to an import library
(UsbHidApi.lib) and makes function calls just as if the functions
were contained within the executable.

#define USBHIDAPI DLL NAME "UsbHidApi.dll"

//

The following ifdef block is the standard way of creating macros which

make exporting

//

from a DLL simpler. All files within this DLL are compiled with the

USBHIDAPI EXPORTS

//

symbol defined on the command line. this symbol should not be defined

on any project

1 400-883-3391 http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

// that uses this DLL. This way any other project whose source files
include this file see

// USBHIDAPI API functions as being imported from a DLL, whereas this DLL
sees symbols

// defined with this macro as being exported.

#ifdef USBHIDAPI EXPORTS

#define USBHIDAPI API _ declspec(dllexport)

#else

#define USBHIDAPI API declspec(dllimport)

fendif

// This structure defines an entry in a device list
// The list describes the parameters associated with
// a device. It is mainly used with the GetList ()
// function.

// modified 3/12/07

typedef struct {

char DeviceName [50] ; // Device name

char Manufacturer[50]; // Manufacturer

char SerialNumber[20]; // Serial number

unsigned int VendorID; // Vendor ID

unsigned int ProductID; // Product ID

int InputReportlen; // Length of HID input report (bytes)
int OutputReportLen; // Length of HID output report (bytes)
int Interface; // Interface

int Collection; // Collection

} mdevicelList;

// This structure was created to ease VB access. It alleviates
// some of the issues associated with inter-compiler data handling
// such as alignment.
// added 3/8/05
#pragma pack (push, 4)
typedef struct {

char *DeviceName; // Device name

char *Manufacturer; // Manufacturer

char *SerialNumber; // Serial number

unsigned int VendorID; // Vendor ID

unsigned int ProductID; // Product ID

int InputReportlLen; // Length of HID input report (bytes)
int OutputReportLen; // Length of HID output report (bytes)
int Interface; // Interface

int Collection; // Collection

} mdevicelList2;
#pragma pack (pop, 4)

L1177 707 7707777777777 7777777777777 7777777777777 777777777777777777777777777
/1717777777777

// These declarations define special non-member functions for VB
access.

LI 777777777 777
[177777077777777

1 400-883-3391 http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

extern "C" int stdcall SetInstance (int instance); // Set
object instance

extern "C" int stdcall GetLibVersion (char *buf); // Get DLL
version string

extern "C" void stdcall ShowVersion(void); // Show a
message box containing version

extern "C" int stdcall Read(void *pBuf); // Read the
from the HID device.

extern "C" void stdcall CloseRead(void); // Close
the read pipe

extern "C" void stdcall CloseWrite (void); // Close
the write pipe

extern "C" int stdcall Write(void *pBuf); // Write to
the HID device

extern "C" void _stdcall GetReportLengths (int *input len, // Pointer
for storing input length
int *output len); //
Pointer for storing output length

extern "C" void stdcall SetCollection (int); //
Specifies a collection (call prior to Open()) (Oxffff = unspecified)
extern "C" int stdcall GetCollection(); //

Retrieves collection setting (Oxffff = unspecified)

extern "C" void stdcall SetInterface (int); //
Specifies an interface (call prior to Open()) (Oxffff = unspecified)
extern "C" int stdcall GetInterface(); // Rerieves
interface setting (Oxffff = unspecified)
extern "C" int stdcall Open (unsigned int VendorlID, // Vendor
ID to search (Oxffff if unused)
unsigned int ProductID, //
Product ID to search (Oxffff if unused)
char *Manufacturer, //
Manufacturer (NULL if unused)
char *SerialNum, //
Serial number to search (0xffff if unused)
char *DeviceName, // Device
name to search (NULL if unused)
int bAsync) ; // Set

TRUE for non-blocking read requests.

extern "C" int stdcall GetList (unsigned int VendorID, // Vendor
ID to search (Oxffff if unused)

1 400-883-3391 http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

unsigned int ProductID, //
Product ID to search (Oxffff if unused)

char *Manufacturer, //
Manufacturer (NULL if unused)

char *SerialNum, // Serial
number to search (NULL if unused)

char *DeviceName, // Device
name to search (NULL if unused)

mdeviceList2 *pList, //
Caller's array for storing matching device(s)

int nMaxDevices); // Size

of the caller's array list (no.entries)

L1707 7077077777777 7777777 777777777777 77777777
117717 7777777777

// This class is exported from the UsbHidApi.dll

class USBHIDAPI API CUsbHidApi {

public:

// The serial number for the open device
char m SerialNumber[20];

// These variables define the required lengths for reading and writing
// the device.

unsigned short m ReadSize;

unsigned short m WriteSize;

// These variables define optional interface and/or collection values
search purposes

// added 3/12/07

int m Interface;

int m Collection;

// Constructor
CUsbHidApi (void) ;

// Destructor
~CUsbHidApi (void) ;

// Get list of devices and their availability. Caller must supply a

// pointer to a buffer that will hold the list of structure entries.

