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Abstract

In 1873 Francis Galton had constructed a simple mechanical device where a ball is
dropped vertically through a harrow of pins that deflect the ball sideways as it falls.
Galton called the device a quincunx, although today it is usually referred to as a Gal-
ton board. Statisticians often employ (conceptually, if not physically) the quincunx to
illustrate random walks and the central limit theorem. In particular how a Binomial or
Gaussian distribution results from the accumulation of independent random events, that
is, the collisions in the case of the quincunx. But how valid is the assumption of “indepen-
dent random events” made by Galton and countless subsequent statisticians? This paper
presents evidence that this assumption is almost certainly not valid and that the quincunx
has the richer, more predictable qualities of a low-dimensional deterministic dynamical
system. To put this observation into a wider context, the result illustrates that statistical
modelling assumptions can obscure more informative dynamics. When such dynamical
models are employed they will yield better predictions and forecasts.

1 Introduction

In today’s terms Francis Galton (1822–1911) might be described as: explorer, geneticist, meteo-
rologist, statistician. One of his most significant works is the book Natural Inheritance (Galton,
1889), which, amongst other things, provides foundations for several important principles of
statistics. Galton was not a significant mathematician and used experiments and mechani-
cal devices to both illustrate principles and as tools to attain insights. The quincunx is such
a mechanical device and was first publicly demonstrated at the Royal Institute in February
1874 (Stigler, 1986). The device consists of two parallel, vertical planes, between which are
many horizontal rows of equally spaced pins, with alternate rows offset by half the pin spacing;
see figure 1. At the top is a funnel into which lead shot (small spherical balls of lead) is poured,
and at the bottom a row of compartments to collect the shot. In Galton’s own words (the
following quotes are from Natural Inheritance), when lead shot is dropped into the device it
“scampers deviously down through the pins in a curious and interesting way; each of them
darting a step to the right or left, as the case may be, every time it strikes a pin.”

One purpose of this device is to illustrate the “Law of dispersion”, or central limit theorem, in
that the “cascade [of shot] issuing from the funnel broadens as it descends,” and, at length, when
collected at the compartments at the base, approximates the Binomial or Normal distribution.
Galton explains this as follows:
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Figure 1: Schematic of Galton’s quincunx device.

The principle on which the action of the apparatus depends is, that a number of
small and independent accidents befall each shot in its career. In rare cases, a
long run of luck continues to favour the course of a particular shot towards either
outside place, but in the large majority of instances the number of accidents
that cause Deviation to the right, balance in a greater or less degree those that
cause Deviation to the left. Therefore most of the shot finds its way into the
compartments that are situated near a perpendicular line drawn from the outlet
of the funnel, and the Frequency with which shots stray to different distances
to the right or the left of that line diminishes in a much faster ratio than those
distances increase.

Many modern statisticians view the quincunx in a similar way, that is, they assume “inde-
pendent accidents”. The internet abounds with so called simulations of the quincunx that are
not simulations of the mechanical device, but simply simulations of a Binomial process, or ran-
dom walk. Some readers might, as we do, question the assumption of “independent accidents”
and view the mechanical device as a deterministic dynamical system.

In this article we consider whether a quincunx typically behaves the way Galton and many
modern statisticians appear to assume. We will model the quincunx as a deterministic dy-
namical system. One advantage we have over Galton is that it is now easier to construct a
plausible computer simulation than it is to construct a physical quincunx, which means we can
simulate quincunx with a variety of physical properties. Doing so we conclude that a quincunx
typically does not behave according to Galton’s view, that is, that path of the shot is not beset
by “independent accidents”.

