
Stateless Model Checking with Data-Race Preemption Points

Ben Blum

Carnegie Mellon University, USA

bblum@cs.cmu.edu

Garth Gibson

Carnegie Mellon University, USA

garth@cs.cmu.edu

Abstract

Stateless model checking is a powerful technique for test-

ing concurrent programs, but suffers from exponential state

space explosion when the test input parameters are too large.

Several reduction techniques can mitigate this explosion, but

even after pruning equivalent interleavings, the state space

size is often intractable. Most prior tools are limited to pre-

empting only on synchronization APIs, which reduces the

space further, but can miss unsynchronized thread communi-

cation bugs. Data race detection, another concurrency testing

approach, focuses on suspicious memory access pairs during

a single test execution. It avoids concerns of state space size,

but may report races that do not lead to observable failures,

which jeopardizes a user’s willingness to use the analysis.

We present QUICKSAND, a new stateless model check-

ing framework which manages the exploration of many state

spaces using different preemption points. It uses state space

estimation to prioritize jobs most likely to complete in a

fixed CPU budget, and it incorporates data-race analysis to

add new preemption points on the fly. Preempting threads

during a data race’s instructions can automatically classify

the race as buggy or benign, and uncovers new bugs not

reachable by prior model checkers. It also enables full ver-

ification of all possible schedules when every data race is

verified as benign within the CPU budget. In our evaluation,

QUICKSAND found 1.25x as many bugs and verified 4.3x as

many tests compared to prior model checking approaches.

Categories and Subject Descriptors D.2.4 [Software En-

gineering]: Software/Program Verification

Keywords model checking, data races, verification

1. Introduction

Concurrency bugs are notoriously hard to find and reproduce

because they appear only in specific thread interleavings,

which arise at random during normal program execution.

Stateless model checking [25] offers a method for finding

such bugs, or verifying their absence, by forcing a program

to execute each distinct interleaving, capturing this nonde-

terminism in a finite state space. Unfortunately, these state

spaces explode exponentially in the size of the input pro-

gram. Techniques such as Dynamic Partial Order Reduction

[23] and Maximal Causality Reduction [29] expand the lim-

its of feasible test completion, and search ordering strategies

such as Iterative Context Bounding [40] encourage bugs to

be found sooner in a given space should they exist.

However, all stateless model checkers to date are bound

by a fixed set of preemption points: code locations that de-

fine the granularity at which threads interleave. For exam-

ple, CHESS [41] by default preempts only on synchroniza-

tion operations and library calls, which can miss lock-free

shared memory races. On the other hand, SPIN [27] pre-

empts threads before any shared memory access. Such fine

granularity would automatically check each data race for the

possibility of failure, but risks timing out before the state

space can be completed. Some tools, such as CHESS and

Inspect [58], can strike a middle ground by using compiler

instrumentation to statically add preemption points on mem-

ory accesses. Nevertheless, choosing preemption points is a

tradeoff between schedule coverage and feasibility of com-

pletion: even with state-of-the-art reduction techniques, fix-

ing the degree of coverage in advance necessarily leaves

some tests unaffordably large [15, 29].

We present QUICKSAND, a model checking framework

for deciding at runtime which preemption points to test,

according to which resulting state spaces are most likely to

fit a prescribed CPU budget. It uses data-race analysis [47] to

dynamically find new preemption points which expose bugs

not reachable by preempting on API calls alone. When prior

approaches would time out on large tests by trying several

preemption points simultaneously, QUICKSAND identifies

this pitfall in advance using state space size estimation [53],

and instead tests smaller state spaces based on subsets of

those preemption points. Often, testing these smaller state

spaces can even find the same bugs sooner.

On the other hand, when the CPU budget is large enough

to fully test all data-race preemption points, we prove that

this constitutes a total verification of all possible thread

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

OOPSLA’16, November 2–4, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4444-9/16/11...$15.00
http://dx.doi.org/10.1145/2983990.2984036

477

schedules. To achieve the same level of verification, prior

model checkers must decide in advance to preempt on every

single memory access [27], which is computationally pro-

hibitive for even moderately-sized tests. Our approach pro-

vides the best of both worlds: by estimating the size of the

test on-the-fly, QUICKSAND can find bugs quickly in large

tests and provide fast total verification for small ones.

We evaluate QUICKSAND by testing 157 student thread

libraries and kernels from the undergraduate operating sys-

tems classes at Carnegie Mellon University, University of

California at Berkeley, and University of Chicago. We find

that data-race preemption points quickly expose many new

bugs that prior model checkers could not find at all, and that

they enable full verification of many more tests than before.

Our contributions are as follows:

1. Iterative Deepening, a new algorithm for combining

data-race analysis with stateless model checking, and

QUICKSAND, an open-source implementation;

2. A proof of convergence, showing that should it be possi-

ble in the given CPU budget, fully testing every discov-

ered data-race preemption point is equivalent to testing

all possible thread schedules (assuming a sequentially-

consistent memory model);

3. A new tactic for eliminating one class of false-positive

data race candidates, which cannot soundly be used in

a single-pass analysis, but which we prove correct when

used with Iterative Deepening;

4. A large evaluation in which QUICKSAND compares

favourably to stand-alone data-race detection and state-

less model checking approaches, finding new bugs that

would be missed by either alone.

The rest of the paper is organized as follows. §2 reviews

the background material, §3 and §4 discuss our design and

implementation, §5 provides our proofs of soundness, §6

presents our evaluation, §7 discusses limitations and future

work, §8 surveys the related work, and §9 concludes.

2. Background

We review the background in stateless model checking and

data-race analysis using the example program in Figure 1.

2.1 Stateless Model Checking

Stateless model checking [25] is a testing technique for sys-

tematically exploring the possible thread interleavings of a

concurrent program. A stateless model checker executes the

program repeatedly, each time according to a new thread in-

terleaving, until the state space (or the CPU budget) is ex-

hausted. During each execution, it forces threads to execute

serially, thereby confining the program’s nondeterminism to

controlled thread switches.

Rather than identifying suspicious conditions which may

include false alarms, the approach of many static analyses

[5, 20], stateless model checkers focus on concrete observed

int x = 0; mutex t mx;

Thread 1 Thread 2

1 mutex lock(&mx);

2 int tmp = x;

3 atomic xadd(&x, 1);

4 yield();

5 atomic xadd(&x, 1);

6 x = tmp + 1;

7 mutex unlock(&mx);

8 assert(x >= 2);

Figure 1. Example program with a data-race bug. In this

interleaving, the assertion on line 8 will fail. Two data-race

preemptions are required to expose the bug: one just before

thread 1’s line 6, and one just before thread 2’s line 8.

yield()

Complete! (4 interleavings tested)

T1

yield()

mutex_lock()
T1 T2

Running (6/8 interleavings; ETA: 2min)

yield()

mutex_unlock()

Running (3/8 interleavings; ETA: 5min)

T2T1

mutex_lock()

yield()

mutex_unlock()

Suspended (4/16 interleavings; ETA 12min -- too long!)

T2T1

T2

(a)

(b) (c)

(d)

Figure 2. Iterative Deepening example. The minimal state

space (a) includes only voluntary thread switches, such as

yield(). Multiple further tests can be run: preempting on

calls to mutex lock alone (b), mutex unlock alone (c),

or both together (d). Each option increases the state space

size unpredictably, so multiple state spaces should be tested

in parallel. Estimation techniques [53] inform which state

spaces to prioritize.

failures such as assertions, deadlocks, segfaults, and use-

after-free. For example, data races do not always lead to fail-

ures, but represent suspicious violations of common locking

discipline. Although C++ defines all data races as undefined

behaviour [2], this work focuses on reporting races to the

user only when accompanied by direct evidence of a failure.

The checker defines the granularity of thread interleav-

ings by the preemption points it uses to switch threads. Most

model checkers [41, 51] choose synchronization and thread

library API boundaries for these points; in our example pro-

gram, these would be lines 1, 4, and 7. Figure 2 shows sev-

eral possible resulting state spaces. The approach of prior

work is to enable all preemption points simultaneously, i.e.,

to test only the state space denoted (d).

To mitigate the exponential explosion, Dynamic Partial

Order Reduction [23] identifies equivalent execution se-

quences according to Mazurkiewicz trace theory [38], and

478

tests at least one execution from each equivalence class. Intu-

itively, if two thread transitions between preemption points

do not conflict on any shared resource access, reordering

them produces an equivalent interleaving, i.e., the same pro-

gram behaviour. Iterative Context Bounding [40], another

popular technique, heuristically reorders the search to pri-

oritize interleavings with fewer preemptions first, according

to the insight that most bugs require few preemptions to un-

cover. Nevertheless, state spaces are still exponentially-sized

in the number of conflicting transitions.

This motivates Iterative Deepening, our new technique

for heuristically adjusting the preemption points at runtime.

Rather than committing to one state space with every avail-

able preemption point enabled, we will search among dif-

ferent subsets of the points. Hence, we will test all the state

spaces shown in Figure 2 in parallel, and decide on-the-fly

whether to pursue each test, or to defer it in favour of others.

Recent advances. Like many prior checkers [31, 41,

51, 58], ours implements DPOR for sequentially-consistent

hardware. In the worst case, these tools may all suffer false

negatives as they miss weak-memory-only bugs. Recently,

Zhang et al. [59] introduced a new formalism with which

DPOR can control weak memory nondeterminism, such as

reordering store buffers. Iterative Deepening could use this

new technique, provided a model checker which implements

such reorderings (not yet available to us).

Maximal Causality Reduction (MCR) [29], a reduction

algorithm which may replace DPOR, has also recently

shown promising performance improvements over prior

model checkers. We expect Iterative Deepening to be com-

patible with MCR, and look forward to evaluating the com-

bination when an MCR implementation becomes widely

available.

2.2 Data Race Detection

Data race analysis [47] identifies pairs of unsynchronized

memory accesses between threads. Two instructions are said

to race if they both access the same memory address, at least

one is a write, the threads do not hold the same lock, and no

synchronization enforces an order on the thread transitions

(the Happens-Before relation). In Figure 1, lines 3 and 5 each

race with 2 and 6, and line 6 races with 8.

A data race analysis may be either static (inspecting

source code) [20] or dynamic (tracking individual accesses

arising at run-time) [49]. This paper focuses exclusively on

dynamic analysis, so although our example refers to num-

bered source lines for ease of explanation, in practice we

are actually classifying the individual memory access events

corresponding to those lines during execution.