// Must also supply an integer representing maximum no. of entries

// his buffer can hold. Returns total number stored.

int GetList (unsigned int VendorID, // Vendor ID to search (Oxffff
if unused)

unsigned int ProductID, // Product ID to search (Oxffff
if unused)

char *Manufacturer, // Manufacturer
(NULL if unused)

char *SerialNum, // Serial number to search
(NULL if unused)

char *DeviceName, // Device name to search
(NULL if unused)

mdevicelList *pList, // Caller's array for storing

matching device (s)

1 400-883-3391 http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

int nMaxDevices); // Size of the caller's array
list (no.entries)

// Opens a USB comm link to a HID device. Returns non-zero

// on success or 0 on failure. (Individual read and write handles
// are maintained internally.) If the caller desires to open

// a specific HID device, he must provide one or more

// specifiers (i.e., vendor ID, product ID, serial number,

// or device name. If a successful open occurs, the function
// returns TRUE. It returns FALSE otherwise.
int Open (unsigned int VendorID, // Vendor ID to search
(Oxffff if unused)
unsigned int ProductID, // Product ID to search
(Oxffff if unused)
char *Manufacturer, // Manufacturer (NULL
if unused)
char *SerialNum, // Serial number to search
(Oxffff if unused)
char *DeviceName, // Device name to search (NULL
if unused)
int bAsync) ; // Set TRUE for non-

blocking read requests.

// Sets an optional device interface ID (e.g., 0) for search purposes.
// This method is used to pin-point a device to be opened.

// Use this method when a USB device has multiple interfaces.

// Must be called prior to calling the Open () method.

// added 3/12/07

voild SetInterface (int iface); // Interface (-1 if unused)

// Returns the device interface ID that was set using SetInterface().
// added 3/12/07
int GetInterface (void);

// Sets an optional collection ID (e.g., 0) for search purposes.
// This method is used to pin-point a device to be opened.

// Use this method when a USB device has multiple collections.

// Must be called prior to calling the Open() method.

// added 3/12/07

void SetCollection (int col); // Collection (-1 if unused)

// Returns the collection ID that was set using SetCollection().
// added 3/12/07
int GetCollection (void):;

// Close the read pipe
void CloseRead (void) ;

// Close the write pipe
void CloseWrite (void) ;

// Read the from the HID device. The number of bytes read is

// determined by the input report length specified by the device.
// Depending on how the device was opened, the call may perform

// blocking or non-blocking reads. Refer to Open() for details.
// On success, the call returns the number of bytes actually read.

1 400-883-3391 http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

// A negative return value indicates an error (most likely means
// the USB cable has been disconnected or device was powered off).
// (Note: The first byte location is usually a report ID

// [typically = 0]. The caller must account for this value in
// the read buffer.)
int Read(void *pBuf); // Buffer for storing bytes

// Write a report to the HID device. The number of bytes to

// write depend on the output report length specified by the

// device. Returns number of bytes actually written. A negative
// return value indicates an error (most likely means the

// USB cable has been disconnected or device was powered off).

// (Note: The first byte location is usually a report ID

// [typically = 0]. The caller must ensure this value is

// prepended to the buffer.)

int Write (void *pBuf); // Buffer containing bytes to
write

// This function retrieves the lengths of input- and output-reports

// for the device. These values determine the I/0 lengths for the

// Read() and Write() functions. The device must be opened prior

// to calling this routine. Alternatively, you can just use m ReadSize

// and m WriteSize.

void GetReportLengths (int *input len, // Pointer for storing input
length

int *output len); // Pointer for storing output

length

// This function retrieves the current library version and populates a
string
int GetLibVersion (LPSTR buf);

// This function displays the current library version in a standard
message box
volid ShowVersion (void);

// Private (internal) declarations
private:

// This function reads an input report from an open device.

// The call will block until any number of bytes is retrieved,

// up to the maximum of nBytesToRead. On successful completion,
// the function returns an integer representing the

// number of bytes read (usually the input report length

// defined by the device). (Note: The read buffer must

// be large enough to accommodate the report length. This

// number is located in m ReadSize.)

int ReadSync (void *pBuf) ; // Buffer for storing bytes

// Read input report from an open device. If no data

// 1is currently available, the call will not block,

// but will return O. On successful completion,

// the function returns an integer representing the

// number of bytes read (usually the input report length
// defined by the device). The function returns -1 if

1 400-883-3391 http://www.sensorexpert.com.cn

§oNI

SENSOR CORPORATION

// disconnect is detected. (Note: The read buffer must

// be large enough to accommodate the report length. This

// number is located in m ReadSize.)

int ReadAsync (void *pBuf) ; // Buffer for storing bytes

// Read/write handles. While a single handle could suffice for
// both operations, 2 handles have been created to allow the client
// application to utilize separate threads for reading and writing.
HANDLE ReadHandle;
HANDLE WriteHandle;

}i

#endif // #ifndef _ USBHID API H

E-mail: support@sinocomopto.com Tel: 400-883-3391
Web : www.sinocomopto.com Web : www.sensorexpert.com.ch
1165
1 A 401 705 66 C 1003 1004
(86)0755-83439588 (86)021-52527755 (86)010-62672430 (852)24208555

(86)0755-83433488 (86)021-52522211 (86)010-62672433 (852)24200055