We proceed by first constructing a model of a quincunx, using Galton’s original device as a
guide for our physical parameters. We then fold this model into a convenient three-dimensional
map, that is, a discrete-time deterministic dynamical system. This map, which we will call the
quincunx map, often has complex, apparently chaotic, dynamics with an extensive variety of
unstable periodic orbits. For some parameter values the map has a globally attracting stable
periodic orbit. (This fact alone begins to cast doubt on Galton’s view.) We do not make detailed
analysis of the dynamics and bifurcations of the quincunx map. Instead we numerically test
the statistical hypothesis that a quincunx device for typical parameter values approximates a
Binomial process, and find that it does not. To demonstrate this point we employ a straight-
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forward analysis of symbolic dynamics of the quincunx map. We find in most cases that the
distribution of observed symbols is not consistent with an independence assumption, and even
when the distribution is consistent, the symbol sequence is better modelled by a higher order
Markov process than a simple random walk.

2 Modelling the quincunx

We attempt to construct a plausible model of Galton’s quincunx device. We will state our
assumptions as we proceed, and indicate how the model might be improved. Numerical simu-
lations of the Galton board has previously arisen as models of percolation and transport phe-
nomena. Our simulation is similar to some earlier simulations of Galton boards and Lorentz
gases (Masliyah and Bridgewater, 1974; Hoover and Moran, 1992; Bruno et al., 2003), except we
design our model and select parameters to closely model the quincunx device Galton had con-
structed in 1873, which is now part of the Galton Collection at the University College London
Museum. Our model is based on Galton’s writings and photographs of the extant device.

In Galton’s description of his quincunx he states there is “about a quarter of an inch”
(≈ 0.5cm) between the back board and the front glass sheet. The lead shot Galton used
appears to be only slightly smaller than the gap between the planes. Hence, we ignore the
three-dimensional structure and consider dynamics in a two dimensional plane.

We assume that the pins of the quincunx harrow are arranged in horizontal rows with pins
equally spaced a distance H apart, rows spaced a distance V apart vertically, and every other
row offset horizontally by H/2. Each pin then has four neighbours, the five pins forming a cross
like the dots on the five face of a dice. This cross arrangement is called a quincunx, from which
Galton’s device derives its name. Galton appears to choose V/H =

√
3/2 so that adjacent pins

form equilateral triangles, and H around half an inch (≈ 1cm). Throughout the following we
use H = 1cm and V =

√
3/2cm.

We assume the lead shot is spherical and the pins are cylindrical, so that impact between a
shot and pin occurs when the centre of the shot is a distance R from the centre of a pin. Given
the above measurements R ≈ 0.25cm for Galton’s quincunx, but we will consider the range
0.2 ≤ R ≤ 0.3.

Modelling impacts is difficult and we choose the following simple physics assumptions. We
ignore rotational motion of the shot, assume instantaneous non-elastic impacts without skidding
that retard the shot in proportion to its impact velocity, and allow that if shot impacts the pin
with too little velocity it will stick to the pin then roll off without slipping. We also assume
there is no air resistance, or retarding from impacts with the vertical walls, and uniform vertical
gravitational acceleration g = 981cm/s2, so that in free flight between pins the centre of the
shot traces a parabolic curve,

(x(t), y(t)) = (x0 + u0t, y0 + v0t−
1

2
gt2), (1)

with instantaneous velocity

(u(t), v(t)) =
d

dt
(x(t), y(t)) = (u0, v0 − gt), (2)

where (x0, y0) is the initial position of the centre of the shot at t = 0 and (u0, v0) the initial
velocity. If a pin is situated at (p, q), then impact occurs when

(x(t)− p)2 + (y(t)− q)2 = R2, (3)

which we note is a quartic in t, and hence easily solved by closed formulae.
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The physics assumptions imply that when a shot impacts a stationary pin the rebound
velocity of the shot makes the same angle with the normal at the contact point as the incident
velocity. The velocity is reduced by a non-dimensional factor γ, called the coefficient of restitu-
tion. Hence, if t∗ is the time of impact, z = (x(t∗), y(t∗))T , w = (u(t∗), v(t∗))T , and the impact
occurs with the pin whose centre is at r = (p, q)T , then the rebound velocity is given by