Though state-of-the-art model checkers preempt only on

synchronization events, many serious concurrency bugs are

caused by data races leading to corrupted shared state. Fig-

ure 1’s buggy interleaving is possible only with data-race

preemption points: preempting just before an instruction

identified as part of a data race. None of the state spaces in

int x = 0; bool y = false; mutex t mx;

Thread 1 Thread 2

1 x++; // A1

2 mutex lock(&mx);

3 mutex unlock(&mx);

4 mutex lock(&mx);

5 mutex unlock(&mx);

6 x++; // A2

(a) True potential data race.

1 x++; // B1

2 mutex lock(&mx);

3 y = true;

4 mutex unlock(&mx);

5 mutex lock(&mx);

6 bool tmp = y;

7 mutex unlock(&mx);

8 if (tmp) x++; // B2

(b) No data race in any interleaving.

Figure 3. Data-race analyses may be prone to either false

negatives or false positives. Applying HB to program (a)

will miss the potential race possible between A1/A2 in an

alternate interleaving, while using Limited HB on (b) will

produce a false alarm on B1/B2.

Figure 2 contain this interleaving, as none of the mutex/yield

preemptions split lines 2 and 6 across different transitions.

Variants of Happens-Before. Most prior work focuses

on Happens-Before (HB) [22, 34, 46] as the order relation

between accesses. [55] and [44] identify a problem with this

approach: it cannot identify access pairs separated by an un-

related lock operation which could race in an alternate inter-

leaving. Figure 3(a) shows a contrived example program in

which HB masks the potential race. We call such unreported

access pairs false negatives. However, consider the similar

program in Figure 3(b), in which the access pair ceases to

exist in the alternate interleaving. O’Callahan et al. [44] in-

troduced the Limited HB relation, which will report such

potential races by considering only blocking operations like

cond wait to enforce the order. Limited HB will report all

potential races, avoiding many false negatives [49], but at the

cost of necessarily reporting some such false positives.

Finally, the Causally-Precedes relation [55] extends HB

to additionally report a subset of potential races while

soundly avoiding false positives. It tracks conflicting ac-

cesses in intervening critical sections to determine whether

lock events are unrelated to a potential race. Causally-

Precedes will identify the potential race in Figure 3(a), as

the two critical sections do not conflict, although it can still

miss true potential races in other cases.

Being dynamic analyses, both HB and Limited HB may

suffer false negatives when a racy access pair is not executed

at all in a specific interleaving. Limited HB offers the advan-

tage of identifying a potential race as long as the access pair

is observed under any interleaving, rather than requiring the

479

accesses to be adjacent in time, as HB would. While stand-

alone data-race analyses must avoid inundating the user with

false alarms [20], we incorporate data-race analysis in an in-

ternal feedback loop, using model checking to automatically

test each potential race and report only directly observed

failures to the user. Hence, we can accept some overhead

from Limited HB’s false positives for the sake of finding

data-race candidates more quickly. In §6 we will evaluate

how HB and Limited HB each influence QUICKSAND’s bug-

finding and verification speed.

Philosophy of bugs. While there is a vast body of work

on how to detect data races to begin with, judging data

races once found is a matter of philosophical debate unto

itself. Some recent tools classify races depending on how

they impact program behaviour [31, 42], overlooking benign

races in search of more dangerous ones. [20] acknowledges

that a program may have too many races for a user to worry

about, so bug reports must be prioritized by severity of

effects. However, other prior work argues that data races are

always bugs [9, 10], largely due to the possibility of compiler

or hardware reordering of racy accesses. We take the former

camp: we consider a data race a bug only when it results in

a visible failure state (e.g., crash or deadlock)1. We bypass

concerns of compiler reordering by checking programs at

the executable level; for a study of hardware reordering in

the context of DPOR, we refer the reader to [59].

2.3 Terminology

For the rest of the paper, we will abbreviate preemption point

(PP), happens-before (HB), model checking (MC), single-

state-space model checking (SSS-MC), Dynamic Partial Or-

der Reduction (DPOR), Iterative Context Bounding (ICB),

and state space estimate (ETA).

SSS-MC indicates the approach of prior tools: the set of

PPs is fixed in advance, and the tool commits to testing every

interleaving available with those PPs. Many techniques can

skip equivalent interleavings or order the search to uncover

bugs faster [13, 23, 26, 40, 56], but new PPs cannot be added,

nor ineffective ones removed, by any dynamic analysis.

We distinguish between data-race candidates and data-

race bugs. We refer to racing (or potentially-racing) memory

access pairs as data race candidates. Should preempting

during such accesses lead to an observable failure, then

we report a data-race bug. Otherwise, if the access pair

can be reordered, but does not produce a failure under any

interleaving, it is a benign data race (with respect to the test

input). If they cannot be reordered at all, due to some other

communication such as in Figure 3(b), it is a false positive.

We also identify the minimal and maximal state space

for each test. The minimal state space includes only thread

switches arising from no preemptions (Figure 2(a)). The

1 C++ declares any race between two non-atomic locations to be undefined

behaviour [11]. From a C++ perspective, we assume all concurrent accesses

are implemented by std::atomic loads and stores.

Algorithm 1: Naı̈ve Iterative Deepening method

Input: j, the currently-running job

Input: A, the set of all known preemption points

1 if ∃p ∈ A.p 6∈ PPSet(j) then

2 return NewJob(A) // New maximal state space

3 else

4 return j // j is still maximal

5 end

maximal state space is the one tested by SSS-MC: all

statically-available PPs are enabled (Figure 2(d)).

3. Design

Named after the analogous technique in chess artificial in-

telligence [33], Iterative Deepening makes progressively

deeper searches of the state space until the CPU budget is

exhausted. In this context, the depth is the number of PPs

used. Hence, QUICKSAND schedules multiple MC instances

in parallel to test many different subsets of the available PPs,

We refer to each unique set of PPs as a job.

Note that Iterative Deepening is a wrapper algorithm

around stateless MC. A MC tool is still used to test each

state space, and other reduction techniques are still appli-

cable. Moreover, because Iterative Deepening treats the set

of preemption points as mutable, it can add new preemption

points reactively based on any runtime analysis. We focus on

run-time data-race detection [19, 44, 49] as the mechanism

for finding new preemption candidates.

3.1 Changing State Spaces

To introduce the Iterative Deepening algorithm, we first

show a simple approach for handling new PPs in the ab-

sence of any CPU budget restriction.

Naı̈ve approach. Given unlimited CPU time for testing,

we would always switch to the new maximal state space

whenever adding a new PP. The maximal state space is

guaranteed to subsume all execution sequences reachable in

any subset state space, so considering any incomplete subset

of the known PPs would be duplicate work. Algorithm 1

demonstrates this naı̈ve approach. It is seeded with the set of

all statically-known synchronization API PPs, and invoked

whenever a new data-race candidate is found. Our proofs in

§5, being concerned with the verification guarantee provided

when QUICKSAND completes within the CPU budget, are

based on this simple version of Iterative Deepening.

Prioritizing smaller jobs. However, in tests where full

verification is not feasible, focusing on the maximal state

space alone is likely to be fruitless. Hence, we prioritize

all subset jobs based on number of PPs, ETA, and whether

they include data-race PPs, We rely on state-space estima-

tion [53] to predict which jobs are likely to complete within

a reasonable time, before actually testing a large fraction of

interleavings for each. The overall goal is to decide automat-

480

ically when to defer testing a state space, so an inexpert user

can provide only their total CPU budget as a test parame-

ter, and to enable completing appropriately-sized jobs within

that budget. We seek to maximize completed state spaces, as

each one serves as a guarantee that all interleavings possi-

ble with its PPs were tested. The next three subsections will

show how we schedule these smaller jobs based on their PP

sets and ETAs.

3.2 Initial PP Configuration

Iterative Deepening must be seeded with a set of initial state

spaces, which can be any number of subsets of the statically-

available PPs SSS-MC would use. For completeness (§5.1),

the maximal state space must be included among these.

For testing user-space code, we begin with the four PP

sets from Figure 2: {yield}, {yield, lock}, {yield, unlock},

and {yield, lock, unlock}, By extension, these also intro-

duce PPs on any other primitives which use internal locks,

such as condvars or semaphores. Preempting on voluntary

switches such as yield is always necessary to maintain the

invariant that only one thread runs between consecutive PPs.

For kernel-level testing, we consider interrupt-disabling

analogous to locking, so we also preempt just before a

disable-interrupt opcode (cli) and just after interrupts

are re-enabled (sti)2. QUICKSAND is configured to begin

with {yield}, {yield, lock}, {yield, unlock}, {yield, cli},

{yield, sti}, and {yield, lock, unlock, cli, sti}. As a heuris-

tic, we don’t test every intermediate subset such as {lock, sti},

which could potentially be improved in future work (§7).

3.3 Data-Race Preemption Points

During stateless MC, runtime data-race detection may find

data-race candidates that we wish to investigate further. Be-

cause data races indicate access pairs that can interleave at

instruction granularity, it is logical to re-execute the test and

issue preemptions just before those instructions to test alter-

nate thread interleavings [31, 48].

With Iterative Deepening, this is a simple matter of cre-

ating a new state space with an additional PP enabled on the

racing instructions by each thread, as shown in Algorithm 2.

We call these data-race PPs. Note that even though a data

race may involve two different instructions, α and β, we add

new state spaces with only one new PP at a time. Rather

than adding a single large state space, i.e., AB = PPSet(j0)

∪ α ∪ β, we prefer to add multiple smaller jobs which have a

higher chance of completing in time, i.e., A = PPSet(j0) ∪ α

and B = PPSet(j0) ∪ β. If A and B are bug-free, they will

in turn add AB later. The condition on line 1 ensures that

we avoid duplicating any state spaces with multiple data-

race PPs; for example, AB is reachable by multiple paths

through its different subsets, but should be added only once.

2 During data-race detection, cli/sti are treated as a single global lock.

Some kernels disable preemption without disabling interrupts, which can be

communicated to the MC using manual annotations. This also assumes uni-

processor scheduling; for SMP kernels, replace cli/sti with spinlocks.

Algorithm 2: Adding new jobs with data-race PPs.

