Using Open Source Tools for AT91SAM7S Cross Development

Revision C

Author:

James P. Lynch
Grand Island, New York, USA
May 15, 2007

TABLE OF CONTENTS

T 10T [T o) o XS 4
ARM Software Cross Development SYSIEMeiiiiiiiii e 4
Target HArAWAIEttt e e oo e ettt e e e e e e e aa b e et e eee e e e e s nnbeeeeeeaeeaeaannnaneeaeeeannns 12
Open Source TOOIS REQUIMEA.coocoiiiiiiiie et e ettt e e e e e e et b e e e e e e e e seabareeeeaeeeeanns 13
CheCK TOr JAVA SUPPOIttt e e e ettt e e e e e e eeab e b e e e eeeeeeasaataseeeeaeeaaaassbeseeeaaeeaaaasnes 13
DownIoading YAGARTO ...ttt e ettt e e e e e e et e e e e e e e saeaaataeeeaaeeesaassstaeeeaaeeesaasssanneeaeseaaannnes 18
Downloading the Segger J-LinK GDB SEIVET...........uuiiiiiiii ettt e e e e e e e e 24
Downloading the Atmel SAM-BA BOOt ASSIStaNtcuiiiiiiie e 28
T3 = L 1 Yo RS 29
T3 = L 1 Yo P 30
T3 = LI o =T [107 SRS 30
Install YAGARTO TOOI Chain ...ttt e e e e e e e e e e e e e e e e e annenneeeaaeeaaannns 32
T3 o= o T LT 0O 35
INSTAIl YAGARTO TOOIS...cciutiiieeiiiiee ittt e ettt e ettt e e sttt e e e ettt e e e e aateeeesasteeeeeantaeeesantaeeeeansaeeesasaeeesansseeasanns 37
Install the Segger J-LiNk GDB SEIVETcuuiiiiiiiie ettt e et e e st e e e e st e e e e anreeaeens 39
Install the Wiggler Parallel POrt DIIVET.........ooo ettt e e e e e e e 42
Install the Amontec JTAGKEY USB DIIVELSuuiiiiiiieii it e ettt e e e s et e e e e e e e e sasreaeeeeaeeeaenanes 45
Install the Olimex ARM-USB-OCD USB DFIVEIScccciiiiiiiiiieiiee ettt 50
Install the Atmel SAM-BA Flash Programming ULility.............ooviiiiiiiii e 54
Download the Tutorial SamPIEe ProjECtS..........eiii e 56
Move the OpenOCD Configuration Filesooo i 60
Running Eclipse for the First TimMeooi e 61
Set Up EClipse EXIErNal TOOIS......oooii ettt e e e e e e e e e e e e e e e e e enennneeeaeeeeanns 64
Set Up OpenOCD as an Eclipse External TOOI (WIGQGIEr)ccuuiiiiiiiiiieiiie e 64
Set Up OpenOCD as an Eclipse External Tool (ARM-USB-OCD)cccoiiiiiaiiiiieeee e 66
Set Up OpenOCD as an Eclipse External TOOI (JTAGKEY)......uuuiiiiiiieiiiiie e eiee e eee e 68
Set Up J-Link GDB Server as an Eclipse External Tool (SAM-ICE)ccccceiiiiiiiiiieee e 70
Set Up SAM-BA as an Eclipse EXternal TOOI...........c..uuviiiiiiiiieeee et 72
Adding Your JTAG Tools into the “Favorites” List..........ccccuiiiiiiiiii i 74
Create an EClPSE PrOJECL..........uiiiiiiii et e e e e e e e e e e e st e e e e e e e s e s eanbaaeeaeaeeeennnes 76
USING the ECHPSE EQItOr ... ettt ettt e et e e e et e e e e b e e e e nnneas 83
Creating @ NeW SOUICE FilEoiii et e e e e 83
LU o [0 1 (=Y [1R PEERR 83
Cut, Copy and Paste OpPerationsS.........coo ittt e e e e e e e e e e e e e e e e e e aanneeeeeeaaens 84
SAVING YOUI COUE ...ttt e ettt e e s bt e e e e b et e e s bb et e e s bb et e e sbb et e e s nne e e e e anaee s 84
= ol O g L= Ted (] o T [P O U PPPPPRPPPP 85
RS T= (o] 11 o ST S 85
Discussion of the Source Files — FLASH VEISION.........c.uuiiiiiiiii ettt 89
ATOTSAMTS256.H ...ttt b e s ab e e e bt esa b e e e be e e e bt e e sbe e e snbeeeneeenneas 89
BLINKER.C ..ottt ettt h ekt a et e oa e ettt e bt e e b et e sa e e et e e e abe e e s be e s neeene e e 91
L0 5 1R T T PP PP PSR PP RPN 92
ISRSUPPORT.C....oeiiiiit ettt ettt h ettt a et e bt e e et e e bt e ea et e b et e seb e e s bt e nab e e s s e neneas 96
IO 1T I Y I PR 97
AN | ST 99
LI L] SRS 101
TIMERSETUP.C ...ttt ettt ettt et e e ettt e e et e s te e e eaeeeeee e e see e amteeeaaeeeemseeaseeeamseeaaneeaneens 102
DEMO_AT91SAMY7_BLINK _FLASH.CMD ...ttt ettt e et e e e smeeeesneeeenneeans 105
IMAKEFILE ... ettt ettt ettt ettt eea e e et e e et e e e e mte e e eaeeeemeee et eeeemeeeeameeeemneeaaneeesnseesnseeaneeann 108
OpenOCD Programming SCHPE FIlEuuiiii e 110
Adjusting the OptimIZatioN LEVEL...........eiiiiiiiiie ettt e et e e et e e e e nnee e e e nees 111
Ta ol [0 To L1 o T] o) = o [T SRRSO 111
Adding Libraries t0 the LiNKooiiiiiiiiie et e e e e e e e e s e e s ae e e e e e e e e anns 111
Where are the LIDrariesvoi i 112
Display the Modules in @ LIDIarycooo it 113
The Bad News about LIDrari€sooov e e e e e 114
Building the FLASH APPICAIONooiiiiiiiie ettt e e sttt e e et e e e e snbeeeeeas 115
Using OpenOCD to Program the FLASH MEMOIYouuiiiiiiiii et 116
OpenOCD Configuration File for Wiggler (FLASH programming VErsion).........cccccccueeeinieeeiiiieee e, 116

OpenOCD Configuration File for JTAGKey (FLASH programming Version)...........cccccvceveeeeeeeiesnvveennn. 117

OpenOCD Configuration File for ARMUSBOCD (FLASH programming version)..........ccccccceeeevvvveeeee.. 117
Using SAM-ICE and SAM-BA to Program the FLASH MemOrycocciiiiiiiiiieee e 124
Debugging the FLASH APPHICAtIONeiiiiiiiiei ettt e st e e et e e e snbeeeeeas 129

Create a Debug Launch Configuration............c.coooiiiiiiiiiie e 129

Add the Debug Launch Configuration to the List of Favorites...........cccuviiiiiii e 137

Open the Eclipse Debug PreSpectiVe. it e e 138

Starting OPENOCD ...ttt et e e e bt e o bt e e e e b bt e e e e n e e e e e e 140

Starting J-LINK GDB SEIVETcoiiiiiiiie ettt et e e sttt e e e e tee e e e stee e e e ettt e e e anteeeeenteeeesnnseeeeanees 142

Start the EClipSE DEDUGQET........ooi ittt e e et e e e et e e e e nre e e e ennaeeeeenees 143

Components of the DEBUG PErspectivecooiiiiiiiiiiii et 146

D=1 o 18 e [@7] o1 1o USRI 147

Run and Stop with the Right-CliCK MENU............cccuiiiiiiee e 148

Setting @ BreaKpOinto e e e e e nnes 149

ST le | L= (Y o] o] o [PP SPTP 153

Inspecting and Modifying VariabIes.............c..ooi s 156

J AT (o g T o] Y= (o] o SR 159

Assembly Language DEeBUGGINGcooiuiiiiiiiiiiiii ettt e e 160

INSPECHNG REGISIEIS ... ettt et e e s e e raneeee s 161

INSPECHING MEMIOTY ...ttt ettt e e e e e e ettt e e e e e e e nbe bt e e e e e e e e s nnbsbeeeeaeeeeannnnees 163
Create an Eclipse Project t0 RUN N RAMoiiiiiiiiee ettt e e e e e ee e e anneeeas 167

DEMO_AT91SAMY7_BLINK_RAM.CIMD.......uuiiiiiiiiiieiiie ettt sttt ne e saneean 169

MAKEFILE.IMAK ...ttt a et bt et e e bt s ettt e bt e eab e e s b et e sar e e e nneeesaeeaas 171
BUIIA the RAM PrOJECT ... ettt e e e e e e e e e e e e e e e s e s st e aeeeaeeesassnbaaeeaaaeeaannnes 172
Debugging the RAM APPIICALIONuuiiiiiiie et e e e e e e e e re e e e e e e e e s nabaaeeeaaeeeeanns 173

Create an Embedded Debug Launch Configuration for RAMc.cooiiiiiiiiiiiie e 173

St UP the NAAWAIE ... ettt e e e e e e 180

Open the Eclipse “Debug” Perspectiveooueiiiiiiiiiiiie e 181

0= 0 o =T 10 L 5 SRS 182

Start J-LINK GDB SEIVETcco ittt et e s e bt e e e e e abe e e s e nbe e e e e anee 183

Start the EClipSe DEDUGGET........eoiiiie e e 184

Setting Software BreaKpOiNtSccvuiii it e e e e s e e e e e 186

Compiling from the Debug PerspeCHVE.........cccuuiiiiiiii et s 188
107013 1ot [T 11 (o] o - S T PP P O P S PTPROTRPP 191
ADOUL the AULNOT ...ttt ettt ear e st e e s bt e sb e e e e e nne e 191
Appendix 1. Olimex ATITSAMT- P64 BOArdccoiiiiiiiiiiie ettt e e e e e e e 192
Appendix 2. SOFTWARE COMPONENTS ...ttt eee et see e e st e st e nneeesneeeesneeesnneeans 198

Introduction

For those on a limited budget, use of open source tools to develop embedded software for the
Atmel AT91SAM7S family of microcontrollers may be a very attractive approach. Professional
software development packages from Keil, IAR, Rowley Associates, etc are convenient, easy to
install, well-supported and fairly efficient. The problem is their price ($900 US and up) which is a
roadblock for the student, hobbyist, or engineer with limited funding.

Using free open source tools currently available on the web, a very acceptable cross
development package can be assembled in an hour’s work. It does require a high-speed internet
connection and a bit of patience.

ARM Software Cross Development System

While there are a few diehards out there who still write their C programs with Windows Notepad and use
a command prompt window to enter the GNU compile and link commands by hand, this is utter
foolishness when complete Integrated Development Environments such as Eclipse are available. Eclipse
allows entering and modifying your C programs using a modern software editor. It also provides single-
click build and debug operations.

The Eclipse IDE
does everything
for us: editing,
compiling, linking,
downloading and
debugging! Ciaarain Bk el ie-0-asieies

In the Eclipse screen image below, the C source file “timerisr.c” is being edited. There are toolbar
buttons to compile and link your project, program it into onchip flash memory and start the integrated
debugger. This tutorial is devoted to how you can set all this up.

; - - This button will start the Clicking on this
This !outton will c_omplle OpenOCD or J-Link “program” icon will
and link your project. GDB Server. burn your program into
This button will start onchip flash memory.

the debugger.

£ C/C++ - timeritr.c - Eclipse Platform |._||E|E|
File Edit Refactor dMavigaste Search Project Run Window Help,
Wil @i @ -0 @Y IR GG B 5 pebug I oo+ |
FE Cfct+ Prog... 52 Mavigator | — O || [€] timerisr.c 52 = O || outline | @] Make... 2 =0
Sl = P R L e ~ & =
= :,_5 demo_at91sam?_blink_flash jj timerisr.c B =5 ddmo_atd1sam? _blink_flash
€ Binaries “ P (gl .settings
O fchives £ Timer 0 Interrupt Service Routine The Edlt view ® program
M i O
bJ Includes a”OWS yOU tO
[B ATa154M7s256 0 £ entered when TimerO RC compare interrupt asserts |
[A] Board.h ' blinks LEDZ (pin FLZ) enter and
. i .
blinker.c m |f r
B s /¢ huthor: Jawes P Lynch July 1, 2008 Od y you
isrs‘uppnrtc PR T R] source Code_
lowlewvelinit,c ;
M. #include "ATS1ZAMTIZS56.h"
— #include "board.h”

timersetup.c

biinker.a - [armie] unsigned long tickcount = 0; /¢ global varisble counts interr
crk.o - [armle]
isrsupport.o - [armle] ; . .
Jowlevelinit.o - [armle] roid TimerOIrgHandler (void) |
} 0= @ ”
main.o - [armle]) B The “Make
ﬁmain.out-[armle] volat,:!.le ATIIPS_TC pTC = AT21C_BASE TCO; I po:.mt,er to timer cl.lannel 0 re view shows
Himeise.o - [armlz] volatile ATS1P3 FPIO PFIC = AT31C BASE PIOA; /¢ pointer to PIO register struc h I
timersetup.o - [armle] unsigned int duroy /¢ temporary the alternate
F, tiboee.a 5 esre 5m L) s en = e make target
[Z crt.lst ey = pTC->TC_SR: ?ea tatus. egister to o that programs
demo_ata1sam7_blink,_flash.cmd tickeount++: /7 increment the tick count flash
i _blink_flash. asn.
= main.bin
2 main.dmp if [[pPIO->PIO _ODSR & LEDZ) == LEDZ)
I_I rain.map pPICO->PIO CODR = LEDZ; /¢ turn LEDZ (D3Z) on
L& makefile else
pPIO->FIC SODR = LEDZ; 44 turn LEDZ (D32) off
3 =
"
“ A ” 4 > < | &
The “Project < > < >
view shows all Elopertes ! [3- 70

o consales to display at this time,

the elements of

your project. The “Console” view shows the results of your

compile/link operations, etc.

The C compiler and linker used in this tutorial is the Free Software Foundation GNU tool chain for ARM.
The GNU C Compiler was first developed by Richard Stallman in 1987 and has been maintained and
updated since by a cadre of independent software engineers worldwide. The GNU C compiler is noted for
its completeness and wide range of code generators targeting most of the popular microcomputer
architectures. In addition to the compiler, the GNU tool chain includes an assembiler, linker, make utility
debugger, libraries and various other utilities.

This GNU open source C compiler provides a speed and code density performance very close to the best
professional compilers from ARM, Keil, Hitex, IAR and others. The GNU Make utility is used by Eclipse to
manage your builds and call the proper build tools in the correct sequence. The GNU GDB debugger is
fully integrated with the Eclipse IDE to give animated debugging with breakpoints, single stepping and
sophisticated inspection of variables and data structures.

Let's describe how all these software tools are used to develop ARM applications. The Eclipse software
editor is used to create C and assembler source files and include files. It is also used to create the make
file and linker script file.

————— — C Source Files main.c
[Assembler Source Files crt.s
————— Include Files Board.h
i — Make file makefile (no extension)
Eclipse Editor L, Linker Command Scriptfile ~ demo_at91sam7_blink flash.cmd

The GNU C Compiler (ARM version) and the GNU assembler (ARM version) are used to compile and
assemble the source files. The outputs of the compiler and assembler are object files. Object files are
fairly close to the final machine language instructions executed by the ARM chip, but addresses are not
filled in. These addresses are resolved and filled in later by the linker (giving the user the ability to load
the program anywhere in memory).

C Source Files mainc >
GNU C Compiler ——————— " Object Files main.o

Include Files Board.h C————

Assembler Source Files crt.s T =
GNU Assembler —————— " Object Files crt.o

Include Files T—————

The GNU Linker is used to collect the object files you have created, plus any object modules you need
from libraries, resolve all addresses, and combine them into a downloadable output file with the “.out”
extension. A linker command script file with the extension “.cmd” is used to specify the order and target
memory location your object modules.

The “.out” output file is complex; it includes both machine language executable instructions and
debugging information. Normally, this file is used to download into RAM memory for execution exclusively
within RAM or to simply assist the Eclipse/GDB debugger in identifying symbols and their memory
addresses, etc. The Linker also produces a “.map” file which is helpful in determining the lengths of
modules, their placement in memory, etc.

Object Files main.o |:>

GNU Linker ———— = Qutput File main.out
Library Files libgcca —————— >

— Map File main.map

Linker Command Script File
(demo_at91sam7_blink_flash.cmd)

If you wish to burn your application into onchip FLASH memory, then a pure binary file is needed by the
OpenOCD JTAG debugger or the Atmel SAM-BA flash programming utility. This is created by running the
“.out” file through the GNU ObjCopy utility to create a “.bin” binary file.

Output File main.out ——-"— GNU Objcopy Utility [—=—"> Binary File main.bin

As a completely optional step, the GNU Objdump utility can be used to create a “.dmp” dump file which is
an embellishment to the map file. If this is of no interest to you, just remove it from the make file.

Output File main.out ———="> GNU Objdump Utility [——"—> Dump File main.dmp

You literally could do all the above operations by entering commands into a Windows command prompt.
However, Eclipse uses the GNU Make utility to automate all this for you. Make scans a makefile that you
prepare and executes the above utilities automatically in the proper order. Ever better, using file
“dependencies” that you supply, the Make utility only compiles those source files that need it (the ones
you just changed). In a large project, this is a real time saver.

When you click on the Eclipse “Build All” toolbar button shown below, Eclipse will run the GNU Make
utility which will compile and link your project. In this case, Eclipse effectively runs the command “make
all”.

Another toolbar button in Eclipse will run the make utility with the “program” target (effectively the
command “make program” — this will burn your application into onchip flash via the JTAG connection.

GNU Make Utility ————— = Runs all the utilities above!

(make all)

Debugging is a bit complicated since the application’s execution platform is a circuit board separate from
your PC. Several PC programs and a special hardware interface are required to accomplish “remote
debugging”.

When you start the Eclipse Debugger, Eclipse will automatically start an auxiliary program, the GNU GDB
Source Level Debugger (arm-elf-gdb.exe). Eclipse communicates to this program using the GDB/MI
protocol which is similar to the command line interface (CLI) that people have been using for years to
operate GDB in batch mode.

For example, Eclipse may send the command “print x” to GDB when you park the cursor over the variable

X"

Park cursor over GNU GDB Source Level Debugger
the variable “x” “Print x”

[>
GDBI/MI protocol Arm-elf-gdb.exe

Eclipse Debugger

GDB has access to your main.out file which has both instructions and symbol information. Using the
symbol information, it determines that the variable “x” is a long integer at memory address 0x2006D4.
GDB now emits a “read memory” debugging command in a serial protocol called RSP (Remote Serial
Protocol).

For example, it may generate a text packet like this: “ém0x2006D4,8#cs” which means read 8 bytes from
memory address 0x2006D4. This RSP packet is sent to a TCP port.

TCP Port
GNU GDB Source Level Debugger Read Memory: “$m0x2006D4,8#cs” X4
RSP protocol :><‘p 4'> localhost:3333
Arm-elf-gdb.exe Or
localhost:2331

-!-

Main.out file

A special daemon server program (a program that operates surreptitiously in the background waiting for
commands) is required to accept the RSP protocol debugging commands from GDB and convert them
into ARM JTAG protocol commands which will go to the ARM chip’s Embedded ICE module. The ARM
JTAG protocol is complex; without going into too much detail, it involves clocking bits in and out a 38 bit
register using a send line, a receive line and a clock line.

This daemon program will either be OpenOCD or the J-Link GDB Server; which one depends on the
type of hardware JTAG interface you have purchased. The daemon operates in a client-server
arrangement. The GNU GDB Source Code Debugger is the client (it makes debugging requests) while
the daemon (such as OpenOCD) is the server (it interrogates the ARM chip via the JTAG port and returns
the result).

This requires that the daemon (OpenOCD or J-Link GDB Server) must be running before GDB is started.

The connection from GDB to the OpenOCD program is via a TCP port named “localhost:3333”.
Alternately, the connection from GDB to the J-Link GDB Server program is via a TCP port nhamed
“localhost:2331”. The OpenOCD or J-Link GDB Server then uses the PC’s USB port to communicate to
the JTAG hardware interface. Note that the OpenOCD daemon can also use the PC’s parallel printer port
to operate the JTAG lines if you have the inexpensive “wiggler” JTAG device.

OpenOCD
Open On-Chip Debugger
“111001000111...” JTAG
“$m0x2006D4,8#cs”
. Hardware
RSP protocol - USB Interface
protocol

Now we have one final element in our road to debugging, the JTAG hardware interface. The USB port is
a high speed serial interface and we have five JTAG lines to manipulate. The JTAG hardware interface
converts the USB serial signal to the JTAG clock/data format. Most JTAG/USB hardware debugger
manufacturers use the FTD2232 chip that has a “bit-bang” design wherein the incoming USB serial byte
is output on 8 bidirectional port pins. These pins are then connected to the JTAG lines of the ARM chip.
The FTD2232 circuit also translates the 5 volt USB signal to the 3.3 volt level required to drive the JTAG
pins.

If you're using the inexpensive “wiggler” device, the PC printer port lines are simply level-shifted to 3.3
volts and applied directly to the ARM JTAG pins. This works but is notoriously slow and susceptible to
ground loop problems.

ARM7 and ARM9 microcontrollers have an Embedded-ICE macrocell. This is a hardware circuit that
implements most of the popular debugger functions on-chip. It has two hardware breakpoint/watchpoint
circuits that can monitor and then stop instruction flow if a designated address/data combination is
encountered (without degrading performance in any way). This means that you can set two breakpoints in
applications running in FLASH memory, single step the program; read and write memory and ARM
registers; program the onchip flash, and so forth. Not many years ago, this would require a special
“break-out” version of the microprocessor or an “in-circuit debugger” or a resident debugging software
monitor - all costly solutions.

3.3 volts Atmel AT91SAM7256
(\ Microprocessor
o volts ek JIANNN
“111001000111...” JTAG DI L
I > Hardware TMS 5 [JTAG oy | EmbeddediicE
USB IntSiface nTRST > s Macrocell
protocol
FT2232 o

The diagram below shows the command flow from Eclipse through GDB and OpenOCD/J-Link on its way
to your target board’s JTAG hardware pins. Results, such as the value of a requested memory read, flow
the reverse way back to Eclipse.

OpenOCD-FTD2XX.EXE

Or
USB
JLinkGDBServer.exe |:
Server|
RSP Protocol via
TCP connection
Localhost:3333
Client

ARM-ELF-GDB.EXE

Gnu Source-Level Debugger

GDB/MI Interface

usB
protocol

5 volts

protocol

JTAG
Interface

ARM JTAG

3.3 volts

The result of all this software cooperation is a nifty graphical debugging environment. If, for example, you
park the cursor over a variable name in the source file, Eclipse will ask the GDB Source Level Debugger
for it. Using the symbol information in your main.out file, GDB will perform a memory read request on the
appropriate memory address. The OpenOCD daemon will convert that request into the complex serial
shift register protocol required by the ARM chip’s JTAG/Embedded ICE unit. The ARM hardware will read
the symbol’s value from that address (the processor must be halted to do this) and pass it back to
OpenOCD which passes it back to the GDB Source Level Debugger which returns it to Eclipse for display.

The JTAG hardware choice is usually one of cost. Here are some popular JTAG hardware interfaces

available today.

Vendor Price Com Port Software Needed Comments

ATMEL SAM-ICE $129.00 (US) UsSB J-Link GDB Server | Branded version of the Segger J-Link
Olimex ARM JTAG $19.95 (US) Printer Port | OpenOCD Called the “wiggler”, slow download speed
Olimex ARM-USB-OCD | $69.95 (US) UsB OpenOCD extra serial port and 5 volt power for target
Olimex ARM-USB-Tiny | $49.95 (US) USB OpenOCD Hobbyist/Student version

Amontec JTAGKey $131.78 (US) | USB OpenOCD Has extra ESD protection

Amontec JTAGKey-Tiny | $38.60 (US) uUsB OpenOCD Hobbyist/Student version

Segger J-Link-ARM $330.11 (US) | USB J-Link GDB Server | Has extensive software available

The author has tried most of these JTAG interfaces and they all work very well, except for the “wiggler”
which can be very temperamental. In any case, it would behoove you to purchase a USB-based hardware
interface if you can afford it as parallel ports on PC platforms are rapidly falling out of favor.

The OpenOCD software daemon which connects the Eclipse/GDB debugger to the Olimex and Amontec
JTAG devices is open source and free. Purchasers of the Atmel SAM-ICE also have a free, unlimited
license to the Segger J-Link GDB Server.

10

When you have chosen your JTAG hardware, your setup will look like the one shown below. Here a SAM-
ICE JTAG interface is attached to the PC’s USB port and the target board’s 20-pin JTAG connector. A

simple wall-wart 9 volt DC power supply also powers the board.

H‘umﬂ'liuuﬂ

nonooooo, .
LTl g

1"

Target Hardware

As a hardware platform to exercise our ARM cross development tool chain, we will be using the Atmel

AT91SAM7S-EK evaluation board, shown directly below.

« ATSISAM7S-EK

There are numerous third party AT91SAM7 boards
available. Notable is the Olimex SAM7-P256 shown on
the right (Olimex SAM7-P64 board shown, SAM7-P256
board is very similar). This board includes two serial
ports, a USB port, expansion SD memory port, two
pushbuttons, two LEDs, one analog input with
potentiometer and a prototyping area.

The Atmel AT91SAM7S256 ARM microcontroller
includes 256 Kbytes of on chip FLASH memory and 64
Kbytes of on chip RAM. The board may be powered
from either the USB channel or an external DC power
supply (7v to 12v).

This board is available from Olimex, Spark Fun
Electronics and Microcontrollershop; it retails for $69.95
(Us)

www.olimex.com
www.sparkfun.com
www.microcontrollershop.com

For the rest of this tutorial, we will concentrate on the
Atmel AT91SAM7S-EK evaluation board.

The Olimex board can be substituted but the reader
must then make minor adjustments since the Olimex
board uses different 1/0 ports for the LEDs.

See Appendix 1 for additional instructions.

This board includes two serial ports, a USB
port, an Atmel Crypto memory, JTAG
connector, four buffered analog inputs, four
pushbuttons, four LEDs and a prototyping area.

The Atmel AT91SAM7S256 ARM
microcontroller includes 256 Kbytes of on chip
FLASH memory and 64 Kbytes of on chip RAM.

The board may be powered from either the
USB channel or an external DC power supply
(7v to 12v).

This board is available from Digikey and retails
for $149.00 (US) www.digikey.com

R A LA

12

Open Source Tools Required

To build this ARM cross development tool chain, we need the following components:

o Eclipse IDE version 3.2

o Eclipse CDT 3.1 Plug-in for C++/C Development (Zylin custom version)

e Native GNU C++/C Compiler suite for ARM Targets

e OpenOCD version 141 or later for JTAGKey or ARM-USB-OCD JTAG debugging

e Segger J-Link GDB Server version 3.70b for SAM-ICE JTAG debugging

e Atmel SAM-BA version 2.5 flash programming utility
The first four components (Eclipse, CDT, GNU Toolchain and OpenOCD) can be downloaded from a
single source. The YAGARTO ARM Cross Development Package was assembled by Michael Fischer of
Lohfelden, Germany. It includes the latest Eclipse release 3.2 and the Zylin-modified CDT (C/C++
Development Toolkit). The ARM compiler tool chain runs as a Windows native application with no Cygwin
DLL required. Michael has also modified the GDB debugger to improve its performance in an embedded
debug environment. Rounding out the package is the latest version of OpenOCD (the JTAG debugger).
YAGARTO is packaged as four downloads with a fool-proof installer for each. Michael’'s YAGARTO web

site is non-commercial with no affiliation with any manufacturer.

Yagarto may be downloaded from here: _http://www.yagarto.de/

The Segger J-Link GDB Server can be downloaded from the Segger web site: http://www.segger.de/

The Atmel SAM-BA flash programming utility can be downloaded from the Atmel web site:

http://www.atmel.com/dyn/products/product card.asp?part id=3524

Note: The Eclipse/CDT does NOT run on Windows 98 or Windows ME

Check for JAVA Support

Since the Eclipse Integrated Development Environment (IDE) is written partially in JAVA, we
must have JAVA support on our computer to run it. With the recent peace treaty between
Microsoft and Sun Microsystems, most recent desktop PCs running Windows 2000 or Windows
XP already have JAVA runtime support installed.

To check this, open a command prompt window (click on “Start — All Programs — Accessories
— Command Prompt”) and type the command c:\>java —version (thanks to Michael Fischer
for this trick).

13

http://www.yagarto.de/
http://www.segger.de/
http://www.atmel.com/dyn/products/product_card.asp?part_id=3524

ommand Prompt

C:v>java —version

java version "1.6.8_81"

Java(TM>» SE Buntime Environment <huild 1.6.8_081-hB6>

Java HotSpot<{TM> Client UM <build 1.6.8_81-bB6. nixed mode. sharingl

G

If the command prompt indicates no such program as java.exe, or if the Java version is not 1.6.0_01 or
higher, you will need to download and install the JAVA runtime environment as outlined in the instructions
below. The author recommends that you always have the latest and greatest JAVA runtime installed on
your computer. Otherwise, skip to the section “Downloading YAGARTO”.

To install the JAVA Runtime Environment, go to the SUN web site and download it.

http://java.sun.coml/j2se/1.4.2/download.html

The Sun JAVA web site is very dynamic so don’t be surprised if the JAVA run time download
screens differ slightly from this tutorial.

To support Eclipse, we just need the Sun JAVA Runtime Environment (JRE). Click on “Download J2SE
JRE” as shown below.

‘A Download Java 2 Platform, Standard Edition, v 1.4.2 (J2S8E) - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help f
Qeak -) |» |j N D search ' Favort 2| . B - 3
£l - | ([nl - oeard . Favorites @ [t_-__\ =1 i @ A
Address @ http:ffiava.sun.comfizse1. 4. 2 download. hkrml V| Go Lirks > @ -
Java | Solaris Communitiss | Sun Store Join SDH | My Profile | Wby Join Ee]

Sun Developer Network (SDN) search tips ST >

APls Downloads Technologies Products Support Sun.com

Developers Home = Products & Technologies = Java Technology = Java Platform, Standard Edition (Java SE) = Core Java = J25E1.4.2 =

J2SE 1.4.2

Download Java 2 Platform, Standard Edition, v 1.4.2 (J2SE)
Downloads Java™ 2 PLATFORM STANDARD EDITION éapar_z';se
Reference

- APl Specifications NetBeans IDE + J2SE SDK

- Documentation

Community This distribution of the J2SE Download

-White P .
i g netBeans
<> HolDLallv < B2
s

- Bug Datahase Software Development Kit (SDH) the SDK
- Forums includes NetBeans IDE, which is a
: povweriul integrated development The Jawa 2 Enterprise Edition 1.4
Learning environment for developing SDK adds support for EJBs, J5Ps,
- Mewrto Java Center applications on the Java platform. HML, and Web Services APls ina
- Tutarials & Code Camps More infa... single bundle. More infa...
- Certification Download JZSEv 1.4.2 11 SDK Download .J2EE 1.4 SDK
-J25E Learning Path with NetBeans 5.0 Bundle
- Quizzes {English Onhy i

J2SEv 1.4.2_11 SDK
The J25E Software Development Kit (SDK) supports creating J25E
applications. Mare infa...
Download J2SE SDK
Installation Instructions ReadMe Releasehotes
Sun License Third Pary Licenses

J2S5Ev 1.4.2_11 JRE

The J25E Java Runtime Environment (JRE) allows end-users ta run
Java applications. Mare infa..

Download J25E .JRE

Installation Instructiar e ReleaseMotes
Sun License Third Party Licenses

‘

J2SE v 1.4.2 Documentation

e
J25E 1.4.2 Documentation

<

s

& Internst

14

In the next download screen, shown below, click the radio button “Accept License Agreement”
and then click on “Windows Offline Installation, Multi-language”.

ft Internet Explorer

File Edit View Favorites Tools Help

eBack = -J @ @ \'_;j pSearch *Favorites @ Dj-,%v “*_\ﬁ - _J CD ﬁ

Address @ https: !fsdlcZe, sun.com/EComfEComaActionServlet; jsessionid=E43FFA9 1736 17DE5803300DEAL CA0A409

v|G0 Links ** @'
@‘éﬁ@ Sun Downloads

Download

Java(TM) 2 Runtime Environment, Standard Edition 1.4.2_11

Join Sun Developer Netwaork and sign up for Java Core Newsletter Join SDN | Why Join?

Join SDN i

Caonnectwith a worldwide community of Java developers using Java technology and tools. Sign up for the Java Core
Now! Mewsletter and keep updated on the latest news on Java SE. You can subscribe by joining the Sun Developer Metwark,
Get the pass. Win the gear! Registration is easy and freel Join now.

Solaris 64-hit requires users to firstinstall 32-bit
Infarmation on picking the right format to download
Installation instructions:

* Enaglish

* Japanese

Forwindows, choose "Windows Online Installation” for the guickest download and installation on a machine connected to the Internet. Typical download
size iz F.6MB, which is the minimum download. The size may increase if additional features are selected.

MOTE: The list offers files for different platforms - please he sure to selectthe proper fileds) for your platform. Carefully review the files listed below to select

the ones you want, then click the link{s) to download. If you don't complete your downlaad, you may return to the Download Center anytime, sign in, then click
the "DownloadiOrder Histony link on the leftto continue.

For any download proklems or questions, please see the Download Center FAG,
How long will the download take? i3

ired: You must acceptthe license agreement to download the product.
cept License Agreement | Review License Agreement
Decline License Agreement

Windows Platform - Java{TM) 2 Runtime Environment, Standard Edition 1.4.2_11

* yindows Offline Installation, Multi-language j2re-1_4_2_11-windows-1586-p.exe 15.45 MB

+ yindaws Installation, Multi-language j2re-1_4_2_11-windows-i586-p-iftw.exe 1.35 MB

0 Inkernet

Open File - Security Warning

Do you want to run this file?

Mame: jre-1 5 0 06-windows-586-p.exe
Publisher:

. Sun Microsystems, Inc.

Tupe: Application
From; Cilscratch

Run]] Cancel]

[#] &hwiays ask before opering this file

e ‘while filez from the Intermet can be useful, thiz file type can
g potentially harm your computer. Only run software from publishers
you brugt, What's the righ?

Now the Sun JAVA runtime installation engine will start. Click “Run” to start the installer.

15

i& J2SE Runtime Environment 5.0 Update 6 |:|

Welcome to the Installation Wizard for 125E
Runtime Environment 5.0 Update 6

J25E Runkime Environmenk 5,0 Update & Setup is preparing the
windows Installer which will guide vou through the program
setup process. Please wait,

Compuking space requirements

Click on the “Typical Setup” radio button and then accept the license terms. JAVA is free; Sun
has recently converted JAVA into an Open Source product.

i& J2SE Runtime Environment 5.0 Update & - License

License Agreement

Please read the following license agreement carefully.

Sun Microsystems, Inc. Binary Code License Agreement Rl
for the JAVA 2 PLATFORM STANDARD EDITION RUNTIME ENYIROMMENT 5.0

SUN MICROSYSTEMS, INC. ("SUN") 1S WILLING TO LICENZE THE SOFTWARE IDEMTIFIED

BELCHY TO YO ORMLY UPON THE COMDITION THAT YOU ACCEPT ALL OF THE TERMS
COMTAIMED IM THIS BIMARY CODE LICERSE AGREEMENT AMD SUPPLEMENTAL LICENSE

TERMS (COLLECTIVELY "AGREEMEMT"). PLEASE READ THE AGREEMENT CAREFULLY. BY
DCAHLOADING OR INSTALLING THIS SOFTWARE, vOU ACCEPT THE TERMS OF THE
AGREEMENT. INDICATE ACCEPTANCE BY SELECTING THE "ACCEPT" BUTTOM AT THE

BOTTOM GF THE AGREEMENT. IF ¥'OU ARE ROT YWLLING TO BE BOUND BY ALL THE TERMS,

(®) Tpical setup - All recommended Features will be installed.

Cuskom setup - Specify the features ko install, For advanced users,

/A
L Decline(.” Accept >]>

N

v

Installshield

A series of installation progress screens will appear. Installation only takes a couple of minutes.

i J2SE Runtime Environment 5.0 Update 6 - Progress

Installing

The program Features vou selected are being installed.

Please wait while the Install Wizard installs 125E Runtime Environment 5.0
Update 6. This may take several minutes.

Status:

InstallShisld

< Back Mext =

16

When the JAVA runtime installation completes, click on “Finish” to exit the installer.

i J2SE Runtime Environment 5.0 Update 6 - Complete rz‘

Installation Completed

The Install Wizard has successfully installed J25E Runtime
Environment 5.0 Update &, Click Finish ta exit the wizard,

To check that JAVA has been installed, create a command prompt (click on “Start — All
Programs — Accessories — Command Prompt”) and type the command c:\>java —version

C:s>java —wversion
java version " _.6_60_B81"
JavaCTHM» SE RBuntime Environment <huild 1._6.6_81-hBA6>

Java HotSpot{TM>» Client UM <huild 1.6_6_H1-hH6. mixed mode. sharingl

Gz

Note: The current revision of YAGARTO reguires the latest JAVA
runtime environment (version 1.6.0_01)

17

Downloading YAGARTO

Michael Fischer of Lohfelden, Germany has put together a native version of the GNU compiler tool chain
for ARM targets based on MinGW (Minimalist GNU for Windows) and called it YAGARTO (YET
ANOTHER GNU ARM TOOL CHAIN). The compiler suite does not require the Cygwin package and is
therefore a bit more efficient running in a Windows environment.

Eclipse, a superior open-source Integrated Development Environment (IDE), coupled with the C
Development Toolkit (CDT) plug-in provides an editor and source code debugger.

The OpenOCD JTAG debugger, developed by German student Dominic Rath, interfaces the Eclipse GDB
source code debugger with the AT91SAM7S JTAG port. OpenOCD supports run/stop control, memory
and register inspection, software and hardware breakpoints and can also be used to program the
AT91SAMYTS internal FLASH memory.

Each of these four components (compiler, Eclipse IDE, YAGARTO Tools and OpenOCD) are downloaded
separately and each has its own automatic installer that is fool-proof and convenient.

Michael Fischer's YAGARTO web site, which is loaded with great software examples and tutorials, can be
accessed at the following link.

http://www.yagarto.de

The YAGARTO web site should look something like this, shown below.

YAGARTO Yet another GNU ARM toolchain

LTS

by ?
Download Why another GNU ARM toolchain?

How to?

Suppart Initially | was searching for a toolchain with the

License information following features:

Mote kaﬂuthEr Gy,
« not based on Cygwin i “
» works with Eclipse

| found some native Windows toolchains based
on MinGW, but the GDB of these toolchains
doesn't work properly under Eclipse. That's why |
decide to create a new toolchain suited for my
requirements. YAGARTO was born...

ar
'QNS JaLﬂD\’e b

YAGARTO is divided in three packages with the following components:

» Open On-Chip Debugger

» Binutils, Newlib, GCC compiler, and the Insight debugger

» Eclipse Platform Runtime Binary, Eclipse CDT and CDT plugin for
the GDB embedded debugging.

Zylin made some modifications in Eclipse CDT for Windows + a plugin
to improve support for GDB embedded debugging in CDT.

18

http://www.yagarto.de/

Scroll down the YAGARTO web site until you see the four download components displayed, as shown
below.

Download

The packages of YAGARTO can be found here:

Package Version Last Version
Open On-Chip Debugger (2.22 MB)]

r141-rc01 16.04 2007

\

[md5sum: 35419¢ccab0f4 7fb1593a%9%dced07899)
YAGARTO Tools (700 KB)

Include tools like make, sh. touch and more.

You only need these tools if you do not have
installed the Open On-Chip Debugger, 20070303 03.03.2007

and want to use J-Link / SAM-ICE.

(mdasum: alcb54d6704bd3c1e109a73ce?2eee2a)

YAGARTO GNU ARM toolchain (32 MB}]

Binutils-2.17
Mewlib-1.14.0
GCC-4.11
Insight-6.5.5.20060612

Intergrated Development Environment (45 MB}J Eclipse 3.2
Zylin CDT 20060908 02.10.2006
(mdasum: 3d298675a37263209f8d9bdfddb1b224) Zylin plugin 20060908

First version

[md5sum: abe3B882b582ffcc563ebc7800f186afa)

\

Using Windows Explorer, create an empty folder called “c:\download” to hold the four downloaded
YAGARTO installation packages. This will let us easily reinstall things if we make a mistake.

Click on the link for the “Open On-Chip Debugger” package as shown above. We're going to save these
packages in the “c:\download” folder and run them later. Select “Save” as shown below on the left and
then specify the download folder “c:\download” as shown on the right below. Click “Save” in the “Save
As” screen below on the right to start the download process.

. q 3 P | 2l
File Download - Security Warning X el
— Save in: |E)duwnluad V| Q ¥ ¥ -
Do you want to run or zave this file? Mame Size | Type Diate Modified
My Recent
Mame: openocd-2007rel4i-setup-rcli exe Documents
Type: Application, 2.31MB @

From: www,vagarto,de Desktop

W

Fiun]’ Save l[Cancel])

y Documents

@

Iy Computer

~Ze While files from the Internet can be uzeful, thiz file twpe can
l@ potentially harm pour computer. 1f you do not trust the zource, do not -]
[Uh Of 8ave tl"IIS snftware. What's thE fiSk? Q File name: |npenncd-EDD?re131 -setup-ic02 exe v| [Save]
Py Mehwark Save a5 type: |Apphcatinn v | .ﬁ

19

The OpenOCD (Open On-Chip Debugger) package downloads quickly since it is only 2.2 Mb.
Click on “Close” as shown below on the right to finish the download.

Download complete

...d-2007re141-setup-rc01.exe from... Ei:

s
{_y--' Download Complete

...d-2007rel 4] -setup-rc01.exe From wime,vagarko,de ...0-2007rel141-sebup-rc01 . exe From wime, vagarto.de

(Eaman) (RN RRSRSAARRANAARARANARRAAAARRRAAARRSREARAE
Estimated time left 47 sec (239KE of 2.31MB copied) Downloaded: 2.31MEin 1 sec

Download to: Temporary Folder Download bo: C...\openocd-2007re141-setup-rc0l, exe

Transfer rate: 45, 6KBj5ec Transfer rate: 2. 31MB[Sec

] Clase this dialog box when download completes [] Cloze this dialog bow when download completes

Open Open Faolder [Run][DpenFolder [Cloge l |

Click on the link for the “Yagarto Tools” package as shown in the Yagarto Download section above.
Select “Save” as shown below on the left and then specify the download folder “c:\download” as shown
on the right below. Click “Save” in the “Save As” screen below on the right to start the download process.

File Download - Security Warning :

Savein |@dnwnlnad "| € ? » -

(T‘} openocd-2007re 1 31-setup-rclZ, exe

Do you want to run or zave this file?

Mame: wagarto-tools-20070303-setup, exe
Twpe: Application, 699KE

My Recent
Documeits

From: wisne, wagarto,de

5
L/. %‘T i
d L]

Run] [Save] I Cancel My Documents

4

by Computer

la While filez from the Intermet can be useful, this file tppe can
potentially harm your computer. [F pou do nat trugt the source, do not - i R [-
A run o gave thiz software, What's the rigk? ‘g e name yegatotools selup. e o | Csee_J
MyNetwork | Save astpe | Application | [Concel |

The “Yagarto Tools” package downloads quickly since it is only 700 Kb. Click on “Close” as shown below
on the right to finish the download.

of ...0-tools-20070303-setup.exe from ... |:|i: El Download complete

7
0 —{_% Download Complete

v, 0-tools-20070303-setup. exe From wiww,vagarko,de ... 0-tools-20070303-setup. exe From www, vagarto, de
(FesseeesesssersRRRRR R R) (FESSERSNRRSRRSRRSSRRRARRS RSN RRER AR AR
Estimated time left 1 sec (392KE of 699KE copied) Downloaded: BAIKE in 4 sec

Download to: C: . wagarto-tools-20070303-sekup, exe Download to; i, \yagarto-tools-20070303-setup, exe

Transfer rake: 190KEfSer Transfer rate: 174KB|Sec

[] Close this dialog box when download completes [] Close this dialog box when download completes

Open Open Falder [Fun] [Open Folder [Cloze]

20

Now click on the link for the “Yagarto GNU ARM toolchain” package as shown in the Yagarto Download
section above. Select “Save” as shown below on the left and then specify the download folder
“‘c:\download” as shown on the right below. Click “Save” in the “Save As” screen below on the right to

start the download process.

Save As

File Download - Security Warning

Savein |E)download V| €] i il

Do you want to run or zave this file? Y (3 anenocd-2007re131-sehup-re02.exe
i (3 vagarto-tools-20070303-setup. exe

My Recent
Mare: ...-bu-2.17 _acc-4.1.1-c-c++_nl-1.14.0_gi-6.5.5.exe
Type: Application, 30.8ME

Dacuments
From: wwa, wagarto,de

o

L. 3‘!_—;.4
> o
d s

Run] [Save] I Cancel My Documents

®

ty Computer

|--"‘- Wwhile _files from the Internet can be useful. this file type can
‘t\ﬂ Fuurzeﬂr:tfglﬂehﬁ::-g ggﬁ;g?;nwﬁ;tg ';?: ridSith trust the elllizisy do not Q File name: |u'2.'\?_gcc'4'\.'Irc:'c++_nlr'|.'l4.U_g\75.5.5.axe V| Save l
v| Cancel

My Metwork, Save as type: |App\|cat|on

The “Yagarto GNU ARM toolchain” package takes several minutes to download since it is 30.8 Mb. Click
on “Close” as shown below on the right to finish the download.