γ

(
w − 2

(z − r)T w

(z − r)T (z − r)
(z − r)

)
. (4)

Non-elastic impact can result in the shot bouncing repeatedly on a pin with exponentially
decreasing velocity. We assume there is a threshold S = 10−3cm/s so that if the magnitude of
the rebound velocity is less than S, then the shot sticks to the pin, then rolls without slipping
until it separates. If θ0 is the angle from the horizontal through the centre of the pin (p, q)
to the sticking point (x(t∗), y(t∗)) = R(cos(θ0), sin(θ0)), then it can be shown (Speigel, 1967)
that if the shot rolls without slipping, then the point of separation occurs at the angle θs and
speed Vs given by

sin(θs) =
10

17
sin(θ0) and V 2

s =
10

17
gR sin(θ0). (5)

The separation velocity (us, vs) = Vs(sin(θs),− cos(θs)) being tangent to the pin at the final
point of contact (xs, ys) = R(cos(θs), sin(θs)).

An appropriate value of γ is difficult to determine without physical experiment. Masliyah
and Bridgewater (1974) used γ = 0.8 to avoid stick-and-roll motions in their simulations. Bruno
et al. (2003) performed physical experiments with polystyrene disks and in their numerical
simulations used γ = 0.8 following Masliyah and Bridgewater (1974). Our simple experiments
suggest small lead weights, perhaps similar to the lead shot Galton used, have significantly
lower values of γ, so our experiments consider the range 0.4 ≤ γ ≤ 0.8.

Numerical simulation with the above assumptions is straight forward for a finite set of pins
with centres (pi, qi). Iteration of the following two steps is a sufficient algorithm:

1. Given (x0, y0) and (u0, v0) compute the real zeros of the quartic polynomial (3) for (p, q) =
(pi, qi) for each i. Let t∗i be the smallest real and positive solution, setting t∗i = ∞ if no
real and positive zeros. If t∗i = ∞ for all i, then the shot has existed the harrow.

2. Let t∗ = mini t
∗
i . Compute the rebound velocity by (4) using (p, q) = (pi, qi) for which the

minimum t∗ occurs. If the magnitude of the rebound velocity exceeds S, then set (u0, v0)
to the rebound velocity and (x0, y0) = (x(t∗), y(t∗)) from (1). Otherwise, the shot sticks
and rolls, in which case use (5) to compute (x0, y0) = (xs, ys) and (u0, v0) = (us, vs).

In step 1 one could try to be more sophisticated about which pins a shot is likely to impact,
but numerical solution of quartic polynomials is routine.

Figure 2 shows a typical simulation computed numerically as above, where the curves show
the path of the centre of the shot and the circles are of radius R centred on the pins. The
parameters used in the computation of figure 2 were deliberately chosen to give what might
appear to be an approximately Binomial or Gaussian distribution of exit points from the harrow,
however, we will see this exit distribution is not typical, nor is the distribution approximately
Binomial or Gaussian on closer inspection. One might note from inspection of the paths that
this simulation is not well approximated by a sequence of independent left or right decisions,
for example, some shot fall through several levels of pins without striking any, while other shot
paths hop horizontally between pins at the same level.
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Figure 2: Fifteen simulated shot paths of a quincunx device with inter-pin spacing of H = 1cm
and V =

√
3/2cm, ball-pin radius of R = 0.26cm, and coefficient of restitution of γ = 0.49.

The circles represent the combined radius of ball and pin, the lines are the paths of the ball’s
centre of mass.

3 The quincunx map

To analyze the quincunx we do not need to consider a complete simulation of a harrow like
figure 2; the quincunx can be folded into a compact dynamical system.