Input: j0, the currently-running job

Input: J , the set of all existing (or completed) jobs

Input: α, an instruction reported by the MC as part of a

racing access pair

1 if ∀j ∈ J , PPSet(j0) ∪ α 6⊆ PPSet(j) then

2 AddNewJob(PPSet(j0) ∪ α, HeuristicPriority(α))

3 end

4 if ∀j ∈ J , PPSet(j) 6= {yield, α} then

5 AddNewJob({yield, α}, HeuristicPriority(α))

6 end

Landslide[PPs: lock() unlock()yield()

lock() unlock()yield()

Landslide[PPs: yield() T2 @ Line 9

Landslide [PPs: yield() T1 @ Line 6

T1 @ Line 6

lock() unlock()yield() T2 @ Line 9

Thread 2 at Line 9
Quicksand

Job 3

Communication threads

Workqueue threads

]]

]

]

]

, , ,

,,,

,

,,,

CPU 1

CPU 2

CPU 3

CPU 4

Job 5

Job 6

Job 7

Landslide[PPs:

Job 4

Data race:
Thread 1 at Line 6

Landslide[PPs:

Figure 4. QUICKSAND manages the exploration of multiple

state spaces, communicating with each MC instance to re-

ceive ETAs, data race candidates, and bug reports. When an

access pair is reported as a data race candidate, we generate

a new PP for each access, and add new jobs corresponding

to different combinations of those with the existing PPs.

Furthermore, we do not always strictly increase the num-

ber of PPs when we find a new data race. For each instruction

involved in a data race, QUICKSAND adds two new jobs: a

“small” job to preempt on that instruction only (line 5), and

a “big” job to preempt on that instruction as well as each PP

used by the reporting job (line 2). Hence, each pair of racing

accesses will spawn four new jobs, as shown in Figure 4. The

rationale of spawning multiple jobs is that we don’t know in

advance which will be most fruitful: while the big job risks

not completing in time, the small job risks missing the data

race entirely if the original PPs were required to expose it.

In practice, we observed some bugs found quickly by these

small jobs, and other bugs missed by the small jobs found

eventually by the big jobs. This phenomenon motivates Iter-

ative Deepening to prioritize jobs at run-time.

The new state spaces may expose a failure, in which case

we report a data-race bug, or complete successfully, indicat-

481

ing a benign or false-positive data race. They may also un-

cover a new data-race candidate entirely, in which case we

may iteratively advance to a superset state space containing

PPs for both racing access pairs. Being constrained by a CPU

budget, we may time out before completing a data race’s as-

sociated state space, in which case we report a potential false

positive that the user must handle (§7).

3.4 Choosing the Best Job

With a limited CPU budget, we must avoid running tests that

are likely to be fruitless. Hence, we separate the available

PP sets into a set of suspended jobs (partially-explored state

spaces with high ETAs), and a set of pending jobs (untested

ones with unknown ETAs). When the MC reports an ETA

too high for some job, we compare with other pending and

suspended jobs to find another one more likely to complete

in time. Our method, listed in Algorithm 3, is the heart of

Iterative Deepening. Its main feature is understanding that if

PPSet(j1) ⊂ PPSet(j2), and j1 is suspended, then j2’s state

space is guaranteed to be strictly larger, so j2 will take at

least as long. Hence we should avoid testing j2 unless j1 is

later resumed and its ETA improves after further execution.

Similarly, whenever a job finds a bug, we cancel all pending

superset jobs, as they might find only the same bug.

We also account for the inherent inaccuracy of ETA

estimates. Line 1 heuristically scales up the time remain-

ing to avoid suspending jobs too aggressively in case their

ETAs are actually overestimated. Lines 12-15 account for

the possibility that among two suspended jobs, PPSet(j1) ⊂
PPSet(j2) but ETA(j1) > ETA(j2). This can arise because

estimates tend to get more accurate over time, and j1 per-

haps ran much longer before suspending. We heuristically

assume the smaller job’s ETA is more accurate to avoid re-

peatedly resuming larger jobs briefly while their ETAs only

become worse (it lets us avoid thrashing in QUICKSAND).

3.5 Heuristics

Algorithm 3 allows heuristically scaling a job’s ETA when

comparing to the time budget, to express how pessimistic

we are about the estimate’s accuracy. We use a scaling factor

defaulting to 2 based on the results in [53]. We also include

a heuristic to never suspend jobs before they pass a certain

threshold of interleavings tested, with a default of 32, so that

their ETAs have some time to stabilize.

We classify data-race candidates as single-order or both-

order [31] based on whether the MC observed the racing

instructions ordered one or both ways in the original state

space. Single-order candidates are more likely to be false

positives (§2.2), although preempting during the access itself

is necessary to say for sure. Hence, we add PPs for both types

of candiates, and heuristically prioritize jobs with both-order

data-race PPs (indicated by the HeuristicPriority(α) call in

Algorithm 2). For single-order races, we do not initially add

a PP for the later access at all: if preempting on the first

Algorithm 3: Suspending exploration of a state space

in favour of a potentially smaller one.

Input: j0, the currently-running job

Input: P , the list of pending jobs, sorted by decreasing

heuristic priority

Input: S , the list of already-suspended jobs, sorted by

increasing ETA

Input: T , the remaining time in the CPU budget

1 if ETA(j0) < HeuristicETAFactor × T then

2 return j0 // Common case: job is expected to finish.

3 end

4 foreach job jP ∈ P do

5 // Don’t run a pending job if a subset of it is already

suspended; its ETA would be at least as bad.

6 if ∀jS ∈ S , PPSet(jS) 6⊂ PPSet(jP) then

7 return jP
8 end

9 end

10 foreach job jS ∈ S do

11 if PPSet(j0) 6⊂ PPSet(jS) ∧ ETA(j0) > ETA(jS)

then

12 // If a subset of jS is also suspended, don’t run

the larger one first.

13 if ∀jS2 ∈ S , PPSet(jS2) 6⊂ PPSet(jS) then

14 return jS
15 end

16 end

17 end

18 return j0 // ETA(j0) was bad, but no other j was better.

access can reorder the race, it will be upgraded to both-order

in the new state space, and we will add the second PP then.

4. Implementation

4.1 Landslide

We chose LANDSLIDE [7] as our MC tool due to its ability to

trace execution at the granularity of individual instructions

and memory accesses, which dynamic data-race detection

requires. LANDSLIDE implements DPOR [23], state space

estimation [53], the DJIT+ HB data-race analysis [22, 46],

and a hybrid lockset/Limited HB data-race analysis [44].

It can optionally replace DPOR with ICB [40], for which

it uses Bounded Partial Order Reduction [14] for a similar

reduction, though QUICKSAND does not employ this fea-

ture (§7). It avoids state space cycles (e.g. spin loops) with

a heuristic similar to Fair-Bounded Search [14]. Its bug-

detection metrics are assertion failure, deadlock, segfault,

use-after-free [43], and (heuristically) infinite loops.

LANDSLIDE can test both userspace and kernel code (al-

though it is limited to timer nondeterminism), and runs pro-

grams in a full-system hardware simulator [36]. The simula-

tor allows LANDSLIDE to track memory accesses and check

482

for heap errors on uninstrumented binaries, although for per-

formance, a similar MC under QUICKSAND could use com-

piler instrumentation instead. It also provides a convenient

backtracking mechanism to avoid the need to re-simulate

common execution prefixes among many interleavings.

Restricting PPs with stack trace predicates. When test-

ing a particular module in a large codebase, the user is

likely to be uninterested in PPs arising from other mod-

ules. Rather than preempting indiscriminately on any syn-

chronization call, regardless of the call-site, prior work in-

troduced Preemption Sealing [4] for identifying which call-

sites matter. LANDSLIDE provides this feature through a

configuration command, within function. Before insert-

ing a PP, LANDSLIDE requires at least one argument to

within function to appear in the current thread’s stack

trace. The without function directive is the dual of

within function, indicating a blacklist. We use these to

restrict the scope of some tests in our evaluation (§6.1).

Data races in lock implementations. Data race tools in

prior work [31, 49] recognize the implementations of syn-

chronization primitives to avoid spuriously flagging mem-

ory accesses that implement them. Assuming that the lock

implementation is already correct enables more productive

data-race analysis on the rest of the codebase, while the locks

themselves can be verified separately [50]. We included a

mutex test in our evaluation to showcase QUICKSAND’s abil-

ity to verify synchronization primitives with data-race PPs

(§6.1). To support this test, we extended LANDSLIDE to op-

tionally make its data race analysis consider accesses from

mutex lock() and mutex unlock().

4.2 Quicksand

QUICKSAND is an independent program that wraps the ex-

ecution of several LANDSLIDE MC instances. The imple-

mentation is roughly 3000 lines of C. The interface with the

MC has two parts. First, when starting each job, QUICK-

SAND creates a configuration file declaring which PPs to

use, plus other MC-specific options such as our modifica-

tions to LANDSLIDE for testing mutexes. Then, a dedicated

QUICKSAND thread communicates with the MC process via

message-passing. The MC messages after testing each in-

terleaving to report updated progress and ETA and when-

ever a new data-race candidate or bug is found. QUICK-

SAND in turn replies whether to resume/suspend (due to too

high ETA) or quit (due to timeout). We suspend jobs simply

by making the MC wait on a message-passing reply. Should

QUICKSAND later re-schedule a suspended job, it sends a

message to continue, resuming the job where it left off.

5. Soundness

In this section we present two theorems concerning Iterative

Deepening’s correctness. Our full proofs, available at [8],

discuss our assumptions explicitly and include more formal

definitions and structure.

These proofs are built on a DPOR algorithm definition

which assumes sequentially-consistent memory hardware,

as discussed in §2.1. We also assume the Limited HB def-

inition for the data-race analysis, as discussed in §2.2.

5.1 Convergence to Total Verification

Although Iterative Deepening’s main purpose is to heuris-

tically choose the most effective PP subsets to test when

the maximal state space is too large, some tests may be

small enough that even their maximal state spaces could

be completed in time. For such tests, preempting on every

shared memory access [27, 58] would provide a total verifi-

cation of all possible thread schedules, if it could complete

in time. In this section, we show that Iterative Deepening

provides a verification of the same strength if it completes

the state spaces associated with every discovered data-race

PP. A proof sketch of the contrapositive statement follows.

Theorem 1 (Convergence). If a bug can be exposed by any

thread interleaving possible by preempting on all instruc-

tions during a specific test, Iterative Deepening will eventu-

ally test an equivalent interleaving which exposes the same

bug.