...ctt_nl-1.14.0_gi-6.5.5.exe from ... E]i: E| Download complete

i
b

- Download Complete

woC++_nl-1,14,0_gi-6.5,5.exe from wee,yagarto, de

) (FEEesRsSEsARARRR RS RRRRRR SRR RRRRRRRERRE

coCH+_nl-1.14.0_gi-6.5.5.exe from wew,vagarto,de
[(FEmnnw

Estimated time left & min 5 sec {3, 75MB of 30,8ME copied) Daownloaded: 30.8MBin & min 1 sec
Download bo; cdyagarto-bu-2,17_gee-4.1. 1-c-c++_n. Download bo; odyagarto-bu-2,17_gee-4.1.1-c-c++ L

Transfer rate: 76.7KESec Transfer rate: 87.5KE/Sec
[Cloze this dialog box when download completes [Cloze this dislog box when download completes

Open | | Open Folder [Run] [OpenFoider |

Cloze

Click on the link for the “Integrated Development Environment’ package as shown in the Yagarto
Download section above. Select “Save” as shown below on the left and then specify the download folder
“c:\download” as shown on the right below. Click “Save” in the “Save As” screen below on the right to

start the download process.

21

File Download - Security Warning : save As

Save in: ‘&}download v| €] ? o v
Do you want to run or zave this file? '2 (5 openacd-2007re131-setup-rec02.exe
i (9 yagarto-bu-2.17 _gec-4.1, 1-c-c++_rl-1,14.0_gi-6.5.5.exe

My Recent i?} vagarto-tools-20070303-setup, exe
Mame: vagarto-ide-20061002-setup, exe Documents
Type: Application, 44, 6ME @
Desktop
)

From: wanw, vagarto,de

Run] [Save] [Cancel

My Documents

Iy Computer

|a While files from the [nternet can be uzeful, thiz file lwpe can
patentially harm your computer. IF wou do nat tust the source, do not >] -
. . : Fil : toide- 20061 002-setup. v 5
A run or gave this software. What's the risk? ‘E o rane [ssgano e R [|
by Metwork Save as type: |Applicati0n v| Cancel

The “Integrated Development Environment” package takes several minutes to download since it is 44.6
Mb. Click on “Close” as shown below on the right to finish the download.

of ...rto-ide-20061002-setup.exe from ... :“: E| Download complete

¥ 4
“] Dovnload Complete

+ o PED-ide-2006 1002-setup, exe From wiww, yagarto, de v Pho-ide-20061002-sekup. exe from vy, vagarto,de

L) | | GesssssssnnnnnananmamEERRRRRRRRR AR R R RS
Estimated time left 7 min 39 sec (10,0ME of 44.6ME copied) Cownloaded: 44,6MB in 2 min 44 sec

Download to: it dwvagarto-ide-20061002-setup, exe Cownload bo; it vagarto-ide-20061002-setup, exe

Transfer rate; 77.2KEB3ec Transfer rake: 73.2KE)3ec

[] Cloge this dialog box when download completes [] Cloze thiz dialog box when download completes

Cloze

Open Open Folder [Run] [Open Folder]

Now if you inspect the “c:\download” folder using Windows Explorer, you will see the four YAGARTO
downloads. Each of these is an installer executable. We will double-click on each one in turn to install the
various parts of our ARM Cross Development system.

® C:\download [z
w

File Edit ‘%iew Favorites Tools Help

@Back - _) l.ﬁ; pSearch

EET_FDIders ' % @ Dllj

Falders x Mame Size | Type [rake Modified
I dell ~ \T‘J openocd-2007rel 41-setup-redl . exe 2,365 KB Application SI8/2007 7148 PM
[Dell Drivers : RT‘} vagarto-bu-2,17 _gee-4.1.1-c-c++_nl-1,14.0_gi-6.5.5.exe 31,591 KB Application 5/5/2007 5:09 PM
[Documents and Settings \T‘} yagarto-ide-20061002-setup. exe 45,701 KB Application SiS/2007 5:54 Pt
3 I3 yagarto-tools-20070303-setup.exe FOOKE Application 5i5/2007 4:51 PM
< | (> < | ¥

22

There are four files in the c:\download folder:

openocd-2007re141-setup-rc01.exe Installer for OpenOCD support
yagarto-tools-20070303-setup.exe Installer for JLINK support
yagarto-bu-2.17_gcc-4.1.1-c-c++_nl-1.14.0_gi-6.5.5.exe Installer for GNU compiler suite for ARM
yagarto-ide-20061002-setup.exe Installer for Eclipse IDE

Note to Readers:

Michael Fischer is constantly improving the YAGARTO package. If you get a newer
version when you download YAGARTO, rest assured that Michael has made sure that
all the components work harmoniously together.

In this tutorial, the OpenOCD JTAG debugger system is stored in the following folder:
c:\Program Files\openocd-2007re141\

If Michael has posted a newer version, that folder name may change to:

c:\Program Files\openocd-2007re154\

For example, the OpenOCD executable and configuration files for this revision are
stored in this folder: “c:\Program Files\openocd-2007re141\bin”. Obviously, a newer
revision will place these files is a different folder — you need to be aware of this if you
download a newer version of YAGARTO.

We'll try to indicate throughout the tutorial those places where you will need to adjust
the folder name to accommodate the new revision.

23

Downloading the Segger J-Link GDB Server

You may skip this section if you are planning to use the Olimex wiggler, the Olimex ARM-USB-
OCD or the Amontec JTAGKey hardware debuggers.

If you have purchased the Atmel AT91SAM7S256-EK evaluation board, you may have also
purchased a JTAG debugger called the SAM-ICE. In reality, this is a branded version of the
Segger J-Link ARM Emulator that interfaces the Eclipse graphical debugger to the Atmel
AT91SAM7S256 ARM chip’s JTAG hardware interface. To use the SAM-ICE or the J-Link, we
will need a Windows software program called the Segger J-Link GDB Server. The J-Link GDB
Server can be downloaded from the following link:

http://www.segger.com/download jlink.html

Note: there is a link to this on the Atmel www.at91.com web site but going directly to the Seeger
web site guarantees access to the latest version.

This brings up the specific link to the J-Link ARM download. Click on “Software and
documentation pack V3.70b” as shown below.

2 SEGGER Microcontroller Systeme GmbH, Software solutions for embedded systems (GUI, RTOS, File s - Windows Internet Explorer |Z||§HZ|
B

% |‘>>' http: v segger , comfdownload_link, html V| || X |

W

|
=] Embedded Software Solutions

/-ﬂ Software products | Hardware products | Downloads | Prices | Customers | Aboutus |

® J-Link software download

—_ . - - »
[‘»— SEGGER Microcontraller Systeme GmbH, Software sal... l l ﬁ - B fm - |5k Page v {CF Tools +

J-Link software including:

® USB driver,

® J-Mem

* jlink.exe and jlinkarm.dll
.

.

J-Flash*

J-Link RDI*

(includes flashdownloader® and support for unlimited number of flash breakpoints®)
* GDB server*

Home
Software products 3
Hardware products »

Downloads

Prices 5 Can be used with DIGI JTAG Link, SAM-ICE and J-Link KS hardware [J-Link info...
3

Cusiomess [@E Software and documentation pack V2.70b [3935 kb]]

About Us 3

SEGGER U.S.A. * (license required)

Older software versions

Y =

Copyright SEGGER Microcontroller Systeme GmbH. All rights reserved.
For more information, please visit our web site www.segger.com or contact us at info@segger.com
Last update: May 18, 2007

I e-mail: info@segger.com Copyright & 2006, www.segger.com, All rights reserved. | Imprint | Disclaimer | Site Map

=

& Internet 100 v

24

http://www.segger.com/download_jlink.html
http://www.at91.com/

In the “File Download” screen shown below left, click “Save”. Since we have a “c:\download”
folder already set up, direct the Segger download to that folder as shown in the “Save As” screen
shown below on the right. Click “Save” to start the download process.

Do you want to open or save this file?
[I%l. Mame: Setup_JLinkaRM_Y370b.zip
Tupe: Compressed (zipped) Folder, 3.64MB

From: wwww,segger.com

[Open][Save l[Cancel]

Alvayz azk before opering thiz tepe of file

v

Wehile files fram the Intemet can be uzeful, zome files can potentially
harm wour computer. | you do not trust the source, do nat open or
zave thiz file. What's the risk?

Save As

Save in: |E} download V| 0 ? ® [

[E1 Setup_lLink&RM_y368h, zip

@'

fy Recent
Docurnents

@

Desktop

&

tdy Documents

@

by Computer

-

| Setup_JLinkaRM_V370b.zip

Save

Cancel

File: marne:

by Metwark Save as bype: | Compresszed [zipped] Folder

The Segger J-Link download just takes a few seconds to download and leaves the Segger zip file
in the “c:\download” folder. Click on “Close” when the download completes, as shown below right.

f Setup_JLinkARM_V370b.zip from ww... [= | 01|

&

Setup_JLinkaRM_W370b. zip From wenw, seqger, com

Download Complete

Setup_JLinkaRM_W370b. zip From wenw, seqger, com

(FEssssssnssnnsannn)

(FEsssesssssssRSRRRRRRSRRRS R AR RRRRRRRRRE RS

Estimated time left 9 sec (1.50ME of 3.584ME copied)
Download ko: Cihdow,,\Setup_JLinkaRM_W370b. zip
TransFer rate: 264KB[Sec

[C] Cloge this dialog box when download completes

Open

192KE in 2 sec
Cihdow,,\Setup_JLinkaRM_W370b. zip
96, 1KB/Sec

Downloaded:
Download ko:
TransFer rate:

[C] Cloge this dialog box when download completes

[Open] [Open Folder] [Cloze

Double-click on the Segger zip file “Setup_JLinkARM_V370b.zip” as shown below and extract it
to the c:\download folder using the standard Windows file decompression techniques.

® C:\download

¢ File Edit View Favorites Tools Help ﬁl
Q- O 3P XBE
@ Back (=] l.@ 7~ Search H’:‘ Folders
Falders x Mame Size | Type Date Modified
15 dell ~ ET‘! openocd-2007re 141-sebup-re0l, exe 2,368 KB Application SJ8/2007 7145 PM
IC5) Dell Drivers (P yagarto-bu-2.17_gec-4.1. 1-c-ch+_nl-1.14.0_gi-6.5.5.exe 31,591 KE Application SI5/2007 5:09 PM

— i,?} vagarto-ide-20061002-sekup. exe
() vagarto-tools-Z0070303-setup. exe
(£ 5etup_lLinkaRM_v370b.zip

|C3) Documents and Settings
Double-click on this to start

Windows file decompression.

IC3) drvrtmp
E] Easyscreen
I3 Fixed pitch Fonts w

25

The Windows file decompression wizard will start up; Click on “Extract all files” to start the
decompression.

(8 C:\download\Setup_JLinkARM_V368b.zip £l
File Edit Wiew Favorites Tools Help a"

@Back < _,) l.@ pSearch {7 Folders ' % @ D\j

| Mame Type Packe. .. Has a password Size R... Date

Folder Tasks 8 [Fsetup_lLinkarm_v36sb.exe #pplication 3,937 KB Mo 3,953KB 1% 3/30{2007 4:53 PM
[E] Extract all files
Other Places
£ | *

=) download

Click on “Next” on the “Welcome” screen on the left below. For the destination of the extracted
file, take the default which will place it as a sub-folder of the c:\download directory. Click “Next”
on the screen on the right below to actually start the file extraction process.

Extraction Wizard X Extraction Wizard
welcome to the SEIE|E":|t ¥ D'zstti:atzi;'n hive will be extracted ta the locati)
Compressed (Zipped) ez Inzae he archive will be extracied o the location pou
. choose,
@ Folders Extraction

Wizard

Select a folder to extract flles to,
Files will be extracted to this directorny:

C:hdownloadsSetup_JLinkaRM_Y 3700 |

Browse...
Pazsword...

The extraction wizard helps pou copy files
from inzide a ZIF archive.

Estracting...

(

Ta continue, click Mest.

< Back I Mext >] [Cancel ’ < Back I Mest > l [Cancel]

Click on “Finish” below to complete the Windows file extraction operation.

Extraction Wizard

Extraction Complete
Files have been successfully extracted from the ZIP archive.

Filzz have been successfully extracted ta the follawing
directony:

C:AdownloadySetup_JLinkaRM_V370b

To see your extracted files, check the box below:
[Show extracted files

Press finish to continue.

< Back [Finish l [Cancel

26

If you navigate down into the Segger sub-folder in the c:\download directory, you will see the
Segger J-Link package installer. This is the application “Setup_JLinkARM_V370b.exe” as
shown below. We will be installing the J-Link GDB Server later, assuming that you have the
SAM-ICE JTAG hardware.

@ C:\download\Setup_JLinkARM_V370b

: File Edt ‘“iew Favoribes Tools Help a'
:] =
@ Back - (<> L@ p Search H’?‘ Folders ' % @ |j
Folders x Mame = Size | Type [rake Modified
[del A %Setup_]LinkﬂRM_\-‘S?Db.exe 3,951 KB Application 5/19/2007 11:51 AM
IC3) Dell Drivers
I3 Documents and Settings i
= Iy download
129 Setup_lLinkaRM_¥370b
I3 drvrtmp
|C3) Easyscreen L

Don’t be alarmed if the Segger web site shows a more recent revision of the Segger J-Link GDB Server, it
is always prudent to use the latest and greatest version available!

27

Downloading the Atmel SAM-BA Boot Assistant

Atmel provides a very nice Windows utility called the SAM Boot Assistant (SAM-BA) which can
be used to program the onchip FLASH memory. SAM-BA can operate over the COM port with a
standard RS-232 straight-through cable and also operate over the USB port if you have a
standard USB cable. It can also connect via the USB port to the JTAG port if you have the SAM-
ICE JTAG hardware interface. You cannot use the SAM-BA with the Olimex ARM-USB-OCD or
the Amontec JTAGKey JTAG hardware interfaces; for those the OpenOCD software can be
utilized to program the FLASH and debug the application. In any event, it makes good sense to
have this handy utility available on your Eclipse cross development system.

To download SAM-BA, click on the following link:
http://www.atmel.com/dyn/products/product card.asp?part id=3524

The Atmel main web site for the AT91 family will appear as shown below.

(:f-_'.-ﬂ.tm_el Corporation - Product Card - Windows Internet Explorer

a@r - |’ httpsf e abmel .comfdynfproducts/product_card.asp?part_id=3524

* b4 ["ntmel Corporation - Produck Card] l
‘ImEl “propUcTs [CORPORATE /" INVESTORS [CAREERS
o= e

English &Eiffzc BHRE

PRODUCTS

Product / ATS15AM 22-bit ARM-based Mioooontrollers / ATB15AMTS258

Overview

Devices Description: Key Parameters:

Tools & Software The AT915AM7S256 is a low pincount Flash Status | Production

Dat micracontroller based on the 32-bit ARM7TDMI
RISC processor. It features 256K bytes of Flash (Kbytes) | 256

Application Notes embedded high-speed Flash with sector lock SRAM (Kbytes) | 64
capabilities and a security bit, and 64K bytes of B

Other Documents SRAM. The integrated proprietary SAM-BA Boot USB Device (Full5 | 1

Support Center Assistant enables in-system programming of the UART USART DBGU | =
embedded Flash. =

Third Party Support 10-bit A/D (channe | 2

Reguest Samples Its extensive peripheral set includes a USB 2.0 Pb-Free Packﬁges QFN 64 LQFP 64
Full 5peed Device Port, USARTs, SPI, S5C, TWI

What's Changed and an 8-channel 10-bit ADC. Its Paripharal DMA

Controller channels eliminate processor
bottlenecks during peripheral-to-memory

Scroll down until you see under “Tools and Software” the file “AT91-ISP.exe”. Click on the CD-
ROM symbol to start the download.

Tools & Software:

Code Examples: ATS1 USB Framework
Development Software: AR Quickstart Tutorial
Emulator: ATH15AM-ICE JTAG Emulator
Evaluation Kit: ATH15AMTS-EK

In-System Programming: ATH In-system Programmer (I15P)
Software Files: AT9115P.exe Instsll files for the AT91 ISP. Includes SAM-BA
package.

AT SAM_pll.html PLL MUL and DIV Calculator vs. the input
and targeted output frequency. This tool provides the user with
{21 the best ratio between the MUL and DIV fields in order to

28

http://www.atmel.com/dyn/products/product_card.asp?part_id=3524

In the “File Download” window below left, click on “Save”. Select our “c:\download” folder as the
destination and the click “Save” to start the download, as shown below right.

Save i |E)down\oad v| o2 e o=
Do you want to run or save this file? -, &) apenocd-2007re 14 L-sstuprel L exe
bb (3 vagarto-bu-2.17_gec-4. 1. 1-c-c+_nl-1.14.0_gi-6.5.5. exe
m Mare: Install AT91-ISP v1.9.exe My Recent (;71vagarto-\dE-ZUDS1002-setup‘exe
Documents (7 vanarto-tools-20070303-setup exe
Type: Application, 2.64ME

From: v, atmel. com

Run] [Save] [Cancel

?Q
L./‘ g,s gl
=l

ty Documents

l--"* Wihile filez fram the [nternet can be useful, this file type can e
\gj potentially harm your computer. |F pou do naot trugt the source, do not ty Computer
un or zave thig software, What's the rizk?
File name: [lrnstal &TOTIEP 19,05 | [[sae |
My Metwork | Save as type: |Application v| l Cancel]

The SAM-BA installer will download in a few seconds. Click “Close” when the download completes.

Download complete

2 Z0AT91-1SP% 20v1. 9. exe from... |

#
w

= Download Complete

o balle20ATI-ISPo% 201 .9, exe From v, akrel.com oo el 20ATIL-13P420v1 . 9. exe from wiw, atmel, com
CCCCCCCCCET | [0
Estimated time left 19 sec (744KE of 2.64ME copied) Downloaded: 2.64ME in 29 sec

Dovwnload to: i\ downloadiInstall AT91-I5P v1.9,2xe Downlaad ta: CiidawnloadiInstall ATS1-ISP v1.9.exe

Transfer rate: 100KE)Sec Transfer rate: 93, 4KBSSec

[] Cloze this dialog box when download completes [Cloge this dislog box when download completes

Open Open Falder l Run] [Open Folder] [Cloge

The “c:\download” folder should now show the Atmel SAM-BA installer, called “Install AT91-ISP
v1.9.exe”.

@ C:\download

i File Edit ‘View Favoribes Tools Help E’
: 9 y =
; e Back ~ () LE p Search E{E‘ Folders v % \E d
Folders X Mame Size | Type Date Modified
3 Dell Drivers { 'J‘} Install AT91-15P v1.9.exe 2,711 KB Application 5(8f2007 &:06 PM
[C3) Documents and Settings) openocd-Z007re14T-setup-re0l exe 2,368 KB Application SI83/2007 7148 PM
download —' (@yagarta-bu-2.17_gce-4. 1. 1-c-o++ _nl-1.14.0_gi-6.5.5.e38 31,591KB Application 5I5/2007 5:09 PM
) drvrtmp {37 yanarto-ide-20061002-sekup, exe 45,701 kB Application 5(5f2007 5:54 PM
I3 Easvscreen {7 yagarto-tools-20070305-sstup, exe T00KE Application 5(5(2007 4:51 PM
3 Fiwed pitch Fonts P Setup_JLinkARM_Y368b. zip 3,937 KB Compressed (zip,.. 5/8/2007 7.57 FM
v
[1 —_
{ | £ |

29

Install All Tools

Everything we need has been downloaded into the “c:\download” folder. Now we will install each tool
individually. Michael Fischer has made everything simple, in most cases just take the defaults presented
by the installers!

Install OpenOCD

Even if you are planning to use the Atmel SAM-ICE JTAG hardware debugger, we will install OpenOCD
anyway because it contains the executable for the GNU make utility. Michael Fischer's OpenOCD installer
automatically places the location of the “make.exe” executable into the Windows path environment
variable, making it easy for Eclipse to find it when you hit the “Build All” button.

Eclipse/CDT has a fabulous graphical source code debugger that is built on top of the venerable GNU
GDB command line debugger. The only problem is how to connect it to a remote target such as a
microprocessor circuit board. GDB communicates to the target via a Remote Serial Protocol that can be
utilized over a parallel port or an internet port. To make the Eclipse/JTAG connection, we need a daemon
(a program that runs in the background), waiting for GDB Remote Serial Protocol commands coming over
the TCP port and then manipulate the AT91SAMY7 microprocessor JTAG pins according to the JTAG
protocol established by ARM.

In the past, most people have used the Macraigor OCDRemote utility that reads GDB serial commands
and manipulates the ARM JTAG lines using the PC’s parallel port and a simple hardware level-shifting
device called a “wiggler”. The Macraigor OCDRemote utility has always been available for free (in binary
form) but it is not open source. Macraigor could withdraw it at any time.

To the rescue is German college student Dominic Rath who developed an open source ARM JTAG
debugger as his diploma thesis at the University of Applied Sciences, FH-Augsburg in Bavaria. Dominic’s
thesis can be found here: http://openocd.berlios.de/thesis.pdf . Dominic also has a website on the Berlios
Open Source repository here: http://openocd.berlios.de/web/

Finally, Dominic participates in the OpenOCD message board at the SparkFun site here:
http://www.sparkfun.com

OpenOCD can be used with the inexpensive “wiggler” JTAG device as well as the USB JTAG devices
such as the Amontec JTAGKey, the Olimex ARM-USB-OCD and others coming on the market. It cannot
be used with the SAM-ICE JTAG interface.

Double-click on the file “Openocd-2007re131-setup-rc01.exe” to start the OpenOCD installer.

® C:\download |._||E|fz|
© File Edit Wiew Favorites Tools Help 4’
" P — 1Y L=
] @ Back ~ () Lﬁ pl) Search H__" Folders v }é Llj d
Folders X Mame Size | Twpe Date Modified
) Dell Drivers ~ {(JiInstall AT91-I5P v1.9.exe 2,711 KB Application 5/&/2007 &:06 PM
[Documents and Settings _[(7 openacd-2007re141-setup-rcDl exe] 2,363 KE Application S/8/2007 7:48 PM
download —' Wvagarto-bu-2.17_goe-4. 1. 1-c-o++_nl-1.14.0_gi-6.5.5.ex8 31,591 KB Application 5/5/2007 5:09 PM
D drvrtmp {7 yanarto-ide-20061002-sekup, exe 45,701 KB Application 5/5/2007 5:54 PM
() Easyscreen {71 vagarto-tools-20070305-sstup, exe 700KE Application 5/5/2007 4:51 PM
L3 Fixed pitch fonts i Setup_JLinkARM_V36Eb. zip 3,937 KB Compressed (zip... 5/8/2007 7:57 PM
w
[N 1 —_
{ | [* 4 | ¥

30

http://www.sparkfun.com/

In the “Welcome” screen below on the left, click the “Next” button. The next screen is a standard GNU
license agreement; click the top radio button to accept the License Agreement and click the “Next” button
to continue.

& 0pen0OCD 2007re141 Setup =13 & OpenOCD 2007re141 Setup =

License Agreement

Welcome to the OpenQCD a Please review the license terms before installing OpenoCD

2007re141 Setup Wizard 2007rel4l,
This wizard will guide you through the installation of Press Page Down bo see the rest of the agreement.
OpenOCD 2007rel141,

The OpenOCD installer contains several different other packages. -
1t is recommended that you close all other applications Some of these packages have their own version of license, like =
befare starting Setup. This will make it possible to update the Amontec ITAGkey. Please take a look in the corresponding directories,
relevant system files without having to reboat your
computer. OpenOCD is licensed under the terms of the GMNU General Public License:

Click Mext to continue, GMU GEMERAL PUBLIC LICEMSE
Wersion 2, June 1991 =

If wou accept the terms of the agreement, select the First option below. You must accept the
agreement to install OpenOCD 2007rel4l, Click Next to continue.

f* I accepk the terms in the License Agreement
¢~ Ido not accept the terms in the License Agreement

Mext = Cancel < Back [Mext = | | Cancel |

In the “Choose Components” screen shown below on the left, select all three components (OpenOCD,
Make Utils and Driver). Click “Next” to continue. On the “Choose Install Location” screen below on the
right, take the default location “c:\Program Files\openocd-2007re141” and click “Next” to continue.

® 0penOCD 2007re141 Setup [=]2/ Bl ® 0pen0CD 2007re141 Setup
" Choose Components Choose Install Location
Choose which features of OpenOCD 2007re141 you want ko “hoose the folder in which to install OpenoCD 2007reidi.
-, install, -
Check the components you want bo install and uncheck the components you don't want ko Setup will install OpenOCD 2007re141 in th
install, Click Mext to continue, click Browse and select another Folder, Click)

This folder may change
if you download a newer
revicion of YAGARTO

Select components to install:

5 Make utils
+] Drriver

Destination Folder YV

\ .
[| C:\Program Files\openocd-Z007rel141 J Browse. ..
Description

Space required: &.0MB Space required: 6.0ME
Space available: 7.9GE

< Back Cancel | < Back I Mext = | | Cancel |
J

L8

Take the default in the “Choose Start Menu Folder” screen shown below left. The OpenOCD debugger
will be normally called from within Eclipse, so execution from the Start menu would be rare. You could
click the checkbox “Do not Create Shortcuts” if desired. Click “Install” to take the default and continue.

© 0pen0CD 2007re141 Setup © 0penOCD 2007re141 Setup

shortcuts,

Choose Start Menu Folder Installing
Choose a Start Menu Folder For the OpenOCD 2007rel41 Please wait while OpenCCD 2007re141 is being installed,

Select the Start Menu folder in which you would like to create the program's shorkcuts, You Extract: FTDZRY.H

can also enter a name ko create a new folder,
Show details

101 AVI MPEG WY Converter
Accessories

Administrative Tools

ADS Tech B
#rc3oft ShowBiz 2

ATMEL Corporation

Avi To MPEG Soout
Avigynth 2.5

D (DVD) Recorder
CyberLink PawerDVD
Cygwin

™ Do not create shortcuts

1>

| €

Cancel

< Back " Install
—_—

I Text = || Cancel

31

OpenOCD installs very fast (less than a minute) as shown in the “Installing” screen above on the right.
Click “Next” when the installation completes, as shown in the screen below on the left.

Click “Finish”, as shown on the screen below to the right, to terminate the OpenOCD installer.

& Open0CD 2007re141 Setup (=][0)] § ® 0penOCD 2007re141 Setup =13

Inztallation Complete

Completing the OpenOCD
2007re141 Setup Wizard

Setup was completed successfully,

OpenOCD 2007rel41 has been installed on your computer.

Completed

Click. Finish to close this wizard,

Shiow details

Yisik the OpenOCD site For the latest news and suppart

[% Back | Cancel | | % Back | Cancel

Make a mental note that the installer has placed all OpenOCD components in the following folder:
c:\Program\Files\openocd-2007re141\. If your download includes a more recent revision of OpenOCD,
remember the folder address — we will use it later in the tutorial.

Install YAGARTO Tool Chain

There are a number of pre-built GNU ARM compiler toolsets available on the web and they are all very
good. For this tutorial, we will be using the YAGARTO pre-built ARM compiler tool suite developed by
Michael Fischer of Lohfelden, Germany. Michael’s version of the GNU compiler toolset for ARM has been
natively compiled for the Intel/Windows platform; therefore the Cygwin utilities are not needed. This makes
the compiler run faster and simplifies the installation. Michael has also performed some tweaks on the
included GNU GDB debugger to make it perform better in the Eclipse environment.

Double-click on the file Yagarto-bu-2.17_gcc-4.1.1-c-c++_nl-1.14.0_gi-6.5.5.exe to start the YAGARTO
tool chain installer.

@ C:\download |-_||E|[X|
© File Edit Wew Favortes Tools Help ;'l
: . = . =
: e Back ~ () l@ 7) Search [F‘ Folders ' }g LIJ d
Folders X Mame Size | Type Date Modified
[T Dell Drivers A 3 Install AT91-15P v1.9.6xe 2,711 KB Application 5{&/2007 §:06 PM
[C3) Documents and Settings ~ () openocd-2007re141 -sebup-rc0l . exe 2,368 KB Application 5/8/2007 7:45 PM
—[3 vagarto-bu-2,17_goe-4.1.1-c-c++_nl-1.14.0_gi-6.5.5.8x8] 31,591 KE Application 5/5/2007 5:09 PM
@ drvrkmp & yagarto-ide-20061002-setup. exe 45,701 KE Application 5/5/2007 5:54 PM
() Easyscreen (37 vagarto-tools-20070303-setup. exe FOOKE Application /52007 4:51 PM
[T Fixed pitch Fonts (£ Setup_JLinkarM_v3eb.2ip 3,937 KB Compressed (zip.,. 5f8/2007 7:57 PM
v
T=e o~ [—_
< | > < | >

32

In the “Welcome” screen shown on the left below, click on “Next” to continue. Click the "I Accept ...”
radio button on the “License Agreement” screen below on the right and then click “Next” to continue.

© YAGARTO 4.1.1 Setup

==

Welcome to the YAGARTO 4.1.1
Setup Wizard

This wizard will guide you through the installation of
YAGARTO 4.1.1,

It is recommended that vou close all other applications
before starting Setup. This will make it possible to update
relevant system Files without having ko rebook wour
computer,

Click Mext to continue.

| Mext = || Cancel

X]

© YAGARTO 4.1.1 Setup

@ccept the kerms in the License Agreement
do nat accept the terms in the License Agreement

0 &

License Agreement
Flease review the license terms before installing ¥AGARTO 4.1.1,

Press Page Down ko see the rest of the agreement.

@MU GEMERAL PLUBLIC LICENSE
Yersion 2, June 1991

[HE3

Copyright (C) 1959, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Evervaone is permitted ko copy and distribute verbatim copies
of this license document, but changing it is not allowed.
v

Preammhle

If ywou accept the terms of the agreement, select the first option below. You must accept the
agreement toinstall YAGARTO 4.1.1, Click Mext o continue,

I Mext = | Cancel |

=

In the “Choose Components” screen on the left below, take all the defaults by simply clicking “Next” to continue.
Note that this installs the Insight debugger that we will not use, but no harm is done including it. On the “Choose
Install Location” screen on the right below, take the default again by clicking “Next” to continue.

© YAGARTO 4.1.1 Setup

© YAGARTO 4.1.1 Setup

Choose Components
Choose which Features of YAGARTO 4.1.1 wou want ko install.

Check the components you want ko inskall and uncheck the components vou don't want ko
install, Click Next to continue,

Select components to install:

Space required: 245,8MEB

I = Back I Mext = | Cancel

A z

Choose Install Location
Choose the Folder in which to install YAGARTO 4.1.1.

Setup will install YAGARTC 4,1.1 in the Following Folder. To install in a different Folder, click
Browse and select another Folder. Click Mext to continue.

Destination Folder

Browse. ..

Space required: 245.8MB
Space available: 5.6GE

= Back| Mext = Cancel

Click “Install” on the “Choose Start Menu Folder” shown below left and the YAGARTO tool chain installer

will commence. This installation takes several minutes.

© YAGARTO 4.1.1 Setup

Choose Start Menu Folder
Choose a Start Menu Folder for the YAGARTO 4.1.1 shortouts,

Select the Start Menu Falder in which vou would like to create the program's shartouts, You
can also enter a name to create a new fFolder,

Accessaries
Administrative Tools
ADS Tech i
America Online

Arnontec

ArcSoft PhotoBase 4.5
Arcsoft ShowBiz 2

ATMEL Corporation

Audio Playback Recarder 3.06
AviSynth 2.5

Capkura

[Do not create shortouts

|

<

< Back l Install || Cancel

CoX

~

© YAGARTO 4.1.1 Setup

)0 X

Installing
Flease wait while YAGARTO 4.1.1 is being installed,

Extract: libc.a

Show details

I Mextk = || Cancel

33

When tool chain installation completes, click “Next” as shown below on the left followed by clicking
“Finish” on YAGARTO completion screen shown on the right below. This will terminate the YAGARTO
installer.

Make a mental note that the YAGARTO compiler tool chain is installed in the following folder:

C:\Program Files\Yagarto\

© YAGARTO 4.1.1 Setup =3

© YAGARTO 4.1.1 Setup

Installation Complete
Setup was completed successfully.

Completing the YAGARTO 4.1.1
Setup Wizard

Completed YAGARTO 4.1.1 has been installed on vour computer,
Click Finish to close this wizard,
Show details

Wisit the YAGARTO site For khe latest news,

[< Bacl I Mext = || Cancel | | = Ba l Finish | Cancel
—~ — —~— —

34

Install Eclipse IDE

IBM has been a competitor in recent years to Microsoft and at one time was building an alternative to
Microsoft’s Visual Studio (specifically for the purpose of developing JAVA software). This effort was called
the Eclipse Project and in 2004 IBM donated Eclipse to the Open Software movement, created an
independent Eclipse Foundation to support it and invited programmers worldwide to contribute to it. The
result has been an avalanche of activity that has catapulted Eclipse from a simple JAVA editor to a multi-
platform tool for developing just about any language, including C/C++ projects.

Eclipse by itself makes a wonderful Integrated Development Environment (IDE) for JAVA software. There
are numerous books available on the Eclipse JAVA platform and many PC and Web applications are
being built with it. Be sure to visit the Eclipse web site: www.eclipse.orq

Our purpose is to build an IDE for embedded software development; this normally implies C/C++
programming. To do this, we need to install the CDT (C Development Toolkit) plug-in. The problem is that
Eclipse/CDT has had difficulties working with remote debuggers. Oyvind Harboe and the Norwegian
company Zylin has developed, with the cooperation of the CDT team, a custom version of the CDT plug-in
that solves these problems. The Zylin version of CDT properly starts the remote debugger in idle mode so
you can start execution, single-step, etc.

The only proviso is that we must select a version of Eclipse compatible with the Zylin CDT plug-in. Rest
assured that the Zylin CDT included in the YAGARTO download was chosen for its compatibility with the
new Eclipse 3.2 release. The Zylin website is at this address: www.zylin.com

Double-click on the file “Yagarto-ide-20061002-setup.exe” to start the Eclipse IDE installer.

% C:\download Z

File Edit View Favorites Tools Help

O

: " = 19 ="
: e Back ~ </ lﬁ Pl) Search H_" Folders ' }é LIJ d
Folders x Mare Size | Type Date Modified
[Dell Drivers | (i Install AT91-15P v1.9.exe 2,711 KB Application 5/8/2007 8:06 PM
[C3) Documents and Settings ~ (Jopenocd-2007re1 41-setup-ro0l e 2,368 KB Application S/8/2007 7:48 PM
@ ' (Jivanarto-bu-2,17 goo-4 L l-cc++ nl-1.14.0_gi-6.5.5.8x8 31,591 KB Application 5/5/2007 5:09 PM
[drertmp (3 yanarto-ide-20061002-setup, exe 45,701 KE Application 5/5/2007 5:54 PM
[C3) Easwscreen o) yagarto- -selUp. ExE FOOKE Application 5/5/2007 4:51 PM
[Fixed pitch Farts 2 [5ekup_1LinkaRM_v36h.2ip 3,937 KE Compressed (zip... 5/8/2007 7:57 PM
= - 1 —
< | > < | ¥

The initial “Welcome” screen is shown below to the left; click on “Next” to continue. Accept the terms of
the license agreement by clicking the “l accept ...” radio button in the screen below right and then click
“Next” to continue.

[]2/ [l © YAGARTO IDE 20061002 Setup

© YAGARTO IDE 20061002 Setup

License Agreement

Welcome to the YAGARTO IDE

20061002 Setup Wizard 20061002,

This wizard will guide wou thraugh the installation of Press Page Down to see the rest of the agreement,

YARGARTO IDE 20061002,

Please review the license terms before installing ¥ AGARTO IDE

It is recammended that vou close all other applications
befaore skarting Setup. This will ake it possible to updake
relevant syskem files without having to rebook wour
compuker,

Click Mext ko continue,

l | Mext = | | Cancel

*Eclipse Public License - + 1.0% A

THE ACCOMPANYING PROGRAM 15 PROYVIDED UNDER THE TERMS OF THIS ECLIPSE
PUBLIC LICEMSE ("AGREEMENT"). ANY IUSE, REPRODUCTION OR DISTRIBUTION OF
THE PROGRAM COMSTITUTES RECIPIEMT'S ACCEPTAMCE OF THIS AGREEMENT.

1, DEFINITIONS
a

"Cantribnbinn" means: x

If wou accept the terms of the agreement, select the first option below. You must accept the
agreement to install ¥AGARTO IDE 20061002, Click Mext to continue,

@ accept the terms in the License Agreement
I do not accept the terms in the License Agreement

< Back ! l Mext = |l| Cancel

35

You are forced to select Eclipse and the Zylin plug-ins in the “Choose Components” screen shown below
to the left. Click on “Next” to continue. Take the default in the “Choose Install Location” screen below on

the right. Click “Next” to continue.

© YAGARTO IDE 20061002 Setup

Choose Components

Choose which Features of YAGARTS IDE 20061002 you wank ko
install,

Check the components you want ta install and uncheck the components vou don't want to
install. Click Mext to continue.

Select components to inskall:

Eclipse Platform 3.2
Zylin embedded CDT 20060905
Zylin plugin 20060905

Description
Space required: 51.9MB

[< Back I Mext = || Cancel

El0IX)

L]

YAGARTO IDE 20061002 Setup

Choose Install Location
Choose the Folder in which ko install YAGARTO IDE 20061002,

Setup will install YAGARTO IDE 20061002 in the Following Folder. To install in a different
folder, click Browse and select anather Folder. Click Mext ta continue.

Destination Folder

Browese. ..

| :\Program Files\yagarto ide

Space required: 51.9MB
Space available: 15.9GE

| | Cancel

[< Back I Mext =
L8

The Eclipse IDE can be added to the Start menu as shown in the “Choose Start Menu Folder” screen
below on the left. Click “Install” to start the Eclipse installer. The Eclipse installer will commence and it will
just take at most a couple of minutes. Click “Next” when the Eclipse installer finishes, as shown below to

the right.

© YAGARTO IDE 20061002 Setup

Choose Start Menu Folder

Choose a Start Menu Folder For the ¥AGARTO IDE 20061002
shortouts,

Seleck the Start Menu Folder in which you would like to create the program's shorteuts, You
can also enter a name to create a new folder,

¥ AGAR.TO IDE]

101 AVI MPEG WY Converter
Accessories

Administrative Tools

ADS Tech

ArcSoft ShowBiz 2

Avi Ta MPEG Scout
AviSynth 2.5

CD (DVD) Recorder
CyberLink PowerDYD

Diiwie

Fx MPEG Writer
™ Do nat create shorteuts

|

£

[< Back [Install | | Cancel

EEX

© YAGARTO IDE 20061002 Setup

Completed

[Show details

Installation Complete
Setup was completed successfully,

I < Back I Mext = | | Cancel |

Finally, click “Finish” to exit the Eclipse installer as shown in the screen below. Make a mental note that

YAGARTO installed the Eclipse components in the following folder:

© YAGARTO IDE 20061002 Setup

cormpuker.,

Completing the YAGARTO IDE
20061002 Setup Wizard

YAGARTO IDE 20061002 has been installed on waour

Click. Finish ta close this wizard,

Yisit the YAGARTO site For the latest news,

= Back

c:\Program Files\Yagarto IDE\

=S

[Einish | | Cancel

36

Install YAGARTO Tools

The YAGARTO Tools includes the GNU Make utility. Double-click on the file Yagarto-tools-
20070303-setup.exe to start the YAGARTO tools installer.

& C:\download :

B

File Edit “iew Favorites Tools Help :’
] . = W oy
; @ Back * | > lm: P) %earch H__'“ Faolders v }g Llj d
Folders X Mame Size | Type Date Modified
[Dell Drivers A (PInstall ATOL-ISP w1, 3,658 2,711KE Application 5J&/2007 8:06 FM
) Documents and Settings (P openocd-2007re1 41-setup-re01 exe 2,368 KB Application 5/8/2007 7:48 PM
dawnload — () yagarto-bu-2,17_gee-4, 1, 1-c-o++_nil-1,14.0_gi6.5.5 exe 31,591 KB Application 5/5/2007 5:09 PM
) drvrtmp (Z -igle- - 45,701 KB Application 5/5(2007 5:54 P
) Easyscreen (3 vagarto-tools-20070303-setup, £xe F00KE Application 5/5/2007 4:51 PM
(5 fied pitch Fonks £ | Setup_JLinkaRM_\368b.zip 3,937 KB Compressed (zip... 5/8/2007 7:57 PM
v
[—_
£ | 3 & | ¥

In the “Welcome” screen below on the left, click “Next” to continue. In the “License Agreement” screen
below on the right, check the radio button to accept the license agreement and then click “Next” to
proceed.

® YAGARTO Tools 20070303 Setup (=] 2/X] Jll ® YAGARTO Tools 20070303 Setup

License Agreement

Please review the license terms before instaling ¥AGARTO Tools
20070303,

Welcome to the YAGARTO Tools
20070303 Setup Wizard

This wizard will guide you through the installation of Press Page Down to see the rest of the agreement.
YAGARTO Tools 20070303,

GMU GEMERAL PUBLIC LICEMNSE A
It is recommended that wou close all ather applications Yersion 2, June 1991 =
before starting Setup. This will make it possible to update
relevant system files without having to reboot your Copyright {iZ) 1989, 1991 Free Software Foundation, Inc,
computer, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute werbatim copies
Click Mext to continue, of this license docurnent, but changing it is not allowed.
Preamhls A

If vou accept the tarms of the agreement, select the First option below. ¥ou must accept the
agreement to install YAGARTO Tools 20070303, Click Mext to continue,

@ccept the terms in the License Agreement
do not accept the terms in khe License Agreement

< Back I Mext = |
e

Cancel

ext = | Cancel |

In the “Choose Components” screen below on the left, take the default (select both components) and
click “Next” to continue.

In the “Choose Install Location” screen below on the right, take the default which is the destination folder
“c:\Program Files\yagarto-tools-20070303\". Click on “Next” to proceed.

37

& YAGARTO Tools 20070303 Setup

© YAGARTO Tools 20070303 Setup

Choose Install Location
Choose the folder in which to install YAGARTO Tools 20070303,

Choose Components

Choose which features of YAGARTOD Tools 20070303 vou wank to
install.

Check the components vau want ko install and uncheck the components you don't want ko Setup will install ¥AGARTO Tools 20070303 in kthe Following folder, To installin a different
inskall, Click Mext ko continue. folder, click Browse and select another Folder, Click hext to continue.

Add the make utils bo the PATH variable

Select components ko install; J

Destination Folder

1 -
[|C:'|,F‘r0gram Filesyyagarto-tools-20070303 J Browse. ..
Description

Space required: 1.6ME Space reguired: 1.6MB
Space available: 7.9GE

| < Back. I Mext = | | Cancel | | < Back, I et = | | Cancel

In the “Choose Start Menu Folder” screen below on the left, click “Install”’ to start the installation. You
could elect to check the box labeled “Do not create shortcuts” since the Make utility is typically started
from within Eclipse. The Yagarto tools will install quickly. When the “Installation Complete” screen
appears as shown below in the right; click “Next” to continue.

® YAGARTO Tools 20070303 Setup (=)= |X] [l ® YAGARTO Tools 20070303 Setup

Choose Start Menu Folder

Choose a Skart Menu Folder For the YAGARTO Tools 20070303
shortcuts,

Inztallation Complete
Setup was completed successfully.

Select the Start Menu Folder in which wou would like to create the program's shartcuts, You Completed

can also enter a name ko create a new folder,
Show details

101 AYI MPEG WY Converter
Accessaries

Administrative Tools

A0S Tech

ArcSoft ShowBiz 2

ATMEL Corporation

Awi To MPEG Scout
Avisynth 2.5

D (DYDY Recorder
CyberlLink PowerDvD
Cygwin

™ Do not create shortouts

[+

|

[< Back li Install || Cancel | | = Back li Next = || Cancel

Finally, click on “Finish” as shown below to complete installation of the Yagarto tools.

© YAGARTO Tools 20070303 Setup ST

Completing the YAGARTO Tools
20070303 Setup Wizard

YAGARTO Tools 20070303 has been installed on vour
cormputer,

Click Finish to close this wizard,

Wisit the ¥ AGARTO site For the latest news,

< Back I Finish || Cancel

38

Install the Segger J-Link GDB Server

If you have purchased the Atmel SAM-ICE JTAG hardware interface, install the Seeger J-Link GDB
Server as shown in this section.

SEGGER Microcontroller Systeme GmbH of Hilden, Germany supply hardware and software
tools for the embedded software industry. They are manufacturers of the J-Link JTAG hardware
debuggers and supply numerous software products in support thereof. One product of special
interest is the J-Link GDB Server for connection to the Eclipse/GDB graphical debugger and
another is the J-Flash EPROM programmer which can program on-chip and off-chip flash for a
wide variety of microcontrollers.

An Atmel branded version of the J-Link ARM debugger hardware, called the SAM-ICE, is
available for use with the Atmel AT91SAM7 evaluation boards for $129 (US). That's a pretty
good deal given that a standard Segger J-Link ARM USB JTAG hardware debugger retails for
$327(US) or €248(Euro).

The Segger J-Link GDB Server interfaces the GDB Remote Serial Protocol emitted by Eclipse to
the SAM-ICE JTAG Debugger. It operates as a daemon, a Windows program that operates in the
background waiting for commands to process. If you have purchased an Atmel SAM-ICE, you
automatically have an unlimited license to use the Segger J-Link GDB Server. The Atmel license
for the Segger J-Link GDB Server software is a very good value since the commercial license for
this product is $261(US) or €198(Euro).

The J-Link GDB Server cannot be used to program the onchip flash. Again, a Segger software
package called J-Flash is available to do this for $525(US) or €398(Euro). Fortunately, the free
Atmel SAM-BA utility can be used to program flash via the SAM-ICE JTAG Interface.

In the photo shown directly below, the SAM-ICE hardware debugger is connected to the PC’s
USB port and to the AT91SAM7S256-EK evaluation board’s 20-pin JTAG connector. The board
power is supplied by a standard 9 volt DC “wall wart” power supply.

39

If you are using the Atmel SAM-ICE or Segger J-Link JTAG hardware, the following installation will give
Eclipse a compatible J-Link GDB Server to communicate to the target’'s JTAG port. Click on the installer
“Setup_JLinkARM_V370b.exe” in the “c:\download\Setup_JLinkARM_V370b” folder.