Consider five pins arranged in a quincunx cross pattern, with the pins centred at (−H/2, 0),
(H/2, 0), (0,−V ), (−H/2, 2V ), (−H/2, 2V ), and a rectangular box with corners at the centres
of the four outer pins; see figure 3. The idea is to follow a shot through this box and if the shot
exits the box, then it is repositioned on the opposite boundary. This requires only a trivial
modification of the algorithm of the last section. Simply compute the times when x(t) = H/2,
x(t) = −H/2, y(t) = 0 and y(t) = −2V , and if any of these times occur before an impact with
any pin, then the shot exits the box and x(t) or y(t) is reset appropriately.

We can now define a three-dimensional discrete-time dynamical system as follows. The
state is (x, u, v), where |x| < H/2−R and v < 0, which is taken to be the initial state position
and velocity of a shot on the top boundary of the box (y = 0). Follow the shot, repositioning
when necessary, until it exits through the bottom of the box. The new state is taken from the
position and velocity at its exit. One needs to take care that the shot may exit upward through
the top of the box; in the following we reposition but do not consider the next exit from the
bottom as a state change, that is, a state change only occurs when the shot descends to the a
lower level.

We call the three-dimensional discrete-time dynamical system defined as above the quincunx
map.

4 Experiments

The quincunx map allows quick and compact analysis of a quincunx device. It can be verified
that for certain parameters values (for example, γ = 0.49 and R = 0.28cm) the quincunx map
has a globally attracting stable orbit of period one, which has a shot path that passes through
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the side wall of the box once for each iteration of the map, similar to that shown in figure 3(a).
In such a quincunx device every shot would eventually be moving either to the left or right at
a constant rate.

(a) (b)
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Figure 3: The quincunx map is defined on a box containing a quincunx of pins. Here are shown
two examples of periodic orbits that occur for γ = 0.5 and R = 0.26; both are unstable. In (a)
the periodic orbit passes through the side of the box and in (b) the periodic orbit that involves
a stick-and-roll motion. According to the symbol dynamics we introduce (a) is a type-1 orbit,
while (b) is a type 0 orbit.

In general the quincunx map has complex dynamics. There are often many varieties of
unstable periodic orbits (see figure 3), which can display multiple impacts and ricocheting be-
tween pins, stick-and-roll motions, and vertical motion with, or without, passing through the
side walls. Cycle-expansion theory (Cvitanovic, 1988) implies that the behaviour of dynami-
cal systems are strongly influenced by the arrangement of unstable periodic orbits and their
Lyapunov spectrum. We have not investigated such properties, for our modest purposes of
considering Galton’s assumptions there is a simpler method.

Symbolic dynamics (Lind and Marcus, 2000) is a powerful tool for analysing dynamical
systems that can be usefully employed here. Consider labelling states of the quincunx map
according to the number of times a shot path passes through a side-wall or not, that is, the
label is an integer: 0 if the shot path does not pass through a side wall, otherwise the sum of
the integers, −1 for each time the shot path passes through the left wall, and +1 for each time
the shot path passes through the right wall. Any trajectory of the quincunx map defines a
symbol sequence, although the method we use here does not uniquely define a path as it would
with a generating partition.

The important usage of the symbol sequence for our purposes is to note that if the as-
sumption that shot paths involve independent binomial left or right motions, then half of the
symbols in any sequence are expected to be zeros.

Figure 4 shows the computed fraction of zeros in symbols sequences for various R and γ
values. When the fraction is 0 or 1 the quincunx map has a stable periodic orbit similar to
those shown in figure 3. From figure 4 we see these periodic behaviours punctuate parameters
ranges where the fraction of zeros is non-integer, which may correspond to longer more complex
periodic orbits or chaotic behaviours. This is typical of nonlinear deterministic systems that
display chaos.