Proof Sketch. The proof has two parts: first, we show that

preempting on data-racing instructions and synchronization

API boundaries suffices to test all possible program be-

haviour; second, we show that Iterative Deepening will even-

tually detect all such data races. Given a PP p, let next(p) de-

note the next transition after p executed by the thread which

ran immediately before p, let instr(p) denote the first instruc-

tion of next(p), and let others(p) denote the transitions by

other threads between p and next(p).

Lemma 1 (Equivalence of non-data-race PPs). For any

thread interleaving possible by preempting on any instruc-

tion, there exists an equivalent interleaving which uses only

data-race PPs and synchronization API PPs.

Let p be the first PP in the given interleaving such that

instr(p) is not a data race with others(p) nor is a synchro-

nization API boundary. Because instr(p) is not a synchro-

nization boundary, no lock can be held during others(p) that

was also held by the first thread across p. Hence, because

instr(p) is not a data race, it cannot be a shared memory

conflict with others(p) at all. Let i be the first instruction

among next(p) which is such a conflict, or a synchroniza-

tion boundary. If i is a shared memory conflict, it must be a

data race, for the same reasoning as above. We modify the

input interleaving by reordering instr(p) until i, not includ-

ing i, to before others(p). By the soundness of DPOR [23],

this is equivalent to the input interleaving. In other words,

we have transformed p into p′ such that next(p′) = i, which

is a data race or synchronization boundary. All PPs in the

input trace can be inductively converted in the same manner.

483

Definition 1 (Reachability). A data race candidate, and its

associated PPs, are reachable if it will be identified by a MC

configured to preempt only on already-reachable PPs.

Initially, the statically-available synchronization API PPs

are reachable. Reachability of data-race PPs is transitive.

Lemma 2 (Saturation of data-race PPs). Given any inter-

leaving comprising only data-race PPs and synchronization

API PPs, all involved PPs are reachable.

We induct on the PPs according to the order of their pre-

emptions. Given that the interleaving prefix preceding some

PP p is reachable, we require that either p is reachable, or a

new data race among others(p) will be newly reachable. The

latter condition suffices because in a finitely-sized codebase,

there must be finitely many unique racing instruction pairs.

First, we must “coalesce” away p, as well as any other

not-yet-reachable PPs in others(p). Consider the alternate

interleaving in which the first thread executes past p until

the first already-reachable PP, then the other threads among

others(p) execute the same way. This interleaving’s PPs are

all reachable, so a state space S containing it will be tested.

If p is a not-yet-reachable data-race PP, it must be possi-

ble for some other thread to execute a data-racing instruction

with instr(p). If this conflict was observed in the state space

containing our coalesced interleaving, we have reached p.

Otherwise, we appeal to the soundness of DPOR: If a pro-

gram behaviour is possible by interleaving threads at the

boundaries of the given transitions, it will be tested in the

containing state space. By contrapositive, to expose this be-

haviour, one or more preemptions must occur in the middle

of some transition, rather than at the boundaries.

We now show by contradiction there cannot be multiple

data-race PPs which must all be enabled before either data

race can be identified. Assume there does not exist a single

transition t1 ∈ S which alone can be split into {t′
1
, t′′

1
} by

a PP q, such that another thread’s concurrent transition t2
conflicts with t′′

1
. By the soundness of DPOR, because all t2s

are independent with t′′
1

, S ≡ S ∪ q. Replacing S with S ∪ q

in the above assumption shows that no pair of new qs would

expose new program behaviour, and inductively, no set of qs

of any size, which contradicts the previous paragraph.

Hence, a single new not-yet-reachable data race is reach-

able in S . Hence p will be reached.

To conclude, for any possible interleaving, Lemma 1 pro-

vides an equivalent one with only data-race and synchroniza-

tion PPs, and Lemma 2 proves all involved PPs are reach-

able. Hence, Iterative Deepening will eventually test a state

space containing the equivalent buggy interleaving.

5.2 Suppressing “Malloc-Recycle” False Positives

We identify a particular class of false positive data-race can-

didates under Limited HB in which the associated memory

struct x { int foo; int baz; } *x;

struct y { int bar; } *y;

Thread 1 Thread 2

1 x->foo = ...;

2 free(x);

3 // x’s memory recycled

4 y = malloc(sizeof *y);

5 // ...initialize...

6 publish(y);

7 y->bar = ...;

Figure 5. A common execution pattern with malloc() that

produces false positive data race candidates.

Thread 1 Thread 2

1 publish(x);

2 x->foo = ...;

3 free(x);

4 x2 = get published x();

5 // x’s memory recycled

6 y = malloc(sizeof *y);

7 x2->foo = ...;

Figure 6. If a single-pass Limited HB analysis discarded

candidates matching the malloc-recycle pattern, it would

miss the bug in this adversarial program.

was recycled by re-allocation between the two accesses. Fig-

ure 5 shows a common code pattern and interleaving which

can expose such behaviour. If the malloc on line 4 returns

the same address passed to free on line 2, then lines 1 and 7

will be flagged as a potential data race. We call this a malloc-

recycle data race candidiate. To the human eye, this is ob-

viously a false positive: reordering lines 4-7 before lines 1-2

will change malloc’s return value, causing x and y to no

longer collide. Here, Thread 2’s logic usually corresponds

to an initialization pattern [47], but for generality we have

added an arbitrary publish action on line 6.

When limited to a single test execution, suppressing any

data race candidate matching this pattern is unsound. Con-

sider the more unusual program in Figure 6, in which the

memory is recycled the same way, but the racing access’s

address is not tied to malloc’s return value. Here, reorder-

ing lines 6-7 before line 3 will allow x and x2 to race. Such

collisions could be avoided with a hacked allocator which

never recycles memory, but this could unacceptably impact

performance in malloc-heavy tests.

Fortunately, when data-race detection is combined with

DPOR and Iterative Deepening, pruning all malloc-recycle

candidates is sound, even considering adversarial programs

such as Figure 6. This makes it unnecessary to verify such

candidates by actively adding more preemptions, achiev-

ing a potentially combinatorial reduction in how many state

spaces we generate. We provide a proof sketch below.

484

Theorem 2 (Soundness of eliminating malloc-recycle candi-

dates). If a malloc-recycle candidate is not a false positive,

DPOR will test an alternate thread interleaving in which the

accesses can race without fitting the malloc-recycle pattern.

Proof Sketch. Any such program must contain an access a1
by one thread T1, followed by a free and a malloc possibly

by either thread, followed by an access a2 by the other thread

T2. Without loss of generality, we say that T1 performs the

free and T2 the subsequent malloc. We also assume the

only way for the program to get pointers to heap memory is

through malloc; hence, there must also be some “publish”

action p by T1 which communicates the address to T2.

Because this is a true potential data race, p must occur before

a1, as a2 cannot be reordered before p.

We require that a PP will be identified during T1 be-

tween p and a1. The publish action must involve some thread

communication, whether through a shared data structure or

message-passing API. If locking or message-passing is used,

our set of hard-coded PPs suffices to provide a PP. Other-

wise, p (and the corresponding read by T2) will be a poten-

tial data race, although that may itself be a malloc-recycle

candidate. In this case we use induction on the pointer chain

leading to the shared address containing p: in the base case,

p is communicated via global data or message-passing, and

in the inductive step, DPOR will reorder threads sufficiently

to identify the PP on p. Hence there will be a PP between p

and a1 no matter the mode of communication.

With this PP, DPOR will reorder a2 before a1, while not

changing a2’s location. As T2’s malloc now occurs before

T1’s free, it will allocate different memory. Hence a1 and

a2 can race without fitting the malloc-recycle pattern.

We implemented a simple check in LANDSLIDE to rec-

ognize the malloc-recycle pattern: each heap allocation is

given a unique ID, and when evaluating whether two heap

accesses can race, the IDs of their containing blocks must

match. Note that this proof does not require PPs on malloc’s

internal lock, which is an ideal candidate to ignore via

without function (§4.1) to reduce state space size.

This class of false positive is unique to heap-allocated

memory among all ways threads could communicate. By

contrast, global memory has unlimited lifetime, and message-

passing primitives enforce an ordering which precludes the

race. Finally, note that as long as concurrent malloc is im-

plemented with an internal lock, these false positives are

of concern only under a Limited HB analysis (§2.2). Nev-

ertheless, Theorem 1’s need for the Limited HB definition

justifies our choice of it over full HB.

6. Evaluation

Although QUICKSAND presents Iterative Deepening and

data-race PPs as interconnected techniques, they each could

be employed alone as well. For example, a single-state-space

tool could use data-race PPs during immediately subsequent

interleavings, changing the state space on the fly. Likewise,

a message-passing-only tool could use Iterative Deepening

despite a concurrency model lacking data races, to promote

completing subset PP sets for large tests. Hence, we also

evaluated each technique individually, though many of our

experiments compare QUICKSAND to the state-of-the-art as

a whole. Our evaluation answers the following questions:

1. Does QUICKSAND improve upon state-of-the-art MC?

(a) Do data-race PPs expose new bugs that couldn’t be

found with SSS-MC’s fixed-PP-set approach?

(b) Does QUICKSAND find bugs faster in subset state

spaces, even without data-race PPs?

(c) Does QUICKSAND provide more full verifications of

bug-free programs more quickly?

(d) How does the choice between HB and Limited HB

affect bug-finding and verification performance?

2. Does MC improve the accuracy of data-race detection?

(a) Does QUICKSAND avoid false positives compared to

a single-execution Limited HB data race analysis?

(b) Does QUICKSAND find data-race bugs that would be

false-negatives during a single-execution analysis?

6.1 Test Suite

Our test suite consists of 79 “P2” student thread libraries,

from Carnegie Mellon’s 15-410 operating systems class,

and 78 “Pintos” student kernels, from Berkeley’s CS162

and University of Chicago’s CMSC 23000 operating sys-

tems classes. The P2 project comprises thr create(),

thr exit(), thr join(), mutexes, condition variables,

semaphores, and reader/writer locks; all implemented from

scratch in userspace with a UNIX-like system call inter-

face [17, 18]. The Pintos kernel project comprises prior-

ity scheduling, sleep(), and user-space process manage-

ment (wait() and exit()) using provided mutex, context-

switch, and virtual memory implementations [45]. Both

projects are quite complex: the P2s average 1807 lines of

code, and the Pintoses average 718 lines, for a total of

198,772 lines tested for this paper.