@ C:\download\Setup_.JLinkARM_V370b

File Edit View Favorites Tools Help
L - ."] . IE (=
@ Back s l.@ 7 Search H’?‘ Folders % d
Folders X‘ = Size | Type Date Modified
) Dell Drivers i %Setup_JLinkARM_VS?Db.exe] 3,951 KB Application 511942007 11:51 AM
IC3) Documents and Settings
= 3 download B Double-click on this to start the
3 sebup_lLinkaRM_370b Segger J-Link GDB Server Installer
[E] Setup_ILinkarm_y370b.zip
2 drvrtmp v

Ignore the Windows belly-aching about publisher verification and click on “Run” to continue.

The Segger “License Agreement” will be presented. Click on “Yes” to accept it.

Open File - Security Warning

ense Agreement

The publisher could not be venfied. Are you sure you want to
run this software?

Mame: Setup_JLinkARM_Y370b.exe
Publisher: Unknown Publisher
Type: Application
From: Ci\download\Setup_JLinkaRM_W370b

[Cancel

Always azk before opening thiz file

Thiz file does not have a walid digital signature that verifies itz
publisher. “rou should only run software from publizhers you trust.
How can | decide what software to un?

9

Please read the following license agreement. Use the scrall bar
to wiew the rest of thiz agreemert,

Impartant - Read carefully: A

Thiz licenze iz a legal agreement betweaen YOU [either an
individual or a gingle entity] and SEGGER Microcontroller
Systeme GmbH [called SEGGER).

By downloading and/or using J-Link ARM software, you
agree to be bound by the terms of this agreement.

1. LICENSE AGREEMENT

In thiz agreement “Licenzar” shall mean SEGGER except
under the following circurnstances:

If Licengee acquired the product as a bundled component of .

Do pou accept all the terms of the preceding license agreement?
If =0, click on the Yes pugh button. 1f pou select Mo, S etup wil
cloze.

In the “Welcome” screen shown below left, click on “Next” to get started.

In the “Choose Destination Location” screen shown below right, take the default which will put the Segger
components in a “c:\Program Files” subfolder. Click “Next” to continue.

Welcome

Welcome to J-Link ARM W 3.70b Setup program.
Thiz pragram will inztall J-Link ARM V3.70b on pour
compuber.

&

Click Cancel to quit Setup, click Mest to continue with the
Setup program .

WARNING: This program is protected by copyright law and
international treaties.

Unauthorized reproduction or distibution of this program, or any
portian of it, may result in severe civil and criminal penalties,
and will be progecuted to the maxinum extent possible under
law.

Cancel

oose Destination Location

Setup will ingtall J-Link AR 3. 70b in the following Folder.

Tainstall inta a different falder, click Browse, and select
another folder.

“t'ou can choose not to install J-Link AR %3.70b by clicking
Cancel to exit Setup.

Destination Folder
’7 C:h ASEGGERMLinkARM_W370b

Browse... |

< Back Cancel |

In the “Choose Options” panel shown below left, un-check the “Create entry in start menu”
since we will be starting the Segger J-Link GDB Server from within Eclipse itself. Click “Next to
continue.

Click on “Next” to start the installation in the “Start Installation” screen shown below on the right.

hoose options tart Installation

Choose options for creating shortcuts You are now ready to install J-Link ARM W 3.70b,

Prezs the Mext button to begin the installation or the Back

[Create entry in start menu button to reenter the installation information.

I Add shortcuts to desktop

< Back Cancel

The Segger J-Link package will install quickly; click on “Finish” as shown in the screen below
right.

Installing =]] nstallation Complete

J-Link ARM %3 70b has been successfully installed

SE) -
= 1 Press the Finish button to exit this installation
— Current Fil

Copying file:

Coh AT el -S.&M?SEi4\.t’-\F'F'LIC&TIDN\lntenupt_Llsart.c

—a&ll Files

Time Femaining 2 minutes 20 seconds

< Back I Ment > I Cancel I

41

Install the Wiggler Parallel Port Driver

If you have purchased the Olimex ARM-JTAG hardware interface (called the “wiggler’), install the
giveio.sys parallel port driver as shown in this section.

Unless you are a perfect programmer, you will occasionally require the services of a debugger to trap and
identify software bugs. The AT91SAM7S256 microprocessor has special debug circuits on chip that can
start and stop execution, read and write memory, and provide two hardware-assisted breakpoints. The
interface to the outside world is a standard JTAG interface (essentially a very complicated and slow serial
shift register protocol). You need a device called a JTAG debugger to connect your PC to the ARM chip’s
JTAG pins. You also need a software program to operate that debugger and interface the JTAG protocol
to the Eclipse/GDB source code debugger protocol; that software program is OpenOCD and you've
already installed it.

One way to connect your PC to the AT91SAM7S-EK target board’s JTAG connector is to use an
inexpensive device called a “wiggler”. This can be purchased from Olimex for $19.00 (US). It's just a
simple voltage level-shifter and it plugs into your PC’s parallel port.

The ARM-JTAG device is available from:
www.olimex.com

www.sparkfun.com

www.microcontrollershop.com

The following is the hardware setup to debug the Atmel
AT91SAM7S-EK evaluation board using the inexpensive
“wiggler” device. A standard USB cable is connected to supply
board power. The ARM-JTAG interface is attached to the PC'’s
printer port; in the author’s setup, a stock parallel port cable from
the local computer store was employed. The JTAG 20-pin
connector is keyed so it can’t be inserted improperly.

20-pin JTAG
Connector

Standard Printer
cable

42

There are two well known criticisms of the “wiggler” device. First, the printer port of a PC limits operation
of the JTAG to 500 Khz and this translates into slow downloading. Second, many PCs are now being
manufactured without the customary serial and parallel port; the PC world is gravitating to the USB
protocol.

If you are planning to use the inexpensive “wiggler” JTAG interface, a special giveio.sys driver
has to be installed. This only needs to be done once.

The giveio.sys driver is in the folder: [c:\Program Files\openocd-2007re141\driver\parport\

|

Note: check if this folder name has changed
due to a newer YAGARTO release

@ C:\Program Files\openocd-2007re141\driver\parport |__||E|r5__(|
© File Edit ‘ew Favorites Tools Help ar
. — o L1 =
: -]) =, =
§ @ Back ~ () L_'_r - search [i Folders g% g3 |j
Falders x Narme Size | Type Date Modified
= (3 openocd-z007re141 ~ givein.sys GKE System file 9J23/2005 9133 AM
3 bin — [Flinstall_giveio.bat LKE M3-Di05 Batch File 9J23/2005 9133 AM
3 doc Fioaddr.2xe 26KB Application 9/23/2005 9:37 AM
= 23 driver [Fremave_giveio.bat LKE M3-Di25 Batch File 9/23/2005 9:35 AM
3 arm_ust_ocd = [Fstatus_giveio.bat 1KB MS-DOS Batch File 9/23/2005 938 AM
() jragkey_utils_060307
&Yoo |
() signalyzer b
< | >

Start the installation of the giveio.sys driver by opening up a Command Prompt window (for really
experienced readers, that’s the old DOS window). The “command prompt” can be found in your Windows
start menu “Start — All Programs — Accessories”. If your Command Prompt window is not at the root

folder c:\, you can type the CD \ command shown below to locate yourself at the root folder.

>cd \

o+ Command Prompt

We need to change to the directory: c:\Program Files\openocd-2007re141\driver\parport\ since it
contains the giveio.bat installation batch file. Type the CD command again as shown below to do this.
Now the command prompt window will show that we are inside that folder.

>cd c:\Program Files\openocd-2007re141\driver\parport\

¢+ Command Prompt

C:w>oed c:iwProgram Files“wopenocd-Z2087reldldriversparport

C:“Program Fileszs“wopenocd-20807reldi~driver-parport>

Now take a look at the contents of this folder by typing the DIR command.

e+ Command Prompt

BT H Run this batch file

= =

o 5 5 s 50 s =
Ll la BB f oy o)

= = =
= ==

=
= o5
sl

We want to run the command batch file “install_giveio.bat”. This will install the giveio.sys driver and load
and start it. The batch file may be run by entering its name on the command line and hitting “Enter”. As
you can see from the command history below, giveio was successfully installed as a Windows driver.

Command Prompt

C:“Program Filez“wopenocd-28007reldisdriversparport?install_giveio.hat
Copying the driver to the windows directory
target file: C:sWINDOWS“giveio.sys
1 filet¢s?» copied.
Remove a running service if needed...

Installing Windows HTA2k-/HP driver: giveio
installing giveio from C:SWIMDOWSSsgiveio.sws... ok.
starting giveio... ok.

zet start tuype of giveio to auto... ok.

Success

C:“Program Files“wpenocd-2807reldidriversparportr

The giveio.sys driver is a permanent installation; you only have to do this once.

44

Install the Amontec JTAGkey USB Drivers

If you have purchased one of the Amontec JTAG hardware interfaces, install the Amontec USB drivers as
shown in this section.

In Dominic Rath’s thesis about the OpenOCD project, a USB-JTAG interface based on the FTDI FT2232C
engine was described with a schematic. The Swiss engineering firm Amontec has developed and
marketed a professional version of this USB JTAG interface called the JTAGkey. lts price is €139 (euros)
or $177 (us). The JTAGkey is professionally designed and manufactured with additional bells and whistles,
such as status LEDs and ESD protection. JTAGkey also automatically senses and adjusts the level
shifters for the ARM voltage level; this will come in handy when lower voltage versions (e.g. 1.8 volts) of
the ARM become available. The Amontec JTAGKey can be purchased online from here:

http://www.amontec.com/jtagkey.shtml

Amontec has also addressed the hobbyist and student market with the JTAGkey-Tiny device, priced at
€29 (euros) or $37 (us) and illustrated below. This smaller JTAGkey-Tiny device plugs directly into the 20-
pin JTAG connector and uses a mini-USB cable to attach to the PC (you have to supply this cable — it's
similar to the USB cables supplied with digital cameras). The installation procedure is similar to that of the
more expensive JTAGkey shown below.

Professionals would tend to select the more expensive JTAGkey for its ESD protection and the flat ribbon
cable that attaches to the prototype system, as seen in the hardware setup coming up. It also has an
integrated USB cable fitted with a ferrite filter. The JTAGkey-Tiny plugs directly into the application board’s
20-pin JTAG connector and therefore must have the vertical clearance to permit this fitting.

WL OIS LaE . SoiT

A montec
L EEpED BR °F

The hardware setup, shown below, includes the Amontec JTAGkey plugged into the 20-pin JTAG header
on the AT91SAM7S-EK target board and also into the PC’s USB port. The JTAG does not supply board
power, so in this example a 9-volt DC “wall wart” power supply is fitted to the power connector. If you have
a spare USB port on your PC, you could use another USB cable to supply board power instead.

45

USB port on PC

i

% i mm\ onoc
-pin

£
2
s

7 gy

o™
= ?l
ﬂﬂl!ﬂﬁﬂn {8

EREERET
manoaaon
aoooooon

Plug in the Amontec JTAGkey into the USB port. You should hear the familiar USB “beep” sound followed
by the following screen indicating that new USB hardware has been detected.

The virtual device drivers are already on our “c:\Program Files\openocd” folder thanks to Michael Fischer’s
OpenOCD installation program we ran earlier in this tutorial. Therefore, advise Windows NOT to search
for the drivers by clicking on “No, not this time” as shown below. Click “Next” to continue.

Found Hew Hardware Wizard

Welcome to the Found New
Hardware Wizard
windows will zearch for current and updated software by

looking on your computer, on the hardware installation CD, or on
the Windows Update "Web site [with pour permizsion].

Fzad our privacy policy

Can ‘windows connect to wWindows Update to search for
software?
(O Yes, this time anly
o Yes, now and every time | connect a device
(& Mo, nat this time

Click Mext to continue.

—~_
< Backl L Mexst » J ? Cancel

46

Instruct Windows to “Install from a list or specific location (Advanced)’ as shown on the left hand
screen below. Click “Next to continue. Now use the “Browse” button to find the directory “c:\Program
Files\openocd-2007re141\driver\jtagkey_utils_060307\" as shown below on the right hand screen. Click
“Next to continue.

Found New Hardware Wizard

Thig wizard helps you install software for:
Amontec JTAGKkey [Channel 4
(o

\) If your hardware came with an installation CD
3B or floppy disk. insert it now.

‘what do you want the wizard to do?

O Install the software automatically (Fecommended)
(® Install from a list o specific location (Advanced)

Click Mewt to continue.

[< Back ” et »][Cancel

Note: folder name
may have changed
o N b i installation onti due to a newer

ease choose your search and installation oplions. YAGARTO release

(® Search for the best driver in these locations.

Use the check boxes below ta limit or expand the default search, which p€ludes local
pathz and removable media. The best driver found will be installed.

[Search remavable media [floppy, CO-ROM...)

Include this location in the search:

|E:\Program Filez\openocd-2007re1 41 \driversarm_us v| [Browse

O Don't search. | will chooze the driver ta install.

Chooze thiz option ta select the device driver from a list. Windows does not guarantee that
the driver you choose will be the best match for your hardware,

[< Back [Mext >][Cancel]

Pay no attention to Windows complaints about Logo testing by clicking on “Continue Anyway” on the left
screen below. The virtual device driver installation for Channel A will now run to completion.

Hardware Installation Found New Hardware Wizard

L] E The zoftware you are installing for this hardware:
Ld
Amontec JTAGkey [Channel A)

haz nat paszed Windows Logo testing to werify its compatibility
with Windows »P. [Tel me why this testing iz important.)

Continuing your ingstallation of thiz software may impair
or desztabilize the correct operation of your system
either inmediately or in the future. Microsoft strongly
recommends that you stop this installation now and
contact the hardware vendor for zoftware that haz
passed Windows Logo testing.

l Cantinug Arnywmay] [STOF Inztallation l

Please wait while the wizard installs the software. .. .5

% Amontec JTAGKkey [Channel A

\t

FTD ZxUN.ini
To C:NWINDOWS spsten32

(]

< Back et > Cancel

Click “Finish” to complete installation of the Channel A driver.

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

The wizard has finished installing the software for:

% Amontec JTAGkey [Channel A]

Click Finish to close the wizard.

< Back Cancel

47

The JTAGKkey is built around the FTDI FT2232C engine which has two channels. Exactly the same
installation sequence is required for channel B. Follow the screens on this page in sequence, exactly like

the channel A virtual device driver installation.

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

‘Windaws will search far current and updated software by
looking on your computer, on the hardware installation CO, or on
the ‘Windows Update \Web site [with pour permizzion).

Fiead our privacy policy

Can‘Windows connect to ‘Windows Update to search for
software?

O Ves, this time anly
(O 'Yes, now and every time | connect a device
(® Mo, not this time

Click Mest to continue.

< Back [Mext >][Cancel]

Found New Hardware Wizard

Thiz wizard helps you install software for:

Amontec JTAGkey [Channel B |

C‘) If your hardware came with an installation CD
32 or floppy disk. insert it now.

What do vou want the wizard to dao?

(O Instal the software automatically [Recommended)
(® Instal fram a list or specific location [Advanced)

Click Next to continue.

[<Backl” et » }I[Cancel]

Found New Hardware Wizard

Please choose your search and installation options.

Note: folder name may
have changed due to a

(®) Search for the best driver in thess newer YAGARTO release

Use the check boxes below to limi
paths and removable media. The H

[Search removable media [floppy, CO-ROM...)
Include this lacation in the search:

|C.\F'n:|gram Files\openocd-2007re1 41\ driver\jfagkey | [Browse

O Don't search, | will choose the driver to install.

Choose this option to select the device driver from a list. ‘Windows does not guarantee that
the driver you chooze will be the best match for pour hardware,

[< Back [Mext »][Cancel]

N

Hardware Installation

The zoftware you are ingtalling for this hardware:

Amontec JTAGkey [Channel B

haz not pazsed WWindows Loga testing to werify its compatibility
with WwWindows =P. [Tel me why this testing iz important. |

Continuing your installation of this software may impair
or destabilize the correct operation of your system
either immediately or in the future. Microsoft strongly
recommends that you stop this installation now and
contact the hardware vendor for software that has
passed Windows Logo testing.

[Continue Arymay] [STOP Installation

When the Channel B driver has completed, you will see the screen below right indicating successful
installation. Click “Finish” to exit the channel B installation as shown below.

Found New Hardware Wizard

Please wait while the wizard installs the software. ..

Q Amontec JTAGkey [Channel B)

g

FTD 2<%<UN.ini
To C:AWINDDWS apstem32

[|

< Back Mest > Cancel

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

The wizard has finizhed installing the software for:

% Amontec JTAGkey [Channel B)

Click Finish to cloze the wizard.

< Back - Cancel

48

To be sure of successful installation of these JTAGkey virtual device drivers, use the Windows Start menu
to look at the “Control Panel — System — Hardware - Device Manager”, inspecting carefully the USB
controllers. As can be seen below, the Amontec JTAGkey channel A and channel B USB ports are
successfully installed.

£ Device Manager

File Action Wiew Help

l«- m & 2 &

- % Ports (COM & LFT)

ﬂ Processors

; 'B; Sound, video and game controllers
g0 Storage volumes

i g System devices

EI Universal Serial Bus contrallers

' Amontec ITAGkey { Channel A)
Amontec ITAGkey (Channel B) =
Intel{R) 82301EE USE Universal Host Contraller - 2402
Intel{R) 82801EE U536 Universal Host Contraller - 2404
Intel(R) 32801EE U536 Universal Host Contraoller - 240E

>

[

49

Install the Olimex ARM-USB-OCD USB Drivers

If you have purchased one of the Olimex JTAG hardware interfaces, install the Olimex USB drivers as
shown in this section.

Olimex also developed a version of the USB-based JTAG debugger mentioned in Dominic Rath’s
OpenOCD thesis. It includes a couple of unique features such as an extra serial port (might come in
handy if you have a laptop with no serial port) and a DC power supply that can be strapped for 5v, 9v or
12v operation. This DC supply includes a cable that can power your board, if needed. The Olimex ARM-
USB-OCD debugger is €55 (euros) or $69.95 (US). If you want to use the Olimex ARM-USB-OCD JTAG
device to program on chip flash memory, it would be better to use a wall-wart external power supply for
the target board since the ARM-USB-OCD device doesn’t supply enough power for the Atmel
AT91SAM7S256-EK board during flash programming operations.

Recently, Olimex has added a low end USB-based JTAG debugger called the ARM-USB-Tiny. It costs
$49.95 (US) or €37.34 (euros) and comes without the extra serial port or power supply.

Olimex ARM-USB-OCD Olimex ARM-USB-Tiny

To use the ARM-USB-OCD power supply, there are jumpers to set the voltage. While the Atmel
specification for the AT91SAM7S256-EK board is 7 — 12 volts for the DC supply, it worked for the author
at all the above voltage ranges. Just to be safe, strap the Olimex ARM-USB-OCD DC supply to +9 volts
(right-hand jumper installed).

Power supply jumpers:

1 v i
- = 3 |
| AALINO i Power

1 [~ FTTeN i)

the power supply jJumpers are on
right side of the 2x10 pin JTAG
connector.
If both jumpers are open
the output voltage is
12VDC
If right jumper is closed
the output voltage is
9vDC
If left jumper is closed the
output voltage is 5VDC
(this is the default setting)

Right-hand
jumper fitted
gives +9 volts

The inner pin of the power supply
jack is +

50

The hardware setup for the Atmel AT91SAM7S256-EK board is shown below. The 20-pin JTAG ribbon
cable connectors are keyed so they can’t be fitted improperly. The DC supply cable from the ARM-USB-

OCD dongle powers the board.
Standard USB
Cable

Olimex ARM-USB-
OCD JTAG interface

Standard 20-pin
JTAG Connector

l’" i lf*

[[L

Olimex-supplied
cable to power the
board.

Note: Not enough
current to program
the flash. Use a 9-
volt “wall-wart” DC
supply in that case.

Plug in the Olimex ARM-USB-OCD dongle into the USB port. You should hear the familiar USB “beep”
sound followed by the following screen indicating that new USB hardware has been detected.

The virtual device drivers are already on our “c:\Program Files\openocd-2007re141\driver\arm_usb_ocd\” folder
thanks to Michael Fischer's OpenOCD installation program we ran earlier in this tutorial. Therefore, advise
Windows NOT to search for the drivers by clicking on “No, not this time” as shown below. Click “Next” to
continue.

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

“Windows will zearch for current and updated software by
lnaking on your computer, on the hardware installation CD. or on
the Windows Update WWeb site [with vour permission).

Read ouwr privacy policy

Can Windows connect to Wwindows Update to search for
software?

) es. this time only

() Wes, now and every time | connect a device

(&) Ma. nat this time

Click Mext to continue.

—~
<Back(Neut>] D Cancel

51

Instruct Windows to “Install from a list or specific location (Advanced)” as shown on the left hand
screen below. Click “Next to continue. Now use the “Browse” button to find the directory “c:\Program
Files\openocd-2007re141\driver\arm_usb_ocd\” as shown below on the right hand screen. Click “Next
to continue.

Found New Hardware Wizard

Thiz wizard helps you install saftware far:
Olimex Open0CD JTAG

e

.\) If your hardware came with an installation CD
B2 or floppy disk. insert it now.

‘what do you want the wizard ta da?

(O Install the software automatically [Fecommended)
(® Install from a list or specific location [Advanced)

Click Mest to continue.

[< Back l" M ext >]I[Cancel]

Found Mew Hardware Wizard
Please choose your search and installation options. :5

S for the bt di Note: folder name may
© Seach forthebest i) 1 changed due to a

Use the check baxes bl hewer YAGARTO release includes local
paths and remavable

[Search remavable media [floppy, COZAOM...]

Include this location in the searghl

|E:\Program Filezhopenocd-2007re1 41 Wdriverharm_us v| [Browse

() Don't search. | will choose the driver ta install

Choose thiz option to select the device driver from a list. Windows does not guarantee that
the driver you choose will be the best match for your hardware.

[< Back [et >][Cancel

Ignore the Windows XP complaint about “Logo Testing” by clicking “Continue Anyway” as shown on the

left below. The installer will now start installation activities.

Hardware Installation Found Mew Hardware Wizard
Please wait while the wizard installs the software... .

L] E The software you are ingtalling for this hardware:
L
Olimex DpendCD JTAG Interfface

hasz not passed Windows Logo testing to wverify its compatibility
with Windows =P. [Tell me why this testing is important. |

or destabilize the cormrect operation of your system
either inmediately or in the future. Microsoft strongly
recommends that pou stop this installation now and
contact the hardware vendor for software that has
paszsed Windows Logo testing.

Continuing pour installation of thiz software may impair

Continue Aryway] [STOP Installation

@ Olimex Open0Ch JTAG Interface

a7, =

Setting a system restore point and backing up old files in
case your spstem needs tao be restared in the future

< Back Mest » Cancel

When the driver installation for the Olimex ARM-USB-OCD JTAG debugger is done, click on “Finish” on

the screen shown below to exit the installer.

Found New Har dware Wizard

Completing the Found New
Hardware Wizard

The wizard has finished installing the software for:

g Olimex Open0CD JTAG Interface

Click Finish to close the wizard.

Firiizh Cancel
(_Frisn] 50

Remember that the Olimex ARM-USB-OCD also supports a auxillary serial port. Windows will now start a
dialog to install that virtual driver. Since we know exactly where the driver files are, click the radio button
“No, not this time” on the window below left and click “Next” to continue. Also click the “Install from a
list or specific location (Advanced)’ radio button below on the right and then click “Next” to continue.

Found New Hardware Wizard Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

“windows will search far current and updated software by
looking on your computer, on the hardware installation CD, ar on

Thiz wizard helps vou install software for:

the ‘Windows Update ‘w'eb site [with your permigsion).
Bead our privacy policy

Olirmex DpendCD JTAG

(e If your hardware came with an installation CD

Can Windows connect to Windows Update to search far ‘_:w or Hoppy disk. insert it now,

software?

O "Yes. this time only
() Wes. naw and every time | connect a device

(&) Ma, nat this time

Click Mext to continue.

< Back [Nest > l[Cancel] [< Back l” Mext » ll[Cancel]

Now use the “Browse” button to find the directory “c:\Program Files\openocd-
2007re141\driver\arm_usb_ocd\’ as shown below on the left hand screen. Click “Next to continue. Once
again, ignore the Windows complaints about Logo testing and click “Continue Anyway” as shown below
right.

Found New Hardware Wizard Har dware Installation

“what do you want the wizard to do?

Install the: software automaticaly (Recommended
(& Install from a list or specific location [Advanced)

Click Mext to continue.

Please choose your search and installation options. :5
L | "_\ The software you are ingtalling for thiz hardware:
Note: folder name may £ i -
®seachforthd have changed due to a Olimex Open0CD serial driver
Usethe checl newer YAGARTO release . which includes local
pathz and ren =d. . . . L
haz not passed Windows Loga testing to verify its compatibility

[Search removable media [fefpy, CO-ROM..] with Windows =P [Tell me why thiz testing iz important. |
Include this location jpthe search:

Continuing your installation of this software may impair

|C:'\F'rogram Fileshopenocd-2007re1 41 driversanm_us v| [Browse] or destabilize the comrect operation of your system
either immediately or in the future. Microzoft strongly
(O Don't zearch. | will choose the driver ta install. recommends that you stop this installation now and

contact the hardware vendor for software that has

Choose this option to select the device driver from a list. Windows does not guarantee that passed Windows Logo testing.

the driver you chooze will be the best match for pour hardware,

[<Back “ et >] [Carcel] [Continue Angway] [STDF‘InslaIIationl

The serial driver installs very rapidly. When the “Found New Hardware Wizard” screen reappears, click
“Finish” to exit. Installation of the Olimex ARM-USB-OCD drivers is now completed.

Found New Hardware Wizard
Please wait while the wizard installs the software__. .

% Olimex OpenDCD serial driver

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

The wizard has finizhed instaling the software for:

% Olimex OpenDCD serial driver

frdiun2k.ini
To C:AWINDOWS system32

(]

Click Finish to close the wizard.

< Back Mext > Cancel < Back Cancel

53

Install the Atmel SAM-BA Flash Programming Utility

No matter what JTAG hardware interface you have purchased, it still behooves you to install and become
familiar with the Atmel SAM-BA flash programming utility. It works with the COM port, the SAM-ICE USB-
based JTAG interface or just a simple USB cable.

Click on “Install AT91-ISP v1.9.exe” in the c:\download folder, as shown below.

% C:\download

File Edit View Favorites Tools Help al
b = oy
] @ Back - < lm: /'J Search [f_" Folders ' % Iﬁ lj
Folders X _Name Size | Type Diate Modified
(2 Dell Drivers ~ 'i?‘} Install AT91-ISP v1.9.exe] 2,711 KB Application 552007 8:06 PM
) Documents and Settings ~ \ openocd-2007rel41-setup-ro0l exe 2,363 KB Application 513/2007 7:48 PM
2 {3 yagarto-bu-2.17_gee-4.1, 1-c-c4+_nl-1,14.0_gi-6.5.5.8x8 31,591 KB Application 5i5/2007 5:09 PM
I drvrtmp 3 yagarto-ide-20061002-setup. exe 45,701 KB Application 55{2007 5:54 PM
E] Easyscreen 'l?:‘ yagarto-tools-20070303-setup, exe 700KE Application 5/5/2007 4:51 PM
(2 fixed pitch Fonts 2 FE] Setup_JLinkARM_Y368h,zip 3,937KE Compressed (zip... 5/8/2007 7:57 PM
[' —
< | ¥ < | »

Ignore the Windows belly-aching about software verification and click “Run” to start the installation as
shown below left. When the setup wizard appears, click “Next” to continue as shown below right.

Open File - Security Warning Ead E]E

Welcome to the AT91-1SP ¥1.9
Setup Wizard

The publizher could not be verified. Are you sure you want to
run thiz software?

Wame: Install ATIL-ISP v1,9.exe
Publisher: Unknown Publisher

Type: Application

This wizard will guide you through the installation of
ATO1-ISP 1.9,

It is recommended that wou close all other applications
before starting Setup, This wil make it possible to update
relevant system Files without having to reboak your

Fram: C:\download
computer,

Click Mexk bo continue,

Fiun] [Cancel

Always azk before opening thiz file

This file does not have a valid digital signature that verifies itz
publizher. You should only run zoftware from publishers you trust.

How can | decide what software to un?

In the two “License Agreement” screens below, click on “l agree” and “Next to continue.

® AT91-1SP v1.9 Setup =3 © AT91-1SP v1.9 Setup =13
License Agreement License Agreement
k- k. Please review the license terms before installing AT91-ISP +1.9, k- k. Please review the license terms before installing AT21-I5P 1.9,
Press Page Down to see the rest of the agreement, Readme File

SOFTWARE LICEMSE AGREEMENT # Copyright Atrmel Corporation (C)2006

Creation Sep 2006 @ AT91 SOFTWARE GROUP =

Important- Read carefully FHE

This is a legally binding agreement between Atmel Corporation, inchuding its Mote : AT91-I1SP runs under Windows 2000 and P and OMLY with administrator privilege
subsidiaries and affiliates {"atme") and You {"You"), In return For acquiting

a license to use the Software and related documentation and hardware ATI1-ISP v1.9 includes:

peripherals {"Software"), You agree to the following terms and conditions, - SAM-BA v2.5

- SAM-PROG v2.3

1. Grant of License, b - Both based on AT91Baak DLL b
If yvou accept the terms of the agreement, click I Agree to continue. You must accept the If ywou accept the terms of the agreement, click I Agree to continue, You must accept the
agreement. to install AT91-ISP +1.9, agreement to install AT91-ISP w1.9,

—
< Back I ” I Agree]I [Cancel] < Back I” Mext =] [Cancel
|

54

Take the default install location by clicking “Next” below left. Also take the default start menu folder by

clicking “Install” as shown below right.

® AT91-ISP v1.9 Setup

Choose Install Location
k. E: Choose the folder in which to install AT91-I5P +1.,9,

© AT91-1SP v1.9 Setup

® ¢

Choose Start Menu Folder
Choose a Start Menu folder for the AT21-15P v1,9 shortcuts,

Setup will install AT91-ISP +1.9 in the Following Folder. To install in a different folder, click
Browse and select another Folder. Click Mext to continue.

Destination Folder

| C:\Pragram Files\ATMEL Corporation}AT91-I5P w1.9 | Browse. ..

Space required: 19.6MB
Space available: 10.8GE

Mullsoft Inskall System 2,23

[< Back. I” Mexk >] [Cancel]

Select the Start Menu Folder in which vou would like to create the program's shortcuts, You
can also enter a name to create a new folder.

ATMEL Cor ionATIL

Accessories
Administrative Tools
AD35 Tech

ArcSoft ShowBiz 2
Avi To MPEG Scout
Awisynth 2.5

D {DYD) Recorder
CyberLink PowerDvD
Cygwin

Dt

Fx MPEG ‘Writer

101 AVI MPEG 'WMY Converter

|*

.

Mullsaft Install System 2,23

{
< Back I” Install] [Cancel

When installation completes, click “Next” as shown below right to continue.

© AT91-ISP v1.9 Setup

Inztalling
b b Please wait while AT91-I5P v1.9 is being installed,

& AT91-ISP v1.9 Setup

L

Inztallation Complete
Setup was completed successfully,

Qutpuk Folder: CiYProgram Files\ATMEL CorporationiaT21-I3P +1,2434M-B4 v2,5iblATI 154
[llllllllllllllll]

Shiow dekails

Mullsoft Install System w2, 23

< Back Mext = Caneel

Completed

[IIIlllllllllllllld

Show details

Mullsoft Install System «2,23

< Back Canicel

Since we will be starting SAM-BA from the Eclipse “Run” pull-down menu, uncheck all the shortcuts as
shown on the screen below left and click “Next”. Finally, click “Reboot now” followed by “Next” to
complete the installation. The SAM-BA utility is registered in the Windows registry and you need to re-

boot your computer.

B AT91-ISP v1.9 Setup

® @ Create shortcuts

SAM-BA Shorkouts

[oeskiop
[quick Launch Bar

SAM-PROG Sharkcuks

[oeskiop
[quick Launch Bar

Mullsoft Install System 2,23

B AT91-ISP v1.9 Setup

Completing the AT91-1SP ¥1.9
Setup Wizard

It is strongly recommended you reboot the computer to
complete the instalation

(® Reboot now

(1 want ta manually reboaot laker

f{
< Back I[ek] [Cancel

T [

55

Download the Tutorial Sample Projects

Before we start up the Eclipse IDE, let’s first download the tutorial source and OpenOCD configuration
files. This material may be downloaded from the Atmel ARM Product support site using this link:

http://www.at91.com

Click on “Documents” as shown below. If you are reading this tutorial, you have probably already done all

this anyway.

SERRCH

PRODUCTS PERIPHERALS PROJECTS

VENDORS

Logim

S

Password

=# last pazzword

~x register

| Latest Documsnts Latest Tools

Using Open Source Tools for AT915AMT - PEEDI JTAG Emulator & Flash Programr

AT91RMI200 Windows CE BSP .
ATS1RM3200 Windows CE BSP presentz -
ATS1SAMTS Support from Micripm

CPU Madule and Starter Kit for ATS15AI
Ronetix-Toolset-ARM
PLL Filter Calculator

Now browse through the available documents until you see “Using Open Source Tools for AT91SAM7
Cross Development” and then click on it.

SEARCH

SmagiFARNMIMIGIoco

FPRODUCTS

FERIFHERALS PROJECTS DoOCUMENTS

Logim

FPossword

= last password
3 register

I ODocuments List

“ All documents

S

Search
All documents
title username date & ranking

I B} using Open Source Tools for AT91SAM7 Cross Develup]: Portal Admin | 2007-03-12

E AT91RM3200 Windows CE BSP E Adenso E 2007-02-06
El AT91RM3200 Windovws CE BSP presentation E Adeneo E 2007-03-06
B AT915AM75 Support from Micripm E Micrium E 2007-03-01
Bl About CALAD Systems | CALAD System | 2007-02-28

56

http://www.at91.com/

Under the “Key Resources” tab, click on “Using Open Source Tools for AT91SAM7 Cross
Development”; this will bring up the download for the tutorial in pdf format, the sample projects and
OpenOCD configuration files. Clicking on just the “AN” icon will simply download and display a one page
summary of the tutorial.

PRODUCTS PERIPHERALS PROJECTS DOCUMENTS

* Documents list

SEARCH

_ogim

Password

++ |lost password
Guides the reader through the steps necessary for developing embedded software using open source tools GCC and

Eclipse.

-~ rEgister

Download files :

| 2007-03-12

AT SAN FPortal

FoRUM PRODUCTS PERIPHERALS PRODECTS TOoOOoLS DOCUMENTS VENDORS news

TOOLS

SEARCH

e I
passward|]

+ |ost password

Using Open Source Tools for AT91SAM? Cross Development

This application note provides s guide for using open source tools such as Cygwin, GNU/GCC ARM Compiler, Eclipse
IDE, 2ylin CDT and OpenOCD for lov-cost development of AT91SAM? applications. This is a ZIP package containing
all what is needed to install the tools and to start a first project. It contains also a detailed procedure explaining how
to procead.

Dovmload files + i
B4 scurce package

Hey Resources G

Bl Using Open Source Tools for AT915AMT Cross Development | 2007-03-12 |

+ register

| m—]

57

Click on “Save” as shown below left and then select the “c:\download” folder as the destination in the
“Save As” screen below right. Click “Save” to start the download of the sample code and configuration
files.

File Download .

Do you want to open or save this file?

Save As

Save in: |E}duwnluad V‘ Q¥ E-

@,‘

My R
[%l_ Mame: atmel_tutorial_source.zip Dé’cuiii"é
Type: Compressed (zipped) Folder, 5.73MB F“[‘-
From: v, atmel.com Desktop
[Open] [Save] [Cancel __J
My Documents

Always azk before apening this tupe of file

3

=
=
(=]
(s
ER-7,
k]
£
@

|--‘ Wihile files from the Intemet can be useful, zome filez can potentially
harm your computer. If you do not trust the source. da not open or File name: (e o] | e
zave thiz file, What's the risk? v
My Mebwark Save as type: | Compressed [zipped) Folder v | Cancel

Now the c:\download folder shows the file “c:\download\atmel_tutorial_source.zip” as shown below.

® C:\download

: File Edt ‘Wiew Favorites Tools Help #
3 " — =
: e Back - (=] l? f) search ‘ E{:f:‘ Folders - }g d
Folders x Mame Size | Twpe [ate Modified

) el A~ [D)5etup_LinkaRM_y3ssh File: Folder 4{7J2007 1:48 PM

I Dell Drivers (D Install AT91-15P vw1.9.exe 2,711KB application 4§7§2007 Z:54 PM
I3 Dacuments and Settings {37 openocd-2007re131-sebup-rod2. exe 2,284 KB Application 41712007 1:34 PM
= ~ (ivagarto-bu-2.17_gec-4, 1, 1-c-c+_nl-1.14.0_gi-6.5.5.8xe 31,591 KB Application HIFIZ007 1:39 FM

= drvrtrap \E‘} yagarto-ide-20061002-setup.exe ASSmeen koot 41712007 1:43 PM

| Easyscreen L L Ba Double-click to 4f7J2007 1:34 PM
IC) fixed pitch forts < unzip this file. 4/21J2007 10:30 AM
1= Flashcard 3 41712007 1:43 FM

Double-click on the file “c:\download\atmel_tutorial_source.zip” to start the Windows file
decompression facility.

The Windows Compressed Folders Extraction Wizard will start as shown below on the left. Click on “Next”
to start the wizard. Take the default destination folder as shown below right and click “Next to proceed.

Extraction Wizard X Extraction Wizard 3

Select a Destination —
Welcome to the Filez inzide the ZIF archive will be extracted to the location you
Compressed {zipped) choase,
Folders Extraction
Wizard

Select a folder to extract files to.

Filez will be extracted to thiz directony:

The extraction wizard helps you copy files

=l ! C:hdownloadhatme| tutorial_source |
from inside a ZIP archive.

Browse...
Pazaword...

Extracting...

(

< Back [Mest >][Cancel [<Back|” Hewt »]l[Cancel]

58

To continue, click Mexst.

The file decompression will finish in a few seconds; click “Finish” to complete the unzipping of the tutorial
components as shown below.

Extraction Wizard

Extraction Complete —
Files have been successfully extracted from the ZIP archive.

Files have been successfully extracted to the fallowing
directorny:

C:\downloadhatmel_tutorial_source
To see pour extracted files, check the box below:
Show extracted files

Press finish to continue.

< Back [Finish] [Cancel

Inspecting the “c:\download” folder, we see a sub folder “c:/download/atmel_tutorial_source/”.

@ C:\download

File Edit ‘Wiew Faworites Tools Help
@ Back - \J l.@ p Search ‘[t‘“ Folders v % \h Dlj
Folders X pirimrr Size | Type - Date Madified
) del (D) atmel_tukorial_source File: Folder 4/21/2007 10:42 AM
&) DellDrivers PG S File Flder 4J7/2007 1:48 PM
[C Documents and Settings E?} Install AT91-15P v1.9.6xe 2,711 KE Application 4/712007 2:54 PM
2 download — (§ openocd-2007rel31-setup-rc0z.exe 2,284 KB Application 4/712007 1:34 PM
) drvrtmp E?} vagarto-bu-2,17_goc-4. 1, 1-c-c++_nl-1,14.0_gi-6.5.5.exe 31,591 kB Application 4712007 1:39 PM
[Easvscreen ﬁ? yagarto-ide-20061002-setup.exe 45,701 KB Application 4/7/2007 1:43 PM
[fixed pitch fonts |37 yagarto-tools-20070303-setup. exe 700KE Application 4712007 1:34 PM
[Flashcard [E0 atmel_tutorial_source.zip 5,878 kKB Compressed (zipped) Folder 4/21/2007 10:30 &M
) foo (B3 5ebup_ILinkARM_Y368h,2ip 3,937 KB Compressed (zipped) Folder 4772007 1:43 PM
[T Z
£ | »

There are four sample projects. Two are for the Atmel AT91SAM7-EK evaluation board and two are for
the Olimex SAM7-P64 board. We will be “importing” these projects into Eclipse very shortly, so make a
mental note of the folder where you stored them.

In the sample folder below, there are six OpenOCD configuration files with the extension “.cfg”. There are
two configuration files for the wiggler, two for the Amontec JTAGKey, and two for the Olimex ARM-USB-
OCD device. With respect to each hardware device, one configuration file is for debugging whilst one is
for on chip flash memory programming. We will be copying the configuration files into the OpenOCD bin
folder shortly so that OpenOCD can access them easily.

59

Finally the sample folder contains the tutorial itself in pdf format.

% C:\download\atmel_tutorial_source

¢ File Edit ‘iew Favorites Tools Help ﬁl
£ . . P e
€] </ Lﬁ p Search ‘ H\Ti‘ Folders o % ﬁ d
Faolders x Marne Size | Type Date Modified
I3 Dell Drivers A | [Chdemo_at91sam7_blink_flash Fil= Folder 4312007 01 PM
E] Documents and Settings E]demo_atglsam?_blink_n.am a— Sample Projects F?Ie Falder 4312007 01 PM
= 1) download IS demo_ata1sam? _pe4_blink_Flash Fil= Folder 4132007 9:01 PM
= (59 atmel_tutorial_source demao_at21sam?_p&d4 blink ram File: Folder 4/3{2007 9:01 PM
I3 demo_at91sam?_blink_flash | 3 3atglsam?5256-armusbocd.cfg 1KE (CFGFile 4/3(2007 9:01 PM
[C3) demo_at91sam7_blink_ram ﬂat91sam?sZS6-armusb0cd—ﬂash-program.cfg ZKE (CFGFile 4/3{2007 9:01 PM
[demo_at91sam? _pe4_blink_Flash ﬂatglsam?SZSB-jtagkey.ch LKB CFG&File 4/3{2007 9:01 PM
[dema_at91sam?_péd_blink_ram [8] ats 1sam7s256- tagkey-Flash-program.cfg ZKE CFGFile 4{3/2007 2:01 PM
C3 drrtmp |2] atatsam7s256-wiggler . cfg 1KE (CFGFile 4/3{2007 9:01 PM
I3 Easyscreen ﬂ ak31sam7s256-wiggler-flash-program.cfg ZKB CFGFile 4/3f2007 2:01 PM
[C Fized pitch fonts _’— Using Open Source Tools for AT915AM7S Cross Development revision 2, pdf 6,152 KB Adobe Acrobat Document 4(3(2007 2:01 PM
I3 FlashCard v \

\ This tutorial in pdf format

Move the OpenOCD Configuration Files

Using Windows Explorer, select and move the six OpenOCD configuration files shown above into the
“c:\Program Files\openocd-2007re141\bin” folder. These configuration files will be used by the sample
projects later in the tutorial. Additionally, this destination folder already has a Windows path defined for it
and thus simplifies setting up the OpenOCD as an external tool.

If you have downloaded a newer revision of YAGARTO, the destination folder will change. Make sure that
you take this into account!

The OpenOCD folder should now look as shown below.

Note: folder name
may have changed
due to a newer
YAGARTO release

@ C:\Program Files\openocd-2007re141\hin

: File Edit Wiew Favprites Tools Help a’
@ Back ~ J l.ﬁ; p Search E{E‘ Folders - % @ Tj
Folders v x Marne Size | Type Date Modified
=) openocd-2007re141 | [EDconfigs File Folder 5/5/2007 6:14 PM
=] I3 seripts File Folder 5/5/2007 6:14 FM
23 configs [®] at91sam7s256-armustocd cfy 1KE CFGFile 9] 14/2008 5:43 PM
[scripts |ﬂ at31sam?s256-armusbocd-flash-program. cfg 2KE CFGFile 5/5/2007 644 PM
3 doc |ﬂ ak91sam7s2So-jtagkey . cfg 1KBE CFGFile 9/14/2006 5:49 PM
) driver |ﬂ a1 sam? s256-jtagkey-flash-program. cfg ZKB CFaFile 5I5/2007 G444 PM
O source 1 |ﬂ ak91sam?s2Se-wiggler.cfg 1kKE CFGFile 9/14/2006 §:49 PM
[utils |ﬂ ak91sam7s2sa-wiggler-flash-program.chg 2KB (CFi File 5/5/2007 6:44 PM
) OpenOffice.org 2.2 L_lopenocd-rkdZxx.ex 338 KB Application 4/16/2007 1:40 PM
[ﬁ Outlack Exprass EUDBHUCCI'DD-BXB 326 KB Application 4162007 1:43 PM
£ Philips Flash Utility L]
< | >

AN

New OpenOCD configuration
files added from the “sample
projects” download

60

Running Eclipse for the First Time

The Yagarto installer creates a desktop icon for starting Eclipse, as shown below. Click on this
icon to start the Eclipse IDE.

Now the Eclipse splash screen will open up, as shown below.

At this point, Eclipse will present a “Workspace Launcher” dialog, shown below. This is where you specify

the location of the “workspace” that will hold your Eclipse/CDT projects. You may place the workspace
anywhere you wish but for this tutorial | placed it in the root folder as “C:\workspace”.

Click the check box so the folder “C:\workspace” can be assigned to be the default anytime you enter
Eclipse. Click “OK” to accept the workspace assignment and continue with Eclipse start-up.

& Workspace Launcher E

Select a workspace

Type the folder
C:\workspace
in this text box.

Eclipse Platform stores vour projects in a Folder called a
Choose a workspace Folder ko use For this session,

/
Warkspace: | Cllworkspace 4—

v“ Browse, .,

N

Ll)se this as the default and do naot ask again

Ik] I) Zancel

61

Now Eclipse will officially start and show the “Welcome” page. Since most of the informational icons refer
to the JAVA aspects of Eclipse, discard the “welcome” screen by clicking on the “X” as shown below.

& Java - Eclipse SDK
File Edit Refactor Navigste Ssarch FProject Run Window Help

What follows is the “Resource” perspective. A perspective is simply a layout of “views” on the display
surface (the Resource perspective includes “Navigator”, “Editor”, “Outline” and “Tasks” views.