Under an assumption of “independent accidents” the fraction of zeros should be around 0.5.
A fraction less than this implies a distribution that is broader than Binomial or Gaussian
(platykurtic), a higher fraction than 0.5 implies a peaked distribution (leptokurtic). Pho-
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Figure 4: Fraction of zeros in symbolic sequences versus coefficient of restitution γ for various
ball-pin radii R. In each case calculated from a sequence of 10000 symbols, where the initial
state was (x, u, v) = (R/2, 0, 0) with the first 1000 symbols ignored. The horizontal line at 0.5
indicates the expected fraction of zeros under the “independent accident” assumption.

tographs of Galton’s quincunx, and similar modern devices, appear to obtain platykurtic dis-
tributions of shot, which figure 4 suggests is the more common behaviour of the quincunx in the
parameter ranges we have investigated, which we believe are closest to that of physical devices.

Given that for figure 4 10000 symbols were used to compute the fraction, then in almost all
cases the null hypothesis of “independent accidents” is rejected. Even in those cases where the
null hypothesis is not rejected we find by using the technique of context trees (Kennel and Mees,
2002; Hirata and Mees, 2003) that the symbol sequences have higher order Markov structure.
For example, when R = 0.26cm and γ = 0.49, we find the symbol sequence contains only −1,
0 and 1, and transition frequencies given in figure 5(a), which should be compared with the
expected transition probabilities of “independent accidents” given in figure 5(b). Applying a
goodness-of-fit test, the statistic

∑
i,j (ni,j −Npi,j)

2/(Npi,j), should have a χ2-distribution with
7 degrees of freedom. The calculated value of this statistic for N = 1999 symbols was 36.038,
which is significantly greater than the 1% point at 18.4753.

(a)

-1 0 1
-1 0.0715 0.1271 0.0470 0.2456
0 0.1325 0.2706 0.1166 0.5197
1 0.0415 0.1221 0.0710 0.2346

0.2456 0.5197 0.2346 1.0000

(b)

-1 0 1
-1 0.0625 0.1250 0.0625 0.25
0 0.1250 0.2500 0.1250 0.50
1 0.0625 0.1250 0.0625 0.25

0.25 0.50 0.25 1.00

Figure 5: A comparison of (a) observed transition frequencies for R = 0.26 and γ = 0.49 and
(b) expected transition probabilities of “independent accidents”. Even though the observed
fraction of zeros is consistent with “independent accidents”, there is significant higher order
structure according to a goodness-of-fit test.
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5 Conclusions

We have considered the question of whether Galton’s quincunx device behaves the way Galton
envisaged, and many modern statisticians seem to assume. That is, we have examined whether
the assumption that successive impacts of the falling shot are well approximated as a random
walk, with “independent accidents”. We examine this by considering numerical simulation of a
model, which is simplified and certain parameters are unknown. Simulations of the model show
that no where in the parameter space of reasonably “realistic” parameters do we find behaviour
consistent with the assumptions of a statistical model.

Why the quincunx does not conform to a statistical (random walk) model should be fairly
clear: the quincunx map is just a three dimensional deterministic system. That the quincunx
map should display significant departures from statistical models should be no surprise. It
should be expected to have stable and unstable periodic orbits, intermittency, bifurcations,
and other similar features common to low dimensional deterministic systems.

The author believes that conclusions would not change if a more sophisticated model were
employed, for example, by taking account of rotational motions, skidding, retardation from
impacts with vertical side walls, and so on. The quincunx device is essentially a low dimen-
sional system; its complexity is chaotic, rather than stochastic, and hence better modelled as a
deterministic dynamical system.

We can extend our conclusion to a broader perspective. There is no doubt that a statistical
model provides a valuable conceptual model of the Galton board, but nonlinear dynamics
provides a better model. If one’s goal is to make predictions and forecasts, then the dynamical
model is surely more informative and accurate, and a statistical model may even be misleading.
Consequently, whenever aiming to forecast or predict nonlinear systems one needs to consider
carefully the role of nonlinear dynamics and not immediately adopt a statistical framework.
For example, in state estimation and forecasting there is significant interest in Kalman filters
and various Bayesian and other statistical techniques, but our continuing work indicates that
where dynamics plays a significant role, then there is advantage in exploit it (Judd, 2003a,b;
Judd et al., 2004; Judd and Smith, 2001, 2004).
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