We chose P2s and Pintoses for our test suite because

of the relative ease of generating hundreds of unique state

spaces, varied in size and correctness, and with a diverse

set of bug types3. We believe that merely finding a small

handful of new real-world bugs is largely anecdotal, and that

our test suite’s size allows for a more statistically significant

comparison among MC and data-race testing strategies.

We tested P2s with 6 multithreaded programs: mx test,

for locking algorithm correctness, join test, a test of

thread lifecycle, bcast test and signal test for condi-

tion variables, sem test for semaphores, and rwlock test

3 Many of the codebases exhibited deterministic bugs (i.e., encountered on

the first interleaving tested). We fixed these by hand, before running tests,

to ensure that every bug in our study required meaningful work by the MC.

485

for r/w locks. For mx test, sem test, and signal test,

we used the without function command to blacklist

thr create, thr exit, and thr join, and for mx testwe

enabled LANDSLIDE’s mutex-testing option (see §4.1). We

tested Pintoses with 3 programs from the class’s provided

test suite: sched test, a test of the kernel scheduling

algorithm, alarm test, for the timer sleep routine, and

wait test, for process lifecycle system calls4. The source

code of all 9 test cases is available at https://github.

com/bblum/oopsla-dataset. For all tests, we black-

listed PPs on malloc’s internal lock using LANDSLIDE’s

without function command (§4.1). In total, our evalua-

tion comprises 629 unique tests (i.e., pairs of a test program

and a Pintos or P2), at least 181 of which will expose bugs

under one or more MC trials.

6.2 Experimental Setup

To evaluate the benefits of data-race PPs and Iterative Deep-

ening separately, we ran the test suite under QUICKSAND in

three different configurations, each of which was given a 1-

hour budget and 10 CPUs for each test.

• QS-Limited-HB: QUICKSAND using Limited HB for its

data-race analysis,

• QS-Pure-HB: QUICKSAND using pure HB instead, and

• QS-Sync-Only: QUICKSAND with PPs still seeded as de-

scribed in §3.2, but never adding new PPs from reported

data-race candidates.

We represented the MC state-of-the-art with 3 configura-

tions of stand-alone LANDSLIDE on the same test suite:

• SSS-MC-DPOR: Single state space using the maximal

PP set from §3.2, explored with DPOR [23],

• SSS-MC-ICB: With PPs as above, but instead using ICB

[40] with BPOR [14] to find bugs faster, and

• SSS-MC-Shared-Mem: Using ICB+BPOR, configured

to preempt on any shared memory access [58] (decided at

runtime, excluding threads’ accesses to their own stacks),

which in principle includes all possible data-race PPs.

Because parallelizing DPOR/ICB during SSS-MC is an open

research problem [54], we optimistically gave control exper-

iments a linear speedup of 10 hours per test with 1 CPU.

QUICKSAND reports the CPU-time spent in addition to the

wall-clock time for a resource-fair comparison (although,

with the growing importance of multicore for performance,

QUICKSAND’s inherent parallelism is a convenient benefit).

All tests ran on 12-core 3.2 GHz Xeon W3670 machines.

6.3 Comparison to State-of-the-Art MC

Figure 7 plots the cumulative distribution of bugs found by

each experiment against the time taken to find each bug.

4 Some of the Pintoses were partially implemented, so each test could only

be run on a subset of the 78 submissions; see “Number tested” in Table 1.

(a) Bugs found as a function of elapsed CPU time. Overall,

a more resource-fair comparison than (b), although QUICK-

SAND’s start-up overhead is exaggerated, as the SSS-MC

tests are not parallelized.

(b) Bugs found by elapsed wall-clock time. QUICKSAND is

parallelized tenfold; the vertical line indicates its 1 hour limit.

Figure 7. Comparison of bug-finding performance by sev-

eral configurations of QUICKSAND and the SSS-MC control.

QUICKSAND finds 125% as many bugs at the 10-hour mark

compared to the best SSS-MC approach.

Figure 7(a) is the main, resource-fair comparison by CPU-

time; we additionally show a wall-clock comparison in (b)

to highlight the impact of QUICKSAND’s parallelism.

Finding new data-race bugs. Compared to SSS-MC-

ICB (the fastest among the control experiments), QUICK-

SAND finds more bugs within any CPU budget greater than

200 seconds. Compared to SSS-MC-Shared-Mem (the best

SSS-MC approach in the long term), QUICKSAND’s Lim-

ited HB version ultimately concludes 10 CPU-hours with

125% as many bugs in total. Before the break-even point

486

https://github.com/bblum/oopsla-dataset
https://github.com/bblum/oopsla-dataset

Total bugs Data-race bugs

Num. QUICKSAND Control (SSS-MC) Limited HB Pure HB Mutual Avg. tested

Test tested LHB PHB ICB DPOR ShMem All Nondet. All Nondet. timeouts subset SSes

bcast 79 8 8 5 6 7 2 1 2 1 7 112.3

join 79 23 20 13 13 14 11 4 7 3 12 69.7

mx 79 10 9 1 1 12 9 1 8 1 0 -

sem 79 17 16 12 11 12 7 3 6 2 50 77.4

signal 79 10 8 5 5 11 6 1 3 2 45 59.6

rwlock 79 27 26 25 23 28 4 1 3 0 44 86.3

sched 59 7 7 1 1 8 6 4 6 6 2 13.0

alarm 44 21 12 16 5 29 17 1 7 6 17 7.8

wait 52 30 26 24 23 1 7 2 2 0 15 33.8

Total 629 153 132 102 88 122 69 15 44 21 192 65.8

Table 1. Summary of bugs found by each test program. QS-LHB and QS-PHB are QUICKSAND; ICB/DPOR/ShMem are

the controls (§6.2). “Data-race bugs” counts among QUICKSAND’s bugs how many required data-race PPs to expose (§6.3);

among those, the “Nondeterministic” columns show how many candidates required MC integration to identify (§6.4). “Mutual

timeouts” counts how often both QS-Limited-HB and SSS-MC-ICB timed out with no bug found; among those, “Average

tested subset SSes” counts how many partial verifications QUICKSAND provided on average for each test (§6.3).

at 200 seconds, QUICKSAND lags behind SSS-MC-ICB due

to additional start-up overhead from its tenfold parallelism.

However, converting SSS-MC’s early CPU-time advantage

into faster wall-clock performance remains an open research

problem [54]. Figure 7(b) gives QUICKSAND full credit for

its inherent parallelism: with a 10 core allocation, it outper-

forms SSS-MC for any fixed budget of wall-clock time. Af-

ter 1 hour of wall-clock time, tenfold QUICKSAND performs

158% as well as SSS-MC-ICB.

The left half of Table 1 breaks down the number and

types of bugs found by each test program. In mx test, in

which we do not trust the lock implementation’s correct-

ness, SSS-MC-ICB and SSS-MC-DPOR found dramatically

fewer bugs (just 1)5. Though it often suffices to assume

correctly-implemented locks [50], we consider this strong

evidence that new low-level synchronization code must be

verified with data-race PPs.

Finding the same bugs faster. The QS-Sync-Only exper-

iment tests whether Iterative Deepening is effective even for

MC domains without data races. When QUICKSAND ignores

all data-race candidates, its results are competitive with SSS-

MC-DPOR, but SSS-MC-ICB outperforms it. This is unsur-

prising: the seed subsets of PPs QS-Sync-Only is limited to

(§3.2) are much less flexible than ICB’s preemption strat-

egy (§2.1). This result suggests that in future work, QUICK-

SAND should consider using ICB in parallel with its default

configuration when it finds no data-race candidates to test.

On the other hand, comparing QS-Limited-HB to SSS-

MC-Shared-Mem shows that Iterative Deepening thoroughly

outperforms ICB when shared-memory preemptions come

into play. Statically configuring a PP for every shared mem-

5 The one bug SSS-MC found was in a fully-assembler lock implemen-

tation. yield()’s return value clobbered a value stored in %eax, which

could lead to a failure after two repeated contentions. Preempting only on

yield() (in the contention loop) was sufficient to find the bug.

ory access in advance produces orders of magnitude more

PPs than waiting for an access to be identified as part of

a (potential) data race at runtime. In principle, DPOR and

BPOR should identify and prune any equivalences arising

from extraneous PPs on non-conflicting accesses. However,

in practice, the sheer number of accesses during each new

execution (often thousands) added significant performance

overhead to the MC when computing DPOR and backtrack-

ing. Iterative Deepening avoids this overhead by waiting un-

til runtime to identify fewer, more relevant PPs dynamically,

and is hence more suitable for MC with data-race PPs.

To ensure that our corpus of P2 and Pintos bugs gives

an unbiased comparison between QUICKSAND and ICB, we

also counted the preemption bounds necessary for ICB to

find each of its bugs. Table 2 shows the distribution of these

bounds, which is consistent with the results of [40], showing

no bias towards bugs that would be harder for ICB to find.

Bound SSS-MC-ICB SSS-MC-Shared-Mem

0 2 1

1 82 86

2 16 32

3 2 3

4+ 0 0

Total 102 122

Table 2. Distribution of preemption bounds among bugs

found by ICB control experiments. (Bound 0 means the bug

was found by switching threads only on yield()s.)

Partial verification. When a MC job times out, the user

may prefer a brief summary of what parts of the test were

verified, rather than writing off all the CPU time as a waste.

While recent work [12] attempts to quantify the probability

that a bug remains in some untested interleaving, QUICK-

SAND instead reports which subsets of PPs resulted in state

487

Figure 8. Cumulative distribution of tests fully verified by

QS-Limited-HB, QS-Pure-HB, and SSS-MC-Shared-Mem

(§5.1). 36 data-race-free tests were also soundly verified by

QS-Sync-Only, SSS-MC-DPOR, and SSS-MC-ICB.

spaces that did complete in time. On 229 tests, SSS-MC-ICB

timed out after 10 hours with no bugs found. Among these

tests, QUICKSAND found bugs in 37. For the other 192, we

show the number of state spaces QUICKSAND was able to

complete in the “Average tested subset SSes” column of Ta-

ble 1. These completions guarantee that, if the test program

could expose a bug, it would only be found by a new data-

race PP not discovered yet, or by a superset combination of

PPs not reached. Prior work [4] has argued the value of simi-

lar compositional testing when full verification is intractable,

deferring to the user’s expertise to judge the value of each

subset of PPs verified.