& Resource - Eclipse Platform

File Edt Refactor Mavigats Search Froject Run Window Help

[mile L R N R I C R 5 [P Resource |

I s ==
. 2 BS T

BE outlne 53 =8

An outline is not available,

] Tasks 32 SR pPpT-0

0 items

v ! Description Resnurce Path Lacation

62

Let's switch to the C/C++ perspective. Click on “Window — Open Perspective — Other...”, then click on
“CIC++” to open Eclipse into the C/C++ perspective.

& Java - Eclipse SDK
Filz= Edit Refactor Mavigate Search Project R Window m

N : q'c\;vov(kv Few Window i i
: - : T ! !
R S 2 / N
= cki % B
[# Package Exp... 2 Hierarchy| 8 \ e i
& ¥ An
* = =2 Customize Perspeckive. .. & OPEI'I Perspective

Save Perspective s,

Reset Perspective

(% CiC++)
N ')
Close All Perspectives positary Explaring

Close Perspective

f‘ﬁ‘ Debug
aJJava (default)
@,’Java Browsing
m Preferences. .. | 'Egjjava Type Hierarchy
“J=Plug-in Development
rﬁ_‘, Resource
QDTeam Synchranizing

Mavigation 4

[Working Sets 4

o) o

This is the C/C++ perspective. We will be learning more about the various component parts later in this
tutorial.

& C/C++ - Eclipse Platform

File Edit Refactor Mavigate Search Project Run Window Help
P Ch - B R - A AR AN R > AL RSN I R R T & | B crc++ | »
=0 EEOutIine 2 Maka‘..|'=I jm]
An outline is nok available,

E_gPrnhIEms = Cnnsnle|Prnperties| :::b v T4

0 errars, 0 warnings, 0 infos

Description = Resource Path Location

63

Set Up Eclipse External Tools

We have installed on our desktop PC several tools; such as the OpenOCD or the J-Link GDB Server and
the SAM-BA flash programming utility. We would like to have a convenient way to start these tools from
the Eclipse screen. Eclipse has just such a facility — it's called Eclipse “External Tools”. The tools installed
this way can be conveniently started from the “Run” pull-down menu or via a toolbar button.

Set Up OpenOCD as an Eclipse External Tool (wiggler)

If you have purchased an Olimex ARM-JTAG (wiggler), you need to set up OpenOCD as an external tool
and tailor it specifically for operation with the “wiggler”.

When it's time to debug an application, we must be able to conveniently start the OpenOCD debugger.
OpenOCD runs as a daemon; a program that runs in the background waiting for commands to be
submitted to it. Eclipse has a very nice “external tool” feature that allows us to add OpenOCD to the RUN
pull-down menu.

Click on “Run — External Tools — External Tools...”

Proje indow Help
& - Run Last Launched Chrl+F11 =T

¥, Debug Last Launched F11

Run History 4
Fun As 3
Fun...

Debug History 4

Debug As 4

4 QL 1 5aM-BA

ternal Tools...

Qrganize Favorites., ..

The “External Tools” window will appear. Click on “Program” and then “New” button to |__'=:I='
establish a new External Tool.

& External Tools

Create, manage, and run configurations 0

Run a prograrm [_—- A
Ty

Configure launch settings from this dialog:

- Press the Tew' button to create a configuration of the selected type,

Ld

- Press the 'Duplicate’ button ko copy the selected configuration.

- Press the 'Delete’ button to remove the selected configuration.

i@i ® fi

- Press the 'Filker' button ko configure Filkering options.

- Edit or views an existing configuration by selecting it

Configure launch perspective settings from the Perspectives preference page.

® 64

Fill out the “External Tools” form exactly as shown below.

In the “Name” text box, call this external tool “OpenOCD”

There are two versions of OpenOCD; openocd-pp.exe supports the parallel-port “wiggler” device (ARM-
JTAG from Olimex) while openocd-ftd2xx.exe supports the USB-based devices from Amontec and
Olimex. In this section we are installing the “wiggler” version of OpenOCD as an Eclipse external tool.

In the “Location:” pane, use the “Browse File System...” button to search for the OpenOCD executable; it
will be in this folder: c:\Program Files\openocd-2007re141\bin\openocd-pp.exe”.

In the “Working Directory” pane, use the “Browse File System...” button to specify “c:\Program
Files\openocd-2007re131\bin\” as the working directory.

In the “Arguments” pane, enter the argument “-f at91sam7s256-wiggler.cfg” to specify the OpenOCD
configuration file designed for the wiggler. Remember that we copied the six OpenOCD configuration files
into the “c:\Program Files\openocd-2007re131\bin\” earlier. In this case, we need the “wiggler” version.

& External Tools

Create, manage, and run configurations 0
R i,
Un & prograr !r;_l '.
A [z -+ .
e X B35 Name:[| OpendCh I |
bype Filker bext —
| éh ReFresh| B Enviru:unment| = Q:ummu:un| A
= % Frogram Location:
3y openocD ‘
[| ZiProgram Filestopenocd-2007re141bintopenocd-pp. exe | |
[Bru:uwse \Warkspace, .. l ’Bru:uwse File System, ..] [Yariables. ..]
Working Directary:
[| Z:\Program Fileslopenocd-2007re1414bin I |
[Browse \Warkspace. .. l ’Browse File Swvstem. ..] [Yariahles. ..]
Argurnents:
[-f at91sam7s256-wiggler.chg J
Mote: Enclose an argument containing spaces using double-guotes ().
[Apply] [Rewert]
@ [Fun J [Close]

No changes are required to the other tabs in the form (Refresh, Environment, and Common).
Click on “Apply” and “Close” to register OpenOCD as an external tool.

65

Set Up OpenOCD as an Eclipse External Tool (ARM-USB-OCD)

If you have purchased an Olimex ARM-USB-JTAG, you need to set up OpenOCD as an external tool and
tailor it specifically for operation with the Olimex ARM-USB-OCD JTAG interface.

When it's time to debug an application, we must be able to conveniently start the OpenOCD debugger.
OpenOCD runs as a daemon; a program that runs in the background waiting for commands to be
submitted to it. Eclipse has a very nice “external tool” feature that allows us to add OpenOCD to the RUN
pull-down menu.

y

Click on “Run — External Tools — External Tools...’

@ - | RunLast Launched Chl+FLl o o -

#&, Debug Last Launched Fi11

Run History
Run As
Run...

Debug Histary
Debug As

’-DE‘HQ-"'-\

¥ External Tools

Organize Favarites. ..

The “External Tools” window will appear. Click on “Program” and then “New” button to
establish a new External Tool. A

& External Tools

Create, manage, and run configurations 0
r—

Run a program

) ER -
= £ H 5 Configure launch settings from this dialog:

| type Fiker text | j - Press the 'Mew' button to create a configuration of the selected tvpe,

|3=] - Press the 'Duplicate’ button to copy the selected configuration.
3 - Press the 'Delete’ button to remove the selected configuration.
—*, = ' 9 4 . .

5 - Press the 'Filter’ button to configure filtering options.

- Edit or wiew an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives preference page,

66

Fill out the “External Tools” form exactly as shown below.
In the “Name” text box, call this external tool “OpenOCD”

There are two versions of OpenOCD; openocd-pp.exe supports the parallel-port “wiggler” device (ARM-
JTAG from Olimex) while openocd-ftd2xx.exe supports the USB-based devices from Amontec and
Olimex. In this section we are installing the “USB” version of OpenOCD as an Eclipse external tool.

In the “Location:” pane, use the “Browse File System...” button to search for the OpenOCD executable; it
will be in this folder: c:\Program Files\openocd-2007re131\bin\openocd-ftd2xx.exe”.

In the “Working Directory” pane, use the “Browse File System...” button to specify “c:\Program
Files\openocd-2007re131\bin\” as the working directory.

In the “Arguments” pane, enter the argument “-f at91sam7s256-armusbocd.cfg” to specify the
OpenOCD configuration file designed for the Olimex ARM-USB-OCD.

& External Tools

Create, manage, and run configurations

Run a program Note: folder names
may have changed

due to a newer

(D s
=
]
|

EE= -+, .
EX B3 hiame: [openocD | YAGARTO release
bype Filker bext ——
Q:)GQ ReFresh| g Environment | =] Q:ummu:un|
= % Program Locakion:
% |Z:Z||:|Er|[:]|:[])
[| C:'\Program Filestopenocd-2007rel41bintopenocd-Frd 2, exe
[Bruwse Workspace. .. l [Brnwse File Svwstem. ..] [Yariables,.. l
‘orking Direckory:
[| Z:\Program Fileslopenocd-2007re1 414 bin | |
[Bruwse Workspace, ., l [Brnwse File Svstem, ..] [Yariables, .. l

Arguments:

-f ak91zam7s256-armushocd o g J

PR

Mate: Enclose an argument containing spaces using double-quakes),

Apply Rewerk

o [Run] [Close]

-

&

No changes are required to the other tabs in the form (Refresh, Environment, and Common).
Click on “Apply” and “Close” to register OpenOCD as an external tool.

67

Set Up OpenOCD as an Eclipse External Tool (JTAGkey)

If you have purchased an Amontec JTAGKey, you need to set up OpenOCD as an external tool and tailor

it specifically for operation with the JTAGKey.

When it's time to debug an application, we must be able to conveniently start the OpenOCD debugger.
OpenOCD runs as a daemon; a program that runs in the background waiting for commands to be
submitted to it. Eclipse has a very nice “external tool” feature that allows us to add OpenOCD to the RUN
pull-down menu.

Click on “Run — External Tools — External Tools...’

The “External Tools” window will appear. Click on “Program” and then “New” button to

y

& - J Run Last Launched Chrl+F11 b~ -
#&, Debug Last Launched Fi11
Run Histary 4
Run As »
Run...
Debug Histary 4
Debug As 4

¥. External Tools

establish a new External Tool.

& External Tools

Run a program

Create, manage, and run configurations

5

£ e
e x

Configure launch settings from this dialog:

| type Filker bext

|j - Press the 'Mew' button to create a configuration of the selected tvpe,
|3=] - Press the 'Duplicate’ button to copy the selected configuration.

3 - Press the 'Delete’ button to remove the selected configuration.

3=::> - Press the 'Filker' button to configure Filkering options.

- Edit or wiew an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives preference page,

=

@

Close

68

Fill out the “External Tools” form exactly as shown below.

In the “Name” text box, call this external tool “OpenOCD”.

There are two versions of OpenOCD; openocd-pp.exe supports the parallel-port “wiggler” device (ARM-
JTAG from Olimex) while openocd-ftd2xx.exe supports the USB-based devices from Amontec and
Olimex. In this section we are installing the “USB” version of OpenOCD as an Eclipse external tool.

In the “Location:” pane, use the “Browse File System...” button to search for the OpenOCD executable; it
will be in this folder: c:\Program Files\openocd-2007re131\bin\openocd-ftd2xx.exe”.

In the “Working Directory” pane, use the “Browse File System...” button to specify “c:\Program

Files\openocd-2007re131\bin\” as the working directory.

In the “Arguments” pane, enter the argument “-f at91sam7s256-jtagkey.cfg”’ to specify the OpenOCD
configuration file designed for the Amontec JTAGKey and its little brother, the JTAGKey-Tiny.

& External Tools

Create, manage, and run configurations 0
R s,
1N & program !r:r_l'.
& —+i
= I
B2 X BS Name:“ OpenQCD I |
tvpe Filter kext ——
| | wﬂh Refresh| =} Environment| =] Q:nmmnn| A
= % Program Locakion:
-3y, OpenQCD
[| Z:Prograrm FiIes'\DpenDcd-ZDD?re141'|,I:uin'|,c:pencu:u:I-Ftu:|2xx.exel |
[Bru:uwse Waorkspace. ..] [Bru:uwse File Svstem. ..] [Yariables. ..]
Warking Directory:
[| Z:\Program Files\openocd-2007re1414bin I |
[Bru:uwse Waorkspace. ..] [Bru:uwse File System. ..] [Yariables. ..]

Argurments:

—

-f ak91sam7s256-jtagkey) cfig J

Mote: Enclose an argument containing spaces using double-guaotes ().

apply H Revert]

[Fun] [Close l

No changes are required to the other tabs in the form (Refresh, Environment, and Common).

Click on “Apply” and “Close” to register OpenOCD as an external tool.

69

Set Up J-Link GDB Server as an Eclipse External Tool (SAM-ICE)

If you have purchased an Atmel SAM-ICE, you need to set up the J-Link GDB Server as an external tool
and tailor it specifically for operation with the SAM-ICE.

When it’s time to debug an application, we must be able to conveniently start the J-Link GDB Server. J-
Link GDB Server runs as a daemon; a program that runs in the background waiting for commands to be
submitted to it. Eclipse has a very nice “external tool” feature that allows us to add J-Link GDB Server to

the RUN pull-down menu.

y

Click on “Run — External Tools — External Tools...’

@ - | W% RunLast Launched Chl+FLl o o -

#&, Debug Last Launched Fi11

Run History
Run As
Run...

Debug Histary
Debug As

’-DE‘HQ-"'-\

¥. External Tools

The “External Tools” window will appear. Click on “Program” and then “New” button to |__'=:I='
establish a new External Tool.

& External Tools

Create, manage, and run configurations 0
r—

Run a program

) ER -
= £ H 5 Configure launch settings from this dialog:

| type Fiker text | j - Press the 'Mew' button to create a configuration of the selected tvpe,

|3=] - Press the 'Duplicate’ button to copy the selected configuration.
3 - Press the 'Delete’ button to remove the selected configuration.
—*, = ' 9 4 . .

5 - Press the 'Filter’ button to configure filtering options.

- Edit or wiew an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives preference page,

70

Fill out the “External Tools” form exactly as shown below.

In the “Name” text box, call this external tool “J-Link GDB Server

In the “Location:” pane, use the “Browse File System...” button to search for the J-Link GDB Server
executable; it will be in this folder: c:\Program Files\SEGGER\JLinkARM_V370b\JLinkGDBServer.exe”.

In the “Working Directory” pane, use the “Browse File System...” button to specify “c:\Program

Files\SEGGER\JLinkARM_V370b\” as the working directory.

The “Arguments” pane may be left empty

No changes are required to the other tabs in the form (Refresh, Environment, and Common).

Click on “Apply” and “Close” to register J-Link as an external tool.

& External Tools

Create, manage, and run configurations

Run a program

%+ = -+, . N
DEX 8% Name{| I-Link GDEB Server | |
type Filker text —
| | b;;.@ Refresh | P Environment | E Commaon | N
= % Program Locakion:
-y, I-Link GDE Server : _ _
% OpenCiCD | C:\Program Files\SEGGER LinkaRM_370b% JLinkGDEServer . exe |
% SAM-BA [Browse Wworkspace. ..] I_Browse File System...] I_ ‘ariables. ..]
‘'orking Directory:
3
[| C:\Program Files|SEGGER) LinkaRM_Y370b | |
[Brawse Workspace. ..] IBerse File Svskem. ..] I_ ‘ariables. ..]
Argurnents:
Moke: Enclose an argument containing spaces using double-quotes (™),
[Apply]I[Rewvert]
@ [Run] [Close]

71

Set Up SAM-BA as an Eclipse External Tool

In any case, you should have the Atmel SAM-BA Flash Programming utility in your Eclipse toolbox. Use
the following instructions to set up the SAM-BA utility as an Eclipse external tool.

Click on “Run — External Tools — External Tools...”

& - J Run Last Launched ChrHF11 b+ -
%, Debug Last Launched F11
Fuun History L4
Run #&s 3
Run...
Debug History L4
Debug As 3

ternal Taols

Organize Favorites, ., g

The “External Tools” window will appear. Click on “Program” and then “New” button to
establish a new External Tool. o

& External Tools

Create, manage, and run configurations 0
e
Run a program

DEEIEES

Configure launch settings from this dialog:
| type Filker bext |

|j - Press the 'Mew' button to create a configuration of the selected tvpe,

|3=] - Press the 'Duplicate’ button to copy the selected configuration.
3 - Press the 'Delete’ button to remove the selected configuration.
—*, = ' 9 4 . .

5 - Press the 'Filter’ button to configure filtering options.

- Edit or wiew an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives preference page,

=

72

Fill out the “External Tools” form exactly as shown below.
In the “Name” text box, call this external tool “SAM-BA”.

In the “Location:” pane, use the “Browse File System...” button to search for the SAM-BA executable; it will
be in this folder: “c:\Program Files\ATMEL Corporation\AT91-ISP v1.9\SAM-BA.exe".

In the “Working Directory” pane, use the “Browse File System...” button to specify “c:\Program
Files\ATMEL Corporation\AT91-ISP v1.9\" as the working directory.

The “Arguments” pane may be left empty

& External Tools

Create, manage, and run configurations Q
i
Run a program gr:_l
¢ 2 i \
= L ~
DB2X B85 Name:l| SAM-EA, |
type filber bextk p— '
| | m’ﬁh ReFresh| P Environment | = Qomm0n| A
= % Program Lacation:
3y ILink

[l C1iProgram Files\ATMEL Corporation,AT91-I15P w1, 9SAM-BA w2, 515AM-BA, exe |

[Bru:uwse Workspace, ..] [Bru:uwse File System. ..] [‘ariables. ..]

wyorking Directory:
| CiiProgram Files\ATMEL Corporation\AT91-I5P w1, 958M-B0 w25 |

[Bruwse Workspace. ..] [Bruwse File Svstem.. .] [‘Wariables. ..]

Arguments:

Make: Enclose an argument containing spaces using double-quokes ("),

l Apply l Rewvert

@ [Run] [Close

No changes are required to the other tabs in the form (Refresh, Environment, and Common).
Click on “Apply” and “Close” to register SAM-BA as an external tool.

73

Adding Your JTAG Tools into the “Favorites” List

We have just installed the JTAG debugger daemon and the Atmel SAM-BA flash programming utility as
Eclipse external tools. Just one more operation is needed to actually place them at the top of the “Run”
pull-down menu; that is to add them to the “favorites” list.

Click on “Run - External Tools — Organize Favorites ...” as shown below.

indow Help

a% .%Run Last Launched ChrHF1L = (2 f}l >
,-E %, Debug Last Launched F11

1jec

1sam7 _blink_flash.crmd | Lé

RunHiStDrY v ok o o o o ol o
fun fs g main.o

Run...

Debug History p o for Artmel ATS1SAN
Debug s »

Debug I with an endless L

using timerld inte:
Run &s Fohp

). Futernal Tools ci

i
Jf luthor: Jawmes P Lynck

Crganize Favorites. ..

In the “Organize External Tools ...” window below left, click on “Add ...”. This brings up the “Add External
Tools Favorites” window in the middle below. Click on “Select All” followed by “OK”.

The “Organize External Tools window reappears as shown below right. Click on “OK” to register
OpenOCD or J-Link GDB Server and SAM-BA as “favorites”. Note in the example below, we installed
OpenOCD and SAM-BA as “favorites”. If you have the SAM-ICE JTAG debugger, then you would install J-
Link and SAM-BA as your favorites.

= Organize External Tools ... & Add External Tools Favorites Y = Drganize External Tools ...
Bersar sy Select Launch Canfigurations: S
i @, OpenocD :
QL 5am-Ba %OpenDCD add. ..
Remaove %SP-M-BF&
Remave
Lp
I
Crawn :
Doy
[Ok,] [Cancel
(] 4] [Cancel
[Select Al J l Deselect Al]
@ [a8 l [Cancel l

74

There are two convenient ways to start the JTAG software daemon; the RUN menu or the External Tools
toolbar button.

The toolbar button is the most convenient. Click on the little pull-down arrow on the External Tools button.
The JTAG executable appears at the top of the list, just click on it to start the OpenOCD JTAG daemon.

Click on puli-
down arrow to

reveal the

external tools

vou’ve installed.] ;7 B (e (R
% : @ e SR

l I % 1 QpenCCD _] <«—— Click to start OpenOCD

£ SAM-BA

Run As L
{E External Toals. ..

organize Favarites. ..

Eclipse always remembers the last external tool you selected. Therefore, the next time just clicking on the
External Tool toolbar button itself will start the previously selected tool.

Click on the “External
Tools” button itself to

run the previously w
selected tool.

Finally, you can also start the JTAG software daemon from the “Run” pull-down menu itself, as shown
below. Click on “Run” followed by “External Tools” and then the tool itself (OpenOCD in this example).
There will typically be multiple tools installed; for example the Atmel SAM-BA boot assistant utility can be
conveniently started the same way.

Window Help

| Fun Last Launched Chel+F11 [B)Q'" 2 - Lk
%, Debug Last Launched F11

Run Hiskory L P,

Run As Y L1 AT91SAM7SZSE - £

Run...

Diebug History L4

Debug fis , kber 3, 2006

L i B T e e i i
Debug. ..

¥ External Tools |'¥. 1 openocD
J

wariables

CC = arm-elf-goo Run As r
LD = arm-elf-1d —v |G External Toals...
AR = arm-elf-ar Organize Favorites. .,

75

A3 = arm-elf-as

Create an Eclipse Project

Now all our hard work preparing an open source Eclipse tool set will pay off. We can now actually create a
bona fide Atmel AT91SAM7 application using the Eclipse IDE and the open source compilers and

debuggers.

Click on the desktop Eclipse icon to start Eclipse.]

Eclipse 3.2

Let's jump right in and create an Eclipse C/C++ project. This project will run out of FLASH memory.
Specifically the project will blink LED1 in a main program background loop. It will blink LED2 on an IRQ
interrupt from onboard Timer1. Finally, if you push switch SW1 it will assert a FIQ interrupt that flashes
LEDS3 and increments a counter. There are also plenty of variables defined for debug practice.

In the File pull-down menu, click on “File — New — Project...” to get started, as shown below.

& C/C++ - Eclipse Platform
(File) dit Refactor Mawigate Search Project

Alt+Shift-+r 4 i Projeckt...

Fun Window Help

Open File. .. A
Standard Make C Project ———— Iflthll(stapp:arz’|
Hlose ChrlHa Convert to a CHC++ Make Project ssg el
Clase all ChrlH-ShifE+4 Managed Make C Project -
[H] 5ave ChrlS Standard Make C++ Praoject
(5] save as... Managed Make C++ Project
[save Al Chrl+Shift+5 8% Source Falder
Reverk % Folder
o ’
Move. . |£|<} Source File
Rename. .. Fz |h| Header Fil=
Refresh FS [File
Convert Line Delimiters To L4 @' Class
(=n Print... Ctrl+P 7 Other...
T

In the “New Project” wizard shown below, expand the C type by clicking on the “+” sign and then select
“Standard Make C Project’. Click “Next” to continue.

& Mew Project

Select a wizard —

Create a new C Project which uses a simple makefile, |

‘Wizards:

| type Filker bext

Eb General
ERr=

: Standard Make C Project
ETECFE
B s

76

Enter the sample project name “demo_at91sam7_blink_flash” into the text window below. Click “Finish”
to continue.

& New Project

C/Make Project
Create a Mew C Project using 'make’ to build i @

Project nam% | demo_at91sam? _blink_flash |

Use default location

Location: | Cifworkspace/demo_at91sam?_blink_flash Bromse,

@ [< Back. ” Mext = [Finish] Cancel]

Now the C/C++ perspective shows a valid project, as shown below in the C/C++ Projects view on the left,
but there are no source files in that project. Normally you would select “File — New — Source File” and

enter a file name and start typing. This time, however, we will be importing source files already prepared
by the author to demonstrate Eclipse’s features.

& C/C++ - Eclipse Platform

File Edit Refactor Mavigate Search Project Run Window Help

N HeRi® & 8 E- G (%0 -Q ®PL B iH FH-we- o & (Rcicr+ 2
WcicH+.. 2 Navigat0r| =0 =080 2 m | =0
& =] d§.‘-‘ = An outline is not available.

&5 demo_at91sam?_blink_flash

Problems B e X Properties G & =#E-r3-~0
_-Build [demo_at91sam7_blink_flash]

77

In the Eclipse screen below, click on “File — Import...”; this will bring up the file import dialog.

-

=— T/C++ - Eclipse Platform

EHit Refactor Mavigate Search Project Run Window Help

i » G- 3]
Ale+Shift+M SR - R < S ¥
Open File...
Close Chrl4-y
Close all Chrl+Shif -+
[S] 5ave Chrl+5
[‘5‘] Save As...
[save all Ctrl+shift+35
Rewvert
Maowe. ..
Rename... Fz
Refresh F5
Canwert Line Delimiters To L4
(=h Frint... Chrl+F
Switch Workspace. .,
]
B2y Export...
Properties Alt+Enter
E:xit
| I IFroblems fE Console &2 Propertie

In the “Import” screen below, click on “File System” and then click “Next” to continue.

& Import
Select
E\A 7
Import resources From the local file system into an existing project.

Select an import source:

| type filber bext |

== General

[@‘ Archive File

----- 00‘ Breakpoints
1 ;

. """ 4 PFEFErEnces
= Cfc++

- s

- Team

In the “Import — File system” screen below, use the “Browse” button associated with the “From directory’
text box to search for the sample project to be imported. In this case, it resides in the folder you created
earlier: c:\download\atmel_tutorial_source\demo_at91sam7_blink_flash.

By the way, you will use this procedure many times in the future to create a new Eclipse project from the
components of a previous project.

78

File system

Source must not be erpty.

Import from directory

From directory: vl[Browse. .. J

e

Select a directory b import Frarm,

< 2 I3 download -~
= S
= £ atmel_tukorial_source
demo_at21sam?_blink_flash —
Filter Types... Select all Deselect All E:I demo_at21sam?_blink_ram
|53 demo_at%1sam7_pé4_blink_flash
Inko folder: | dema_at31sam?_blink_flash | [Erowse... I demo_staisam?_péd_blink_ram B
—_ e . . —
Options

[overwrite existing resources withouk warning Folder: | demo_at91sam?_blink_flash |

() Create complete Folder struckure

(%) Create selected Folders onky Make Mew Folder [QK] [Cancel]

Check the box for the folder “demo_at91sam7_blink_flash” and then click the “Select All” button below
because we want to import every one of these files.

The “Into folder:” text box should already be filled in properly; if not, click the “Browse” button to specify
the project folder “demo_at91sam7_blink_flash”. Click “Finish” to start the File Import operation.

& Import
File system gt
Import resources from the local file swskem. D
-
From direckary: |C:'l.download'l,atmel_tutorial_source'l,demo_atg1sam?_hlink_FIash v| ’ Browse. ..]
LN
n7_blink_flash [£] AT915AM75256.h
@ blinker.c
@ Board.h
@ crk.s

demo_at91sam?_blink_FIash.cmd
@isrsupport.c
= libc.a

=l libgie.a

=1 libm.a

€] lowlervelinit.c
@main.c

L@ makefile
@math.h

|=| script.ocd
€] stdlib.h

[l string.h
@timerisr.c
@timersetup.c

[Filter Types...] [Select all] [Deselect ol]
Inta faolder: |demo_at91sam?_blink_ﬂash | ’ Browse, ..
Options

|:| Owerwrite existing resources without warning
() Create complete Folder structure

(3) Create selected Folders anly

@ Mt = [Finish] Cancel

79

Now if you expand the demo_at91sam7_blink_flash project in the C/C++ Projects view below, you will
see that all the source files have been imported into our project. By clicking on the “+” sign on the project
name in the C/C++ Projects panel on the left, the imported files are revealed.

File Edit Refactor MNavigate Search Project Run Window Help

=
=

S @ B0 i@ P B e B %5 Debug (GG cic+ | ”
Navigat0r| =0 = O || outline (Make ... &2 =0
fir ® iz

= demo_at?1sam?7_blink_flash

&Y Archives
[B aT9158M75256.h
- [h] Board.h
Bt The source files have been

=
[

[E

[

[E

[E
- [h] string.h
[E

£

[

[E

[

[E

[E

£
[E

£

imported into the project!

-] blinker.c _I
@ crt.s
@ isrsuppark.c

@ lowlevelinit.c
m mair.c
[timerisr.c
m timersekup,c
@D libc.a
ﬁ, libgce.a
-E libma
demo_at31sam?_blink_flash,cmd
@ makefile
=l script.ocd

Problems | B Console &2 Properties = EBE-rci-=0
Mo consales to display at this time.

:<> Jdema_at91sam? _blink_flash

In the Eclipse window below, the main.c file has been selected by clicking on it and it thus displays in the
source file editor view in the center.

& C/C++ - main.c - Eclipse Platform
File Edit Refactor Mavigate Search Project Run Window Help

@_’63'@'@'5#&‘0'%‘ -2 AR AR IR R ﬁ?;‘ﬁDebug|ﬁgc;c++| B
I@main.cm =5

PRI P e e e e e T LS L e e -~

= 5% demo_ataLsam?_blink_flash o RIS - = ato1sAMrsZSE
&€ Binaries /‘f X W board.h
o Archives L Demonstration program for Atmel ATO1SAMTIZS56-EK Evaluation Board = H TimerOIrgHandler
g Includes o -++ FigHandler
[R) ATI15AMTS256.h i blinks LEDO (pin FAD) with an endless loop H' LowLevelInit
' inks pin using timerd interrupt mIec rate B
[Boardh o blinks LEDL paL " 200 -+t TimerSetup
) switch SW1 (PA19) triggers FIQ interrupt, turns on LEDZ (Fin PAZ) :
blinker.c o X + enableIRQ
ts ;; plenty of variasbles for debugger practice H' encbleF1Q
- @ FigCount
#4 huchor: James P Lynch September 1, 2006 @
P e e e L e L e T e ® a
r
o
P L ST I @ s
m
£ Header Files . ® n
P R R e @
o
i " "
isrsupport‘o-[armla] ::!.m:iu:e rl}iTleAg:SZSG.h g8 comms
L include oard. .
b lowlevelinit.o - [armle - @ Channel
e tomel Source File e
maf”'” ta[mel . T Edit Vi main
- main,out - [armle
&) timerisr.o - [armie] L Function Prototypes itor iew
! i t o] S R R R R AR R AR AR R AR AT AT R AR AR AR AR AR R AR A AR AR AR
imersetup.o - [armle
[void TimerOIrgHandler (void); Outline
Y ot lst void FigHandler (void):
emo_at91sam?_blink_flash.cmd Vlew
,."lf LA AR AR R AR R R R R R R R o o

i External References
" R R T T
main.map

[makefie extern void Lowlevellnit (void):

E Consale &2

o consoles to display at this time,

E3

Projects
View

Console
View

] [L = e

1n

80

In the “C/C++ Projects” view on the left, you can click on any source file and the Source Window will
jump to that file.

Source modules can be expanded (by clicking on the “+” expander icon) to reveal the variables and
functions contained therein. This allows a very quick way to find the definition of a variable in the file.

In the sample directly below, we expanded the main.c source file to reveal the variables and functions. By
clicking on the variable “h” in the C/C++ Projects view on the left, the source window jumps to the
definition of that variable. This feature is more dramatic when you have a very large source file and it's
tedious to scroll through all of it looking for a particular variable or function.

r @ |DW|8\-’B|iI‘Iit.E /WTWT'K‘K‘KWT‘K'KW‘KTT'K'K‘K‘KWT'KW‘KWT‘K'KWTTTK‘KWWW'X'KW‘KTT'K'K‘K‘KTT'K‘KWWW'K'KW‘K
-] @ main.c Glohal Variakhles
HATQISF\M?XCZSE.h WTTW'K‘KWWT'X‘KWTTT'K'K‘K‘KTW'K‘KWWT'X‘KWTTT'KWTWT'X'KWTWT'K'K‘K‘KTT'K‘K‘KWT'K'KW‘K/
= hoard.h int o S global uninitialized warishle
@—channel int = /¢4 global uninitialized wvarishle
int a: A4 glohal uninitialized wvariable
= short = Z; J4 glohal initialized wariable -
@ ; short i = 3; // global initialized variable
® q char i1 = B} Jf global initialized wariahle
2 ; struct comms { Jf global initialized structure wvariabl
++ FIQ_Routine z:zr* E};E;TE
ﬂ i:g[::;;:::f char buffer[32]:;

In the “Outline” view on the right, any C/C++ file being displayed in the source window in the center will
have a tabular list of all important C/C++ elements (such as enumerations, structures, typedefs, variables,
etc) to allow quick location of those elements in the source file.

In the example below, clicking on “nbytes” in the comms structural variable will cause the source file to
jump to the definition of the “nbytes” element.

[€] main.c 2 . [£ Board.h [W] AT91SAMTRCRS6. R = 0| =0
ﬂ"kﬂ'*#1{‘8‘1{1‘1:‘ﬂ'*‘k1:‘ﬂ'#‘8‘#‘kﬂ"kﬂ'*#1{‘ﬂ'*‘ﬂ'1:‘8‘1{‘8‘1:‘k#‘k#‘k#‘kﬂ'*#*‘k*‘k*‘k*‘k*‘k#‘k#‘k*f ﬁ laz & ‘Q;S o =
int o: J4 global uninitialized wvariahle ® chael
int r: /¢4 global uninitialized wvariable £+ FIQ_Routine
int s: /¢ global uninitialized wvarishle @ h
short h = 2; #/ global initialized wariable & |
short i = 3: f¢ glohal initialized wvariasble £+ IRG_Routine
char j = 6; /4 global initialized wvariahle ™ i
struct comms { /f global initialized structure varisbl ++ Lowlevellnit
int & q
char* pBuf; & r
char buffer[32]: ®
} channel = {5, &channel.buffer[0], {"Faster than a speeding bu ++ SWI_Routine
+ UNDEF_Routine
;'ﬂ"k#1{#1{‘ﬂ'*‘8‘1{1‘1:‘ﬂ'*‘ﬂ'#‘ﬂ'#‘kﬂ"k#1{#1{‘ﬂ'*‘ﬂ'1:‘k1:‘k1{‘8‘#‘k#*#‘k#*ﬂ'*‘k*‘k*‘k*‘k*‘k#‘k#‘k# B :: nTngAM?XCZEE'h
External REeferences board:h
ﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁ'ﬂ‘ﬁ'ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁ'ﬂ‘Hﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂ‘ﬁﬁﬁﬂ‘#ﬁwﬁﬁf = 8 cormms
extern void LowLevelInit (void):
T pou
@ FIQ_Roukine
@ IRQ_Routing
IIF'ﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁ'ﬂ‘ﬁ'ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁﬂ‘ﬁ'ﬂ‘Hﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂ‘ﬁﬁﬁﬂ‘wﬁwﬁﬁ ™ I'I'|a||'|
MATIN @ SWI_Routine
'RH"RH‘TH‘T'H‘T'ﬂ‘W'ﬂ‘W'ﬂ‘w'ﬂ‘W'ﬂ‘T'RH"RH‘TH‘T'KT'ﬂ‘W'ﬂ‘W'ﬂ‘W'ﬂ‘T'XW'XW'XWTWT'XW'XW'XW'X?'XT'XW'X," @ UNDEF RDUtine

int main

[void] |

81

At the bottom of the Eclipse screen is the “Console” view. This shows, for example, the execution of the
Make utility. In the example shown below, you can see the GNU assembler, compiler and linker steps
being executed. If there are problems, you can select the “Problems” tab to see more information
pertaining to any problems that occur.

Problemms H Properties 8 B | = 4 -=08
C-Build [demo_at91sam?_blink_flash]

.assenbling a3
arm-elf-as -ahls -mapcs-32 -0 crt.o crt.s > crto.lst

Jcompiling

arm—-elf-goe —-I.7 —o —fhno-—common —00 —g main.c

Lcompilling

arm-elf-goe -I./ —o —-frno-cormon -00 -g lowlevelinit.c

W linking

arw-elf-1d -v -Map main.map -Tdemwo atf1sam? blink flash.cwd -0 wain.out cort.o main.o
lowlewvelinit.o

GWNO 1ld wersion 2.16.1

L .. COpYVing
armw-elf-okbjcopy ——output-target=binary main.out mwain.bin
arw-elf-objdump -3 —-3yws main.out > main.dmp

<

Eclipse CDT has a fairly comprehensive User’s Guide that can be downloaded from here:

http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/cdt-
home/user/C_C++ Development Toolkit User Guide.pdf?cvsroot=Tools Project

82

Using the Eclipse Editor

The Eclipse editor works like most editors you have used. Since it's a “software” editor, the fonts are fixed-
pitch and that makes indented code line up very nicely.

Creating a New Source File

To create a new file from scratch, just click “File — New — Source File” as shown below left. You will be
asked for a file name, enter the name and extension as shown below right.

& C/C++ - main.c - Eclipse Platform & Mew Source File

Sl = Project...
Standard Make C Project [Create a new source file, C
Close Cirl+d Convert ko a C)C++ Make Project
Close All Chrl+Shife+w Managed Make C Project
[B] 5ave Chr+s Standard Make C++ Project Source Folder: | dermo_at91sarm7 _blink_Flash | [Browse. .. l
[;‘-‘:l Save As... Managed Make C++ Project 4
) Save &l Chrl+shift+s | B Source Folder \ Source File: | init_spi.c I |
Revert c .
Mave. .. £ .
Rename. .. [h] Header File ‘
Refresh F5 [Fie
Convert Line Delimiters To 3 @ Class ‘ ® [Finish] [Cancel
=g Print... Chr4+P £ Cther...
R FFFE R E R FE R FFFFRFFFFRFFFER-

Click “Finish” above right to create a new editing window, as shown below. The new file name appears in
your Eclipse project view on the far left. Now you can type in your new file!

@ crt.s | @ main.c m =08

Undo / Redo

Eclipse has a full “Undo” facility; it's found in the Edit pull-down menu as shown below.

& C/C++ - blinker.c - Eclipse Platform

File W=l Fefactor Mawvigate Search Project F

e <) Undo Typing Ctrl+2
2 Redo Chr+Y

83

Cut, Copy and Paste Operations

Cut, Copy and Paste operations are in the “Edit” pull-down menu, but right-clicking anywhere in the editing
window will bring up the “right-click” menu wherein you can select the Cut, Copy or Paste operation, as
shown below. There is currently no “column copy and paste” operation available, but the thousands who
complained have been promised this feature in the summer 2007 release of Eclipse.

<= Undo Ctrl+Z
Revert File
Save
Show In Alt+Shift+ 4 Right-click anywhere in
the editing window to
Cut Chrl+x — .
Copy chlac bring up the Cut, Copy
Paste Ctri+y and Paste operations
Shift Right
Shift Left
Comment Chrl+f
Uncormment Chrl+,
Add Block Comment Chrl+5hift+]
Remave Block Comment Ctrl+Shift+,

Saving Your Code

If you modify a source line as shown below, Eclipse tags the line as modified by a notation in the left
margin and illuminates the “Save” button in the toolbar. Clicking the toolbar “Save” button updates the file
copy with your changes and removes the “modified” notation.

In the “Windows — Preferences — General — Workspace” pull-down menu, you can set up Eclipse to
automatically save before a build and automatically save every few minutes.

SR T R I “Save” toolbar button
Fie Edit_Refactor Maviger®| NOW illuminates for use

NfH B ST TS 0 Q- (@ i H-

%ijj... P Navigat0r| = 8§ ct.s m
<‘.:. e
- E q) /f ol ol o ol ol ol ol i ol ol ol i ol o o o
= 35 demno_sk31sam?_blink_flash 27 NATH
o Binaries P e]
? Archives int main (void) ¢
[5’ Includes
[n aT915AMPSZSE.H) /¢ lots of wvarishles for debugging practice
[0 Board.h int a, b, o < MOdIfy this line
i ‘€ blinker.c \ char = H
- (8] ert.s int wo= 1;
Eclipse flags it nt o
e mrelties static long X = 5;
static char v o= 0Ox04;

84

Brace Checking

Locating the closing brace is quite easy; just position the cursor just after the opening brace and the
closing brace will be immediately identified by Eclipse with a little box as shown below. This works in
reverse at the closing brace. The same trick also works for parentheses.

Place the cursor just

4/ endless loj/ after the opening brace
while (1} i

for (j = code; 3 != 0; j——) | 4{ count out the proper number of hlinks
pPIO->PI0 CODR = LED1; f4 turn LED1 (D31) on
for (k = g00000; k != 0; k-—-]! S wait 250 mIec
pFIO-*PIO_SODE = LED1; /4 turn LED1 (DZ1) off
for (k = 600000; k != 0; k--): A wait 250 msec
b
for (k = 5000000; (code !'= 0) && (k '= 00 k— 2 df wait 2 zeconds
blinkcount++;

'
! \ Eclipse will mark the

closing brace.

Searching

Eclipse has extremely sophisticated search/replace capabilities. To simplify things a bit, the novice user is
probably interested in just two search features:

¢ Show me the definition of the variable I've selected
e Show me every place in the project where I've used it

First, we have to make sure the Eclipse Indexer is turned on. In the Projects pull-down menu, click on
“Project — Properties — C/C++ Indexer”. This brings up the C/C++ Indexer window, as shown below.

Select the “Full C/C++ Indexer” even though it has been slandered as “slow but accurate”. If you’ve built
a huge project, then you may prefer the faster but less accurate indexer.

= Properties for demo_at91sam7_blink_flash

/++ Indexer ¢

Info

Builders Available indexers

C/C++ Docurmentation Mo Indexer {search-based Features will not work correctly) ~
C/C++ File Types Mo Indexer (search-based Features will nok work correctly)

C/C++ Include Paths & = Fast C/C++ Indexer (Faster but less accurate

CJC++ Indexer Full CjC++ Ind but accurate)
CC++ Make Project

C/iC++ Project Paths

Project References

Refactaring Histary

[Restore Defaults] [Apply]

@ [[o]4 H Cancel]

85

Before doing any heavy duty searching, it behooves you to command Eclipse to rebuild the index. In the
C/C++ Projects view on the far left, click in the project name (make sure it is selected). Then use the
“right-click” menu to select “Rebuild Index” as shown below.

& C/C++ - blinker.c - Eclipse Platform
File Edit FRefactor Mavigate Search Project Run windom

Make sure the . B .
project name is wi gl TR IR - I - S AT C

selected and Navigatm| = (8 ats | @

ny CfC++ Proj.. X

illuminated. I s7 wrns
1_5 demo_at91sam? _blink_flash ;;
(-4 Einaries
-4 Archives M P])
& (2 trcludes - Right-Click Menu
: o Into
B[] AT915AM7SZ56 3
@ Board.h Open in New Window
- €] blinker.c
% s L Rebuild Index |
@ isrsluppnrt.c Create Make Target...
[lowlevelinit.c Build Make Target. ..
@ P— Build Project 3
@ [E——— Clean Praoject
Ry .

To find the definition of a variable, just select and highlight it and hit the F3 button on your keyboard.

w\@ istsupport.c | Le] *blinker.c | lh| Board.h | [AT915AM75256.h -0
~
S Select PA19 [(pushbutton) to he FIQ function (FPeripheral E)
pPIO->PI0 BSE = 3W1_ MASE:
£ Se1-: up the AIC register D TerD Hit F3 to go directly
rolatile ATS1P3 ATC pATIC = ERy-hlegu-Ri-iogy el to the definition Ao
plIC-»LIC_IDCR = (1<<iT91C_ID TCO); fED
PATC->ATC SVR[ATS1C ID TcO] = [unsigned int) TimerOIrgHandler: fdoE
piIc-»AIC SMR[AT91C ID TCO] = (AT91C ATC SRCTYPE INT HIGH LEVEL | Oxd) -
plIC-»AIC_ICCR = (1<<iT91C_ID TCO); fC
plIC-»AIC_IDCR = (D<<AT91C_ID TCO) ; iR
plLIC-=ATIC IECE = ([1<<AT91C IL TCO); iOE
B - b’
< | >

In a flash, Eclipse will jump to the definition of the constant AT91C_BASE_AIC; note that it's in a different
file as shown below.

@ crt.s El *main.c El istsUpport. @ *hlinket.c ‘ @ Board.h =08
',"l," i i e e e e e e e e e i e e i i e i e e e e e i e e i r.S
i BEASE ADDRESS DEFINITIONS FOR ATI1ZAM7HCZEE B
flf ol ol el ol ol ol el ol Ol ol ol el Ol ol ol ol ol ol
#define ATD1C BASE SYS {(ATS91PS_sS¥S) OxFFFFFO00) // ([5¥3) Base Lddress
Hdefine FYEERTSENCEEH NS [(ATR1PS ATC) O0xFFFFFOO0) // (AIC) Base Address
#define ATI1C EBASE PDC DEGU [[AT21P3 FDC) OxFFFFF300) [/ (PDC_DEGU) EBEase Address
#define ATS1C BASE DEGU { (AT91PS_DEGU) OxFFFFFz00] // (DEGU) Ease Addreass
#define AT21C BAZE PIOA [(ATR1P3 PIO) O0xFFFFF400) // (PIOA) Base Address
#define AT91C BASE PIOB [[AT21P3 FPIO) OxFFFFFeO0) // (PICE) Base Lddress
#define ATS1C BASE CHGR [(AT91PS_CEGR] OxFFFFFC20) // (CEGR) Ease Addreass
#define AT21C EBAZE PNC [(ATR1P3 PHC) OxFFFFFCO0) /f/ (PMC) Base Address
#define ATI1C BASE R3TC [[AT21F3 R3TC) OxFFFFFDOO) // (RE3TC) Base Address =
#define AT91C BAZE RTTC [(AT21FP3 RTTC) OxFFFFFD2Z0) // (RETTC) Base Address hdl

86

To find all occurrences of a variable, function, constant or any string, select the target text as shown below.
Here we’d like to see every occurrence of the function TimerOlrgqHandler in the entire project.

m@ Board.h | [A] AT9158M75258.h | €] timerisrc €] lowlevelinit,c | ! =08

i R R E R LR e R R R R R R R R R R R s

#include "ATS1ZAMYIZS56.h"
#iinclude "kosrd.h"

Double-click to select
.".I.".l E i Y e e e i i e e e EEE

i Function Prototypes

.".’."I’ FTEERETELS ol o o o o ol o ol ol o o o ol o o o o B
BT imer0IrgHandle - [RTEL: AIH

void FigHandler (void);

lI.".I." i i e i e i e i e i e e e e e e e e i i e e e e e i
I External References

l.."l,." o o o o o o o o ol o
extern void LowlewvelInit (woid):

extern void Timer3etup (void):

extern unsigned ensblelIRQivoid)

extern unsigned ensbhleFIQivoid):

.'"’."" o o o o o o o o ol o

I Global Varishles
III.I.II.I ol i o o ol O ol ol ol el il el ol ol o o ol

unsigned int FigCount = 0; /f global uninitialized wariahle v
< |

W

Click on the “Search” toolbar button. ﬁ“-'

This will bring up the “Search” window, click on the “File Search” tab. By previous selection of the text, the
target search text should already appear in the window. Set the scope of the search to “Enclosing
Projects” and click “Search” to command Eclipse to find all occurrences.