Full verification. For 153 of our 629 tests, QS-Limited-

HB was able to provide the total verification guarantee de-

scribed in §5.1, and QS-Pure-HB completed a verification

for 167 tests. In Figure 8 we plot the cumulative distribu-

tion of verifications provided by each approach. The next

best approach for verifications was SSS-MC-Shared-Mem,

which completed its search in only 39 cases.

Among QS-Limited-HB’s verified tests, 36 contained

no data-race candidates whatsoever, so the same verifica-

tion could be provided with synchronization PPs only. We

plot the verifications by QS-Sync-Only, SSS-MC-DPOR and

SSS-MC-ICB as well: among these, the otherwise more an-

tiquated SSS-MC-DPOR performs best, while the other two

lag behind due to redundant work (§7). While QS-Sync-

Only and SSS-MC-ICB are competitive with each other,

using data-race PPs increases our verification capacity by

4.25x. Finally, assuming sequentially-consistent hardware,

QS-Pure-HB classified many true data races as benign, while

the SSS-MC-ICB approach could at best report such races

to the user. We count these cases in Table 3.

Total Benign Untested Malloc

Test DR PPs DRs DR PPs DRs

bcast 655 97 150 52

join 566 68 249 338

mx 911 127 44 7

sem 783 2 414 166

signal 936 9 510 180

rwlock 543 1 310 156

sched 65 51 3 0

alarm 35 0 29 35

wait 71 1 28 31

Total 4565 356 1737 965

Table 3. Additional data race statistics. “Total DR PPs”

counts how many unique data-racing instructions QS-Pure-

HB identified among tests where it found no bugs. Among

those, “Benign DRs” counts how many we refuted as non-

failing (§6.3), while “Untested DR PPs” counts how many

could not be checked in the time limit (§7). “Malloc DRs”

counts how many false positive PPs QS-Limited-HB sup-

pressed (§6.4).

Happens-Before comparison. Ultimately, using Limited

HB for finding data-race candidates allowed QUICKSAND to

find more bugs, while the “pure” Happens-Before analysis

improved QUICKSAND’s performance on verifications. This

trade-off is attributable to the fact that QS-Limited-HB need

not wait to test many alternate thread interleavings before

a potential data-race candidate is confirmed; rather, it can

add new jobs to start testing potential races immediately6.

On the other hand, QS-Limited-HB can get overwhelmed by

too many false positives, needing to refute such candidates

by testing new state spaces, while QS-Pure-HB can refute

false positives en passant by testing alternate interleavings

in its original state spaces. This suggests that MCs which

feature data-race analysis should implement both modes and

offer the user to choose based on their testing philosophy.

6.4 Comparing to Single-Pass Data-Race Analysis

Beyond finding new bugs and completing full verifications

with data-race PPs, we evaluated QUICKSAND’s perfor-

mance for classifying data-race candidates in two ways.

Suppressing “malloc-recycle” false positives. In §5.2

we showed the soundness of suppressing data race reports

between two heap accesses when the surrounding memory

was re-allocated in between. In Table 3, the column “Malloc-

recycle DRs” shows the total number of such data-race can-

didates for each test program. In total, 965 data-races fit the

malloc-recycle pattern across all tests, only 64 of which were

observed to avoid the re-allocation in an alternate interleav-

ing. Our proof in §5.2 guarantees the safety of pruning all

901 other state spaces.

6 Table 1 corroborates: the difference is most dramatic in alarm, the test

where QUICKSAND struggled most to finish even small subset jobs.

488

Figure 9. Some data-race candidates may not be identified

during a single program execution. Using nondeterministic

data races as PPs, QUICKSAND found 128% (Limited HB) to

191% (Pure HB) as many data-race bugs compared to using

single-pass candidates alone.

Among those 64 true data-races, none exposed a new bug

when used as a PP. This suggests that for other data-race

tools, suppressing malloc-recycle candidates may be a pro-

ductive heuristic, even if unsound without Iterative Deepen-

ing. However, QUICKSAND was able to correctly identify

the 64 violations of that heuristic (among 26 distinct tests),

and fall back to classifying them with DPOR.

Finding nondeterministic data-race candidates. Some

memory accesses may be hidden in a control flow path that

requires a nondeterministic preemption to be executed. In

such cases, a single-pass dynamic data-race detector could

fail to identify a racing access pair as a candidate at all.

We counted how many such data-races, used as PPs, led to

QUICKSAND finding new bugs, thereby making them false

negatives of the single-pass approach. We classified each

data-race candidate according to whether LANDSLIDE re-

ported them during the first interleaving, before any back-

tracking or preempting: if so, they were single-pass data

races; otherwise, nondeterministic.

To ensure a fair comparison, we disabled LANDSLIDE’s

false-positive-avoidance techniques during this experiment.

For example, we reported malloc-recycle data races during

the first interleaving, as a single-pass analysis must (§5.2).

This prevents LANDSLIDE from suppressing an observed

data race on the first interleaving, which would falsely clas-

sify it as nondeterministic.

Figure 9 compares the types of data-race candidates nec-

essary to expose each data-race bug in our test suite. The

first and third series represent the bugs found using PPs from

single-pass data-race candidates, i.e., the state-of-the-art ap-

proach used by [31, 48]. The second and fourth series show

all data-race bugs QUICKSAND found, which includes the

former type as well as new bugs involving nondeterministic

data-races. QS-LHB found 69 data-race bugs in total, 15 of

which could not be found with single-pass data-race candi-

dates alone. QS-PHB is even more dependent on nondeter-

ministic data-race PPs, requiring nondeterministic data-race

PPs in 21 cases among its 44 total data-race bugs.

Note that we are not comparing how much testing time

is required before identifying the data-race candidates in-

volved in each bug. Single-pass data races can all be found

after a single program execution, while QUICKSAND may

potentially take up to all 10 CPU-hours before identifying

a nondeterministic data race. However, prior work data-race

tools [49], being not integrated with a MC, are not intended

to discover new candidates under subsequent runs. Running

a single-pass data-race tool repeatedly for 10 CPU-hours

could potentially uncover some nondeterministic candidates,

but stress testing’s comparative problem with achieving reli-

able coverage is already well-understood [13, 40]. Likewise,

replay-based tools [31] are dependent upon the data-race de-

tector to provide an execution trace leading to each candi-

date. This result suggests that such tools could benefit from

a similar feedback loop as is used in Iterative Deepening.

7. Discussion

In this section, we discuss QUICKSAND’s limitations and

opportunities for future improvement.

Avoiding redundant work. When we extend a small

state space with more PPs, the new state space is guaran-

teed to test a superset of interleavings compared to the old

one. Any interleaving which does not preempt threads on

any of the new PPs will be repeated work. This may make

us slower than SSS-MC to find certain bugs, for example, if

both lock and unlock PPs together expose a bug, but not ei-

ther alone. Predicting whether an upcoming interleaving has

already been tested is not straightforward, but we believe fu-

ture implementations could incorporate cross-job memoiza-

tion to prune some or all such repeated work. Prioritizing the

maximal state space in particular could also improve com-

pletion times: whenever the maximal job finishes with no

new data-races, future implementations could immediately

prune all subset jobs and declare a total verification.

Finer-grained PP subsets. QUICKSAND was able to par-

tially guarantee safety for some PPs in 93% of tests with too-

large maximal state spaces. However, in 6 cases, no more

than the minimal state space could be verified, and in 18

others, no state spaces were completed at all. While we used

within function (§4.1) statically to restrict where PPs

could arise in advance of the test, future implementations

could use this mechanism to dynamically subset PPs further,

making partial verification of larger tests possible.

Integration with static data-race analysis. In §6.3, we

evaluated SSS-MC’s ability to find data-race-induced fail-

ures by configuring a static predicate to preempt on any non-

stack memory access. This introduced hundreds of new PPs

on each new test execution, with a prohibitive performance

impact. While this performance could be improved by in-

stead using a static or single-pass analysis to find data-race

489

candidate PPs in advance [31], this strategy sacrifices the

soundness of the verification guarantee, as shown in §6.4.

However, QUICKSAND itself could employ static data-race

analysis [20] in future work. Statically-identified data race

candidates could heuristically be included in our “seed” PP

sets (§3.2), enabling QUICKSAND to focus on the most sus-

picious races immediately, rather than waiting for them to be

identified after potentially many iterations of MC.

Partial verification. While we guarantee safety when

using certain combinations of PPs (§6.3), ICB guarantees

safety under no more than a certain number of preemptions

[40]. These guarantees could each be useful to developers in

different scenarios, and future work could combine the two

approaches to provide both at once. One benefit of our tech-

nique is that within function would enable expert devel-

opers to restrict Iterative Deepening to only the modules of

a codebase they wish to test.

Likewise, when full verification is not computationally

feasible, some jobs with data-race PPs will time out. We

cannot guarantee those races are benign, even though no bug

was found. In the “Untested DR PPs” column of Table 3, we

show how many such candidates we could not verify (38%).

For a more formal treatment of these cases, we refer the

reader to the k-witness harmless metric introduced by [31],

which could be combined with QUICKSAND in future work.

8. Related Work

8.1 Stateless Model Checking

We build upon many established model-checking tech-

niques, dating back to Verisoft, the original C model checker

[25]. We compare related tools by their treatment of shared-

memory thread communication.

Synchronization events only. CHESS [41] and dBug

[51] instrument the thread library API, and can preempt

programs only during calls to this API. Hence, they will

miss any bugs that require interleaving threads at instruction

granularity during a data race. [41] discusses the ability of

CHESS to add PPs using a single-pass data-race analysis, but

does not evaluate either the increase in bug-finding capacity

or the soundness properties. Our convergence theorem (§5)

is a natural extension of [40]’s Theorem 3, which alone

provides soundness only for race-free programs.

Message-passing. Other stateless model checkers, such

as SAMC [35], MaceMC [32], MoDist [57], ETA [52], and

Concuerror [1], limit thread communication to a message-

passing API to more effectively test distributed systems.

This eliminates the need for data-race analysis, but restricts

the class of programs that can be tested.

Preempting at instruction granularity is a prerequisite

for using data-race PPs. However, the resulting state space

explosion demands that any such tool either choose a small

subset of instructions to consider as PPs or be limited to very

small test programs. SKI [24] approaches kernel code by

statically choosing a random set of instructions in advance,

which is perhaps more similar to schedule fuzzing [12] than

to exhaustive state space exploration. SPIN [27] specializes

in verifying synchronization primitive implementations such

as RCU [39], which is similar to our mx test experiment,

although it requires code to be written in the PROMELA lan-

guage. Inspect [58] instruments source code by instrument-

ing all accesses to potentially-shared data. It identifies such

instructions in advance with an over-approximating static

alias analysis, while LANDSLIDE [7] traces the memory lo-

cations of accesses at runtime. Both SPIN and Inspect fix

their set of PPs in advance, so could be extended with Itera-

tive Deepening in future work.

Reduction techniques. Various improvements or alterna-

tives to DPOR have been developed, such as Optimal DPOR

[1], Dynamic Interface Reduction [26], and R4 for event-

driven applications [30]. These are all compatible with our

technique. Recent work [59] has extended DPOR for re-

laxed memory models [3], which we do not yet account for

in our proofs (§5). SATCheck [16] and Maximal Causal-

ity Reduction [29] replace DPOR by using a SAT or SMT

solver to search for schedules guaranteed to expose new

behaviour. They improve reduction by considering values

read and written to identify additional independences, while

DPOR considers only addresses. They generate new sched-

ules at memory access granularity, which Iterative Deepen-

ing could allow to be relaxed for large tests in future work.

Parrot [15] combines MC with a partially-determinizing run-

time for further reduction, but still, fewer than half the non-

trivial tests in their evaluation could be completed, which

motivates QUICKSAND’s CPU-budget-oriented approach.

Restricting preemptions. Preemption Sealing [4] pre-

sents a mechanism similar to the within function com-

mand (§4.1) for users to manually restrict preemptions. It

demonstrates the need to consider subsets of PPs, as well as

developers’ willingness to limit a test case’s scope so the re-

sulting state space may be fully verified (§5.1). Probabilistic

Concurrency Testing (PCT) [12] is a randomized algorithm

that can quantify the probability of uncovering bugs. PCT

targets tests with impossibly large state spaces, eschewing

DPOR’s depth-first search model to instead sample broad

cross-sections of large state spaces. However, it proposes

no alternate reduction algorithm to make up for its incom-

patibility with DPOR, so is unsuitable for verification of

medium-sized tests. Future work could use ETAs to heuris-

tically switch between DPOR and PCT. Finally, ICB [40]

is most similar to our work, as both approaches provide a

partial verification when full completion is intractable (§7).

However, ICB cannot estimate remaining time to total veri-

fication, and can incorporate data-race PPs only when stati-

cally coded in advance. Our results in §6.3 outperform both

such configurations of ICB.

8.2 Data Race Detection

Happens-Before. Many advances have been made on the

false-positive potential data race problem since it was first

490

introduced in [47]. [44] and [49] introduce Limited Happens-

Before, which QUICKSAND uses to achieve its best bug-

finding result. Other tools such as DJIT+ [46] and FastTrack

[22] opt for the precise Happens-Before relation first defined

by Lamport [34], which produces no false positives but is

prone to more false negatives as shown in §2.2. FastTrack

optimizes the representation of variable write clocks for per-

formance, which guarantees to detect at least the first race

on each variable. However, as we are interested in classify-

ing data race candidates as benign or buggy, this optimiza-

tion would be unsound for total verification if the first race

on a variable were benign. Hence, we implement precise

HB with write vector clocks as defined by DJIT+. Finally,

[55] recently introduced the Causally-Precedes relation for a

precise analysis which covers some common false negative

cases such as our example in Figure 3(a).

Other domains. Several tools [6, 28, 37] have recently

emerged to target Android applications, using domain-

specific heuristics (orthogonal to our method) to reduce false

positives. Like LANDSLIDE, DataCollider [21] finds data

races in kernel code. IFRit [19] improves the performance

of HB using an interference analysis, which could allow

future work to avoid tracing every memory access.

Replay analysis. Closer to our work, replay analysis [42]

also suppresses false positives by testing multiple thread in-

terleavings. This work compares the program states immedi-

ately after the access pair for differences, preferring to err on

the side of false positives. RaceFuzzer [48] avoids false posi-

tives by requiring an actual failure be exhibited, as we do, al-

though it uses random schedule fuzzing rather than stateless

MC. While this technique can classify malloc-recycle can-

didates as false positives (§5.2), they require replaying the

threads in a new interleaving. Moreover, [31] argues that ac-

curate classification may require many re-executions, which

is tantamount to adding a new state space in QUICKSAND.

Our proof in §5.2 allows us to eliminate this special case with

no additional replay beyond what DPOR already requires.

Portend [31] is the most closely related work we have

found. Based on reports from single-pass data-race analysis,

it tests alternate executions to classify candidates in a tax-

onomy of likely severity. It uses symbolic execution to test

input nondeterminism as well as schedule nondeterminism,

and additionally reports non-failing races which nevertheless

cause different program output. However, Portend does not

test alternate interleavings in advance of knowing any spe-

cific data races, which is necessary to find certain bugs (§6.4)

or to provide full verification (§5.1). Future work could com-

bine the two approaches, using MC to produce new data-race

traces for Portend to classify, or using Portend’s analysis to

inform QUICKSAND’s heuristic priorities.

9. Conclusion

We have presented Iterative Deepening and QUICKSAND, a

new technique and tool for automating the choice of preemp-

tion points (PPs) during stateless model checking. QUICK-

SAND incorporates data-race analysis to create new PPs tai-

lored specifically to the program under test, and automati-

cally finds state spaces that are appropriately sized to com-

plete in a given CPU budget.

We achieve better bug-finding results than either single-

pass data-race detection or single-state-space model check-

ing alone, finding new bugs with data-race PPs that could

not be exposed by preempting only on synchronization APIs.

Moreover, when all data-race PPs can be fully tested within

the CPU budget, we provide a verification as strong as if ev-

ery single instruction had been used as a PP. Between data-

race bugs and verifications, QUICKSAND is shown to pro-

vide the best of both worlds. By using 157 student operat-

ing system implementation projects as our test suite, we also

show the potential benefit as a debugging platform in educa-

tional settings.

QUICKSAND is open-source and its interface can be

adapted to fit any tool similar to LANDSLIDE. We have also

posted our evaluation’s data set. They are available at:

https://github.com/bblum/oopsla-quicksand

https://github.com/bblum/oopsla-dataset

Acknowledgments

Many thanks to Vaishaal Shankar, Haryadi Gunawi, and

David A. Eckhardt for generously providing student imple-

mentations from Berkeley’s, U. of Chicago’s, and CMU’s

OS classes respectively. Thanks to Wind River for the use

of their simulator SIMICS. Thanks to Jiřı́ Šimša, Joshua

Wise, Michael J. Sullivan, Carlo Angiuli, Jean Yang, Bran-

don Lucia, Haryadi Gunawi, John Wilkes, and the anony-

mous OOPSLA reviewers for their helpful comments. We

also thank the member companies of the PDL Consortium

(Broadcom, Citadel, EMC, Facebook, Google, Hewlett-

Packard Labs, Hitachi, Intel, Microsoft Research, Mon-

goDB, NetApp, Oracle, Samsung America, Seagate, Tintri,

Two Sigma, Uber, Veritas and Western Digital). This work

was supported in part by the U.S. Army Research Office

under grant number W911NF0910273.

References

[1] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal

dynamic partial order reduction. In Principles of Program-

ming Languages, POPL ’14, pages 373–384. ACM, 2014.

[2] S. V. Adve and H.-J. Boehm. Memory models: A case for

rethinking parallel languages and hardware. Commun. ACM,

53(8):90–101, Aug. 2010.

[3] S. V. Adve and K. Gharachorloo. Shared memory consistency

models: A tutorial. Computer, 29(12):66–76, Dec. 1996.

[4] T. Ball, S. Burckhardt, K. E. Coons, M. Musuvathi, and

S. Qadeer. Preemption sealing for efficient concurrency test-

ing. In Tools and Algorithms for the Construction and Anal-

ysis of Systems, TACAS’10, pages 420–434. Springer-Verlag,

2010.

491

https://github.com/bblum/oopsla-quicksand
https://github.com/bblum/oopsla-dataset

[5] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,

C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few

billion lines of code later: Using static analysis to find bugs in

the real world. Commun. ACM, 53(2):66–75, Feb. 2010.

[6] P. Bielik, V. Raychev, and M. Vechev. Scalable race detection

for Android applications. In Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA 2015, pages

332–348. ACM, 2015.

[7] B. Blum. Landslide: Systematic dynamic race detection in

kernel space. Master’s thesis, Carnegie Mellon University,

Pittsburgh, PA, USA, May 2012. URL http://www.pdl.

cmu.edu/PDL-FTP/associated/CMU-CS-12-118.pdf.

[8] B. Blum. Soundness proofs for iterative deepening. Tech-

nical Report CMU-PDL-16-103, Carnegie Mellon Univer-

sity, September 2016. URL http://www.pdl.cmu.edu/

PDL-FTP/associated/CMU-PDL-16-103.pdf.

[9] H.-J. Boehm. How to miscompile programs with ”benign”

data races. In Hot Topics in Parallelism, HotPar’11, pages

3–3. USENIX Association, 2011.

[10] H.-J. Boehm. Position paper: Nondeterminism is unavoidable,

but data races are pure evil. In Relaxing Synchronization for

Multicore and Manycore Scalability, RACES ’12, pages 9–14.

ACM, 2012.

[11] H.-J. Boehm and S. V. Adve. Foundations of the C++ concur-

rency memory model. In Programming Language Design and

Implementation, PLDI ’08, pages 68–78. ACM, 2008.

[12] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.

A randomized scheduler with probabilistic guarantees of find-

ing bugs. In Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XV, pages 167–178.

ACM, 2010.

[13] K. E. Coons, S. Burckhardt, and M. Musuvathi. Gambit:

Effective unit testing for concurrency libraries. In Principles

and Practice of Parallel Programming, PPoPP ’10, pages 15–

24. ACM, 2010.

[14] K. E. Coons, M. Musuvathi, and K. S. McKinley. Bounded

partial-order reduction. In Object Oriented Programming

Systems Languages & Applications, OOPSLA ’13, pages

833–848. ACM, 2013.

[15] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang,

G. A. Gibson, and R. E. Bryant. Parrot: A practical runtime

for deterministic, stable, and reliable threads. In Symposium

on Operating Systems Principles, SOSP ’13, pages 388–405.

ACM, 2013.