5y File Search |,E;-' CiC++ Sear-:h|

Zonkaining kexk:

[| imer0IrgHandler v| []case sensitive

J

(* = any string, ¥ = any character, | = escape For likerals: * 700 [Jreqular expression

File name patterns:

| *C,*a, *, *h V| [Choose, ..

Patterns are separated by a comma (* = any sktring, ¥ = any character)
[] Consider derived resources

Scope

) workspace Selected resources | (®) Enclosing projects

) Warking sek: | |[Choose. .,]

@ Replace. ..][Search]

Cancel]

87

Now Eclipse will pop-up the “Search” view right below the editing window and it will show 3 occurrences

as shown below.

= wrodid Pk gHandle
rvoid FigHandler (void)

@ *main.c 24 @ BEoard.h | @ ATI1SAMTSZE6.R | @ tirnerisr.c | @ lowleselinit. c |”3 = O
,u"l,u"l ol o ol ol ol o o i ol ol ol el o .
#include "ATS1S3AM7IZS56.0" | |
#include "bosrd.h™]
f’f’ W‘KTWW‘KTW‘KTWW‘KTW‘KTWW‘TTW‘KW These tWO block arrows EEEEE
Iy Function H

lI.".I." Eal ol ool o o o ol ol ol Wlllwalkthrough eaCh R o o
.| occurrence of the string
“TimerOlrgHandler”

f’f’ e e e i e e i e e e e e i i i i i e e
Iy External References B
< il |

42 search x

>
O 0 R %K % owm -2 v =0

'"Timer0IrgHandler' - 3 matches in 'demo_at91sam? _blink_Fflash' (*.C, *.a, *.c, *.h)

=2 '[EC demo_at91sam?_blink_flash
EI main.c {2 matches)
@ tirnerise.C

Successive clicks of the yellow block arrows in the Search view will walk through each of the three
occurrences of the target string. Note in the sequence directly below, the string appears in two different

» =
@ *main.c &3 @ Board.h ‘ @ ATI15AM75256.h ‘ @ timerist . | @ lowlevelinit,c | El]

T R -~
/ Function Prototypes
R R R R R AR R R R R R R AR AR AR AR R R AR AR AR AR AR

B voia) ; ||
void FigHandler {void);
R R R R R AR AR R R R R R R AR AR AR AR R R AR AR AR AR AR
I External References
R R R R R AR AR R R R R R R AR AR AR AR R R AR AR AR AR AR
extern void Lowlevellnit (veid):
extern void TimerZetup{void):
extern unsigned enableIRQ(void):

v

< i | >

[€] *main.c 5 “._[H] Board.h | B AT915AM7S256.h | €] Eimerisr.c | €] lowlevelinit.c >y =g
/¢ Set up the LIC registers for Tiwer O -~
volatile AT91PS AIC pAIC = AT91C BASE AIC;

PAIC-3AIC_IDCR = (1<<AT91C_ID_TCO) ;
= PAIC-»>AIC SVR[ATS1C ID TCO] = (unsigned int)
PAIC->LIC_SMR[ATS1C_ID_TCO] = (AT91C_AIC_SRCTYPE_INT HIGH LEVEL | x4
PAIC-3LIC_ISCR = (1<AT91C_ID_TCO];
PAIC-»AIC IDCR = {0<<AT91C_ID TCO) ;
pAIC-3LIC_IECR = (1<<AT91C_ID_TCO ;

/4 Fet up the AIC registers for FIQ (pushbutton SW1)
PAIC->AIC_IDCR = (1<<AT91C_ID_FIQ):
pAIC->AIC_SMR[AT91C_ID_FIQ) = (AT91C_AIC SRCTYPE_INT POSITIVE EDGE]; o

< il | >

GG %% W mH-2- o0

imerOIroHandler' - 3 matches in 'demo_at91sam?_blink_flash' (*.C, *.a, *.c, *.hy

L f R % W mp-T"0

"TimerDIrgHandler' - 3 matches in 'dema_st91sam7_blink_flash' (*.C, *.a, *.c, *.h)

= 5 dema_ata1sam7_blink_flash
main, c {2 matches)
@ kimerisy.c

& 125 dema_at@1sam?_biink_Flash
- [€] main.c (2 matches)
" @ timerisr,c

g

[£] *main.c ‘ [A Board.h | [8) AT9154M75256.h [€] lowlevelinit.c 3 =0
~
#include "ATI1SANTS2S6.0" |
#include "hoard.h"
unsigned long tickcount = 0; /¢ global warisbl
= void pERbauies 4 [
volatile AT91PS_TC pTC = AT1C_BASE_TCO; /¢ pointer to tim
volatile AT91PS_PIO pPIO = AT91C_BASE_PIOA; /¢ pointer to PIO
unsigned int dummy ; /¢ temporary
-]
< il | >
4 Search 1 LT &) ¥ mZp-m=¥ =0

‘TimerDIrgHandlet' - 3 makches in ‘'demao_at21sam?_blink_flash’ (*.C, *.a, *.c, *.h)

=] IEC demo_at91sam7_blink_flash
: @ main.c (2 makches)
“ g timerist.c

88

Discussion of the Source Files — FLASH Version

We will not describe every source file in detail. Most of these files are derived from other Atmel
documentation and are simply modified to be compatible with the GNU tools. The source files designed by
the author are heavily annotated and you shouldn’t have too much trouble understanding them.

AT91SAM7S256.H

This is the standard H file for the Atmel AT91SAM7S256 microprocessor.

// ATMEL Microcontroller Software Support - ROUSSET -

// DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR

// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

/I MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
// DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,

/I INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
/I OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

/I NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

I

/I EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// File Name:
// Object:

// Generated:
1/

// CVS Reference:

AT91SAM7S256.h
AT91SAM7S256 definitions
AT91 SW Application Group 11/02/2005 (17:07:34)

#ifndef AT91SAM7XC256_H
#define AT91SAM7XC256_H

typedef volatile unsigned int AT91_REG;

/AT91SAM7XC256.pl/1.1/Wed Nov 2 13:59:10 2005//

// Hardware register definition

/I

1 SOFTWARE API DEFINITION FOR System Peripherals

1

typedef struct _AT91S_SYS {

AT91 REG AIC_SMR[32]; // Source Mode Register

AT91 REG AIC_SVR[32]; // Source Vector Register

AT91 REG AIC_IVR; // IRQ Vector Register

AT91 REG AIC_FVR; // FIQ Vector Register

AT91_REG AIC_ISR; // Interrupt Status Register

AT91 REG AIC_IPR; // Interrupt Pending Register
AT91_REG AIC_IMR; // Interrupt Mask Register
AT91_REG AIC_CISR; // Core Interrupt Status Register
AT91_REG ReservedO[2]; 1l

AT91_REG AIC_|ECR; /I Interrupt Enable Command Register
AT91_REG AIC_IDCR; // Interrupt Disable Command Register
AT91 REG AIC_ICCR; // Interrupt Clear Command Register
AT91_REG AIC_ISCR; // Interrupt Set Command Register
AT91_REG AIC_EOICR; // End of Interrupt Command Register
AT91_REG AIC_SPU; // Spurious Vector Register
AT91_REG AIC_DCR; // Debug Control Register (Protect)
AT91_REG Reservedl[1]; //

AT91_REG AIC_FFER; // Fast Forcing Enable Register
AT91_REG AIC_FFDR; // Fast Forcing Disable Register
AT91 REG AIC_FFSR; // Fast Forcing Status Register

AT91 REG Reserved2[45]; 1/

AT91 REG DBGU_CR; // Control Register

AT91 REG DBGU_MR; // Mode Register

AT91 REG DBGU_IER; /I Interrupt Enable Register
AT91_REG DBGU_IDR; // Interrupt Disable Register
AT91_REG DBGU_IMR; /I Interrupt Mask Register
AT91_REG DBGU_CSR; // Channel Status Register
AT91_REG DBGU_RHR; /I Receiver Holding Register
AT91_REG DBGU_THR; // Transmitter Holding Register
AT91_ REG DBGU_BRGR; // Baud Rate Generator Register
AT91_REG Reserved3[7]; //

89

AT91_REG DBGU_CIDR; /I Chip ID Register

AT91 REG DBGU_EXID; // Chip ID Extension Register
AT91_REG DBGU_FNTR; // Force NTRST Register

AT91 REG Reserved4[45]; //

AT91 REG DBGU_RPR; // Receive Pointer Register

AT91 REG DBGU_RCR; // Receive Counter Register
AT91 REG DBGU_TPR; // Transmit Pointer Register
AT91_REG DBGU_TCR; // Transmit Counter Register
AT91_REG DBGU_RNPR; // Receive Next Pointer Register
AT91_REG DBGU_RNCR; /I Receive Next Counter Register
AT91_REG DBGU_TNPR; /I Transmit Next Pointer Register
AT91_REG DBGU_TNCR; // Transmit Next Counter Register
AT91_REG DBGU_PTCR; / PDC Transfer Control Register
AT91_REG DBGU_PTSR; // PDC Transfer Status Register
AT91_REG Reserved5[54]; //

AT91_REG PIOA PER; // PIO Enable Register

AT91 REG PIOA PDR; // PIO Disable Register

This is a véry large file !

BOARD.H

This is the standard Atmel board definition file for the AT91SAM7S-EK Evaluation Board.

1/
// ATMEL Microcontroller Software Support - ROUSSET -
1
// The software is delivered "AS IS" without warranty or condition of any
// kind, either express, implied or statutory. This includes without

// limitation any warranty or condition with respect to merchantability or
// fitness for any particular purpose, or against the infringements of

// intellectual property rights of others.

1/
// File Name: Board.h

// Object: AT91SAM7S Evaluation Board Features Definition File.
1/

// Creation: JPP 16/June/2004

1/
#ifndef Board_h
#define Board_h

#include "AT91SAM7S256.h"
#define __inline inline

#define true -1
#define false 0

1
// SAM7Board Memories Definition
1
/l The AT91SAM7564 embeds a 16-Kbyte SRAM bank, and 64 K-Byte Flash

#define INT_SARM 0x00200000
#define INT_SARM_REMAP 0x00000000

#define INT_FLASH 0x00000000
#define INT_FLASH_REMAP 0x01000000

#define FLASH PAGE NB 512
#define FLASH_PAGE SIZE 128

#define LED1 (1<<0) // PAO
#define LED2 (1<<1) // PA1
#define LED3 (1<<?2) /] PA2
#define LED4 (1<<3) /| PA3
#define NB_LEB 4

#define LED_MASK (LED1|LED2|LED3|LED4)

90

1/
// Push Buttons Definition
I/

// SUB-D 9 points J]3 DBGU*/

#define DBGU_RXD AT91C_PA9 DRXD
#define DBGU_TXD AT91C_PA10 _DTXD
#define AT91C_DBGU_BAUD115200
#define US_RXD_PIN AT91C_PA5_RXDO
#define US_TXD_PIN AT91C_PA6_TXDO
#define US_RTS_PINAT91C_PA7_RTSO
#define US_CTS_PINAT91C_PA8_CTSO

#define EXT_OC 18432000
#define MCK 47923200
#define MCKKHz ~ (MCK/1000) 1/

#endif // Board_h

#define SW1_MASK (1<<19) // PA19
#define SW2_MASK (1<<20) // PA20
#define SW3_MASK (1<<15) // PA15
#define SW4_MASK (1<<14) // PA14
#define SW_MASK (SW1_MASK|SW2_MASK|SW3_MASK|SW4 MASK)
#define SW1 (1<<19) // PA19
#define SW2 (1<<20) /] PA20
#define SW3 (1<<15) // PA15
#define SW4 (1<<14) // PA14

// JP11 must be close
// JP12 must be close
// Baud rate

// JP9 must be close
// JP7 must be close
// JP8 must be close
// JP6 must be close

// Exetrnal ocilator MAINCK
// MCK (PLLRC div by 2)

BLINKER.C

The blinker routine is entered if the application code crashes due to a prefetch abort interrupt, a data abort
interrupt or an undefined instruction abort interrupt. The function enters an endless loop and emits an LED
blink code identifying the source of the abort. The system must be RESET to recover.

1/ blinker.c
// Endless loop blinks a code for crash analysis

// Inputs: Code - blink code to display

// 1 = undefined instruction (one blink long pause)
// 2 = prefetch abort (two blinks long pause)
// 3 = data abort (three blinks long pause)

// Author: James P Lynch May 12, 2007

#include "AT91SAM7S256.h"
#include "board.h"

unsigned long blinkcount;

void blinker(unsigned char code) {
volatile AT91PS PIO pPIO = AT91C_BASE_PIOA;
volatile unsigned int jk;

// endless loop
while (1) {
for (j = code; j!=0;j-) {
pPIO->PIO_CODR = LED1;
for (k = 600000; k != 0; k--);
pPIO->PIO_SODR = LED1;
for (k = 600000; k '= 0; k--);

I
for (k = 5000000; (code != 0) && (k !'= 0); k--);
blinkcount++;

// global variable

// pointer to PIO register structure
// loop counters

// count out the proper number of blinks
// turn LED1 (DS1) on

// wait 250 msec

// turn LED1 (DS1) off

// wait 250 msec

// wait 2 seconds

91

CRT.S

This assembly language startup file includes parts of the standard Atmel startup file with a few changes by
the author to conform to the GNU assembler.

The interrupt vector table is implemented as branch instructions with one interesting difference; the FIQ
interrupt service routine is completely implemented right after the vector table. The designers of the ARM
microprocessor purposely placed the FIQ vector last in the vector table for this very purpose. This is the
most efficient implementation of a FIQ interrupt. The AT91F_Fiq_Handler routine, coded completely in
assembler, turns on LED3 and increments a global variable.

The AT91F_Irg_Handler routine is derived from Atmel documentation and supports nested IRQ interrupts.
For a detailed technical discussion of this topic, consult pages 336 — 342 in the book “ARM System
Developer's Guide” by Andrew Sloss et. al. Another great advantage of this technique is that the assembly
language nested interrupt handler calls a standard C Language function to do most of the work servicing
the IRQ interrupt. You don’t have to deal with the GNU C extensions that support ARM interrupt
processing.

The start-up code called by the RESET vector sets up 128 byte stacks for the IRQ and FIQ interrupt
modes and finally places the CPU in “System” mode with the FIQ and IRQ interrupts disabled. System
mode operation allows the main() program to enable the IRQ and FIQ interrupts after all peripherals have
been properly initialized.

The start-up code also initializes all variables that require it and clears all uninitialized variables to zero
before branching to the C Language main() routine.

The author would like to thank Eric Pasquier for noting deficiencies in the Revision B version of the IRQ
handler. As per Eric’s suggestions, the standard Atmel IRQ code is used in this revision.

¥ */
[crt.s */
¥ i
r* Assembly Language Startup Code for Atmel AT91SAM7S256 */
* *
: ;
¥ “
IF i/
/* Author: James P Lynch May 12, 2007 &/
IF &/
/* Stack Sizes */

.set UND_STACK_SIZE, 0x00000010 /* stack for "undefined instruction" interrupts is 16 bytes */
.set ABT_STACK_SIZE, 0x00000010 /* stack for "abort" interrupts is 16 bytes */

.set FIQ_STACK_SIZE, 0x00000080 /* stack for "FIQ" interrupts is 128 bytes */

.set IRQ_STACK_SIZE, 0X00000080 /* stack for "IRQ" normal interrupts is 128 bytes */

.set SVC_STACK_SIZE, 0x00000080 /* stack for "SVC" supervisor mode is 128 bytes */

/* Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs (program status registers) */

.set ARM_MODE_USR, 0x10 /* Normal User Mode */

.set ARM_MODE_FIQ, 0x11 /* FIQ Processing Fast Interrupts Mode */

.set ARM_MODE_IRQ, 0x12 /* IRQ Processing Standard Interrupts Mode */

.set ARM_MODE_SVC, 0x13 /* Supervisor Processing Software Interrupts Mode */

.set ARM_MODE_ABT, 0x17 /* Abort Processing memory Faults Mode */

.set ARM_MODE_UND, 0x1B /* Undefined Processing Undefined Instructions Mode */
.set ARM_MODE_SYS, Ox1F /* System Running Priviledged Operating System Tasks Mode */
.set |I_BIT, 0x80 /* when | bit is set, IRQ is disabled (program status registers) */
.set F_BIT, 0x40 /* when F bit is set, FIQ is disabled (program status registers) */
/* Addresses and offsets of AIC and PIO */

.set AT91C_BASE_AIC, OxFFFFFO00 /* (AIC) Base Address */

.set AT91C_PIOA_CODR, OxFFFFF434 /* (P10) Clear Output Data Register */

.set AT91C_AIC_IVR, OxFFFFF100 /* (AIC) IRQ Interrupt Vector Register */

.set AT91C_AIC_FVR, OxFFFFF104 /* (AIC) FIQ Interrupt Vector Register */

.set AIC_IVR, 256 /* IRQ Vector Register offset from base above */

.set AIC_FVR, 260 /* FIQ Vector Register offset from base above */

.set AIC_EOICR, 304 /* End of Interrupt Command Register */

92

/* identify all GLOBAL symbols */
.global _vec_reset

.global _vec_undef

.global _vec_swi

.global _vec_pabt

.global _vec_dabt

.global _vec_rsv

.global _vec_irq

.global _vec_fiq

.global AT91F_Irg_Handler

.global AT91F_Fiq_Handler
.global AT91F_Default_FIQ_handler
.global AT91F_Default_IRQ_handler
.global AT91F_Spurious_handler
.global AT91F_Dabt Handler
.global AT91F_Pabt_Handler
.global AT91F_Undef_Handler

/* GNU assembler controls */

text /* all assembler code that follows will go into .text section */
.arm /* compile for 32-bit ARM instruction set */

.align /* align section on 32-bit boundary */

[f == ¥/
I VECTOR TABLE &/
I &/
/* Must be located in FLASH at address 0x00000000 &/
/* i
/* Easy to do if this file crt.s is first in the list &
/* for the linker step in the makefile, e.g. &/l
[&/
/* $(LD) $(LFLAGS) -0 main.out crt.o main.o */
/* &/
[f ==_%/
_vec_reset: b _init_reset /* RESET vector - must be at 0x00000000 */
_vec_undef: b AT91F_Undef Handler /* Undefined Instruction vector */

_vec_swi: b _vec_swi /* Software Interrupt vector */

_vec_pabt: b AT91F_Pabt_Handler /* Prefetch abort vector */

_vec_dabt: b AT91F_Dabt Handler /* Data abort vector */

_vec_rsv: nop /* Reserved vector */

_vec_irg: b AT91F_Irg_Handler /* Interrupt Request (IRQ) vector */

_vec_fiq: /* Fast interrupt request (FIQ) vector */

/¥ == ¥/
/* Function: AT91F_Fiq_Handler */
/* &/
/* The FIQ interrupt asserts when switch SW1 is pressed. */
/* ~7]
/* This simple FIQ handler turns on LED3 (Port PA2). The LED3 will be &/
/* turned off by the background loop in main() thus giving a visual &
/* indication that the interrupt has occurred.]
/* &/
/* This FIQ_Handler supports non-nested FIQ interrupts (a FIQ interrupt */
/* cannot itself be interrupted). 1
/7]
/* The Fast Interrupt Vector Register (AIC_FVR) is read to clear the interrupt */
I &/
/* A global variable FigCount is also incremented. */
/*)
/* Remember that switch SW1 is not debounced, so the FIQ interrupt may =/
/* occur more than once for a single button push. */
/* */
/* Programmer: James P Lynch <
[f ==_%/

AT91F_Fig_Handler:

/* Adjust LR_irq */

sub Ir, Ir, #4
/* Read the AIC Fast Interrupt Vector register to clear the interrupt */
Idr rl2, =AT91C_AIC_FVR
Idr rll, [r12]
/* Turn on LED3 (write 0x0008 to PIOA_CODR at OxFFFFF434) */
Idr rl2, =AT91C_PIOA_CODR
mov rll, #0x04
str rll, [r12]

/* Increment the _FigCount variable */

Idr rl2, =FigCount
Idr rll, [r12]

add rll, rll, #1
str rll, [r12]

/* Return from Fiq interrupt */
movs pc, Ir

93

Vi _init_reset Handler */
I <
/* RESET vector 0x00000000 branches to here. *f
[F <
/* ARM microprocessor begins execution after RESET at address 0x00000000 *f
/* in Supervisor mode with interrupts disabled! */
I i
/* _init_reset handler: creates a stack for each ARM mode. */
r* sets up a stack pointer for each ARM mode. &
[turns off interrupts in each mode. &/l
/* leaves CPU in SYS (System) mode. */
I =]
A block copies the initializers to .data section */
/* clears the .bss section to zero L
{F “
I* branches to main() &/
/¥ === ¥/
.text /* all assembler code that follows will go into .text section */
align /* align section on 32-bit boundary */
_init_reset:
/* Setup a stack for each mode with interrupts initially disabled. */
Idr r0, =_stack_end /* r0 = top-of-stack */
msr CPSR_c, #ARM_MODE_UNDII_BIT|F_BIT /* switch to Undefined Instruction Mode */
mov sp, r0 /* set stack pointer for UND mode */
sub r0, r0, #UND_STACK_SIZE /* adjust r0 past UND stack */
msr CPSR_c, #ARM_MODE_ABT]|I_BIT|F_BIT /* switch to Abort Mode */
mov sp, r0 /* set stack pointer for ABT mode */
sub r0, r0, #ABT_STACK_SIZE /* adjust r0 past ABT stack */
msr CPSR_c, #ARM_MODE_FIQ|I_BIT|F_BIT /* switch to FIQ Mode */
mov sp, r0 /* set stack pointer for FIQ mode */
sub r0, r0, #FIQ_STACK_SIZE /* adjust r0 past FIQ stack */
msr CPSR_c, #ARM_MODE_IRQ|I_BIT|F_BIT /* switch to IRQ Mode */
mov sp, r0 /* set stack pointer for IRQ mode */
sub r0, r0, #IRQ_STACK_SIZE /* adjust r0 past IRQ stack */
msr CPSR_c, #ARM_MODE_SVC]|I_BIT|F_BIT /* switch to Supervisor Mode */
mov sp, r0 /* set stack pointer for SVC mode */
sub r0, r0, #SVC_STACK_SIZE /* adjust r0 past SVC stack */
msr CPSR_c, #ARM_MODE_SYS|I_BIT|F_BIT /* switch to System Mode */
mov sp, r0 /* set stack pointer for SYS mode */
/* we now start execution in SYSTEM mode */
/* This is exactly like USER mode (same stack) */
/* but SYSTEM mode has more privileges */
/* copy initialized variables .data section (Copy from ROM to RAM) */
Idr R1, =_etext
Idr R2, =_data
Idr R3, =_edata
i3 cmp R2,R3
Idrlo RO, [R1], #4
strlo RO, [R2], #4
blo 1b
/* Clear uninitialized variables .bss section (Zero init) */
mov RO, #0
Idr R1, =_bss_start
Idr R2, =_bss_end
2: cmp R1, R2
strlo RO, [R1], #4
blo 2b

/* Enter the C code */
b main

94

[f === */
/* Function: AT91F_Irg_Handler */
[&/
/* This IRQ_Handler supports nested interrupts (an IRQ interrupt can itself */
/* be interrupted). &/
* */
/* This handler re-enables interrupts and switches to "Supervisor" mode to &/
/* prevent any corruption to the link and IP registers. 2/
/* *f
/* The Interrupt Vector Register (AIC_IVR) is read to determine the address “f]
/* of the required interrupt service routine. The ISR routine can be a]
/* standard C function since this handler minds all the save/restore &
/* protocols.]
/* &/
I &
/* Programmers: */
I &l
r* ATMEL Microcontroller Software Support - ROUSSET - */
[&/
/* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS i
/* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED */
/* WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND]
/* NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR */
/* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR]
/* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT */
/* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR &/
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, */
/* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE &/
/* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. &/
/* File source : Cstartup.s79 *§
/* Object : Generic CStartup to AT91SAM75256 &/
/*1.0 09/May/06 JPP : Creation */
I &/
[&/
/* Note: taken from Atmel web site (www.at91.com) */
r* Keil example project: AT91SAM7S-Interrupt_SAM7S */
¥ ===================—==—=—=—==—========—====================== */

AT91F_Irg_Handler:

/* Manage Exception Entry */
/* Adjust and save LR_irq in IRQ stack */

sub Ir, Ir, #4
stmfd sp!, {Ir}
/* Save r0 and SPSR (need to be saved for nested interrupt) */
mrs rl4, SPSR
stmfd sp!, {r0,r14}

/* Write in the IVR to support Protect Mode */
/* No effect in Normal Mode */
/* De-assert the NIRQ and clear the source in Protect Mode */

Idr rl4, =AT91C_BASE_AIC
Idr r0, [r14, #AIC_IVR]
str rl4, [r14, #AIC_IVR]
/* Enable Interrupt and Switch in Supervisor Mode */
msr CPSR_c, #ARM_MODE_SVC
/* Save scratch/used registers and LR in User Stack */
stmfd sp!, { r1-r3,rl2, r14}
/* Branch to the C-language IRQ handler routine pointed by the AIC_IVR */
mov rl4, pc
bx ro

/* Manage Exception Exit */
/* Restore scratch/used registers and LR from User Stack */

ldmia sp!, { r1-r3,rl2, r14}
/* Disable Interrupt and switch back in IRQ mode */

msr CPSR_c, #1_BIT | ARM_MODE_IRQ
/* Mark the End of Interrupt on the AIC */

Idr rl4, =AT91C_BASE_AIC

str rl4, [r14, #AIC_EOICR]
/* Restore SPSR_irg and r0 from IRQ stack */

Idmia sp!, {r0,r14}

msr SPSR_cxsf, r14

/* Restore adjusted LR_irg from IRQ stack directly in the PC */
Idmia sp!, {pc}™

95

|¥ === ¥/

/* Function: AT91F_Dabt_Handler */
[&
/* Entered on Data Abort exception. */
/* Enters blink routine (3 blinks followed by a pause) &/
/* processor hangs in the blink loop forever */
/* */
/¥ === ¥/
AT91F_Dabt_Handler: mov RO, #3

b blinker
¥ === ¥/
/* Function: AT91F_Pabt_Handler Wi
= g/
/* Entered on Prefetch Abort exception. */
/* Enters blink routine (2 blinks followed by a pause) */
/* processor hangs in the blink loop forever */
IF &/
¥ === ¥/
AT91F_Pabt Handler: mov RO, #2

b blinker
¥ === ¥/
/* Function: AT91F_Undef Handler Ly
/* &/
/* Entered on Undefined Instruction exception. &/
/* Enters blink routine (1 blinks followed by a pause) &
/* processor hangs in the blink loop forever &l
/* &/
¥ === ¥/
AT91F_Undef_Handler: mov RO, #1

b blinker

ATI91F_Default_FIQ_handler: b AT91F_Default_FIQ_handler
AT91F_Default_IRQ_handler: b AT91F_Default_IRQ_handler
AT91F_Spurious_handler: b AT91F_Spurious_handler

.end

ISRSUPPORT.C

The isrsupport module is adapted from an example posted to the Yahoo LPC2000 user’s group by Bill
Knight and contains various utility functions to enable/disable interrupts, etc.

1/
1
// File Name: isrsupport.c

/] Title: interrupt enable/disable functions

1

1

// This module provides the interface routines for setting up and controlling the various interrupt
// modes present on the ARM processor.

1

/! Copyright 2004, R O SoftWare

// No guarantees, warrantees, or promises, implied or otherwise.

// May be used for hobby or commercial purposes provided copyright

/I notice remains intact.

// Note from Jim Lynch:

// This module was developed by Bill Knight, RO Software and used with his permission.
// Taken from the Yahoo LPC2000 User's Group - Files Section 'UT050418A.ZIP'

// Specifically, the module armVIC.c with the include file references removed

#define IRQ_MASK 0x00000080
#define FIQ_MASK 0x00000040
#define INT_MASK (IRQ_MASK | FIQ_MASK)

96

static inline unsigned __get_cpsr(void)

{
unsigned long retval;
asm volatile (" mrs %0, cpsr" : "=r" (retval) : /* no inputs */);
return retval;

}

static inline void __set_cpsr(unsigned val)

{

asm volatile (" msr cpsr, %0" : /* no outputs */: "r" (val));

unsigned disablelRQ(void)
{

unsigned _cpsr;

_cpsr = __get_cpsr();
__set_cpsr(_cpsr | IRQ_MASK);
return _cpsr;

}

unsigned restorelRQ(unsigned oldCPSR)

{
unsigned _cpsr;
_cpsr = __get_cpsr();
__set_cpsr((_cpsr & ~IRQ_MASK) | (oldCPSR & IRQ_MASK));
return _cpsr;

}

unsigned enablelRQ(void)

{
unsigned _cpsr;
_cpsr = __get_cpsr();
__set_cpsr(_cpsr & ~IRQ_MASK);
return _cpsr;

}

unsigned disableFIQ(void)

{
unsigned _cpsr;
_cpsr = __get_cpsr();
__set_cpsr(_cpsr | FIQ_MASK);
return _cpsr;

}

unsigned restoreFlQ(unsigned oldCPSR)

{
unsigned _cpsr;
_cpsr = __get_cpsr();
_ set_cpsr((_cpsr & ~FIQ_MASK) | (oldCPSR & FIQ_MASK));
return _cpsr;

}

unsigned enableFIQ(void)

{
unsigned _cpsr;
_cpsr = __get_cpsr();
__set_cpsr(_cpsr & ~FIQ_MASK);
return _cpsr;

t

LOWLEVELINIT.C

This function, developed by Atmel Technical Support, initializes the PLL clock system. Some annotation
has been extended by the author.

// The software is delivered "AS IS" without warranty or condition of any
// kind, either express, implied or statutory. This includes without

// limitation any warranty or condition with respect to merchantability or
// fitness for any particular purpose, or against the infringements of

// intellectual property rights of others.

() gp =555585005202 00905000000 6000805000885505 205556 T0E000000I008SESE00000TE005 S
// File Name 1 Cstartup SAM7.c
// Object : Low level initializations written in C for IAR tools

// 1.0 08/Sep/04 JPP : Creation
// 1.10 10/Sep/04 JPP : Update AT91C CKGR PLLCOUNT filed

97

// Include the board file description
#include "AT91SAM7S256.h"
#include "Board.h"

// The following functions must be write in ARM mode this function called directly
// by exception vector

extern void AT91F Spurious handler(void);

extern void AT91F Default IRQ handler(void);

extern void AT91F Default FIQ handler(void);

//* \fn AT91F_LowLevelInit
//* \brief This function performs very low level HW initialization

/7* this function can be use a Stack, depending the compilation
//* optimization mode
o T ok R SRR TO R ook @R W TN o)
void LowLevelInit(void)
int i;
AT91PS_PMC pPMC = AT91C_ BASE PMC;

//* Set Flash Wait sate

// Single Cycle Access at Up to 30 MHz, or 40

// if MCK = 48054841 I have 50 Cycle for 1 usecond (flied MC FMR->FMCN
// result: AT91C MC FMR = 0x00320160 (MC Flash Mode Register)
AT91C_BASE_MC->MC_FMR = ((AT91C_MC_FMCN)&(50 <<16)) | AT91C_MC_FWS_1FWS;

//* Watchdog Disable
// result: AT91C WDTC WDMR = 0x00008000 (Watchdog Mode Register)
AT91C_BASE_WDTC->WDTC_WDMR= AT91C WDTC_WDDIS;

//* Set MCK at 48 054 841

// 1 Enabling the Main Oscillator:

// SCK = 1/32768 = 30.51 uSecond

// Start up time = 8 * 6 / SCK = 56 * 30.51 = 1,46484375 ms

// result: AT91C CKGR_MOR = 0x00000601 (Main Oscillator Register)
pPMC->PMC_MOR = ((AT91C_CKGR_OSCOUNT & (0x06 <<8) | AT91C_CKGR MOSCEN));

// Wait the startup time
while(!(pPMC->PMC_SR & AT91C_PMC_MOSCS));

// PMC Clock Generator PLL Register setup

//

// The following settings are used: DIV = 14

[MUL = 72

// PLLCOUNT = 10
//

// Main Clock (MAINCK from crystal oscillator) = 18432000 hz (see AT91SAM7-EK schematic)
// MAINCK / DIV = 18432000/14 = 1316571 hz

// PLLCK = 1316571 * (MUL + 1) = 1316571 * (72 + 1) = 1316571 * 73 = 96109683 hz

//

// PLLCOUNT = number of slow clock cycles before the LOCK bit is set

// in PMC_SR after CKGR_PLLR is written.
//

// PLLCOUNT = 10

//

// OUT = 0 (not used)
// result: AT91C CKGR PLLR = 0x00000000480A0E (PLL Register)
pPMC->PMC_PLLR = ((AT91C_CKGR_DIV & 14) |
(AT91C CKGR PLLCOUNT & (10<<8)) |
(AT91C_CKGR MUL & (72<<16)));

// Wait the startup time (until PMC Status register LOCK bit is set)
while(!(pPMC->PMC_SR & AT91C _PMC_LOCK));

// PMC Master Clock (MCK) Register setup

//

// CSS =3 (PLLCK clock selected)

//

// PRES = 1 (MCK = PLLCK / 2) = 96109683/2 = 48054841 hz
//

// Note: Master Clock MCK = 48054841 hz (this is the CPU clock speed)
// result: AT91C PMC MCKR = 0x00000007 (Master Clock Register)
pPMC->PMC_MCKR = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK 2;

// Set up the default interrupts handler vectors
AT91C BASE AIC->AIC SVR[O] = (int) AT91F Default FIQ handler;
for (i=1;i < 31; i++)
AT91C BASE AIC->AIC SVR[i] = (int) AT91F Default IRQ handler;

}
AT91C BASE AIC->AIC SPU = (int) AT91F Spurious handler;

98

MAIN.C

The Main() program, designed by the author, provides a background wait loop that flashes LED1 at
approximately a 1 Hz rate, flashes LED2 at a 10 Hz rate triggered by a TimerQ IRQ interrupt, and flashes
LED3 whenever you push switch SW1 which triggers a FIQ interrupt . There are also plenty of variables

for debugging practice.

There are code snippets, currently commented out, that can trigger an ABORT interrupt that results in a

crash blinker code that will identify the source of the abort.

// Author: James P Lynch May 12, 2007

// K 3K >k >k 3k 3k 5K 5K K >k >k 3k 5K 5K 5K >k >k 3k 3k 5K 5K 5K >k >k 3k 3k 5K 5K K >k >k 3k 5K 5K 5K K >k 3k 3k 5K 5K X >k >k %k 3k 5K K Kk kK kK kK

// Header Files

// K 3k 3k 3k 5k 3k 5k 3k >k 3k 5k 3k >k 3k >k 3k 5k 3k >k 5k >k Sk >k 5k >k 5k >k 5k >k 5k >k 3k >k 5k >k 3k >k 5k >k 5k >k 3k >k 5k >k 3k %k 5k >k 5k %k %k % >k %
#include "AT91SAM7S256.h"

#include "board.h"

#include "string.h"

#include "math.h"

#include "stdlib.h"

// 3k 3k >k >k >k 3k K ok >k >k >k 3k K K ok >k >k 3k 3k K 5k ok >k >k 3k K K ok >k >k >k 3k K 3k ok >k >k >k 3k K 5k >k >k >k >k 3k K ok ok ok >k k koK ok

// Function Prototypes

// K 3k 5k 3k ok 3k ok 3k >k 3k ok 3k ok Sk ok 3k ok 3k >k 3k ok Sk >k Sk ok Sk ok 3k >k 5k ok k >k 5k >k 3k %k 5k >k 5k >k sk >k 5k >k sk >k 5k >k 5k >k 5k %k k %
void TimerOIrgHandler(void);

void FigHandler(void);

// K 3K >k >k 3k 3k 5K 5K K >k >k 3k 5K 5K 5K >k >k 3k 3k 5K 5K 5K >k >k 3k 3k 5K 5K K >k >k 5k 5K 5K 5K >k >k >k 3k 5K 5K >k %k %k %k 3k 5K K Kk >k kK kX
// External References

// K 3K >k >k 3k 3k 5K 5K K >k >k 3k 5K 5K 5K K >k 3k 3k 5K 5K 5K >k >k 3k 3k 5K 5K K >k >k 5k 5K 5K 5K K >k >k 3k 5K 5K > %k >k %k 3k 3K K Kk >k k kK k.
extern void LowLevelInit(void);

extern void TimerSetup(void);

extern unsigned enableIRQ(void);

extern unsigned enableFIQ(void);

[/ RRERRERRR SRR KRR KRR KKK KRR KKK R K

// Global Variables

[RRREAREIAAAAA KA A AAA KA A AR A KA KA AR AR AK KRR A KKK A KKK KK
unsigned int FiqCount = 0; // global
int q; // global
int 8 // global
int s; // global
int m=2; // global
int n=3; // global
int 0 =6; // global

struct comms {
int nBytes;
char *pBuf;
char Buffer[32];

A L R e

// main.c

//

// Demonstration program for Atmel AT91SAM7S256-EK Evaluation Board
//

// blinks LEDO (pin PAO) with an endless loop

e/ blinks LED1 (pin PAl) using timer® interrupt (200 msec rate)

// switch SW1 (PA19) triggers FIQ interrupt, turns on LED2 (Pin PA2)
// plenty of variables for debugger practice

//

A LR R e

uninitialized variable
uninitialized variable
uninitialized variable
uninitialized variable
initialized variable
initialized variable
initialized variable

} Channel = {5, &Channel.Buffer[0], {"Faster than a speeding bullet"}};

99

oK KoK o KK oK o KoK oK oK oK oK K KK oK oK K K oK ok oK KoK oK oK oK ok oK oK oK K oK oK K oK ok oK oK oK o K oK ok oK oK oK KoK ok KoK ok K oK ok K K oK K KoK oK

main.c

Demonstration program for Atmel AT91SAM7S256-EK Evaluation Board

blinks LEDO (pin PAO) with an endless loop

blinks LED1 (pin PAl) using timer® interrupt (200 msec rate)
switch SW1 (PA19) triggers FIQ interrupt, turns on LED2 (Pin PA2)

plenty of variables for debugger practice

Author: James P Lynch May 12, 2007

K 3k >k 3k 5k 3k 3k 3k >k 3k 5k 3k >k 3k >k 3k >k 3k >k 3k ok 3k >k 5k >k 3k >k Sk >k 3k >k Sk >k 5k >k 3k >k 5k >k 5k >k 3k %k 5k >k 3k >k 5k >k 5k >k 5k >k 5k >k 3k >k 5k %k 5k >k 5k >k 5k >k 5k %k 5k >k 5k >k 5k %k >k k %k %
int main (void) {

// lots of variables for debugging practice

int a, b, c;
char d;
int w=1;
int k =2;
static long R = 5
static char y = 0x04;
const char *pText = "The rain in Spain";
struct EntryLock {
long Key;
int nAccesses;
char Name[17];
} Access = {14705, 0, "Sophie Marceau"};

unsigned long j;

unsigned long IdleCount = 0;

int *p;

typedef void (*FnPtr)(void);

FnPtr pFnPtr;

double x5;

double y5 = -172.451;

const char DigitBuffer[] = "16383";
long n;

// Initialize the Atmel AT91SAM7S256 (watchdog,
LowLevelInit();

// enable the Timer0@ peripheral clock
volatile AT91PS PMC pPMC = AT91C BASE PMC;
pPMC->PMC_PCER = (1<<AT91C_ID_TCO);

// Set up the LEDs (PAQ - PA3)

volatile AT91PS PIO pPIO = AT91C BASE PIOA;
pPI0->PI0 PER = LED MASK | SW1 MASK;
pPIO->PI0 OER = LED MASK;

pPI0->PI0 _SODR = LED MASK;

uninitialized variables
uninitialized variable

initialized variable

initialized variable

static initialized variable

static initialized variable
initialized string pointer variable
initialized structure variable

loop counter (stack variable)

idle loop blink counter (2x)
pointer to 32-bit word

create a "pointer to function" type
pointer to a function

variable to test library function
variable to test library function
variable to test library function
variable to test library function

PLL clock, default interrupts, etc.)

//
//

//
//
//
//

pointer to PMC data structure
enable Timer0® peripheral clock

pointer to PIO data structure

PIO Enable Register - allow PIO to control pins P® - P3 and pin 19
PIO Output Enable Register - sets pins PO - P3 to outputs

PIO Set Output Data Register - turns off the four LEDs

// Select PA19 (pushbutton) to be FIQ function (Peripheral B)

pPI0->PI0 BSR = SW1 MASK;

// Set up the AIC registers for Timer 0
volatile AT91PS_AIC pAIC = AT91C_BASE_AIC;
pAIC->AIC IDCR = (1<<AT91C ID TCO);

pAIC->AIC_SVR[AT91C ID TCO] =
(unsigned int)Timer@IrgHandler;
pAIC->AIC SMR[AT91C_ID TCO] =
(AT91C_AIC_SRCTYPE_INT_HIGH_ LEVEL | 0x4);
PAIC->AIC ICCR = (1<<AT91C ID TCO);
PAIC->AIC IDCR = (0<<AT91C ID TCO);

pAIC->AIC_IECR = (1<<AT91C_ID TCO);

// Set up the AIC registers for FIQ (pushbutton

pAIC->AIC IDCR = (1<<AT91C ID FIQ);

pAIC->AIC SMR[AT91C ID FIQ] =
(AT91C_AIC SRCTYPE INT POSITIVE EDGE);

pAIC->AIC ICCR = (1<<AT91C ID FIQ);

pAIC->AIC_IDCR = (0<<AT91C_ID FIQ);

pAIC->AIC_IECR = (1<<AT91C_ID FIQ);

// Three functions from the libraries
a = strlen(pText);

x5 = fabs(y5)

n = atol(DigitBuffer);

// pointer to AIC data structure

// Disable timer O interrupt in AIC Interrupt Disable Command Register
// Set the TCO IRQ handler address in AIC Source

// Vector Register[12]

// Set the interrupt source type and priority

// in AIC Source Mode Register[12]

// Clear the TCO interrupt in AIC Interrupt Clear Command Register

// Remove disable timer O interrupt in AIC Interrupt Disable Command Reg
// Enable the TCO interrupt in AIC Interrupt Enable Command Register
SW1)

// Disable FIQ interrupt in AIC Interrupt Disable Command Register

//
//

Set the interrupt source type in AIC Source

Mode Register[0]

Clear the FIQ interrupt in AIC Interrupt Clear Command Register

Remove disable FIQ interrupt in AIC Interrupt Disable Command Register

Enable the FIQ interrupt in AIC Interrupt Enable Command Register

strlen() returns length of a string
fabs() returns absolute value of a double
atol() converts string to a long

100

// Setup timer@ to generate a 10 msec periodic interrupt
TimerSetup();

// enable interrupts

enableIRQ();
enableFIQ();

// endless blink loop

while (1) {
if ((pPIO->PIO_ODSR & LED1) == LED1) // read previous state of LED1
pPIO->PI0 CODR = LED1; // turn LED1 (DS1) on
else
pPIO->PI0 SODR = LED1; // turn LED1 (DS1) off
for (j = 1000000; j '= 0; j--); // wait 1 second 1000000
IdleCount++; // count # of times through the idle loop
pPIO0->PI0 SODR = LED3; // turn LED3 (DS3) off
// uncomment following four lines to cause a data abort(3 blink code)
//if (IdleCount >= 10) { // let it blink 5 times then crash
// p = (int *)0x800000; // this address doesn't exist
// *p = 1234; // attempt to write data to invalid address
//}
// uncomment following four lines to cause a prefetch abort (two blinks)
//if (IdleCount >= 10) { // let it blink 5 times then crash
// pFnPtr = (FnPtr)0x800000; // this address doesn't exist
// PpFnPtr(); // attempt to call a function at a illegal address
//}
}
}
TIMERISR.C

The TimerOQ interrupt service routine is called by the AT91F_Irq_Handler in the crt.s assembly language
start-up module. The AT91F_Irq_Handler in the start-up routine supports “nested” IRQ interrupts and thus
calls a standard C function do most of the interrupt work.

The C language IRQ support routine below clears the interrupt by reading the TCO status register. It then
updates a global variable tickcount; which can be inspected by the debugger. Finally it toggles LED2 to
give a visual indication that the timer interrupt is functioning properly.

1

// timerisr.c

1

// Timer O Interrupt Service Routine
1

/I entered when Timer0 RC compare interrupt asserts (200 msec period)
/I blinks LED2 (pin PA2)

// Author: James P Lynch May 12, 2007

#include "AT91SAM7S256.h"
#include "board.h"

unsigned long tickcount = 0; // global variable counts interrupts

void TimerOlrgHandler (void) {

volatile AT91PS_TC pTC = AT91C_BASE_TCO; // pointer to timer channel 0 register structure
volatile AT91PS_PIO pPIO = AT91C_BASE_PIOA; // pointer to PIO register structure

unsigned int dummy; // temporary

dummy = pTC->TC_SR; // read TCO Status Register to clear interrupt
tickcount++; // increment the tick count

if ((pPIO->PIO_ODSR & LED2) == LED2)

pPIO->PIO_CODR = LED2; // turn LED2 (DS2) on
else

pPIO->PIO_SODR = LED2; // turn LED2 (DS2) off

101

TIMERSETUP.C

All the peripherals on the Atmel AT91SAM7S256 chip are complex; there is no substitute for a careful and
thorough study of the Atmel documentation. In this application, we are using the TimerQ counter/timer to
count out a 50 msec time interval. The timersetup.c routine shown below is extensively annotated to make
it clear how the clock frequencies and count-match values were determined to get the 50 msec repetition
rate. The timer counts up, comparing at each tick the current count with the value in the timer compare
register C. When the values match, the IRQ interrupt is asserted. Timer 0 has been set up to automatically

restart the timer beginning at zero for the next interval.

// 3k 3k >k >k >k 3k 3k K >k >k >k >k 3k K 5K ok >k >k 3k 3k K K ok >k >k 3k 3k K ok >k >k >k 3k K 5k ok >k >k 3k 3k K 5k >k >k >k 3k 3k K 3k >k >k >k 3k K K 5k >k >k 3k 3k K K ok >k >k >k K K ok ok >k >k Kk ok ko

// timersetup.c

//

// Purpose: Set up the 16-bit Timer/Counter

//

// We will use Timer Channel 0 to develop a 50 msec interrupt.
//

// The AT91SAM7S-EK board has a 18,432,000 hz crystal oscillator.
//

// MAINCK = 18432000 hz

// PLLCK = (MAINCK / DIV) * (MUL + 1) = 18432000/14 * (72 + 1)
// PLLCLK = 1316571 * 73 = 96109683 hz

//

// MCK = PLLCLK / 2 = 96109683 / 2 = 48054841 hz

//

// TIMER CLOCK5 = MCK / 1024 = 48054841 / 1024 = 46928 hz
//

// TIMER CLOCK5 Period = 1 / 46928 = 21.309239686 microseconds
//

// A little algebra: .050 sec = count * 21.3092396896*10**-6
// count = .050 / 21.3092396896*10**-6

// count = 2346

//

//

// Therefore: set Timer Channel 0 register RC to 9835

Vi turn on capture mode WAVE = 0

// enable the clock CLKEN =1

// select TIMER CLOCK5 TCCLKS = 100

// clock is NOT inverted CLKI = 0

// enable RC compare CPCTRG = 1

// enable RC compare interrupt CPCS =1

// disable all the other timer 0 interrupts

//

// Author: James P Lynch May 12, 2007

// 3k 3k >k >k >k 3k 3k K ok >k >k >k 3k K K ok >k >k 3k 3k K K ok >k >k 3k 3k K ok >k >k >k 3k K K ok >k >k >k 3k K 5k >k >k >k 3k 3k K ok >k >k >k 3k 3k 3K 3k >k >k >k 3k K K ok >k >k >k 3k K ok >k >k >k k koK ok ok

JRFFAAA AR AA AR AR R A A AR A A A A AR AAA A AR A A A AR K K

Header files
HA AR AR AKAKH AR AR KA A AR AR A KKK A KKK AR KKK

#include "AT91SAM7S256.h"
#include "board.h"

void TimerSetup(void) {

// TC Block Control Register TC_BCR (read/write)

// SYNC
// SYNC

0 (no effect) <===== take default

AT91PS_TCB pTCB =
pTCB->TCB BCR = 0; // SYNC trigger not used

1 (generate software trigger for all 3 timer channels simultaneously)

AT91C BASE _TCB; // create a pointer to TC Global Register structure

102

// TC Block Mode Register TC BMR (read/write)

//

T e [R R |
/7| TC2XC2S TCXC1S TCOXCOS
R e g e T |
// 31 5 4 3 2 “ml 0
//

// TCBOXCOS Select = 00 TCLKO (PA4)

Y = 01 none <===== we select this one

// = 10 TIOAl (PA15)

// = 11 TIOA2 (PA26)

//

// TCXC1S Select = 00 TCLK1 (PA28)

// = 01 none <===== we select this one

// = 10 TIOAO (PA15)

// = 11 TIOA2 (PA26)

//

// TC2XC2S Select = 00 TCLK2 (PA29)

// = 01 none <===== we select this one

// = 10 TIOAO (PAGO)

// = 11 TIOAl (PA26)

//

pTCB->TCB BMR = 0x15; // external clocks not used

// TC Channel Control Register TC CCR (read/write)

//

R e s L Rt e e !
/7 | SWTRG CLKDIS CLKENS |
e . [- |eea- - !
// 31 2 1 0

//

// CLKEN = 0 no effect

// CLKEN =1 enables the clock <===== we select this one

//

// CLKDIS = 0 no effect <===== take default

// CLKDIS = 1 disables the clock

//

// SWTRG = 0 no effect

// SWTRG = 1 software trigger aserted counter reset and clock starts <===== we select this one
//

AT91PS TC pTC = AT91C BASE TCO; // create a pointer to channel 0 Register structure
pTC->TC CCR = 0x5; // enable the clock and start it

TC Channel Mode Register TC CMR (read/write)

| LDRB LDRA |
R R RTCERRELERR |-oeseeneese |<oeemmee o |
31 19 18 17 16
TRt FECEERSet R ettd EECCREoEEt] FEPELEEELEeat |
|WAVE = 0 CPCTRG ABETRG ETRGEDG |
R Lo |<oeeeemmees Rl PO EEE T St |
15 14 13 11 10 9 8
Rt FELEPErre e B PR PRt |
| LDBDIS LDBSTOP BURST CLKI TCCLKS |
R |--eeeee |--eemne e R |-memme e |
7 6 5 4 3 2 0

CLOCK SELECTION

TCCLKS = 000 TIMER CLOCK1 (MCK/2
001 TIMER_CLOCK2 (MCK/8
010 TIMER CLOCK3 (MCK/32

24027420 hz)
6006855 hz)
1501713 hz)

011 TIMER CLOCK4 (MCK/128 375428 hz)
100 TIMER CLOCKS (MCK/1024 46928 hz) <===== we select this one
101 XCO
101 XC1
101 XC2
CLOCK INVERT
CLKI =0 counter incremented on rising clock edge <===== we select this one
CLKI =1 counter incremented on falling clock edge
BURST SIGNAL SELECTION

BURST = 00 clock is not gated by any external system <===== take default
01 XC0 is anded with the clock
10 XC1l is anded with the clock
11 XC2 is anded with the clock

COUNTER CLOCK STOPPED WITH RB LOADING

LDBSTOP = 0 counter clock is not stopped when RB loading occurs <===== take default
=1 counter clock is stopped when RB loading occur
COUNTER CLOCK DISABLE WITH RB LOADING

LDBDIS = 0 counter clock is not disabled when RB loading occurs <===== take default
=1 counter clock is disabled when RB loading occurs

103

// EXTERNAL TRIGGER EDGE SELECTION

// ETRGEDG = 00 (none) <===== take default

// 01 (rising edge)

// 10 (falling edge)

// 11 (each edge)

//

// TIOA OR TIOB EXTERNAL TRIGGER SELECTION

// ABETRG =0 (TIOA is used) <===== take default

// 1 (TIOB is used)

//

// RC COMPARE TRIGGER ENABLE

// CPCTRG = 0 (RC Compare has no effect on the counter and its clock)

// 1 (RC Compare resets the counter and starts the clock) <===== we select this one

//

// WAVE

// WAVE = 0 Capture Mode is enabled <===== we select this one

// 1 Waveform Mode is enabled

//

// RA LOADING SELECTION

// LDRA = 00 none) <===== take default

// 01 (rising edge of TIOA)

// 10 (falling edge of TIOA)

// 11 (each edge of TIOA)

//

// RB LOADING SELECTION

// LDRB = 00 (none) <===== take default

// 01 (rising edge of TIOA)

// 10 (falling edge of TIOA)

// 11 (each edge of TIOA)

//

pTC->TC_CMR = 0x4004; // TCCLKS = 1 (TIMER CLOCKS5)
// CPCTRG = 1 (RC Compare resets the counter and restarts the clock)
// WAVE = 0 (Capture mode enabled)

// TC Register C TC _RC (read/write) Compare Register 16-bits

//

A P e T EPTPEPRLRLPERET: I SCGELEETILPLPETPEREPEPPLE |

/7| not used RC |

A R i PP LT EP T L E P PR LR L PR EPEPET LS |

// 31 16 15 0

//

// Timer Calculation: What count gives 50 msec time-out?

//

// TIMER CLOCK5 = MCK / 1024 = 48054841 / 1024 = 46928 hz

//

// TIMER _CLOCK5 Period = 1 / 46928 = 21.309239686 microseconds

//

// A little algebra: .050 sec = count * 21.3092396896*10**-6

// count = .050 / 21.3092396896*10**-6

// count = 2346

//

pTC->TC_RC = 2346;

// TC Interrupt Enable Register TC_IER (write-only)

//

//

/AN EEEREPER R |--oe-- |-ece-e |--osees |-2ceee- |-aoesens |-eceeen |--meee-e |-onsene |

/7| ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

/AN PEERPer e |---e-e- |--e-e |--mese- EERRPES |---eene REPEPRE |---eene EEPRPR |

// 31 8 7 6 5 4 3 2 1 0

//

// COVFS =0 no effect <===== take default

// 1 enable counter overflow interrupt

//

// LOVRS = 0 no effect <===== take default

Vi 1 enable load overrun interrupt

//

// CPAS =0 no effect <===== take default

// 1 enable RA compare interrupt

//

// CPBS = 0 no effect <===== take default

// 1 enable RB compare interrupt

//

// CPCS =0 no effect

// 1 enable RC compare interrupt <===== we select this one

//

// LDRAS =0 no effect <===== take default

// 1 enable RA load interrupt

//

// LDRBS =0 no effect <===== take default

// 1 enable RB load interrupt

//

// ETRGS =0 no effect <===== take default

// 1 enable External Trigger interrupt

//

pTC->TC_IER = 0x10; // enable RC compare interrupt

104

// TC Interrupt Disable Register TC IDR (write-only)

//

//

/AN PERTETERERES |--oe-- |--ce-e |--oe-e- |--ceeo- REECRRE |- ceseen |--eeee-e |-onese |
/7| ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
/AN PTCREPERREes |---e-e- |--oe e |-omese- EERRPEY |---eene EEPEPRE |--neese |--esene |
// 31 8 7 6 5 4 3 2 1 0
//

// COVFS =0 no effect

// 1 disable counter overflow interrupt <===== we select this one
//

// LOVRS = 0 no effect

// 1 disable load overrun interrupt <===== we select this one

//

// CPAS =0 no effect

// 1 disable RA compare interrupt <===== we select this one

//

// CPBS =0 no effect

// 1 disable RB compare interrupt <===== we select this one

//

// CPCS =0 no effect <===== take default

// 1 disable RC compare interrupt

//

// LDRAS =0 no effect

// 1 disable RA load interrupt <===== we select this one

//

// LDRBS = 0 no effect

// 1 disable RB load interrupt <===== we select this one

//

// ETRGS =0 no effect

// 1 disable External Trigger interrupt <===== we select this one
//

pTC->TC_IDR = OXEF; // disable all except RC compare interrupt

DEMO_AT91SAM7_BLINK_FLASH.CMD

The Linker command script instructs the linker where to place the various parts of your program into
FLASH and RAM.

The layout of memory and the subsequent specification of the TOS (top of stack) are critical. In the
snippet below we specify 256K of FLASH starting at address 0x00000000 and 64K of RAM starting at
address 0x00200000. Given the RAM starting at 0x00200000 and being 65536 bytes in length, the Top of
Stack is placed 4 bytes from the end of RAM at 0x0020FFFC. The specification of the “top of stack”
(_stack_end = O0x20FFFC) is used by the start-up routine, crt.s, to create the stacks for the various
interrupt modes. The statements excerpted below are the ones that you would modify when moving to a
different memory layout.

I* specify the AT91SAM7S256S */

MEMORY
flash : ORIGIN =0, LENGTH = 256K /* FLASH EPROM */
ram : ORIGIN = 0x00200000, LENGTH = 64K /* static RAM area */
}

I* define a global symbol _stack_end (see analysis in annotation above) */
_stack_end = 0x20FFFC;

It's a good idea to remind ourselves that the executable code (.text section) goes into FLASH memory and
therefore the FLASH must be programmed before attempting execution. | can’t tell you how many times
the author has built an application and forgotten to program the FLASH with the new code before starting
the debugger.

105

demo_at91sam7_blink_flash.cmd LINKER SCRIPT
The Linker Script defines how the code and data emitted by the GNU C compiler and assembler are
to be loaded into memory (code goes into FLASH, variables go into RAM).

Any symbols defined in the Linker Script are automatically global and available to the rest of the
program.

To force the linker to use this LINKER SCRIPT, just add the -T demo_at91sam7_blink_flash.cmd
directive to the linker flags in the makefile. For example,

LFLAGS = -Map main.map -nostartfiles -T demo_at91sam7_blink_flash.cmd
The order that the object files are listed in the makefile determines what .text section is
placed first.
For example: $(LD) $(LFLAGS) -0 main.out crt.o main.o lowlevelinit.o

crt.o is first in the list of objects, so it will be placed at address 0x00000000

The top of the stack (_stack_end) is (last_byte_of ram +1) - 4
Therefore: _stack_end = (0x00020FFFF + 1) - 4 = 0x00021000 -4 = 0x0020FFFC

Note that this symbol (_stack_end) is automatically GLOBAL and will be used by the crt.s
startup assembler routine to specify all stacks for the various ARM modes

MEMORY MAP
|
|0x00210000

|0xX0020FFFC <---------- _stack_end
UDF Stack 16 bytes |

|
|0x0020FFEC

|
|
|
|
|
|
| |
| ABT Stack 16 bytes |
|
| |0x0020FFDC
|
|
|
|
|

|
FIQ Stack 128 bytes |
|
|

RAM | |0X0020FF5C

|
IRQ Stack 128 bytes |
|
|

|0x0020FEDC
|
SVC Stack 16 bytes |

|
|0x0020FECC

|
stack area for |
user program |

|

free ram |

| uninitialized variables |

s 2 20 . L |0x00200444 <---------- _bss_start, _edata
| .data |

| initialized variables |

|

. I
e— |0x00200000

106

|
| free flash
|
|

Copy of .data area

|0x00040000 “f

|
|
| */
|

............................ |0x00001380 <---------- bss_start, _edata w

| i/
I g/

(initialized variables) | &/

FLASH

|0x00000F3C <----------- _etext &

|

C code | &/
|
|

Startup Code (crt.s)
(assembler)

|0x0000015C & -------—-- main() “ff

|
I
| g
|

Interrupt Vector Table
32 bytes

|0x00000020 */

|
|
| g/
I

Author: James P. Lynch

0x00000000 _vec_reset &/

May 12, 2007 */

/* identify the Entry Point (_vec_reset is defined in file crt.s) */
ENTRY(_vec_reset)

/* specify the AT91SAM7S256 memory areas */
MEMORY

flash : ORIGIN = 0, LENGTH = 256K
ram : ORIGIN = 0x00200000, LENGTH = 64K

/* FLASH EPROM]
/* static RAM area */

/* define a global symbol _stack_end (see analysis in annotation above) */
_stack_end = 0x20FFFC;

/* now define the output sections */

SECTIONS
{
.=0;
text :
{
*(.text)
*(.rodata)
(.rodata)
*(.glue_7)
*(.glue_7t)
_etext = ;
} >flash
.data :
{
_data = ;
*(.data)
edata = ;

}

} >ram AT >flash

.bss :

{
_bss_start = .;
*(.bss)

} >ram

. = ALIGN(4);
_bss_end =.;

_end = ;

/* set location counter to address zero */
/* collect all sections that should go into FLASH after startup */

/* all .text sections (code) */

/* all .rodata sections (constants, strings, etc.) */

/* all .rodata* sections (constants, strings, etc.) */

/* all .glue_7 sections (no idea what these are) */

/* all .glue_7t sections (no idea what these are) */

/* define a global symbol _etext just after the last code byte */
/* put all the above into FLASH */

/* collect all initialized .data sections that go into RAM */

/* create a global symbol marking the start of the .data section */

/* all .data sections */

/* define a global symbol marking the end of the .data section */

/* put all the above into RAM (but load the LMA initializer copy into FLASH) */
/* collect all uninitialized .bss sections that go into RAM */

/* define a global symbol marking the start of the .bss section */

/* all .bss sections */

/* put all the above in RAM (it will be cleared in the startup code */

/* advance location counter to the next 32-bit boundary */
/* define a global symbol marking the end of the .bss section */

/* define a global symbol marking the end of application RAM */

107

MAKEFILE

The makefile was kept intentionally simple so that a beginner need only read the first chapter of the “GNU
Make” document by Richard Stallman and Roland McGrath to understand everything in the makefile.

The makefile is composed of two parts; the part that assembles, compiles and links your program to
create a .bin file that you can load into flash, and a special “program” target that is used to independently
program the FLASH on chip memory using the OpenOCD JTAG utility.

The essential component of a Makefile is the “rule”. The rule is composed of a target file and dependent
files on a single line. If any of the dependent files are newer than the target file, then the commands
directly below the rule are executed. The one or more commands MUST be indented by a TAB character
(this little nuance beleaguers many novices). For example:

main.o: main.c AT91SAM7S256.h board.h¢——————[Thisisarule |
arm-elf-gcc -1/ -¢c -fno-common -O0 —g main.c «—This is a command |

This has to be indented
with a TAB character!

In the example rule above, if you edit either the main.c source file or the AT91SAM7S256.h or the board.h
include files, they will then be “newer” than the main.o target file. Therefore, the commands below must be
executed. The single compile command shown updates the target object file so that the target and the
dependent files now have the same creation date.

The Make utility checks the rules from top to bottom and this has the effect of only compiling those source
files that are “out of date”.

If you click the Eclipse “Project - Clean” pull-down menu option, the “clean” target below is performed first
followed by the “all” target. This has the effect of recompiling everything since all the objects and binary
files are erased first.

If you click the Eclipse “Project — Build Project” pull-down menu option, the “all” target is performed and
only those source files that are out-of-date are recompiled. In a large application with many source files,
this is a real convenience and time saver.

Note that the “clean” and “all” targets are NOT files. In this case, Make will only process them unless you
specifically direct it to do so (make clean all or make all). This also explains why in scanning from top to
bottom during a “make all’, make stops when it encounters the “program” target (used to program the
FLASH). This is explained in more detail in a section to follow.

The ARM7 architecture supports two instruction sets, ARM and THUMB. The ARM instruction set is
composed of 32-bit instructions and is very fast (most instructions execute in a single clock cycle). The
THUMB instruction set is composed of 16-bit instructions that require less memory space but take longer
to execute. To keep this tutorial simple, we've set up the project exclusively for the ARM 32-bit instruction
set. If you would like to see a good example of mixing ARM and THUMB instruction sets in an ARM7
application, take a look at Richard Barry’s FreeRTOS kernel at www.freertos.com.

This make file is composed of two parts. The first part (identified as the targets “clean:” and “all:”)
assembles, compiles and links your program. It creates a binary file suitable for programming into flash
using the OpenOCD flash programming facility or the Atmel SAM-BA flash programming utility. It also
produces a map file and a dump file that you can inspect to locate addresses of variables, storage limits
and so forth.

The second part (identified as the target “program:”) does a batch execution of the OpenOCD JTAG
utility to program the binary file into onchip flash. Note that the OpenOCD script file for programming the
flash (script.ocd) is part of the project itself. The programming part of the makefile executes just once and
OpenOCD is terminated when the flashing is complete. Obviously, the makefile assumes that OpenOCD
is not running when it starts the programming operation.

108

If you are using the SAM-ICE debugger and plan to use the SAM-BA flash programming utility, then the
flash programming part of the makefile shown below can be removed if desired.

Makefile for Atmel AT91SAM7S256 - flash execution

X Ok %

James P Lynch May 12, 2007

HHHHHH

NAME = demo_at91sam7_blink_flash

variables

ccC = arm-elf-gcc

LD = arm-elf-1d -v

AR = arm-elf-ar

AS = arm-elf-as

CcP = arm-elf-objcopy

oD = arm-elf-objdump

CFLAGS = -1./ -c -fno-common -00 -g

AFLAGS = -ahls -mapcs-32 -0 crt.o

LFLAGS = -Map main.map -Tdemo_at91sam7_blink_flash.cmd
CPFLAGS = --output-target=binary

ODFLAGS = -X —--syms

OBJECTS = crt.o main.o timerisr.o timersetup.o isrsupport.o lowlevelinit.o blinker.o

make target called by Eclipse (Project -> Clean ...)
clean:
-rm $(OBJECTS) crt.Ist main.lIst main.out main.bin main.hex main.map main.dmp

#make target called by Eclipse (Project -> Build Project)
all: main.out

@ echo *...copying"

$(CP) $(CPFLAGS) main.out main.bin

$(0D) $(ODFLAGS) main.out > main.dmp

main.out: $(OBJECTS) demo_at9lsam7_blink_flash.cmd
@ echo *.._linking"
$(LD) $(LFLAGS) -0 main.out $(OBJECTS) libc.a libm.a libgcc.a

crt.o: crt.s
@ echo ".assembling"
$(AS) $(AFLAGS) crt.s > crt.lIst

main.o: main.c
@ echo ".compiling”
$(CC) $(CFLAGS) main.c

timerisr.o: timerisr.c
@ echo "_compiling"
$(CC) $(CFLAGS) timerisr.c

lowlevelinit.o: lowlevelinit.c
@ echo *_.compiling"”
$(CC) $(CFLAGS) lowlevelinit.c

timersetup.o: timersetup.c
@ echo *.compiling"
$(CC) $(CFLAGS) timersetup.c

isrsupport.o: isrsupport.c
@ echo *_.compiling"”
$(CC) $(CFLAGS) isrsupport.c

blinker.o: blinker.c
@ echo ".compiling”
$(CC) $(CFLAGS) blinker.c

109

FLASH PROGRAMMING
Alternate make target for flash programming only
You must create a special Eclipse make target (program) to run this part of the makefile
(Project -> Create Make Target... then set the Target Name and Make Target to “program'™)
the flash commands. When flash programming completes, OpenOCD terminates.
Note that the script file of flash commands (script.ocd) is part of the project

Programmers: Martin Thomas, Joseph M Dupre, James P Lynch

#
#
#
#
#
#
#
#
OpenOCD is run in "batch" mode with a special configuration file and a script file containing
#
#
#
#
#
#
specify output filename here (must be *._bin file)

TARGET = main.bin

specify the directory where openocd executable resides (openocd-ftd2xx.exe or openocd-pp.exe)
OPENOCD_DIR = "c:\Program Files\openocd-2007rel41\bin*

specify OpenOCD executable (pp is for the wiggler, ftd2xx is for the USB debuggers)
#OPENOCD = $(OPENOCD_DIR)openocd-pp.exe
OPENOCD = $(OPENOCD_DIR)openocd-ftd2xx.exe

specify OpenOCD configuration file (pick the one for your device)
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-wiggler-flash-program.cfg
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-jtagkey-flash-program.cfg
OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-armusbocd-flash-program.cfg

program the AT91SAM7S256 internal flash memory

program: $(TARGET)
@echo "Flash Programming with OpenOCD..." # display a message on the console
$(OPENOCD) -f $(OPENOCD_CFG) # program the onchip FLASH here
@echo "Flash Programming Finished." # display a message on the console

OpenOCD Programming Script File

OpenOCD normally runs as a “daemon” processing debugger commands when required. To program the
onchip FLASH, OpenOCD is run as a one-time-only execution with a list of programming commands read
from a script file named script.ocd. This file is part of the project. Note that it contains register setups to
reset the processor and establish the PLL clocks to full speed. This is necessary to program the FLASH at
full speed. Review the source code for lowlevelinit.c to understand how the register settings were derived.

OpenOCD Target Script for Atmel AT91SAM7S256

#

Programmer: James P Lynch

#

wait_halt # halt the processor and wait

armv4_5 core_state arm # select the core state

mww OxFFFFFFE0 0x00320100 # set flash wait state (AT91C_MC_FMR)
mw OxFFFFFd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)
mww OxFFFFFc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
wait 100 # wait 100 ms

mww OxFFFffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)

wait 200 # wait 200 ms

mww OxFFFFFc30 Ox7 # set master clock to PLL (AT91C_PMC_MCKR)
wait 100 # wait 100 ms

mww OxFFFFFdO8 0xa5000401 # enable user reset AT91C_RSTC_RMR

flash write O main.bin 0x0 # program the onchip flash

reset # reset processor

shutdown # stop OpenOCD

110

Adjusting the Optimization Level

It's a fact of life in embedded programming that debuggers hate optimized code. When you attempt to
single-step optimized code, the debuggers will do strange things and appear not to work. To get around
this problem, change the compiler optimization level to ZERO. This is already done in the makefile above;
note that we modified the CFLAGS macro substitution as follows:

CFLAGS = -l./ -c -fno-common -0O0 —g Where the switch: -O0 means no optimization.

When debugging is completed, you can increase the optimization level to —O3 which will result in more
compact and efficient code.

Including Libraries

A library is a collection of already-compiled functions. The GNU linker will search the libraries you specify
for any functions you have invoked in the application and only include those functions in the final link (it
doesn’t include the entire library — just the functions you need). Specifying the libraries and arranging for
successful searching in the linker command is a constant source of trouble for the novice programmer as
the GNU linker manual can be, well, a little confusing on this subject.

There are three libraries included in YAGARTO that you should be aware of.

libgcc.a ARM-specific library supporting floating point and extended arithmetic (must be included)
libc.a Newlib C Library — has functions like strlen(), isdigit() etc. (optional)
libm.a Newlib Math Library — has functions like exp(), sin() etc. (optional)

Adding Libraries to the Link

There is a foolproof way of dealing with libraries: import the libraries directly into your project and include
the libraries on the linker command line after specification of all the object files. For example, the libraries
libc.a, libm.a and libgcc.a are imported into the project folder and are specified in the linker command
line as follows:

$(LD) $(LFLAGS) -o main.out $(OBJECTS) libc.a libm.a libgcc.a

Expanding the macro substitutions above and splitting the linker command line into two lines for the sake
of clarity, the linker command actually looks like this:

arm-elf-ld -v -Map main.map -Tdemo_at91sam7_blink_flash.cmd -0 main.out crt.o main.o timerisr.o
timersetup.o isrsupport.o lowlevelinit.o blinker.o libc.a libm.a libgcc.a

. J
Y

Include your libraries after
specification of all the object files!

Note: libgcc.a should always be last

111

The libgcc.a must be included; it supports ARM extended precision arithmetic and floating point
operations (remember that the ARM7 doesn’t have hardware floating point) and without it any floating
point operations will cause an “undefined reference” error. The example project includes the libgcc.a
library and it should always be appended to the very end of the linker command line, as shown earlier.

The reason for placing the libraries last on the linker command line is that the GNU linker searches from
left to right. Any unresolved function calls after searching all the object files you have specified will resort
to searching the remaining libraries on the right. The library may not be searched at all for any unresolved
references if the library is specified before the object files (or in the middle of them).

For instance, the function atol() in the libc.a library will do some extended precision arithmetic and will
therefore need some of the support routines in the libgcc.a library. Since the extended precision arithmetic
support library libgcc.a is on the far right, the linker will successfully resolve the needed support routines.
If libgcc.a was specified before (to the left of) libc.a, then an “undefined reference” error will result.

You might be tempted to say “Why should | have a copy of the library in every project and waste disk
space?” The idea is to prevent the GNU Linker from hunting for your library. Having the library right in your
project folder and specified last on the linker command line is fool-proof. Anyway, disk space on modern
PCs is huge — relax!

Where are the Libraries

Michael Fisher has built ARM-compatible versions of the standard GNU libraries as part of YAGARTO.
The libraries used in the sample project may be found here:

Library Path to library location

libgcc.a C:\Program Files\yagarto\arm-elf\lib\

libc.a C:\Program Files\yagarto\lib\gcc\arm-elf\4.1.1\
libm.a

Just like a source or include file, you import the libraries into the project. Click on “File — Import — File
System’” followed by “Next”. In the example below, we are importing the libc.a and libm.a libraries. The
sample project already includes the three aforementioned libraries and you have thus already imported
them. The screenshot below is included just to remind you that libraries are “imported” also.

& Import @

File system P

Import resources from the local file system,

-

From directory: | C:\Program Files\yagartalarm-elfyib A | [Browse,.,]

[mE= lib O B atoe ~
[= iga0z10.specs
Elioc .« |

O Ellibg.a

[= libberty.a

=l libm.a

[= librosys.a

(£

[Filter Types‘..] [Select All] [Deselect Al]

Into folder: |demn_atglsam?_hllnk_flash | I Browse. ..

Cptions
|:| Overwrite existing resources without warning
(O Create complete folder struckure

(%) Create selected Falders only

@

112

Display the Modules in a Library

If you are attempting to sort out an “unresolved reference” problem concerning the libraries, here is a
convenient way to look at the object module names in a library.

Open a command window and then navigate to the folder where the library resides (see the table above).
As an example, the following command will navigate to the folder where libgcc.a resides.

>cd c:\Program Files\yagarto\lib\gcc\arm-elf\4.1.1\
Use the GNU utility AR to display the object modules contained in the libgcc.a library. In the example
below, we run the AR utility and send it's output to the temporary file libgcc.txt in our project workspace (if

this file doesn’t exist, it will create it). Here’s the command to do this.

>ar -t libgcc.a >> c:\workspace\demo_at91sam7_blink_flash\libgcc.txt

ommand Prompt

Microsoft Windows HP [Uersion 5.1.2600@1
CC» Copyright 1985-28081 Microsoft Corp.

C:sDocuments and SettingssJimXcd

C:~>cd c:sProgram Files“wpagarto“libsgccarm—elfs4.1._1%

C:“Program Files“wagarto-libsgocsarm—elfs4.1.1>ar —t libgcc.a >» c:“workspacesde
mo_at?lsam?_bhlink_f lash~libgcc.txt

C:“Program Files“pagarto-libgccarm—elf~4.1.12>

Now from within your Eclipse project, you can use “File — Open File ...” to inspect the temporary text file
containing the object module names from the library file libgcc.a. This file is temporary and is not part of
your project. You can call up the “right-click” menu to delete it when finished.

El main.c | @ makefile main.map I 0 =8

_udiwv=ii.o A
_diwzii.o

_umod=i3.o

_modsid.o

_dvmd tls.0

_bb_init func.o
_call wvia rZ.o
_interwork call wia rX.o
_lshrdi3.o

_ashrdi3.o

_ashldid.o

_hegdfi.o

_&addsubdfi.o
_rwuldivdfsi.o

_CcmpdfZ.o

_unorddfz.o

_fixdfsi.o

F A araaan ~AFEAE -

| £

113

The Bad News about Libraries

Dealing with libraries in an embedded software development environment is fraught with difficulties that
test one’s patience. Not all the library modules you want to use will work.

For example, many programmers love the printf() routine for its convenience and formatting capabilities.
Keep in mind that these GNU library routines were written for PC-based LINUX and Windows systems
where memory storage is not an issue. Also, we would typically print to the Standard Output (the screen).

In an embedded environment, there is no Standard Output or screen to write to. So where does this
printf() output go? Do we output to the serial port and, if so, which one? Now we need a putc() and getc()
routine and interrupt support. You will also be shocked to see the compiled size of a routine like printf(), it
may be over 30 Kbytes due to the sophisticated formatting capabilities included.

If you select a library module and use it in your application and it builds with an “undefined reference” link
error, chances are that some needed software elements are missing. You can try looking for them in
some of the other libraries included in YAGARTO but in many of these cases the search will be frustrating.

The truth is that NewLib (libc.a and libm.a) tend to be too big and incomplete for an embedded
environment. It's better to find a small library intended for embedded work and use bits and pieces of that
as needed. One good example is Pascal Stang's ARMLIB.

http://hubbard.engr.scu.edu/embedded/arm/armlib/index.html

SourceForge is another good place to look for embedded libraries for the ARM architecture. The SourceForge
web site is here:

http://sourceforge.net/

To be fair, the more expensive professional tool chains usually have special copies of the libraries designed
and compiled specifically for the embedded environment.

114

http://hubbard.engr.scu.edu/embedded/arm/armlib/index.html
http://sourceforge.net/

Building the FLASH Application

The “Project” pull-down menu has several options to build the application. “Clean” will erase all object, list,
map, and output and dump files, thus forcing Eclipse to compile, assemble and link every file. This may be
time-consuming in a large project with many files. “Build All” will only compile and link those files that are
“out-of-date”.

The usual procedure is to “Build All” and this may be selected from the “Projects” pull-down menu, as
shown below.

& C/C++ - makefile - Eclipse SDK
File Edit Refactor MNavigate Search QEE=EES Fun Window Help

= = -
BE cicv+pr.. 32 -7 = B[

[

& Bild &l Chrl+E

= = i
e = Build Project
= :L:E- demo_at91sam?_blink_Fflash Build “aorking Set »

+--43» Binaries Clean. ..
+--(=D Includes

= Build automatically
+| IE] ATILSAMT 256 b
+--[h] Board.h
+ [] crk.s
+-- [] lowleselinit, o .
5 @ — Properties

= . - Va

Even more convenient is the “Build All” button in the Eclipse toolbar. Im

The Console view at the bottom of the Eclipse screen will show the progress of the build operation.

Prablems m Properties @ G|t cg-=0
_-Build [dema_at91sam?_blink_flash]
.assenbling ~

arm-elf-as -ahls -wapos-32 -0 crt.o crt.s > crt.lst

.compiling

arm-elf-gee -I./ - -frno-common -00 -g main.c

.compiling

arm-elf-gee -I./ —-o —fno-common -00 -g lowlevelinit.c

L linking

arm-elf-1d -v -Map main.wap -Tdemo_at9lsam? _blink flash.cwd -0 wain.out crt.o wain.o
lowlevelinit.o

GHU 1d wersion 2.16.1

.. ZOpVing
arm-elf-objcopy —--output-target=binary main.out mwain.bin
arm-elf-ohjdump -x —--syws wain.out > main.dmp

W

Notice that the “objcopy” utility has created a “main.bin” file; this is required by the OpenOCD flash
programming facility. The makefile also creates a “main.out” file that has symbol information; this is used
in debugging and also is “loaded” into RAM when you create a RAM-based executable.

If there are compile or link errors, they will be visible in the Console view and the “Problems” tab will show

more detail about any problems. You can click on the individual “problems” and jump directly to the
offending source line.

115

Using OpenOCD to Program the FLASH memory

If you have purchased the Olimex ARM-USB-OCD or the Amontec JTAGKey JTAG hardware interface,
you can use the OpenOCD uitility to program the flash.

OpenOCD is a utility that converts Eclipse/GDB remote serial protocol to the JTAG protocol supported by
the AT91SAMY on chip debugging unit. In this role, it acts as a “daemon” which is a program that operates
in the background, waiting for you to supply a command. We will see plenty of examples of that when we
run the debugger shortly.

The other role for OpenOCD is to program the on chip FLASH using the JTAG. In this role, OpenOCD is
run in a “batch” mode where the program is executed with a special configuration file and a “script” file
with the flash programming commands.

The OpenOCD configuration files to support flash programming on an Atmel AT91SAM7S are as follows.
If you are interested in understanding every nuance of these files, refer to the OpenOCD Wiki here:

http://openfacts.berlios.de/index-en.phtmli?titte=Open On-Chip Debugger

It's worth mentioning that the non-flash-programming versions of these configuration files are simply the
part that's above the FLASH programming commands. When FLASH programming is completed,
OpenOCD is automatically terminated.

OpenOCD Configuration File for Wiggler (FLASH programming version)

#define our ports
telnet_port 4444
gdb_port 3333

#commands specific to the Wiggler
interface parport

parport_port 0x378

parport_cable wiggler

jtag_speed 0

jtag_nsrst_delay 200
jtag_ntrst_delay 200

#reset_config <signals> [combination] [trst_type] [srst_typel
reset_config srst_only srst_pulls_trst

#jtag_device <IR length> <IR capture> <IR mask> <IDCODE instruction>
jtag_device 4 0x1 oxf Oxe

#daemon_startup <'attach'|'reset'>
daemon_startup reset

#target <type> <endianess> <reset_mode> <jtag#> [variant]
target arm7tdmi little run_and_init 0 arm7tdmi_r4

#run_and_halt_time <target#> <time_in_ms>
run_and_halt_time 0 30

commands below are specific to AT91lsam7 Flash Programming
#target_script specifies the flash programming script file
target_script 0 reset script.ocd

#working_area <target#> <address> <size> <'backup'|'nobackup'>
working_area 0 0x40000000 0x4000 nobackup

#flash bank at9lsam7 0 0 0 0 <target#>
flash bank at91sam7 0 6 0 0 0

116

http://openfacts.berlios.de/index-en.phtml?title=Open_On-Chip_Debugger

OpenOCD Configuration File for JTAGKey (FLASH programming version)

#define our ports
telnet_port 4444
gdb_port 3333

#commands specific to the Amontec JTAGKey
interface ft2232

ft2232_device_desc "Amontec JTAGkey A"
ft2232_layout jtagkey

ft2232_vid_pid 0x0403 0xcff8

jtag_speed 2

jtag_nsrst_delay 200

jtag_ntrst_delay 200

#reset_config <signals> [combination] [trst_type] [srst_typel
reset_config srst_only srst_pulls_trst

#jtag_device <IR length> <IR capture> <IR mask> <IDCODE instruction>
jtag_device 4 0x1 oxf Oxe

#daemon_startup <'attach'|'reset'>
daemon_startup reset

#target <type> <endianess> <reset_mode> <jtag#> [variant]
target arm7tdmi little run_and_init 0 arm7tdmi_r4

#run_and_halt_time <target#> <time_in_ms>
run_and_halt_time 0 30

commands below are specific to AT91lsam7 Flash Programming
#target_script specifies the flash programming script file
target_script 0 reset script.ocd

#working_area <target#> <address> <size> <'backup'|'nobackup'>
working_area 0 0x40000000 0x4000 nobackup

#flash bank at9lsam7 0 0 0 0 <target#>
flash bank at91sam7 0 6 6 0 0

OpenOCD Configuration File for ARMUSBOCD (FLASH programming version)

#define our ports
telnet_port 4444
gdb_port 3333

#commands specific to the Olimex ARM-USB-0CD
interface ft2232

ft2232_device_desc "Olimex OpenOCD JTAG A"
ft2232_layout "olimex-jtag"

ft2232_vid_pid 0x15BA 0x0003

jtag_speed 2

jtag_nsrst_delay 200

jtag_ntrst_delay 200

#reset_config <signals> [combination] [trst_type] [srst_typel
reset_config srst_only srst_pulls_trst

#jtag_device <IR length> <IR capture> <IR mask> <IDCODE instruction>
jtag_device 4 0x1 oxf Oxe

#daemon_startup <'attach'|'reset'>
daemon_startup reset

#target <type> <endianess> <reset_mode> <jtag#> [variant]
target arm7tdmi little run_and_init 0 arm7tdmi_r4

#run_and_halt_time <target#> <time_in_ms>
run_and_halt_time 0 30

commands below are specific to AT91lsam7 Flash Programming
#target_script specifies the flash programming script file
target_script 0 reset script.ocd

#working_area <target#> <address> <size> <'backup'|'nobackup'>
working_area 0 0x40000000 0x4000 nobackup

#flash bank at9lsam7 0 0 0 0 <target#>
flash bank at91sam7 0 6 6 0 0

Note that all three of the configuration files (for FLASH programming) have the following command line:

target_script 0 reset script.ocd

This is directing OpenOCD to execute the script file “script.ocd” which has the flash programming
commands. The file “script.ocd” is normally included in your project and typically has the following
contents as shown below.

SCRIPT.OCD (normal version)

OpenOCD Target Script for Atmel AT91SAM7S256

#

Programmer: James P Lynch

#

wait_halt # halt the processor and wait

armv4_5 core_state arm # select the core state

mww Oxffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
mww Oxfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)

mww Oxfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
wait 100 # wait 100 ms

mww Oxfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)

wait 200 # wait 200 ms

mww Oxfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
wait 100 # wait 100 ms

mww Oxfffffdo8 0xa5000401 # enable user reset AT91C_RSTC_RMR
flash write 0 main.bin 0x0 # program the onchip flash

reset # reset processor

shutdown # stop OpenOCD

If the flash programming doesn’t work, it may well be that you have accidentally set the “lock” bits on the
bottom two pages of flash. You can easily do this by powering up the board with the TST jumper installed;
this installs a USB support program in your FLASH memory to enable the board to communicate with the
SAM-BA flash programming utility.

In this case, you could add two additional commands to clear the lock bits. Be forewarned that the lock
bits can only be set or cleared 100 times, so don'’t leave these two commands in the script file.

118

SCRIPT.OCD (to remove lock bits)

OpenOCD Target Script for Atmel AT91SAM7S256

#

Programmer: James P Lynch

#

wait_halt # halt the processor and wait

armv4_5 core_state arm # select the core state

mww Oxffffff64 0x5a000004 # clear lock bit © ’:g‘i‘n,f“e;ﬁe e e
mww Oxffffff64 0x52002004 # clear lock bit 1 bits are set.
mww Oxffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)

mww Oxfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)

mww Oxfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
wait 100 # wait 100 ms

mww Oxfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)

wait 200 # wait 200 ms

mww Oxfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
wait 100 # wait 100 ms

mww Oxfffffdo8 0xa5000401 # enable user reset AT91C_RSTC_RMR

flash write 0 main.bin 0x0 # program the onchip flash

reset # reset processor

shutdown # stop OpenOCD

Martin Thomas, guru of the WinARM tool chain, suggested that the flash programming using OpenOCD
could be integrated into the makefile as an additional target.

Let’s review again the part of the makefile that programs the flash.

FLASH PROGRAMMING
Alternate make target for flash programming only

You must create a special Eclipse make target (program) to run this part of the makefile
(Project -> Create Make Target... then set the Target Name and Make Target to ‘‘program')

OpenOCD is run in "batch” mode with a special configuration file and a script file containing
the flash commands. When flash programming completes, OpenOCD terminates.

Note that the script file of flash commands (script.ocd) is part of the project

Programmers: Martin Thomas, Joseph M Dupre, James P Lynch

FHHFEHHFHEHEFHFFEEHRFFS

specify output Filename here (must be *.bin Ffile)
TARGET = main.bin

specify the directory where openocd executable resides (openocd-ftd2xx.exe or openocd-pp.exe)
OPENOCD_DIR = "c:\Program Files\openocd-2007rel41\bin*

specify OpenOCD executable (pp is for the wiggler, ftd2xx is for the USB debuggers)
#OPENOCD = $(OPENOCD_DIR)openocd-pp.exe
OPENOCD = $(OPENOCD_DIR)openocd-ftd2xx.exe

specify OpenOCD configuration file (pick the one for your device)
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-wiggler-flash-program.cfg
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-jtagkey-flash-program.cfg
OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-armusbocd-flash-program.cfg

program the AT91SAM7S256 internal flash memory

program: $(TARGET)
@echo "Flash Programming with OpenOCD..." # display a message on the console
$(OPENOCD) -f $(OPENOCD_CFG) # program the onchip FLASH here
@echo "Flash Programming Finished." # display a message on the console

119

There are three places in the above makefile excerpt that you must customize.

First, you must correctly specify the folder name where the OpenOCD executable and the configuration
files reside as this can change if a newer version of YAGARTO is downloaded.

specify the directory where openocd executable resides (openocd-ftd2xx.exe or openocd-pp.exe)
Note: you may have to adjust this if a newer version of YAGARTO has been downloaded
OPENOCD_DIR = 'c:\Program Files\openocd-2007re141\bin\'

Second, you must choose which version of OpenOCD you are running (wiggler or USB).

specify OpenOCD executable (pp is for the wiggler, ftd2xx is for the USB debugger)
#OPENOCD = $(OPENOCD_DIR)openocd-pp.exe
OPENOCD = $(OPENOCD_DIR)openocd-ftd2xx.exe

Finally, you must choose which OpenOCD configuration file you will be using (wiggler, JTAGKey or
ARMUSBOCD).

specify OpenOCD configuration file (pick the one for your device)
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-wiggler-flash-program.cfg
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-jtagkey-flash-program.cfg
OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-armusbocd-flash-program.cfg

Assuming that you have already performed a “Build All” on the sample program and have an output file
(main.bin) to program into the FLASH plus you have set up the hardware as shown earlier, you can now
program the FLASH by running the “program” target in the makefile.

To prepare to do this, we need to establish “program” as a secondary make target. Click “Project —
Create Make Target...” as shown below. Note that you must have the project itself highlighted in the
“Projects” view to enable this.

& CfC++ - main.c - Eclipse Platform
File Edit Refactor Mavigate Search BE0EAe Fun Wwindow Help

il o E] LT i@ a3 g G

Close Project
I8 blinker.c [isrsuppart.c 9

lard Build All Chrl+E
ol o R o o o o o o
main.c
€ Binaries
o archives Build Project n program for Atmel ATS1SAT
g Includes Build Working Set 3 . . .
@ ATa1saM7sd6 b Clean. .. ipin PAO) with an endless |
[h] Board.h Build sutoratically ipin PAl]. nsing tlmn?rD inte
@ blinker.c PL19) triggers FIQ interrug
[8 s Creake Make Target... riables for debugger pract:
= Build Make Target. ..
P . P Lynch September 23, 200t
Make Sure thIS IS Propertllels ol o o ol ol ol ol e ol]
highlighted !
ll."ll." o o o oo o o o o]
— .
blinker.o - [armie] i Header Files

120

In the “Create a New Make Target” dialog, enter “program” into the Target Name text box. Enter
“program” into the Make Target text box also. Click “Create” to finish.

&= Create a new Make target z|

Target Nar@ogram) |

Make Targek
Make Targe(: | program|) |

Build command
se default

Build command: | make

Build Setting
[CJstop on First build errar.
[“]run all project builders.

@ Cancel
e

There are two ways to execute the alternate Make target. The first way is to use the Project pull-down
menu. Click on “Project — Build Make Target” as shown below.

& C/C++ - main.c - Eclipse Platform

File Edit Refactor Mavigate Search EE@E=8 Run ‘Window Help
: r{j - = : Eﬁ Open Project E‘ -
' S | Close Project
¥l CJC++ Projects X] blink
ars Bild All Ctri+B
TEETE
Ackive Build Configuration »
Clean Selecked File(s)
- € Binaties Euild Selected File(s)
- p Archives Build Project m pEe
[_:I--{g Includes Bild Working Set 3)
- [B] AT9156M75256.h Clean... fpin
- [h] Board.h Build Automatically ipin
. PL1D)
- [blinker.c
-8 orts Create Make Target. .. riah’
. Build Make Target. ..
[# @ isrsupport.c
- . F Lyt
[H- @ lowlevelinit.c Properties e
(& @ main.c I

Click on the “program” icon below to highlight it (there can be multiple alternate targets defined) and then
click “Build” to execute the makefile alternate target called “program” and thereby program the FLASH.