[16] B. Demsky and P. Lam. SATCheck: SAT-directed stateless

model checking for SC and TSO. In Object-Oriented Pro-

gramming, Systems, Languages, and Applications, OOPSLA

2015, pages 20–36. ACM, 2015.

[17] D. Eckhardt. Pebbles kernel specification. http://www.cs.

cmu.edu/~410-s16/p2/kspec.pdf, 2016.

[18] D. Eckhardt. Project 2: User level thread library. http:

//www.cs.cmu.edu/~410-s16/p2/thr_lib.pdf, 2016.

[19] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-

J. Boehm. Ifrit: Interference-free regions for dynamic data-

race detection. In Object Oriented Programming Systems

Languages and Applications, OOPSLA ’12, pages 467–484.

ACM, 2012.

[20] D. Engler and K. Ashcraft. RacerX: Effective, static detection

of race conditions and deadlocks. In Symposium on Operating

Systems Principles, SOSP ’03, pages 237–252. ACM, 2003.

[21] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.

Effective data-race detection for the kernel. In Operating

Systems Design and Implementation, OSDI’10, pages 1–16.

USENIX Association, 2010.

[22] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise

dynamic race detection. In Programming Language Design

and Implementation, PLDI ’09, pages 121–133. ACM, 2009.

[23] C. Flanagan and P. Godefroid. Dynamic partial-order reduc-

tion for model checking software. In Principles of Program-

ming Languages, POPL ’05, pages 110–121. ACM, 2005.

[24] P. Fonseca, R. Rodrigues, and B. B. Brandenburg. SKI: Ex-

posing kernel concurrency bugs through systematic schedule

exploration. In Operating Systems Design and Implementa-

tion, OSDI’14, pages 415–431. USENIX Association, 2014.

[25] P. Godefroid. VeriSoft: A tool for the automatic analysis of

concurrent reactive software. In Computer Aided Verification,

CAV ’97, pages 476–479. Springer-Verlag, 1997.

[26] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang. Prac-

tical software model checking via dynamic interface reduc-

tion. In Symposium on Operating Systems Principles, SOSP

’11, pages 265–278. ACM, 2011.

[27] G. J. Holzmann. The model checker SPIN. IEEE Transactions

on Software Engineering, 23(5):279–295, May 1997.

[28] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira,

G. A. Pokam, P. M. Chen, and J. Flinn. Race detection for

event-driven mobile applications. In Programming Language

Design and Implementation, PLDI ’14, pages 326–336. ACM,

2014.

[29] J. Huang. Stateless model checking concurrent programs with

maximal causality reduction. In Programming Language De-

sign and Implementation, PLDI 2015, pages 165–174. ACM,

2015.

[30] C. S. Jensen, A. Møller, V. Raychev, D. Dimitrov, and

M. Vechev. Stateless model checking of event-driven applica-

tions. In Object-Oriented Programming, Systems, Languages,

and Applications, OOPSLA 2015, pages 57–73. ACM, 2015.

[31] B. Kasikci, C. Zamfir, and G. Candea. Data races vs. data race

bugs: Telling the difference with Portend. In Architectural

Support for Programming Languages and Operating Systems,

ASPLOS XVII, pages 185–198. ACM, 2012.

[32] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life,

death, and the critical transition: finding liveness bugs in sys-

tems code. In Networked Systems Design & Implementation,

NSDI’07, pages 18–18. USENIX Association, 2007.

[33] R. E. Korf. Iterative-deepening-A: An optimal admissible

tree search. In International Joint Conference on Artificial

Intelligence, IJCAI’85, pages 1034–1036. Morgan Kaufmann

Publishers Inc., 1985.

[34] L. Lamport. Time, clocks, and the ordering of events in

a distributed system. Commun. ACM, 21(7):558–565, July

492

http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-CS-12-118.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-CS-12-118.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-16-103.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-16-103.pdf
http://www.cs.cmu.edu/~410-s16/p2/kspec.pdf
http://www.cs.cmu.edu/~410-s16/p2/kspec.pdf
http://www.cs.cmu.edu/~410-s16/p2/thr_lib.pdf
http://www.cs.cmu.edu/~410-s16/p2/thr_lib.pdf

1978.

[35] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and

H. S. Gunawi. SAMC: Semantic-aware model checking for

fast discovery of deep bugs in cloud systems. In Operating

Systems Design and Implementation, OSDI’14, pages 399–

414. USENIX Association, 2014.

[36] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-

gren, G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and

B. Werner. Simics: A full system simulation platform. Com-

puter, 35(2):50–58, Feb. 2002.

[37] P. Maiya, A. Kanade, and R. Majumdar. Race detection for

Android applications. In Programming Language Design and

Implementation, PLDI ’14, pages 316–325. ACM, 2014.

[38] A. Mazurkiewicz. Trace theory. In Advances in Petri Nets

1986, Part II on Petri Nets: Applications and Relationships

to Other Models of Concurrency, pages 279–324. Springer-

Verlag New York, Inc., 1987.

[39] P. McKenney and J. Walpole. What is RCU, fundamentally?

https://lwn.net/Articles/262464/, 2007.

[40] M. Musuvathi and S. Qadeer. Iterative context bounding for

systematic testing of multithreaded programs. In Program-

ming Language Design and Implementation, PLDI ’07, pages

446–455. ACM, 2007.

[41] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and

I. Neamtiu. Finding and reproducing heisenbugs in concurrent

programs. In Operating Systems Design and Implementation,

OSDI’08, pages 267–280. USENIX Association, 2008.

[42] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and

B. Calder. Automatically classifying benign and harmful

data races using replay analysis. In Programming Language

Design and Implementation, PLDI ’07, pages 22–31. ACM,

2007.

[43] N. Nethercote and J. Seward. Valgrind: a framework for

heavyweight dynamic binary instrumentation. In Program-

ming Language Design and Implementation, PLDI ’07, pages

89–100. ACM, 2007.

[44] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race de-

tection. In Principles and Practice of Parallel Programming,

PPoPP ’03, pages 167–178. ACM, 2003.

[45] B. Pfaff, A. Romano, and G. Back. The Pintos instructional

operating system kernel. In Computer Science Education,

SIGCSE ’09, pages 453–457. ACM, 2009.

[46] E. Pozniansky and A. Schuster. Efficient on-the-fly data race

detection in multithreaded C++ programs. In Principles and

Practice of Parallel Programming, PPoPP ’03, pages 179–

190. ACM, 2003.

[47] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-

derson. Eraser: A dynamic data race detector for multi-

threaded programs. ACM Trans. Comput. Syst., 15(4):391–

411, Nov. 1997.

[48] K. Sen. Race directed random testing of concurrent programs.

In Programming Language Design and Implementation, PLDI

’08, pages 11–21. ACM, 2008.

[49] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: Data

race detection in practice. In Workshop on Binary Instru-

mentation and Applications, WBIA ’09, pages 62–71. ACM,

2009.

[50] J. Simsa. Systematic and Scalable Testing of Concurrent

Programs. PhD thesis, Carnegie Mellon University, Pitts-

burgh, PA, USA, 2013. URL http://repository.cmu.

edu/dissertations/285/.

[51] J. Simsa, R. Bryant, and G. Gibson. dBug: Systematic evalu-

ation of distributed systems. In Systems Software Verification,

SSV’10, pages 3–3. USENIX Association, 2010.

[52] J. Simsa, R. Bryant, G. Gibson, and J. Hickey. Efficient

Exploratory Testing of Concurrent Systems. Technical Re-

port CMU-PDL-11-113, Carnegie Mellon University, Novem-

ber 2011. URL http://www.pdl.cmu.edu/PDL-FTP/

associated/CMU-PDL-11-113.pdf.

[53] J. Simsa, R. Bryant, and G. Gibson. Runtime estimation

and resource allocation for concurrency testing. Technical

Report CMU-PDL-12-113, Carnegie Mellon University, De-

cember 2012. URL http://www.pdl.cmu.edu/PDL-FTP/

Storage/CMU-PDL-12-113.pdf.

[54] J. Simsa, R. Bryant, G. Gibson, and J. Hickey. Con-

current systematic testing at scale. Technical Report

CMU-PDL-12-101, Carnegie Mellon University, May 2012.

URL http://www.pdl.cmu.edu/PDL-FTP/associated/

CMU-PDL-12-101.pdf.

[55] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan.

Sound predictive race detection in polynomial time. In Princi-

ples of Programming Languages, POPL ’12, pages 387–400.

ACM, 2012.

[56] P. Thomson, A. F. Donaldson, and A. Betts. Concurrency

testing using schedule bounding: An empirical study. In

Principles and Practice of Parallel Programming, PPoPP ’14,

pages 15–28. ACM, 2014.

[57] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang,

F. Long, L. Zhang, and L. Zhou. MODIST: transparent model

checking of unmodified distributed systems. In Networked

Systems Design and Implementation, NSDI’09, pages 213–

228. USENIX Association, 2009.

[58] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. Ef-

ficient stateful dynamic partial order reduction. In Work-

shop on Model Checking Software, SPIN ’08, pages 288–305.

Springer-Verlag, 2008.

[59] N. Zhang, M. Kusano, and C. Wang. Dynamic partial order

reduction for relaxed memory models. In Programming Lan-

guage Design and Implementation, PLDI 2015, pages 250–

259. ACM, 2015.

493

https://lwn.net/Articles/262464/
http://repository.cmu.edu/dissertations/285/
http://repository.cmu.edu/dissertations/285/
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-11-113.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-11-113.pdf
http://www.pdl.cmu.edu/PDL-FTP/Storage/CMU-PDL-12-113.pdf
http://www.pdl.cmu.edu/PDL-FTP/Storage/CMU-PDL-12-113.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-12-101.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-12-101.pdf

	Introduction
	Background
	Stateless Model Checking
	Data Race Detection
	Terminology

	Design
	Changing State Spaces
	Initial PP Configuration
	Data-Race Preemption Points
	Choosing the Best Job
	Heuristics

	Implementation
	Landslide
	Quicksand

	Soundness
	Convergence to Total Verification
	Suppressing ``Malloc-Recycle'' False Positives

	Evaluation
	Test Suite
	Experimental Setup
	Comparison to State-of-the-Art MC
	Comparing to Single-Pass Data-Race Analysis

	Discussion
	Related Work
	Stateless Model Checking
	Data Race Detection

	Conclusion