& Make Targets |z|

Make Targets For: demo_at91sam?_blink_flash

Location add...

The FLASH programming algorithm built into OpenOCD will now start. Since the sample program is
relatively small, this will run through to completion in just a few seconds.

The results of the FLASH programming activity are displayed in the “Console” view as shown below.

121

Problems | B Console 52

C-Build [dema_at91sam7_blink_flash]

Properties

@G| B

make -k program
Preparing OpendCD script...
Flash Programming with OpenlCD...
'c:yProgram Fileshopenocd-Z007relilibin' ' openocd-ftdixx.exe -f 'c:'\Frogram
Files\openocd-Z007rel3dlibint 'at9lsam?sZ56—armushocd-flash-program. cfy

Info:
Warning:
Info:
Info:
Info:
Info:
Info:
Info:
Info:
Info:
Info:
Info:
Info:
Warning:

openocd.c:84 maini): Open On-Chip Debugger (2007-01-31 12:00 CET)
arm?_9_common.c:683 arm? 9 assert_reset (] : srst resets test logic, too
target.c:ZZ3 target_init_handler () : executing reset script 'sScript.oecd
configuration.c:50 configuration output_handler(): waiting for target halted...
configuration.c:50 configuration output_handler(): target halted
configuration.c:50 configuration output_handler(): core state: ARN
configuration.c:50 configuration output_ handleri(): waiting for target halted...
configuration.c:50 configuration output_handler(): target halted
configuration.c:50 configuration output_handler(): waiting for target halted...
configuration.c:50 configuration output_ handler(): target halted
configuration.c:50 configuration output_handler(): waiting for target halted...
configuration.c:50 configuration output_handler(): target halted
configuration.c:50 configuration output_handler(j:

arm?_9 common.

(=3

wrote file wain.bin to flash bhank 0 at offset 0x00000000 in Os 750000us
683 arm?_9_assert_reset(): sSrst resets test logic, too
Flash Programming Finished.

To test the application, hit the “Reset” button on the Atmel AT91SAM7S-EK. LED1 should be blinking at
about a 1 Hz rate. LED2 should be blinking at a 10 Hz rate (TimerO interrupt). If you push switch SW1,
labeled PA19 on the AT91SAM7S256-EK board, you should see LED3 light up (it will turn off as part of
the background loop).

Push button PA19
to turn on LED3.

LED1 and LED2
should be blinking
at different rates!

_.'jaﬁ; ATSISAM7S-EK

FR T L Lot it

Congratulations! You now have a full-fledged ARM cross development system operational and it didn’t
cost a thing!

122

There’s one other way to conveniently launch the alternate make target to program the flash. We can
display a special “Make Targets” view. Click “Window — Show View — Make Targets” as shown below.

e Window

G- AN R R R R
Mew Editar
blinker.c | @ isrsupport.c | @ lowleelir
3
TET

L4 % C/C++ Projects

W) alb+Shift+0, ©
Save Perspective As... 256
Reset Perspective
Close Perspective 5= Cutling P
Close All Perspectives [2ll Problems upt
Navigation v | El Properties | s
- 4 Search Ale+3hift+3, 5
[working Sets 3
Other... Ale+shife+0, O an

Preferences. .. I

Now the “Make Targets” view is presented with the “Outline” view on the right and if you double-click on
“program’ the alternate make file target will immediately run and the FLASH will be programmed.

& C/C++ - makefile - Eclipse Platform

File Edit Refactor

Mavigate Search Project Run

P EC B[-0 @ B i

Window Help

"y
=57

E %5 Debug |ER i+ |

»

O Binaries

-4 archives

é Includes

- [B] AT9154M7S256.h
@ Eoard.h

@ math.h

(B stdib.h

string.h

blirker.c

crks

isrsupport.c
lowlesvelinit.

Tnain,c

tirnerisr.c
timersetup.c
blinker .o - [armle]
crk.o - [armle]
isrsuppart.a - [armle]
lowlevelinit, o - [armle]
4 main.o - [armle]
main.out - [armle]
“lard timerisr.o - [armle]
“|an§ timersetup.o - [armle]
libc.a

libgce.a

B librn.a

=| crtlst
demao_at91sam? _blink_flash.cmd
=| main.bin

= main.dmp

=| main.map

rnakefile

=| script.ocd

==
E
B
B
[
B
[E
B
[E
&
[E
B
[E
B
[E
B
[E:
B
[E:
B
[E:
B
B
B
B
B
B

i-rEelD s
FE C/C++ Projects 52 Navigatur| =8
@ BS£
demo_at9isam?_blink_flash

scripk.ocd m main.c | = O || outline (Make Ta... &2 =8
B AR R AR A AR AR £ R F A A a s ann T i =
FLASH PROGRANMING {using OpenoCh = lbc|:|ern|:|_at91sarn?_blirlk_ﬂash
#
Alternate make target for flash programming only
#
Tou must create a sSpecial Eclipse make target (progrsam) to run ol
(Project -» Create Make Target... then set the Target Name and F
=
OpenOCD is run in "batch™ mode with a special configuration file
the flash commands. When flash programming completes, COpenCCD ter
#
ﬁ(Nan rhat. the make file helnw rreate=s the =crint file nf flash rr C“Ck on the
Problems | & Consols 52 Froperties program “bu”S' i
C-Build [demo_at91sam?_blink_flash] eye" to Start j
make -k program .
Preparing OpenOCDh sScript... pl’Ogrammlng the i
Fla=sh Programming with OpenOCD. .. ﬂash memory-
'ciWwProgram Files\openoocd-2007rel3lhvbind 'openocd-frd2xx.exe -£ 'ciVPr
Files'openocd-2007rel3itbin) 'at91sam?sES6—armusbocd-flash-program.ciy
Info: openocd.o: 84 main() @ COpen On-Chip Debugger (2007-01-31 12:00 CET)
Warning: arm7?_9 common.c: 683 arm7_9 assert_reset(): srst resets test loglc, too
Info: target.c:223 target_init_handler () : executing reset script 'script.ocd'
Info: configuration.c:50 configuration output_handler () : waiting for target halted...
Info: configuration.c:50 configuracion oucput_handler () : target halted
Info: configuration.c:50 configuration output_handler(): core state: ARN
Info: configuration.c:50 configuracion output_handler (] : waiting for target halted...
Info: configuration.c:50 configuration output_handler ()} : target halted
Info: configuration.c:50 configuracion output_handler (] : waiting for target halted...
Info: configuration.c:50 configuration output handler () : target halted
Info: configuration.c:50 configuracion output_handler (] : waiting for target halted...
Info: configuration.c:50 configuration output handler () : target halted
Info: configuration.c:50 configuracion output_handler () : wrote file main.bin to flash bank 0
at offset Ox00000000 in Os 750000us
Warning: arm7?_9 common.c:&53 arm7_9 sssert_resec() ! SrSt resets test logilc, too
Flash Programwming Finished. =
w

| Writable | Smart Insert | 92145

If you are having trouble getting the OpenOCD FLASH programming to work, make sure that the
configuration files supplied with the sample programs were copied to the same folder that the OpenOCD
executable resides (c:\Program Files\openocd-2007re141\bin). Verify that you adjusted the makefile to
select the OpenOCD executable and OpenOCD configuration file that match the debugger hardware
device you are using (wiggler, JTAGKey or ARMUSBOCD).

123

Using SAM-ICE and SAM-BA to Program the FLASH memory

If you have purchased the Atmel SAM-ICE JTAG interface, you can use the free Atmel SAM-BA Flash
Programming Utility to program the FLASH using the JTAG connection as described in this section.

In the hardware setup shown below, the AT91SAM7S-EK evaluation board is powered by a simple 9 volt
“wall wart” power supply. The SAM-ICE JTAG interface is connected to the PC with a standard USB cable
and is connected to the target board’s 20-pin JTAG connecter with a ribbon cable.

Using the Eclipse “Run” pull-down menu, click on “Run — External Tools — SAM-BA”.

window Help

Run Last Launched Chrl+F11
. Debug Last Launched F11

=y i3l

Run Hiskary 4
Run As 4
Rurn...

Debug Hiskory 4
Debug As 4
Debug. ..

e i i e e i ol ol

=2l ATI13AM7T3256 - £

wher 3, =006

oo e ol o ol o ol ol el

¥. External Tools ¥ 1 OpenoCD
J
wvariabhles I Q 2 e e
CC = arm-elf-goo Run &s 4
LD = arm—elf-1d -v |Gy External Toals...
LR = arm—elf-ar Organize Favarites., .,
L3 = arm-elf-a=

124

When the small SAM-BA communications dialog window appears, select your board (in this case, it's

“AT91SAM7S256-EK”). Also select the “\jlink\ARMO” connection. Click “Connect” to establish a link to

the SAM-ICE.

g SAM-BA 2.5

Select the connechion

Select your board

Connect |

Silikk AR RO

=

ATTISAMPS2B6EK. =

The SAB-BA main screen will appear. There’s a nice memory display on the top wherein you can browse
memory. Under the “Scripts” view, there’s a script to erase the entire flash. Since programming the flash
with SAM-BA automatically erases it first, there’s rarely a need to use the “erase” script.

SAM-BA defaults to the “Flash” tab; click it if this is not the case.

AM-BA A A M
File: Script File Link. Help
—ATI5AM 75256 Memany Display
Start Address : [0x200000 Refiesh | Display format
Size in byte(s] :[04100 asci © 8hit ¢ 16-hit & 32-hit
0x00200000 O0xESSFDOZS 0xES2D4000 O0xESSFO0Z 4 0xE1AQ0EQOF Ee
Ox00200010 OxE1ZFFF10 OxESSFOO01C OxE1AO0EOOQF Ox<E12FFF10
Ox00200020 OxELFFFFFE OxESSFEO1O OxE1ZFFF10 O<XEAFFFFFE B
0x00200030 OxO0zZ01000 OxO00Z200040 OxO0Z00104 OxOo0200014
0x00200040 O0xE3AQO00O01 OxEZ2800C40 0xE3AO01000 O0xES0103EQ
NwNA20NNEN NvFE11M388 NvF3 100001 NvNiFFFFRC. AwFEaFAnsn s
< >
Flazh] SRAM |

— Download / Upload File

Send File Mame : I

(=]

Send File

7

Receive File Mame : |

Address ID:-:1 i} Size [For Receive Filg] : ID:-:‘I oo byte(z]

=

Receive File

Compare zent file with memaorny

— Script

ID izable BrownDut Detector [GPMWRO)

| Execute I

(SAMBA ¥2.5) 1 %
(SaM-BA v2.5) 1 % |

loading history file ... 0 events added
SaM-BA console display active (Tcl8.4.13 / Tk8.4.13)

[\jlink*ARM 0| Board : AT915AM7S 256-EK]

Click on the

~u

symbol associated with the “Send File Name:” text box above

to bring up a standard file navigation screen and use it to browse to the project’s “main.bin” file.

125

Select the “main.bin” as shown below and click “Open” to select this file to be programmed into your
FLASH on-chip memory.

Open

Look in: |E} demao_at91sam?_blink_flash V| (€] _? il FFT

O ((aemm

by Recent
Dacuments

L
Deskiop

My Documents

My Computer

-

File: name: |main.bin hd | Open I
F Metwork, Files of type: | Bin Filaz [*.bin) L | Cancel

Now in the main SAM-BA screen below, click on “Send File” to program the flash.

File Script File Link, Help

—ATI154M TS 256 Memony Dizplay

Start Address : [0-200000 Rehesh | [Display format

Size in bytels] - [0100 s &bt O 16hi 8 32-hi
0x00200000 OxES9FDOZS OxES2D4000 OxESSF0024 OxE1L0EOOF 4
0x00200010 OxE12FFF10 OxESSFO0LC OxE1AOEOOF OxE12FFF10
0x00200020 OxELFFFFFE OxESSFEQLD OxE12FFF10 OxEAFFFFFE B
0x00200030 Ox00Z01000 Ox00zZ00040 Ox00Z001D4 Ox00z00014
0x00200040 OxE3L00001 OxEZ2500C40 OxE3 401000 O0xE50103EQ
nwnnennn&sn MNvFR11M0=95 MNwF3I10nmn MvOiFFFERET MNwFEAFMMNGN :

- k)

Flash] SRAM]

— Download / Upload File

Send File |

Receive File Mame : | Receive File

Address ID:ﬂ Qaono Size [For Receive File] : IDM] byte(z) Compare zent file with memaorny

Send File Mame : |C:£wnrkspacea’demo_at91 zam?_blink_flash/main. bin

k| §

— Scripts

IDisabIe BrownOut Detector [GPMNWRO) ﬂ Execute |

loading history file ... 0 events added

SaM-BA console display active (Tcl8.4.13 / TkE8.4.13)
(SAM-BA v2.5) 1 %

(SaM-Ba v2.5) 1 %]

Vlink'&RMO| Board : AT915AM7S 256-EK

126

If one or more of the flash regions is “locked”, SAM-BA may ask you if you want to “unlock” the region.
Always answer affirmative (Yes) since we don’t want any locked regions before we start programming.

After programming the flash, SAM-BA will ask you if you want to lock the regions just programmed. To be
on the safe side, always answer “No” and leave the regions unlocked as shown below.

g Lock region(s) to lock

& Do you want ta lock invalved lock region(z] (0 to 0] 7

Yes Mo |

The little console display at the bottom indicates that 4992 bytes were sent to the flash memory.

id SAM-BA 2.5 - AT91SAMT7S256-EK

File Script File Link, Help
ATISAMTS 256 Memory Dizplay

Start Address : | 0x200000 Refresh Display format

Sizein b_',JlE-'[S]|DH1DU " azci © Sbit O 16-bit ¢ 32-bit

0x00200000 OxESSFDOZE OxEQ2D4000 OxES9F00Z4 OxE1AQEQOF S

0x00200010 O0xE12FFF10 OxESSFO01C OxE1A0EQDF OxE1ZFFF10

0x00200020 OxEAFFFFFE OxES2FEQLD OxE12FFF10 OxEALFFFFFE -

0x00200030 Ox00201000 Ox00z200040 Ox002001D4 Ox00zZ00014

0x00200040 OxE3L00001 OxEZE00C40 OxE3A01000 OxES0103EQ

0Ox00200050 OxES110398 OxE3100001 OxOAFFFFFC OxESSFOOS0

W

u L
Flash] SRAM]

Download / Upload File

Send File Mame : |C:Iw0rkspace£demo_at91 zam?_blink_flash/main. bin = Send File
Receive File Mame : | = Receive File
Address | 0x100000 Size [For Receive File] : |0x1000 buyte(z) Compare sent file with meman

Scripts

|Disable BrowenOut Detectar [GPMWRO) ﬂ Execute

loading history file ... 0 events added

SAM-BA console display active (Tcl2.4.13 / TkE.4.13)

(SAM-BA V2.5 1 %

(SAM-BA v2.5) 1 % send_file {Flash} "C:/workspace/demo_at91sam?_blink_flash/main.bin" 0x 100000 0
-I- Send File C: fworkspace/demo_at91sam? _blink_flash/main.bin at address 0x100000

-I- File size = 4992 byte(s)

(SaM-Ba v2.5) 1 %]

SlinkARMO)| Board : AT315AM7S256-EK

If you look at the AT91SAM7S-EK evaluation board, you will notice that the application appears frozen.

You must do a power-cycle to get the application to start. This seems to be a bug in the Revision 2.5 of
the SAM-BA.

127

Alert readers might notice that the summary indicates that the 4992 bytes were loaded at address
0x100000. This is true. However, page 19 of AT91SAM7S256 data package shows that FLASH is actually
at address 0x100000 and is subsequently “mapped” into the 1 mb region at address 0x000000 at boot
when the remap control register MC_RCR bit 0 is cleared (the default).

953 Internal Flash

The AT91SAM7S5256/128/64/321/32 features one bank of 256/128/64/32/32 Kbytes of Flash.
At any time, the Flash is mapped to address 0x0010 0000. It is alsc accessible at address 0x0
after the reset and before the Remap Command.

Figure 9-1. Internal Memory Mapping

f 0x0000 0000

Flash Before Remap
Ox000F FFFE SRBAM After Remap 1 M Bytes
0x0010 0000
Internal Flash 1 M Bytes
0x001F FFFF
0x0020 0000
256M Bytes Internal SRAM 1 M Bytes

0X002F FFFF
0x0030 0000

Undefined Areas
(Abort) 253 M Bytes

OxOFFF FFFF

To test the application, cycle the power and hit the “Reset” button on the Atmel AT91SAM7S-EK. The
board is still powered from the “wall wart” DC power supply. The LEDs should start blinking.

LED1 and LED2
should be blinking
at different rates!
giInm
Push button PA19
to turn on LEDS.

? ATSISAM7

EEE W .

Congratulations! You now have a full-fledged ARM cross development system operational and it didn’t
cost a thing!

128

Debugging the FLASH Application

The author once interviewed a job applicant whose response to the question “Describe your debugging
technique?” was “I try not to make any errors!” Well, unless you are an infallible programmer like that guy,
you will occasionally require the services of a debugger to trap and identify software errors. Eclipse has a
wonderful visual source code debugger that interfaces to the GNU GDB debugger.

You can debug an application programmed into on chip FLASH; the built-in on chip JTAG debug circuits
allow this. There is only one restriction; you are limited to just two breakpoints. Attempting to specify more
than two hardware breakpoints at a time may cause the debugger to malfunction. Otherwise all Eclipse
debugging features work properly, such as single-stepping, inspection and modification of variables,

memory dumps, etc.

Create a Debug Launch Configuration

Before we can debug the FLASH application, we have to create a Debug Launch Configuration for this
project. The Debug Launch Configuration locates the GDB debugger for Eclipse, locates the project's
executable file (in this case it's only used to look up symbol information), and provides a startup script of
GDB commands that are to be run as the debugger starts up. Most people will define a Debug Launch
Configuration for each project they create.

Click on “Run — Debug...” to bring up the Debug Configuration Window.

Run

c B Tiun Last Launched Chrl+F11 IG
% Debug Last Launched F11
9154 ard
* A Fun History [T
Run As LS
Run...
Debug History [
L4
th
et
wkernal Tools L4
Al . Ar

In the “Debug — Create, manage, and run configurations” window shown below, click on “Embedded debug
(Native)” followed by the “New” button. This is the special debug launch configuration created by Zylin.

Create, manage, and run configurations

—+l,]
i, .
=i TG = L || Configure launch settings From this dialog:

| type filter tex - Press the "Mew' button to create a configuration of the selected byvpe.

L4

i [€] C/C++ Attach to Local Application |2/ - Press the 'Duplicate’ button to copy the selected configuration.
E CJC++ Local Application

E C/C++ Postmaortem debugaer - Press the 'Delete’ butkan to remove the selected configuration.

L Sl i

- Press the Filker' button ko configure Filkering options.

- Edit or wiew an existing configuration by selecting it

Configure launch perspective settings from the Perspectives preference page.

ehug Close

&

129

The Debug “Create, manage and run configurations” window changes to the dialog shown below. Start by
making sure that the “Main” tab is selected.

In the “Name:” text box, enter the name of this debug launch configuration. The Name can be anything
you choose, but since there is usually going to be a debug configuration for each project you set up, the
name of the project itself is a wise choice. In this example, we simply use the project name
“‘demo_at91sam7_blink_flash” for this purpose.

In the “Project” text box, use the “Browse” button to find the project “demo_at91sam7_blink_flash”.

In the “C/C++ Application” text box, use the “Search Project...” button to find the application file
“‘main.out”.

You might be inclined to ask why this is not the “main.bin” file? The binary file was used earlier to
program the flash, but the debugger needs the application file that has the symbols; this is the “main.out”
file. While the “main.out” file also has the executable code within it, the debugger only uses the symbol
information for FLASH debugging.

& Debug

Create, manage, and run configurations

FEEIEES

Name[| demo_at91sam7_blink_flash ‘I |

| kvpe Filker text |

B Main 3@5? Debugger! B Commands l Ey Source| E=| gommu:un| |

- E Z{C++ Attach bo Local Applicatior
E Z{C++ Local Application

- Project:
[&] cfc++ Postmortem debugger ke = e |
-5 Embedded debug (Cygwin) demao_at91sam?_blink_flash I| [Brawse... J :]
i v < Al
=i Embedded debug (Mative) CJC++ Application:
deme_at31sam?_blink_flash) (———)
emo_at31sam?_blink_Flas L | Tnain. ouk | LSearch Praject...] [Browse. .,]
< i | > [Apply] [Fevert J
@ [Debug] [Close]

Now select the “Debugger” tab as shown below.

Check the check box that says “Stop on startup at...” as this provides our breakpoint at the entry point of
main().

In the dialog labeled “Debugger Options”, use the “Browse” button to locate the GDB Debugger “arm-elf-
gdb.exe” file. It will be found in the “c:\Program Files\yagarto\bin” folder. The rest of the dialog can be left
in its default form.

130

& Debug

Create, manage, and run configurations

| tvpe Filker bext |

i E CjC++ Attach to Local Application

: E C/C++ Local Application

E CJC++ Postmortem debugger

::G Embedded debug {Cygwin)

[=~5G Embedded debug (Mative)
Bl dermo_at91sam?_blink_Flash
w6 demo_at31sam?_blink_ram

Marne: | demo_at91sam7_blink_flash

Debugger Options

Main

I u Commands! Ey Source| =l gommon!
Debugger: Emb S0E Stop on startup at:

GDE debugger:

| Ci\Program Filesiyagartolbiniarm-elf-gdb. exe I| [Browse, .,]

L <

GDE command file: |

|[Browse...]

{Warning: Some commands in this file may interfere with the startup operation of the debugger, for example "run”.)

GDE command set: | Standard v

Protocal: mio W

[verbose console mode

Apply

| Debug] [

Close

Now select the “Comands” tab as shown below.

If you are using OpenOCD, enter the single GDB command “target remote localhost:3333” in the

“Initialize commands” text window exactly as shown below. This command tells the GDB debugger to emit

commands in RSP format to the TCP port “localhost:3333” (the port OpenOCD will be listening to).

'Tnitialize’ commands

target remote localhost:3333

If you are using OpenOCD, enter the following GDB and OpenOCD commands into the “Run commands”

text window, exactly as shown below. The “Source” and “Common” tabs can be left in their default state.

'Fun' commands

continue

monitor soft_reset_halt

monitor armv4_5 core_state arm

monitor mww Oxffffff60 0x00320100
monitor mww Oxfffffd44 0xa0008000
monitor mww Oxfffffc20 0xa0000601
monitor wait 100

monitor mww Oxfffffc2c 0x00480a0e
monitor wait 200

monitor mww Oxfffffc30 0x7

monitor wait 100

monitor mww Oxfffffdo8 0xa5000401

set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
monitor arm7_9 force_hw_bkpts enable
symbol-file main.out

| ¥

3

Below is the Debug Launch Configuration “Commands” tab for use with OpenOCD and flash execution.
Note that the ‘Run’ commands window below only shows a portion of the commands that were entered.
Be sure to enter all the commands as shown above.

The “Source” and “Common” tabs can be left in their default condition. Click on “Close” to complete

definition of the Debug Launch Configuration for flash debugging with OpenOCD.

& Debug

Create, manage, and run configurations

> [L
|_||.1§|8 E &

| type filber text

Mame: | demo_ak91sam?_blink_flash
Main | %% Debugger mﬁ_// Source |] Cammon

‘Initialize’ commands

E CJC++ Attach to Local Application

E C/C++ Local Application

E CJC++ Postmoartemn debugager

=¢ Embedded debug (Cygwin) target remote localhosk: 3333
=3¢ Embedded debug (Mative)

demao_ak91sam?_blink_flash
G demo_at91sam?_blink_ram

'Fun’ commands

manikar soft_reset_halt
monitar arrnvd S core_stake arm
monitar e OxFFFFFFE0 000320100

>

monitor rmww DxfFFFFd44 020008000 I
monitor mww 0xFFFFFC20 0xa0000601

maonitor wait 100

monitor mww DxFFFFFc2e 0:x00480a0e

(I3

Apply Rewerk

@ [Debug l Close]

To make entry of the ‘Run’ commands more convenient, here is a list of them for “cut-and-paste” transfer
to Eclipse.

monitor soft_reset_halt \
monitor armv4_5 core_state arm
monitor mww 0xffffff60 0x00320100
monitor mww 0xfffffd44 0xa0008000
monitor mww 0xfffffc20 0xa0000601
monitor wait 100

monitor mww 0xfffffc2c 0x00480a0e
monitor wait 200

monitor mww 0xfffffc30 0x7 > Copy these commands into the

monitor wait 100 “Run Commands” window.
monitor mww 0xfffffd08 0xa5000401

set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
monitor arm7_9 force_hw_bkpts enable
symbol-file main.out

continue)

The GDB startup commands for OpenOCD operation shown above require some explanation. If the
command line starts with the word “monitor”, then that command is an OpenOCD command. Otherwise, it
is a legacy GDB command.

OpenOCD commands are described in the OpenOCD documentation which can be downloaded from:
http://developer.berlios.de/docman/display doc.php?docid=1367&group id=4148

132

GDB commands are described in several books and in the official document that can be downloaded from:
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/gnu-debugger.pdf

First, we have to halt the processor.

monitor soft_reset_halt # OpenOCD command to halt the processor and wait

Next, we identify the ARM core being used
monitor armv4_5 core_state arm # OpenOCD command to select the core state
Now we set up the processor’s clocks, etc. using the register settings in the lowlevelinit.c function. These

are OpenOCD memory write commands used to set the various AT91SAM7S256 clock registers. This
guarantees that the processor will be running at full speed when the “continue” command is asserted.

monitor mww 0xffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
monitor mww 0xfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)
monitor mww 0xfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
monitor wait 100 # wait 100 ms

monitor mww 0xfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)

monitor wait 200 # wait 200 ms

monitor mww 0xfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
monitor wait 100 # wait 100 ms

Enable the Reset button in the AT91SAM7S-EK board.

monitor mww 0xfffffd08 0xa5000401 # enable user reset AT91C_RSTC_RMR

Now increase the GDB packet size to 1024. This will have a slight improvement on FLASH debugging as
reads of large data structures, etc. may be speeded up. These are legacy GDB commands.

set remote memory-write-packet-size 1024 # Setup GDB for faster downloads
set remote memory-write-packet-size fixed # Setup GDB for faster downloads
set remote memory-read-packet-size 1024 # Setup GDB for faster downloads
set remote memory-read-packet-size fixed # Setup GDB for faster downloads

This is an OpenOCD command to convert all Eclipse breakpoints to “hardware” breakpoints. Remember,
we are only allowed two hardware breakpoints — defining more than two will crash the debugger.

monitor arm7_9 force_hw_bkpts enable # convert all breakpoints to hardware breakpoints

Now we have to identify the file that has the symbol information. This is a legacy GDB command.

symbol-file main.out # read the symbol information from main.out

Finally we emit the legacy GDB command “continue”. The processor was already halted at the Reset vector
and will thus start executing until it hits the breakpoint set at main().

continue # resume execution from reset vector - will break at main()

Author’s Note: GDB manual states “Any text from a # to the end of a line is a comment; it does
nothing”. Unfortunately, I've noted that these systems get tripped up occasionally by
these comments so they have been left out of all debug windows.

133

If you are using the J-Link GDB Server, enter the single GDB command “target remote localhost:2331”

in the “Initialize commands” text window exactly as shown below. This command tells the GDB debugger
to emit commands in RSP format to the TCP port “localhost:2331” (the port the J-Link GDB Server will be

listening to).

'Tnitialize’ commands

target remote localhost:2331

If you are using the J-Link GDB Server, enter the following GDB and J-Link GDB Server commands into

the “Run commands” text window, exactly as shown below. The “Source” and “Common” tabs can be left
in their default state.

'Run’ commands

monitor
monitor
monitor
monitor
monitor
monitor
monitor
monitor
monitor
monitor
monitor
monitor

reset

speed 30

speed auto

long Oxffffff60
long Oxfffffd44
long Oxfffffc20
sleep 100

long Oxfffffc2c
sleep 200

long Oxfffffc30
sleep 100

long Oxfffffdos

0x00320100
0xa0008000
0xa0000601
0x00480a0e
0x7

0xa5000401

set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
symbol-file main.out
continue

|*

€

Below is the Debug Launch Configuration “Commands” tab for use with the J-Link GDB Server and
FLASH execution. Note that the ‘Run’ commands window only shows a portion of the commands that

were entered. Be sure to enter all the commands as shown above.

Create, manage, and run configurations

g

& E = . .
IO E X 33

b Mame: | demo_at91sam7 _blink_flash

| type Filter text

L

1 E CfC++ Attach to Local Application
~[&] CfC++ Local Application

E CfC++ Postmortem debugger
G Embedded debug (Cyvawin)
mbedded debug (Mative)

8= demo_at91sam7_blink_flash
~F¢ demo_at91sam?_blink_ram

';Ds__Main |:§§= Debugger mh// Source | =] gommnnl

| 'Initialize’ commands

| target remote localhost: 2351

| un' commands

monibor resst
monitor speed 30
monitor speed auto
monitor long OxFFFFFF60 0x00320100
monitor long OxFFFFfd44 0xa0008000
monitor long 0xFFFFfc20 0xal000601
monitor sleep 100

.2

|

Apply Revert

134

Click on “Close” above to complete definition of the Debug Launch Configuration for flash debugging with
the J-Link GDB Server.

To make entry of the ‘Run’ commands more convenient, here is a list of them for “cut-and-paste” transfer
to Eclipse.

monitor reset \
monitor speed 30

monitor speed auto

monitor long 0xffffff60 0x00320100

monitor long 0xfffffd44 0xa0008000

monitor long 0xfffffc20 0xa0000601

monitor sleep 100

monitor long 0xfffffc2c 0x00480a0e

monitor slesp 200 Copy these commands into the
monitor long 0xfffffc30 0x7 “Run Commands” window
monitor sleep 100 '

monitor long 0xfffffd08 0xa5000401

set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
symbol-file main.out

continue /

The GDB startup commands for the J-Link GDB Server operation shown above require some explanation.
If the command line starts with the word “monitor”, then that command is a J-Link GDB Server command.
Otherwise, it is a legacy GDB command.

J-Link GDB Server commands are described in the document “JLinkGDBServer.pdf’ which is in the Segger
documentation folder that you downloaded (“c:\Program Files\SEGGER\JLinkARM_V368b\Doc\Manuals\”)

GDB commands are described in several books and in the official document that can be downloaded from:
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/gnu-debugger.pdf

First, we have to halt the processor.

monitor reset # Reset the chip to get to a known state.

Next, we set up the JTAG speed

monitor speed 30 # Set JTAG speed to 30 kHz
monitor speed auto # Set auto JTAG speed

Now we set up the processor’s clocks, etc. using the register settings in the lowlevelinit.c function. These
are J-Link GDB Server memory write commands used to set the various AT91SAM7S256 clock registers.
This guarantees that the processor will be running at full speed when the “continue” command is asserted.

monitor long 0xffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
monitor long 0xfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)
monitor long 0xfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
monitor sleep 100 # wait 100 ms

monitor long 0xfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)
monitor sleep 200 # wait 200 ms

monitor long 0xfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
monitor sleep 100 # wait 100 ms

135

Enable the Reset button in the AT91SAM7S-EK board.

monitor long 0xfffffd08 0xa5000401 # enable user reset AT91C_RSTC_RMR

Now increase the GDB packet size to 1024. This will have a slight improvement on FLASH debugging as
reads of large data structures, etc. may be speeded up. These are legacy GDB commands.

set remote memory-write-packet-size 1024 # Setup GDB for faster downloads
set remote memory-write-packet-size fixed # Setup GDB for faster downloads
set remote memory-read-packet-size 1024 # Setup GDB for faster downloads
set remote memory-read-packet-size fixed # Setup GDB for faster downloads

Now we have to identify the file that has the symbol information. This is a legacy GDB command.
symbol-file main.out # read the symbol information from main.out

Finally we emit the legacy GDB command “continue”. The processor is already halted at the Reset vector and

will thus start executing until it hits the breakpoint set at main().

continue # resume execution from reset vector - will break at main()

136

Add the Debug Launch Configuration to the List of Favorites

One final maneuver is to add the “demo_at91sam7_blink_flash” embedded debug launch configuration
into the Debug pull-down menu’s list of favorites. This operation is very similar to putting the external tools
into the “list of favorites” that you did earlier.

In the toolbar, click on the down arrowhead next to the debug symbol and then click “Organize
Favorites...”

-0 - O = 5 | F

¢ 1 demo_at31sam?_blink_Flash

Debug As 3

%5 Debug. ..

Organize Favorites. ..

In a sequence similar to other “Organize Favorites” operations that we have already performed, click on
“Add...” and either checkmark the “demo_at91sam7_blink_flash” or click the “Select All” button. Finally,
click “OK” to enter this debug launch configuration into the debugger list of favorites, as shown below.

. . F € ; 5] . .
£ Organize Debug Favorites it Debi=nyonites (x] & Organize Debug Favorites
Select Launch Configurations:
Favarites: /\ Favarites:
¢ demo_at91sam?_blink_flash
Add. ., l) 56 demo_at91sam7_blink_flash Add

Remaove
Do | Ciawn

aall

ok I cancel | ol | Cancel |
Select All I eselect Al |
N —
K | Cancel |

Now when you click on the Debug Toolbar button’'s down arrowhead, you will see the
“‘demo_at91SAMY7_blink_flash” debug launch configuration installed as a favorite, as shown below.

window Help

The Debug
toolbar \Jﬂﬁg;c,)ﬂ Q - J o I J & -

E 1 demo_akt31sam?_blink_Flash

There it is!

| b

Debug As L

% Debug...

organize Favorites, ..

Now everything is in place to debug the project that we loaded into FLASH memory via OpenOCD or
SAM-BA.

137

Open the Eclipse Debug Prespective

To debug, we need to switch from the C/C++ perspective to the Debug perspective. The standard way is
to click on “Window — Open Perspective — Debug’ as shown below.

ndow
Mew Editor

[§1 -5 - @ -
/1 DN I

Open Perspective

EERIE o
£0 Tea nichranizing

Customize Perspective...

. Other. ..
nd awe Perspective As... 5
Reset Perspective
Close Perspective
o Close All Perspectives

with an endless loop
r debugger practice

Mavigation]
1t o nuary 12, 2006

wERE Preferences... o i O e ol O ol ol e o o

A more convenient way to switch perspectives is to click on the “perspective” buttons at the Eclipse upper-
right window location. Click on the “OpenPerspective” toolbar button below on the left and then choose
“Debug” when the other perspectives are displayed.

" B |JEgcic++ ﬁJ Java

=21 %CJ’C++ aJJava

=5 =) —

FHEEFFEE ‘ V‘ P tn oynchranizing

Other .,
:] || ------- £+ IRQ_Rout

Now we have a “Debug” button as shown below. You may have to drag on the edge to expose all the
perspective buttons. You can also right-click on any of the buttons and “Close” them to narrow the display
to only the perspectives you are interested in.

Drag on this IS
edge to expose B | #5Debug Bgicic++ aJJava

all the available — . % - Eq
perspectives. £ i

Click on the “Debug” perspective button at the upper-right to open the Debug Perspective display, shown

below.
%#Debug

138

& Debug - main.c - Eclipse SDK

File Edit Refactor Mavigate Search Project Run “Window Help
Iet-HElm |- 0-Q- @& [§-3-%w&-a- B[$soebug Bhcice+
— - e —
%5 Debug 2 LT ooge -«§"| == ‘ T i% ¥ T O||variables |Breakpoints | Exprassions ﬁ:ﬂﬁ' Reqgisters &3 il ¥ =08
E]E' b Disassembly 52 =
/* R R A AN A A A T AN AL XL X E XX T X LR TELE L *l/ ~
e main. o L Minirnize:
i g =
A Demonstration program for Atmel ATS15AMTSZS56-EE Evaluation Board */ =5
I w7
£E hlinks LEDO (pin PA0) with an endless loop */
I plenty of wvarisbles for debugger practice S
I *
/% kuthor: James P Lynch January 12, 2006 L
SR TR AR AR TR T AR AR AA AR TR A AR AR R AR AAAR AR AR AT A ARG ARTARAAAR AT ARG ARAAETAT TS
'/* LR RS R RS A AR R R R R R R R EEE R RS R R R R R Rt R R
Function prototypes
LR RS R RS A AR R R R R R R R EEE R RS R R R R R Rt R R %‘/
void IRQ Routine (void) _ attribute__ [(iinterrupt("IRQ")]}:
void FIQ Foutine (void) __attribute_ ((interrupt ("FIQ")));
roid 3WI Routine (void) _ attribute_ ((interrupt ("3WI"))) ;I -
Bl console 52 Tasks = E-r5-70
A console is not available,
[] | ‘writable | Smart Insert | 16 : 62 |

If your display doesn’t look exactly like the debug display above, click on “Window — Show View” and

select any of the missing elements.

Help
4 Mew wWindow .y .
7 Mew Editor
i) ~ = Eq ﬁ'ariables | Breakpoints | Expre
- Open Perspective 3 |

d & ant
g Breakpoints

= console

%5 Debug

Cusktomize Perspective, .,
Save Perspective 8s..,
Reset Perspective

Close Perspective

Close All Perspectives

AlE+Shift+), B
Alk-+Shift+C), C

Mavigation b Display
; @ Error Log
Preferences. ..
&4 Expressions
@ memory
FEETRRTATELRNTTELRNNTNY ﬂMDdUIBS
. o-— .
o= Qutline
Atmel ATS1SAMTSZSE-F ot Registers
54 Signals
b dl 1
an endless .oop S Tasks
sbugger practice
0= variables Ale+shift+0, W
1z, 2006
£y ’ Cther...

FTHEEFREFTHFELEANFTFSSANTNA

139

Starting OpenOCD

If you have purchased an Olimex or Amontec JTAG debugger, you must have OpenOCD running in the
background before starting the Eclipse graphical debugger.

To start OpenOCD, click on the “External Tools” toolbar button’s down arrowhead and then select
“‘OpenOCD”. Alternatively, you can click on the “Run” pull-down menu and select “External Tools”

followed by “OpenOCD”.

= Search Project Run wWindow

A eEe- | ®

G, 1 5aMBA [
r

—

Run As L3
@, External Toals...

organize Favarites. .,

Eclipse remembers the last button you selected, so you can usually just click on the red toolbox button
itself to start OpenOCD. If you're not sure what “external tool” will be selected, just hover the cursor over
the toolbox icon and the “hints” feature will show that “OpenOCD” will be selected.

The debug view will show that OpenOCD is running and the console view shows no errors, just warnings.

Directly below is the Debug perspective just after OpenOCD has started up.

& Debug - main.c - Eclipse Platform

File Edit Refactor Mavigate Search Run Project Window Help

M- He ®i%-0-Q- @™ G- iH-FH-we-a B | 35 Debug |FE cict+
% Debug 52 e «§" lizy @S5 3 i% T T O||variables (00 Eraakpoints &% =0
B(}OpenOCD [Prograrn] K % & 5w = <'===D =
o pﬁ :\Pragram Fileshopenocd-2007re141\binlopenocd-frd2xoc. exe
= O ||outline (Disassembly &3 =0
."f."f L e e e e e i e e e e e e e e e e e i i e e e e i e e e e e e e e e e e e e e e e e
i main. o -
i
i Demonstration program for Atmel AT913AMTIZ56-EE Evaluation Board
i
i blinks LEDO (pin Pi0) with an endless loop
i blinks LED1 (pin Pil) using timer0 interrupt (200 msSec rate)
i switch SW1 (PA19) triggers FIQ interrupt, turns on LEDZ (Pin PAZ)
I plenty of wariasbles for debugger practice
i A
< | >
Bl console 23 Tasks B X% Gt E-[5-70
OpenCD [Program] C:\Program Files\openocd-2007re 1413 bintopenocd-frd2x:, exe
Info: openocd.c:86 mwain(): Open On-Chip Debugger (2007-04-16 19:30 CEST)
Warning: arm?_ 9 common.c: 685 arm? 9 assert reset(]: Srst resets test logic, too
i Writable Smart Insert 139:1

140

If for some reason, OpenOCD will not properly start in your system, you can try the following things.
e Cycle power on the target board before starting OpenOCD

e Make sure your computer is not running cpu-intensive applications in the background, such as
internet telephone applications (SKYPE for example). The OpenOCD/wiggler system does “bit-
banging” on the LPT1 printer port which is fairly low in the Windows priority order.

For Windows XP users, here is a simple way to get rid of all those background programs. Click
“Start — Help and Support — Use Tools... - System Configuration Utility — Open System
Configuration Utility — Startup Tab”. Click on “Disable All". Windows will ask you to re-boot
and the PC will restart with none of the start-up programs running. Use the same procedure to
reverse this action.

& System Configuration Utility

| General | SYSTEM.INI || win,INI || BOOT. N | Services | Startup |

Startup Ikem
mcupdate
McAgent
[GooaleDesktop

Corrand

c\PROGRA~1 mcafee. ..
c\PROGRA~1mcafee. ..
"CiProgram FileshGoo,.,

¥

Location i}
HELM\SOF TWARE Microsoft) Windows) Currentyer.
HELM|SOF TWARE | Microsoft) Windows! Currentyer,
SOFTWARE Microsoft i wWindows\CurrentyersioniRL

[hkemnd CAWINDOWS system. .. SOFTWAREMicrosaft)windows\Currentversion|RL =
[igfetray CMINDOWSisystemn, ., SOFTWARE\Microsoftiwindows' Currentiersion'R
[ntelMEM Ci\Program Files\Intel,,. SOFTWARE\Microsaoft\Windows\Current¥ersion\RL
[cameraassistant Ci\Program FilesiLogit,., SOFTWARE\Microsoftiwindows\CurrentyersioniRL.
[Elkgcir CMINDOWSisystemn, .. SOFTWARE\Microsoftiwindows' Currentiersion’RL
[nstalHelper C:\Program FilesiLogit... SOFTWARE\Microsoftiwindows)Currenthersion’RL
O wwcomsy CAMINDOWSSisystemn. .. SOFTWARE\Microsoftiwindows' Currentiersion’RL
[meagent c\PROGRA~1\mcafee, .. SOFTWARE\Microsaft\Windows\Current¥ersioniRL
<|—| moundate CPROGRA~1meafe,,, SOFTWAREMicrosoftiwindowsiCurrentyersioniR, &
i
— 7 — N
[enabeal (][oDsableal | >
N
[QK] [Cancel J Apply =lp

141

Starting J-Link GDB Server

If you have purchased the Atmel SAM-ICE JTAG debugger, you must have the J-Link GDB Server
running in the background before starting the Eclipse graphical debugger.

To start J-Link, click on the “External Tools” toolbar button’s down arrowhead and then select “J-Link
GDB Server’. Alternatively, you can click on the “Run” pull-down menu and select “External Tools”
followed by “J-Link GDB Server”.

YOI X
@ 1 OpenoCD

2 S5AM-Bo
¥. 3 1-Link GDE Server]

Run &s r
% External Toals...

Qrganize Favarites, .,

Eclipse remembers the last button you selected, so you can usually just click on the red toolbox button
itself to start J-Link. If you’re not sure what “external tool” will be selected, just hover the cursor over the
toolbox icon and the “hints” feature will show that “J-Link GDB Server” will be selected.

First, a Segger J-Link GDB Server status window will appear as shown below. Notice that the green
indicators show that the J-Link GDB Server is connected to your SAM-ICE and the target microprocessor
core has been identified. The Debugger status light is indicating red; this is OK since we haven’t launched
our Eclipse/GDB integrated graphical debugger yet. You should now minimize the Segger status display.

Whatever you do, don’t click the button; that will terminate the J-Link GDB Server!

=2 J-Link GDB Server V3.70b

File Help
Debugger |Waiting for connection I Initial JTAG speed |30 kHz ~| M Stagaontop
v Log window
J-Link, |D:|nnected Current JTAG speed |30 kHz [~ Logto file
[v Cache reads
Target [4RM?. Core Id: 0x3FOFOFOF | 331V | |Litte endian = | Ve download

Log output: Clear lng

J-Link GDE Serwer Vi 70b

JLinkaFEM . d11l V3 .70b (DLL compiled Hay 18 2007 16:17:44)
Listening on TCP~IP port 2331

J-Link connected
Firmware: J-Link compiled Mawy 10 2007 13:05:02 AREM Few.G

J-Link found 1 JTAG device, Total IELen = 4
JTAG ID: 0=3FOFOFOF (AEM?)

0 Bytes downloaded 1 ITAG device

142

The debug view will show that J-Link GDB Server is running and the console view shows no errors.

& Debug - main.c - Eclipse Platform

File Edit Refackor Mavigate Search FRun Project ‘Window Help
I HEIB B0 M@ E e 5 85 peoun | BB e+
m = O ||variables (09 Breakpoints &3 Expressions| =0
% e e XBP A BEET
= (}J-LinkGDB Server [Program]] 0O e = Skl i beazicoc [linse 1477
e ;ﬁ Ci\Program Files),SEGGER) JLinkARM_V370bY LinkGDEServer .exe <€ J-Link GDB Server is running!
[€] main.c &2 . [H] AT915AM7S256.h = B |[outine f Disasse... &2 ~_ = O
// B i e e e e e i e i e e O e e i e e e)
i main. 13
i
2 Demonstration prograwm for btmwel LATO1S5AMT7S2Z256-EE Evaluation Board
I
i blinks LEDO (pin PA0) with an endless loop
£ blinks LED1 (pin PA1) using timerd interrupt (200 msec rate)
2 switch 3W1 (PA1S) trigogers FIQ interrupt, turns own LEDZ (Pin PAZ)
£ plenty of variables for debugger practice
I
/4 Author: Jamwes P Lynch May 12, 2007
// e i i i e e i e e e S e i i e e e e e e e i i i e e e e e i i
A
< | =3
El consale 33 Tasks X% &Rl #E-r3-°08

J-Link GDB Server [Program] C:1Program Files)SEGGERS LinkaRM_w370bY LinkGDEServer exe

Start the Eclipse Debugger

To start the Eclipse debugger, click on the “Debug” toolbar button’s down arrowhead and select the
debug launch configuration “demo_at91sam7_blink_flash” as shown below.

Alternatively, you can start the debugger by clicking on “Run — Debug...” and then select the
“‘demo_at91sam7_blink_flash” embedded launch configuration and then click “debug”. Obviously, the
debug toolbar button is more convenient.

Eclipse SDK

lavigate Search Project Run Window Help

Debug As

%5 Debug...

Organize Favorites. .,

There’s not a lot of difference in the behavior of the Eclipse/GDB integrated graphical debugger whether
you run it from OpenOCD or the J-Link GDB Server.

143

Eclipse Debugger Startup - OpenOCD

File Edit Refackor Mawigate Search Project Run Window Help
if-Ha B i - 0-Q%- i i E- H-Fg-we-
3 Debug 2 NG % «§‘ i3] B
EI"Q OpenCZD [Program]
yﬂ C:\Program Fileslopenocd-2007re131\bintopenacd-frd2xx . exe
E- By dema_at91sam7 _blink_fash [Embedded debug {Mative)]
& Embedded GDR (4/21/07 12:39 PM) (Suspended)
=g Thread [0] (Suspended)
= 1 main() at Ci{workspaceidemo_at91sam?_blink_flashimain.c:59 0x0000016c

)a Ci\Program Filestyagarto\bimarm-elf-gdb . exe (4/21j07 12:39 PM)
.5 Ciiworkspacetdemo_at91sam7_blink_Flashimain.out (4/21/07 12:39 PM)

©ois ¥ T O || variables (90 Breakpoints &5 _‘Ragistars|Modu\es‘
,f i \workspaceldemo_at91sam?_blink_flashimain.out

e @ crbs | @ timerisr.c | demo_at31sam?_blink_flash.cmd = B | outiine (Disassembly 23.- 8-, =l
char Buffer[32]; [| int mwain (void) { G
} Channel = {5, &Channel.Buffer[0], {"Faster than a speeding bulletc"}}; Ox0000015c <main>: mov riz, sp
Ox00000160 <maintd>: stmdh sp!, {r4, rill, riz, e
int main (void)] Ox00000164 <maint+&>: sub rii, riz, #4 :oOxd

Ox00000168 <main+lZ>: sub sp, =sp, #11z . Ox7?
f¢ lots of warisbles for debugging practice)

int a, b, cr /f uninitialized wvariables /F lots of wariables for debugging practice
char d /7 uninitialized wvariable int a, b, o
i int Sl /f initialized wariable ! char o
int k=2 4/ initialized wvariable | int w=1;
static long ®x = 5; ff static initiamlized wariahle = »0x0000016c <main+lé>: mov ri, #1 ; 0Ox1
static char v = 0Ox04: /f static inicialized wariable 0x00000170 <main+20>: str ri, [rill, #-64]
const char *pText = "The rain in Spainf™; /7 initialized string pointer variable — int k= 2:
struct EntryLock { /f initialized structure varisble 0x00000174 <main+24>: mov ri, #2 : oxz2
long Key: Ox00000178 <main+28>: str r3, [rll, #-60]
int niccesses; static long x = 5;
char MNeme [17] » static char v = Ox04:
} Apeess = {14705, 0, "Sophie Marceau'}: const char *pText = "The rain in Spain®;
unsigned long 3: /7 loop counter (stack variable) Ox0000017c <main+3z>: ldr 3, [pc, #628] ; Ox3
unsigned long IdleCount = O: ff idle loop blink counter (Zx) O0x00000180 <main+3é>: str ri, [rll, #-5§]
int *p; // pointer to 3Z-bit word struct EntryLock {
typedef void (*FnPtr) (void) ; // create a "pointer to function" type longy Key:
FnPtr pFnPtr; // pointer to a function int nicoesses:
double ®5; /¢ wvarisble to test library function char Nawoe [17]
double y5 = -172.451; ff warisble to test library function } Access = {14705, 0, "Sophie Marcesu"}:
const char DigitBuffer([] = "18353": /f warisble to cest library function & 0Ox00000154 <main+40>: sub ri, ril, #108 : Ox6 =
L] | 3
Bl consdle %\[asks|Pro]ect Explorer|Memory| X% G it BE-r%-=0
demo_at31sam?_blink_flash [Embedded debug (Mative)] Ciworkspacetdemo_at?1sam?_blink_flashimain, out (4/21/07 12:39 PM)
regquesting target halt and executiny a soft reset
force hardware breakpoints enabled
0¥ Wiikable Smart Insert | 59: 1

is Start 3 : Wi -3 ug - main.c - Eclip,..

144

Eclipse Debugger Startup — J-Link GDB Server

& Debug - main.c - Eclipse Platform

File Edit Refactor Mavigate Search Project Run wWindow Help

gl Ci{Program Files\SEGGERY ILinkARM_Y368b LinkGDEServer. exe
£G demo_at31sam7 _blink_flash [Embedded debua (Native)]
=& Embedded GDE (4/21/07 12:31 PM) (Suspended)
{ B Thread [0] {Suspended)
~= 1 mainf} at C\workspaceldemo_atd1sam?_blink_Flashimain. c:53 0x0000016C
5 C:\Program Files\yagartalbinlarm-elf-gdb.exe (4/21/07 12:51 PM)
pﬁ Ciiworkspaceidemao_ato1sam7_blink_flashimain,out {4/21/07 12:31 PM)

- HO R iP-0- Q- @ E P E e £ %5 vebug | B cicer »
%‘FDebug 32 5 w{s‘ (-3 L 33D R % “ i ¥ T 0| variables 5 Registers|Modu\es| =0
E!-% J-Link GDE Server [Program] ® & & I =] <)=='=> =

script.ocd |L@ makefile (@ main.c &3 @ crks ‘ demo_at9isam?_bli... et = B[outline (Disassembly &3 =a
int main (void) A int wain (void) { i
0x0000015z <main:: mov riz, =p L4
/4 lots of variables for debugging practice 0x00000160 <main+d>: stmdb sp!, {r4, rill, riz,
int a, b, co; £F uninitis 0x00000164 <main+S>: sub rii, riz, #4 ; Oxg
char d; fF uninitis 0x000001668 <waint+lZ=: sub sp, sp, #11z ; Ox7
» int wo= 1 £ initial:
int k=2: /4 dinitial: /¢ lots of warisbles for debugging practice
static long x = 5; £ stacic ¢ int a, b, c:
static char v o= 0x04; A4 static char d;
const char *pText = "The rain in Spain”; A4 dinitial: int w o= 1;
struct Entrylock { £ initial: B 0x0000016c <main+l6s: mwow r3, #1 : 0Ox1
long Fey: b 0x00000170 <main+20>: str ri, [r1ll, #-64] 4
< > < \ >
Bl Consale &3 Tasks | Project Explnrer|Memory| x5 | Ex {;\'—E #BE-r5-=0

demo_at91sam?_blink_flash [Embedded debug (Mative)] C:iworkspace\dema_at31sam? _blink_flashimain.out (4/21/07 12:31 PM)

In both examples, Eclipse started the application and stopped at the main() entry point. Specifically, it
stopped on line 59 of the source file main.c.

If the Eclipse debugger doesn’t connect properly, then there will be a progress bar at the bottom right
status line that runs forever. In this case, terminate everything and power cycle the target board again.

145

Components of the DEBUG Perspective

Before operating the Eclipse debugger, let’s review the components of the Debug perspective.

& Debug - main.c - Eclipse Platform

File Edit Refactor Mavigate Search Project Run Window Help

Nmif oy : f-\:' 0'%' - B ALY i 5]] 6 ﬁ|#¢$Debug|%CIC++ »
% Detug 52 5% '<§" 1] 32 i+ ¥ = O||variables | ® Breakpaints £2 “._Registers | Madules =g
= % CpendCD [Program] % % R S e =) <'===€> -

g C\Program Filesiopenocd-2005

= dema_at91sam?_blink_flash [E
-6 Embedded GDE (3{24/06 9:
=-af? Thread [0] (Suspended) l Control

= 1 mainf) at Ciworks

g C\Program Fileshyagartoibi

Variable display
Breakpoint summary
Register display, etc.

himain.c:60 0x0000016C
PM)

@ main.c 2 @ crt.s @ blinker.c @ isrsupport.c @ lowlerelinit. c P = O || outline =0
~ int main (void) { A
."f."f e o o o o o o o o o o o Ox0000015c <mains>: o r12, =p
I HAIN 0x00000160 <main+ds: stmdk sp!, {ril, :
.".’.".’ ﬁﬂ‘ﬁﬁﬁﬁﬁﬁ1“ﬁﬁﬁ'ﬁﬁﬁﬂ‘ﬁﬁﬁﬁﬁﬁﬁﬁWﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁfﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁf Ox00000164 <main+S>: sub rll, rlZ, #
int wain (void) | Ox00000168 <main+l2>: sub ap, =p, H54
/¢ lots of variables for debugging practice /¢ lots of wariabhles for debugging p:
int a, b, c: /f uninitialized wvar: int a, b, c:
char d; 4 uninitialized war: char
» :!_nt w o= 1; I }m..t%al:.Lzed varj..al int Assembler
int k= // initialized wvariat .bxﬂDDDDch . #1 ; Ox
static long x : // static initialize oxoonoo17o J| Display [ri1, #
. _f| C Code Display o)
static char v = /¢ static initialize: int
unsigned long iz // loop counter (St Ox000001748 <main+24s>: mowv r3, #2 ; Ox
unsigned long Idldg // idle loop blink o« Ox00000178 <main+28»>: sStr r3, [ril, #
int p; /¢ pointer to 3Z-hic static long x E:
typedef void [(*FnPtr) (void) ; // create a "pointer static char v = 0Ox04;
FnPtr pFnFtr; f4 pointer to a funct un=signed long i:
const char *pText = "The rain in Spain®™; S¢ initialized strim unsigned long IdleCount = 0;
0Ox0000017c <main+3Z>: mov ri, #0 ; Ox
struct EntryLock § /4 initialized struetg Ox00000180 <main+3i6as>: sStr ri, [rii, #
LS | > < | >
Bl consale 52 . Tasks | C/C++ Projects | Memary ® % gl =#BE-r5-=0

dema_at91sam? _blink_flash [Embedded debug {Mative)] C:\Program Fileswagartoibinlarm-elf-gdb.exe (972406 9:21 PM)
[gdh)] regquesting target halt and executing & soft reset
force hardware breakpoints enabled

GDB Debugger

Command Window

B

While this may be obvious to most, you can expand to full screen and then
collapse any of the windows in the Debug perspective by clicking on the l
“maximize” and “minimize” buttons at the top right corner of each window.

Collapse Full Size

146

Debug Control

The Debug view should be on display at all times. It has the Run, Stop and Step buttons. The tree-
structured display shows what is running; in this case it's the OpenOCD utility and our application, shown

as Thread[0].
Clear Button
Run'tO'Main() and Stop Button Erases debug View
Resume Button. after Kill
Kill Button
Th|S Stops SW|tCh betWeen. C'
everything language stepping
and assembler
stepping
h $ » A Ty
%ﬁ Debug &3 [l X5 | DR i+ ¥ =08
: “epd CHProgram Files\GNUARMIbinopenocd . exe ~
EI---;_(; dermo_at?1sam?_blink_flash [Embedded debug launch]
=@ Embedded GDE (4/30/06 10:28 AM) (Suspended)
= m"‘iﬁ Thread [0] (Suspended)
= = 1 main{) at main,c:57
: o= 1 maint) ak main.ci57 Step Step Step
------ | Del:uugger Process (4)30/06 10:23 AM) Into Over Out —
w

Tree-view shows what's
running.

Notes:

e When you resume execution by clicking on the Resume/Continue button, many of the buttons
are “grayed out.” Click on “Thread[0]” to highlight it and the buttons will re-appear. This is due to
the possibility of multiple threads running simultaneously and you must choose which thread to
pause or step. In our ARM development system, we only have one thread.

e You can only set two breakpoints at a time when debugging FLASH. If you are stepping, it
behooves you to have no breakpoints set since Eclipse needs one of the hardware breakpoints

for single-stepping.

e If you re-compile your application, you must stop the debugger and OpenOCD or J-Link GDB
Server, re-build and burn the main.bin file into FLASH using the OpenOCD FLASH programming
facility or the Atmel SAM-BA flash programming utility.

147

Run and Stop with the Right-Click Menu

The easiest method of running is to employ the right-click menu. In the example below, the blue
arrowhead cursor indicates where the program is currently stopped - just after main().

To go to the pPIO->PIO_SODR = LED_MASK; statement several lines away, click on the line where you
want to go (this should highlight the line and place the cursor there).

Now rig ht click on that line. Notice that the rather large pop-up menu has a “Run to Line” option.

& Debug - main.c - Eclipse SDK.

File Edit Refactor Mavigate Search Project Run Window Help
Io-Balals-0-a-|d®s & -5 -m6-2- B | $s0ebug Fgcice+
%5 Debug 3 .2 rFooge «§“ | IDIRT | Ci T T O |00 variables 52 Braakpoints‘Expressions|Registers‘Signals| L[| | & o® & ¥ =0
; o . A - j = 64647 e
- & = -552311465
We were stopped here. N S
= 0= 1401614196
= e -d=. hd
L= 1 main) at main.ciS7
--.H Debugger Process (4/30§06 10128 AM) —
w
[£) main.c 2 . . . =g
Right-click next to bring up 2
o A s
int 91 H. <J Undo Chrl+2 thIS pop_up menu o)
int a,b, o I Revert File =t
char d; i Save =3b
' dbd int wo= 1; Iy =30
int k= 1: I Cut Chrli
static long x = & i Copy Chri+C int 3z
static char v = Ox04; i Paste Chrl+v int a,b,o
statie int z = 7 I R char d; |
const char *pText = "The Fain in Spain®; rh S !tng t int w=1
struct EntryLock { fh Shift Left » 0x00000118 <main+le>: mo
long key: Comment Ctrl+f 0x0000011e <main+20>: =t
int niccesses: Unicomment Chrl, int =1
char name[17] ; Add Block Comment Chrl+Shift+] Ox00000120 <main+24>: mo
} Aocess = {14705, 0, "Sophie Marceau™}; Remove Block Cormment Chrl+Shift+, Ox00000124 <main+id>: st
static long x =5
/f Initialize the Atmel ATI1SAMTSZS6 (watchdog, PL Content Assist Chri+Space Lati char vy =0
LowLevelInit(}: ’ Add Include 2 « A » int z =7
Format Click on “Run to line” to sher tpTex
/4 Zet up the LEDS (PAO - PA3) Show In C/C++ Projects execute to the clicked line. maintizr: 1d
// at boot, all peripherials are dissbled and all waint+d6>: St
AT91P3_PIO pPIO = AT91C_BASE FIOL: /{4 pointer Refactor EntryLock {
pPIC->PIO PER = LED_ MASE: /{ PIO Eng o Declarati kevy;
pPIO->PIO OER = LED_MASK; /4 PIO Outy pen ec.a.n.a on niccesses
» pPIO->PI0_SODR = LED_MASK: /¢ PIO Ser| Open Definition i /£ four L char name[17] ;
- - ;| Go ko next member ChrlShift4+Down /|y } hccess = {14705, O,
// endless loop to toggle the green LED DS1 G0 to previous member Chrl+Shift-+HUp 0x00000130 <main+40>: 1d
while (1) { All Declarations 4 0x00000134 <mwain+dds: su
for (91 = 0: 9 < 300000: 9++ 1: S wait &C All References 4 b 0x00000135 <main+dd>: mo™
< — > < | >
Tasks|Memory| . L &‘E*Q'—E|L'E'rﬁ'mﬁ
link_Flash [Embedded debug launch] Debugger Process {4/30/06 10:28 AM. . Resume At Line
Click on this line |* | Y add Watch Expression. .. ~
P | Runas vl
- thIS IS Where are assisted breakpoint 1 at Oxl118: file main
tt {1 &t wain.c:ST Debug As '
we wan . e
ewa 0 go int wo=1; Team i’ /f initialized varisble 3
T Compare ‘with 4 v
| Replace with 4
I 3 l Preferences...
Create Make Target...
Build Make Target...

When you click on the “Run to line” choice, the program will execute to the line the cursor resides on and
then stop (N.B. it will not execute the line).

148

(B mainc x =g
~
int i /¢ loop counter (stack variable) |
int a,b,o: /¢ uninitialized wvariables
char d: J¢4 uninitialized wariables
int wo= 1: J¢ dnitialized wvariskhle
int k= 1: f¢ dnitialized wvariahle
static long x = 5; /¢ static initialized wvariakhle
static char v = 0Ox04; /¢ static initialized wariakle
static int z = 7; /¢ static initialized variable
const char *pText = "The Rain in Spain'™; /¢ initialized string pointer
struct Entrylock { /¢ dnitialized structure wvarishle
long key:
int niccesses;
char narme[17] ;
} Aoccess = {14705, 0, "3ophie HMarceau™;):
£¢ Initialize the Atmel ATI1SAMT?IZSE (watchdog, PLL clock, default interrupts, =to.)
LowLewvelInit () ;
// Set up the LEDs (PAOD - PA3)
F4 at boot, all peripherials are disabled and all pins are inputs =
AT91P3 PIO pPIO = ATS1C_BASE PIOL; f4 pointer to PIO dats Structure
pPIO->FPIO PER = LED MASE: /¢ PIO Enable Register - allow PIO to control pins FO
pPIO->FPICQ OER = LED MASE; £/ PIO Output Enabl - - to o
» pPIC->PIO SODR = LED MASE; < s mere] \\e Stopped here ur L
// endless loop to toggle the green LED D31
while (1) { Note: this line WAS NOT
< for (4 = 0: F < 300000: A4+ 1: 44 wait 500 mzec executed! 5 A

You can right-click the “Resume at Line” choice to continue execution from that point. If there are no
other breakpoints set, then the Blink application will start blinking continuously.

Setting a Breakpoint

Setting a breakpoint is very simple; just double-click on the far left edge of the line. Double-clicking on the
same spot will remove it.

fF endlezz loop to toggle the green LED D31
while (1] {

for (3 = 0; j < 300000; J++); /4 wait 500 msec
o pPICO->PIC _CODR = LED1: /4 turn LED1 (D31} on
for (3 = 0; 3 < 300000; J++): A wait 500 msec
pPPIO->PIO_SODR = LED1: // turn LED1 (D31) off
- += 1 Double-Click in the left margin area | ...nt the nuwder of blinks

to set/clear breakpoints.

Note in the upper right “Breakpoint Summary” pane, the new breakpoint at line 82 has been indicated, as
shown below.

' "y
Yariables | ©@ Breakpoints 23 Expressiuns|Register5|5ignals| x® % & S m | = <}==*D | JE - = H
------ ¥l e ciedipseiworkspacetdemo_at91sam?_blink_flashimain.c [line: §2]

149

Now click on the “Run/Continue” button in the Debug view. DP

Assuming that this is the only breakpoint set, the program will execute to the breakpoint line and stop.

[main.c 2 =0

[»

J/ Set up the LEDs (PAO - PAL3)
f4 at boot, all peripherials are dissbled and all pins are inputs

ATS1PS FPIO pPIO = ATS1C EBASE PIOA; J¢ pointer to PIO data structure

pPIo->PIC PER = LED MASE: /¢ PIO Enable Fegister - allow PIO to control pins PO
pPIO->PIO OER = LED MASE: /¢ PIO Output Ensble Register - sets pins PO - P3 to o
pPIO—>PIO_SODR = LED_HASK; f4 PIO 3et (utput Data Register - turns off the four L

J/ endless loop to toggle the green LED D31

while (1} f Stops before
for (j = 0; j « 300000 j++): A4 wait 500 msec q
¥ pPIO->FIO_CODR = LED1; /¢ turn LED1 (DS1) on < gxecutlng this
for (i = 0; 3 < 300000; j++) /¢ wait 500 msec line.
pPIO->PIC 30DE = LED1: f4 turn LED1 (D31) off
k += 1: /¢ omount the number of blinks

Since this is a FLASH application and breakpoints are “hardware” breakpoints, you are limited to only
two breakpoints specified at a time. Setting more than two breakpoints will cause the debugger to
malfunction!

The breakpoints can be more complex. For example, to ignore the breakpoint 5 times and then
stop, right-click on the breakpoint symbol on the far left. &

This brings up the pop-up menu below; click on “Breakpoint Properties ...".

or TTS SATT =TT - ¢ turn LED1 (D31) on
Tl_:-ggle Breakpm!'lt 000: ++) /¢ wait 500 msec
Disable Breakpoint D1; /¢ turn LEDL (D31) off

Breakpoint Propert

RUR & S count the number of blinks
Debug As
Team
Compare With

Replace With

v v v w v

rupts (may be replaced later) *f

Add Bookmark. .
add Task, .,

w Show Quick Diff Chrl+3hift+o
Show Line Mumbers

Preferences. ..

Create Make Target. ..
Build Make Target...

150

In the “Properties for C/C++ breakpoint” window, set the Ignore Count to 5. This means that the
debugger will ignore the first five times it encounters the breakpoint and then stop.

& Properties for C/C++ breakpoint

| bype Filker bext j CoOmmon
Zommon . .
Filkering Type: CC++ line breakpoint

File: ciheclipselworkspaceldemo_at91sam?_blink_Flashimain.c
Line number: 82
Iv Enabled

Condition: |

Ignore count: | 5|

kK | Cancel

To test this setup, we must terminate and re-launch the debugger.

%5 Debug 53 -3 i wé‘?" T i= ¥ = O

= % Cpen2CD [Program]
g1 C\Program FileshGMUARMbinopenocd. exe
== demo_at91sam?_blink_flash [Embedded debug launch]
- ﬁ Embedded GDE (4)30/06 10:23 AM) (Suspended)
=l-f® Thread [0] {Suspended: Breakpoint hit.)
= 1 main{} at main.c:52
g Debugger Process (4)30/06 10:28 AM)

Get used to this sequence:

. — ¥ Kills both the OpenOCD and the debugger

" ~

) Erases the terminated processes in the tree
A

q —»| Start the OpenOCD; keep trying until it starts
properly.

application’s symbols

Launch the debugger and download the
—»

Db—P Start and run to main()

151

Now when you hit the Run/Continue button again, the program will blink 5 times and stop. Don’t expect
this feature to run in real-time. Each time the breakpoint is encountered the debugger will automatically
continue until the “ignore” count is reached. This involves quite a bit of debugger communication at a very
slow baud rate especially if you're using a “wiggler”. The “wiggler” works by bit-banging the PC’s parallel
LPT1 port; this limits the JTAG speed to less than 500 kHz.

In addition to specifying a “ignore” count, the breakpoint can be made conditional on an expression. The
general idea is that you set a breakpoint and then specify a conditional expression that must be met
before the debugger will stop on the specified source line.

In this example, there’s a line in the blink loop that increments a variable “IdleCount”. Double-click on that
line to set a breakpoint.

m\@ crt.s | @ blinker.c | @ isrsupport.c | @ lowileyvelinit.c | @ kimnersetup. | @ timerist.c L@ makefile i) =8
f4 endless bhackground blink loop =
S
while (1) {
if [(pPIO->PIO OD3E & LED1) == LED1) /¢ read prewvicus state of LED1
pPIO->PIO CODR = LED1: 44 turn LED1 (D31) on
else
pFIO->PIO_SODR = LED1: /4 turn LED1 (DS1) off
for {j = Z000000; j '= 0; j--);: Jf wait 1 second
v IdleCount++; J4 count # of times through the idle loop
pPIO->PIO S0DR = LED3; /4 turn LED3 (D33) off, in case FIQ turned it on
A4 uncomment following four lines to cause a data aborti(3 blink code)
FSAif (IdleCount = 10) { S/ let it blink & times then crash
A4 p o= [int *)0xS00000; 4/ this address doesn't exist
A4 fp o= 1234; // attempt to write data to invalid address
£
A unconment following four lines to cause a prefetch short (two blinks)
fAif (IdleCount == 10} | Jf let it blink 5 times then crash
£ pFnPtr = (FnPtr)OxS00000; J/ this address doesn't exist
f4 pFnPtri): S/ attempt to call a function at a illegal address
£
) B
' v

Right click on the breakpoint symbol and select “Breakpoint Properties”. In the Breakpoint Properties
window, set the condition text box to “IdleCount == 9”.

& Properties for C/C++ breakpoint

| tvpe filker kext | Common

Type: CJC++ line breakpaint
File: Ciyworkspaceldemo_at91sam?_blink_flashimain. c
Line nurber: 130

Enabled
Condition: | Idl>Count == |

Ignore count: | u] |

Ok][Cancel]

Q

152

If you need to restart the debugger, you need to kill the OpenOCD and the Debugger and then restart
both; as specified above. This is necessary for this release of CDT because the “Restart” button appears
inoperative. The advantage is that you don’t have to change the Eclipse perspective — just stay in the
Debug perspective.

Start the application and it will stop on the breakpoint line (this will take a long time, 9 seconds on my Dell
computer). If you park the cursor over the variable IdleCount after the program has suspended on the
breakpoint, it will display that the current value is 9.

@ main.c 4 @ crt.s | @ blinker.c | @ isrsupport.c | @ lowilevelinit. o | @ timersetup.c | @ timerist .o | L@ makefile | & =g

[>

while (1) £

if ((pPIO->PIO OD3E & LED1) == LED1) /4 read previous state of LED1
pPIO->PI0 CODR = LED1; /4 turn LED1 (DS1) on
else
pPIO->PIO SODR = LED1: /4 turn LED1 (D31} off
for (j = 2000000; 3 '= 0; j-——): ff wait 1 second
&; IdleCount++; f4 count # of times through the idle loop
M dleCount = 9.5 OPR = LED3; J4 turn LED3 (D33) off, in case FIQ turned it on

Jf uncomeent followving four lines to cause a data abort (3 blink code)

it (IdleCount >= 101 | /4 let it blink 5 times then crash

A4 p = [int *)0OxS00000: /¢4 thiz address doesn't exist

J4 Fp o= 1234; /4 attempt to write data to invalid address

£

Jf uncomment followving four lines to cause a prefetch sbort (two blinks)

fAif (IdleCount == 10) { Jf let it blink 5 times then crash

/4 pFnPtr = (FnPtr)OxS00000; /¢/ this address doesn't exist

/¢ pFnPrtri): /4 attempt to call a function at a illegal address
S

=]

If you specify that it should break when IdleCount == 50000, you will essentially wait forever. The way this
works, the debugger breaks on the selected source line every pass through that source line and then
queries via JTAG for the current value of the variable IdleCount. When IdleCount==50000, the debugger
will stop. Obviously, that requires a lot of serial communication at a very slow baud rate. Still, you may
find some use for this feature.

In the Breakpoint Summary view, you can see all the breakpoints you have created and the right-click
menu lets you change the properties, remove or disable any of the breakpoints, etc.

Single Stepping

Single-stepping is the single most useful feature in any debugging environment. The debug view has
three buttons to support this.

e -

Step Into Step Over Step Out Of

153

Step Into

If the cursor is at a function call, this will step into the function.
It will stop at the first instruction inside the function.

- -
If cursor is on any other line, this will execute one instruction.
Step Over
If the cursor is at a function call, this will step over the function. It will execute
@ the entire function and stop on the next instruction after the function call.
=
If cursor is on any other line, this will execute one instruction
Step Out Of
If the cursor is within a function, this will execute the remaining instructions in
W the function and stop on the next instruction after the function call.
- -
This button will be “grayed-out” if cursor is not within a function.

As a simple example, restart the debugger and set a breakpoint on the line that calls the LowLevellnit()
function. Hit the Start button to go to that breakpoint.

@ main.c &4 @ crt.s @ blinker.c @ isrsupport,c @ lowlervelinit, o @ timersetup.c @ timerisr,c L@ makefile i
typedef void (*FnPtr) (void) : Jf vreate a "pointer to function™ type
FnFtr pFnFPtr; S pointer to a function
const char *pText = "The rain in 3pain®™: S/ initialized string pointer wariable
struct EntryLock | S/ initiamlized structure wvariable

long Eev:
int niccesses;
char Neame [17] ;

1 hoeess = {14705, 0, "Sophie Marceau™):!

S Initialize the Atmel ATI1ISAMTIZS56 (watchdog, PLL clock, default interrupts, eto.)
F e e
®a LowLewvelInit ():

/4 Turn on the peripheral clock for TimerO
e e

// pointer to PMC data structure
rolatile ETQIPS_PHC pPHUC = ﬁTQlC_BRSE_PHC:

S/ enable Timer(D peripheral clock
pPMC-»PMC_FCER = [1<<ATS1C ID TCO);

Click the “Step Into” button % The debugger will enter the LowLevellnit() function.

154

3

(<

[main.c | (8] ert.s | [£] blinker.c | [€] isrsuppart.c (@ lovlevelinit.c &3 [£] timersetup.c | [£] timerisr.c | @ makefile 2 =0

A% Sbrief This function performs wery low level HW initialization
I this function can he use a Stack, depending the compilation
I optimization mode

[>

void LowlLevelInit (void)
{
int i:
» AT91P5_PHC pPMC = AT91C_EBASE PMC;

//% Set Flash Wait sate

// Single Cycle Aecess at Up to 30 MHz, or 40

47 Af MCE = 48054841 I have 50 Cycle for 1 usecond | flied MC_FHMR->FHCH
ATS1C_EBASE MC->MC_FME = ((AT91C_MC FHCHM) £{50 <<16)) | ATS1C_MC_FW3 1FW3;

4% Watchdoyg Disable
AT91C_BASE WDTC->WDTC_WDMR= ATS1C_WDTC_WDDIS:

Click the “Step Over” button @ The debugger will execute one instruction.
-

[£] main.c | 8] ertos | [€] blinker.c | [£] isrsupport.c lr@ lowlevelinit.c &2 [timersetup.c | [timerisr.c ||_@ makefile ! =0

L - —— - - —— —— e ~

void LowLevelInit (void)
{
int iz
ATS1PS_FMC pFPUC = ALT91C_BASE PMC:

S/F F3et Flash Wait sate

S Single Cycle Access at Up to 30 MHz, or 40

A if MCE = 435054541 I have 50 Cycle for 1 usecond [f£lied HC_FHR—>FHCN
» LT91C EBASE MC->MC FMR = ((AT91C NMC FHMCN) &£(50 <<16)) | AT9L1C NC FWS_1FUS:

SF7 Watchdog Disable
AT21C_BASE_WDTC->WDTC_WDHMR= AT21C_WDTC_WDDIS:

B4

Notice that the “Step Out Of” button is illuminated. Click the “Step Out Of” button GD
-

The debugger will execute the remaining instructions in LowLevellnit() and return to just after the function
call.

o

@ main.c &8 @ crt.s | @ blinker.c | @ istsupport.c | @ lawlewvelinit. | @ timersetup.c | @ tirmerisk . c | @ makefile 2

} Aoecess = {14705, 0, "Zophie Marceau™}:
ff Initialize the Atmel ATILISANTIZS6 (watchdog, PLL clock, default interrupts, etco.)

F B
-1 LowLevelInit i) ;

/f Turn on the peripheral clock for Timerd
He——_—_——————————————

/f pointer to PMC data structure
¥ wvolatile AT21PS FHC pPHC = AT21C BALSE PMC;

/4 enakhle TimerD peripheral clock

[

[

155

Inspecting and Modifying Variables

The simple way to inspect variables is to just park the cursor over the variable name in the source window;
the current value will pop up in a tiny text box. Execution must be stopped for this to work; either by
breakpoint or pause. In this operation, try to position the text cursor within the variable name.

int main (void)

int q: A4 loop counter (stack wvariahle)
int a,b,o; A4 uninitialized wvariables
char d: Af uninitialized wvariables
i:: E _ 1 :::: iiiz Text cursor is par‘l‘«?,d
static long x = 5: over the variable “z s
static char ?42_E5Qgi____—————______________?f_:i:: =
gtatic int =71 £ 3tad E:
const char t = "The Rain in Spain™; 44 dinitialized string pointer
struct EntrylLock { A4 initialized structure wariashle

long key; ‘k\\\\\\\\~ Current value

int nlhccesses; will pop up.

char name [17] :

Y Access = {14705, 0O, "Sophie Marceau™}:

For a structured variable, parking the cursor over the variable name will show the values of all the internal
component parts.

int wain (void) {

int j: f4 loop counter (stack variable)
int a,h,o; S uninitialized wvariahles
char d: L uninitialized wariahles
int w = 1: Text cursor |S parked initialized wariahle
int k= 1: over the variable initialized wariable
static long X = 5; “Access’ static initialized wariasble
static char v = 0Ox04; static initialized wariable
static int z = 7: tatic initialized wariasble
const char FpText = The Rain in Zpain®™: £ dinitialised string pointer
struct EntryLock { F4 dnitialized structure varishle
long key:
int CoESses;
char natoe[17]

i Acgess = {14705, 0O, "3ophie Marceau™!:;

|.ﬁ.ccess = {key = 14705, nAccesses = 0, name = "Sophie Marceau\l]l]l]\l]l]l]"}|
J¢ Initialize the Ltmel ATI1SAMTIZE56 (watchdog, PLL clock, defsult interrupta, eco.)

LowLewvelInit (),

£¢ ZSet up the LEDs (PLO - PA3)
f4 at boot, all peripherials are disabled and all pins are inputs

& AT91P3 PIO pPIO = ATS1C BASE PIoA; ff pointer to PIO data structure
pPIO->PI0 PER = LED HMASK: /4 PIO Enable Register - allow PIO to control
vPIC->PI2 CER = LED MAZK: A4 PIO Omtvut Enakble Register - sets vins PO -

Another way to look at the local variables is to inspect the “Variables” view. This will automatically display
all automatic variables in the current stack frame. It can also display any global variables that you choose.
For simple scalar variables, the value is printed next to the variable name.

156

If you click on a variable, its value appears in the summary area at the bottom. This is handy for a
structured variable or a pointer; wherein the debugger will expand the variable in the summary area.

Mreakpaints|Registers‘Madules| 4k B E"" # % =0

harne Walue L)
9= j] Click on the structured
9= IdleCaunt 1 variable to highlight it.

*r 0x547FbF18 The structure contents will
® pFnPtr Zecab display in the summary area.

» plext Q0000057

(B pccess {..}

» pPMC QFFFFFCO0

» pPIO QxFFFFF400

» pAIC OwfFFFFO00
B9 x 5
(= E

< | =

{Eey = 14705, nbccesses = 0, Name = "Sophie Marceauh0004%0007:

The Variables view can also expand structures. Just click on any “+” signs you see to expand the
structure and view its contents.

Mreakpoints|Registers|ModuIes| # B g"‘ & % v =0

Marne Yalue)
0= j]
(9= IdleCount 1
» D 0x547FbFLE
» pFnPtr OxbbZz2ecat
¥ pText 0000008 7c
B [access {0}
)= Key 14705
()= nAccesses a
= @ Mame
(b= Mame[0] =
(= Mame[1] o'
(=)= Mame[2] P
()= Mame[3] i
()= Mame[4] i)
()= Mame[5] ‘e
(= Mame[6] "
()= Mame[7] M
()= Mame[s] k)
()= Mame[9] '
(b= Mame[10] '
(= Mame[11] ‘g’ | |
()= Mame[12] ‘s’
()= Mame[13] '
()= Mame[14]
()= Mame[15]
(9= Mame[16]]
< >
{Key = 14705, nbkeccesses = 0, Nawe = "Sophie Marceau' 00040007}

Global variables have to be individually selected for display within the “Variables” view.

G
Use the “Add Global Variables” button o to open the selection dialog.

157

Check the variables you want to display and then click “OK” to add them to the Variables view,

& Selection Meeded |X|

Select Wariables:

blinkcount
Channel
FigiZount

El

OOREREEER

[Select All] [Deselect Al]
5] @) Cancel]
e

You can easily change the value of a variable at any time. Assuming that the debugger has stopped, click
on the variable you wish to change and right click. In the right-click menu, select “Change Value...” and
enter the new value into the pop-up window as shown below. In this example, we change the variable “c”
to 52. Resist the temptation to hit the “Enter” key on your keyboard to signal completion of the new value;
doing so will invalidate your entry. You must click the “OK” button to register your change.

—
B Mreakpuints ‘ Expressions ‘ Modules ‘ Reqisters | Signal
----- 4= j = 3301707
..... Gd=a=0
..... #:-b=0
..... ()=
_____ $d=d= Select all ChrH-A
----- (= W= |=) Copy variables ChrHC
""" 9= x =35] Enable
.....)=y =
[] Disable
]
x[] Display &s Array...
@k, Cast To Type.. = Set Value
Restore Criginal Type -
Find variable... T

hange Yalue. .. 52]

g"" Add Global Wariables. .
® remove Global Yariables
& Remove All Global Wariables

Format (04 I Cancel

Y watch

Lad

158

Now the “Variables” view should show the new value for the variable “c”. Note that it has been back
lighted to the color yellow to indicate that it has been changed.

@reakgjointshegisters|M0dules| ¥ |-‘->t'a| = 5“’" & & =

Mame Yalue 5]
A FigZount
[q
Gy
[
64 tickcount
4 blinkcount
)= a -643554006
)= 5
)= 52
)=
)=
)=

g

o= oooo

1

2
il |

=5 o0 o
|

|~
%

Watch Expressions

The “Expressions” view can display the results of expressions (any legal C Language expression). Since
it can pick any local or global variable, it forms the basis of a customizable variable display; showing only
the information you want.

For example, to display the 6" character of the name in the structured variable “Access”, bring up the
right-click menu and select “Add Watch Expression...”.
3._Resume At Line
*3¥ add watch Expression...
Run As 4

Enter the fully qualified name of the 6" character of the name[] array.

%" Add Watch Expression

Expression to watch:

I Arccess.name[&)

oK I Cancel

Note that it now appears in the “Expressions” view.

|'\.-'ariables‘Breakaints eyl Expressions X Madules‘Registers|5ignals‘ £l <+t | i & = =0

- é{? ||q||=D 109 'm'
=5 “channel”

T g

------ =3' “Access.name[6]" = 'm

You can type in very complicated expressions. Here we defined the expression (i + z)/h

Modules|Registers|5ignals‘ i- < | x % = E||

‘g'=0 5
7' "channel"

?’ "Access, namel6]" ='m'

- 2('_“' YMi+zyh'=5

|\.-'arial:ules|BreaI<puints o Expressions

159

Assembly Language Debugging

The Debug perspective includes an Assembly Language view.

If you click on the Instruction Stepping Mode toggle button in the Debug view, j_'=|'}

the assembly language window becomes active and the single-step buttons apply to the assembler
window. The single-step buttons will advance the program by a single assembler instruction. Note
that the “Disassembly” tab lights up when the assembler view has control.

Note that the debugger is currently stopped at the assembler line at address 0x0000150.

n) * =8
Ox00000148 <mwain+eds>: stmwia lr, {r0, rl, rzZ} L
// Initialize the Atmel ATI1ZAMTIZE56 (watchdog, PLL clock, defsult interrupts, etco.)
LowLevelInit();
Ox0000014e <maintedS>: kbl 0x260 <Lowlevellnits>
/¢ et up the LEDs (PAD — PA3)
ff at boot, all peripherials are dissbled and all pins are inputs
ATS1PS_PIO pPIC = AT91C_BASE FICA; /¢ pointer to PIO data structure __
» 0x00000150 <main+72:: mov ri, #-1610612736 ; Oxalo0oooo
0x00000154 <waint+76x: mov ri, ri, asr #19
0x00000158 <wain+80>: s=Str ri, [ril, #-18]
pPIO->PI0 PER = LED_MASK: /¢ PIO Enable Register - allow FIO to control pins PO - P3
Ox0000015c <maindSds: ldr rz, [rll, #-18]
0x00000160 <wain+SS>: mov r3, #15 ; Oxf
Ox00000164 <maind92:>: str ri, [rZ]
pPIO->PI0_OQER = LED MASE: f¢4 PIO Output Enable Register - sets pins FO - P3 to outputs

| €

0x00000168 <maint96>: ldr rz, [rill, #-1g]

If we click the “Step Over” button @ in the Debug view, the debugger will execute one
assembler line. -

Disassembly &3 =08
0x00000148 <wain+64>: stmia lr, {r0, rl, rZ} A
/f Initialize the Atmel ATI1SAMTIZEG (watchdog, PLL clock, default interrupts, etc.)
LowLewvelInit ()
O0x0000014e <maint+esS>: bl Oxz260 <LowlewvelInit:
/¢ Set up the LEDs (P40 - PA3)
/f at boot, all peripherials are disabled and all pins are inputs
AT91P3 PIO pPIO = ATS91C BASE PIOL; // pointer to PIO dats structure =
0x00000150 <main+7Zx: mowv r3, #-1610612736 ; Oxaloooooo
» 0x00000154 <wain+76>: mow r3i, r3, asr #19
0x00000158 <mwain+80>: sStr r3i, [rll, #-16]
pPICO->PIO PER = LED_MASE:; /f PID Ensble Register - allow PIO to control pins PO - P3
0x0000015c <mwain+Sds: 1ldr rz, [rll, #-16]
Ox00000160 <wain+88>: mow ri, #15 ; O=f
0x00000164 <waind+92>: sStr ri, [r2]
pPICO->PIO OER = LED_MASE: /f PIO Output Enable Register - sets pins PO - P3 to outputs

0x00000168 <wain+96x: ldr rz, [rll, #-16]

£

The “Step Into” and “Step Out Of’ buttons work in the same way as for C code.

Note: It pains the author greatly to report that the Eclipse 3.2 release has a bug wherein assembly
language breakpoints do not function. Monitor the chat boards to see when this is resolved. Truthfully,

you shouldn’t be programming in assembly language anyway!

160

Inspecting Registers

Unfortunately, parking the cursor over a register name (R3 e.g.) does not pop up its current value. For
that, you can refer to the “Registers” view.

(‘-.-'arial:ules|Breakpu:uints|Expressiu:uns||"-'1u:udules N Registers ¢ Signals| E' =t = ET
- B pain

Click on the “+” symbol next to Main and the registers will appear. The Atmel AT91SAM7S256 doesn’t
have any floating point registers so registers FO through FPS are not applicable.

\.-'arial:ules|Breal<pu:uints‘Expressinns ﬁﬁ’?ﬁ' Registers £ . Signals =g
i =

-3 Main
4010 0 = 30
A = 128
L ke
A0 e = 1510612736
bt v = -1
3 P =-1
i rE = -1
- dia F7 =-1

012 =225
1 sp = 3145340

If you don'’t like a particular register's numeric format, you can click to highlight it and then bring up the
right-click menu. You can, of course, drag the mouse cursor to highlight them all if desired.

161

Wariables | Breakpoints | Expressions

Signals

to<5 g~ = 0O

=5 Main
----- 18 v0 = 30
----- 010 = 125
----- e vz = 232
----- s = -161
----- e rd=-1
----- ata 5 =-1
----- dia 16 =-1
----- aiai 17 =-1
----- e e = -1
----- e e = -1
----- el =-1
----- 1 r11 = 3145416
----- vz =2e8
----- 10 sp = 3145340
----- 1000 |y = 336
----- ol pe =340
----- M Fo=0
----- it f1 =0

The “Format” option permits you to change the numeric format to hexadecimal, for example.

k] Enable
[Disable
®[] Display As Arrav..,

dh. Cask To Type...
Restore Original Twpe

Find Yariable. .. Chrl+F

ﬁ& Change Yalue. ..

add Register Group
Restore Defaulk Reqgister Groups

Format 4

Eﬂ' Watch

‘ariables | Ereakpaints | Expressions i

- Main
..... 1010 v = 30
----- Wil rl =128

..... 1000 2 = 237
1010

o101

1010
..... 1000 ra
1010 5

..... s

1
1
..... 108 = -1
1
1
1

00 7 =
..... 1007 = -

00 5 =
..... 1010 5 = -

..... 100 g =
..... e =-1
----- me ey = 514
----- 1010 17 = 225
----- 188 sp = 3145
----- 9 I = 336
----- it pe =340
----- e fo=0

..... eF =0

..... mefz=n

..... mef3=0n

..... e f4 =0

..... 109 f5 =)

..... e fE =0

..... e f7 =0

..... 108 fps =100

—1EinE177e s

Signals| x__j 24 =

b Enable

[7] Disable

*[] Display As Array...
""’u Cask To Type...

Restore Criginal Type
Find Variable. .. Chrl+F

a& Change Yalue. ..

Add Register Group

Restore Default Register Groups

Decimal
3(?“"' Watch -

----- 1048 cpsr = 536871135

Now R3 is displayed in hexadecimal.

. m
Yariables | Breakpoints | Expressions [

Signals

==l

(=B Main

..... 1010 v = 30
----- 1010 r1 =128
----- 1010 2 = 23z
..... lo1o g — 3
..... L |

----- a8 v = -1

W -

----- a9 r3 = OxFFFFFFFF0000000

162

Of course, the right click menu lets you change the value of any register. For example, to change r1 from
128 to 0x1F8, just select the register, right-click and select “Change Value...”

In the “Set Value” dialog box, enter the hexadecimal value 0x1F8 and click “OK” to accept.

& Set Yalue

Enter a new value for rl:

0:x1Fs]

oK I Cancel |

The register display now shows the new value for R1 (we also changed the display format to hexadecimal
using the right-click menu).

'-.-'ariables|BreaI<pu:|ints|E><pressiu:uns M\Signals| E =t [= =0

B3 Main

..... HH =30

----- 1l = 0x1fa

----- 008 rz = 232

----- 30 13 = OxFFFFFFFFa0000000
..... HH r4 = -1

..... HH 15 = -1

..... 'IMIJMJ te = -1

It goes without saying that you had better use this feature with great care! Make sure you know what you
are doing before tampering with the ARM registers.

Inspecting Memory

Viewing memory is a bit complex in Eclipse. First, the memory view is not part of the default debug launch
configuration. You can add it by clicking “Window — Show View — Memory” as shown below.

t Run Help
J (g 4 Mew Window . .
Mewve Editor
. = _© %| : i*v':'ﬁ\l\-'arie
. JpenN Perspective 3 |
. d & ant
sunch] Customize Perspective. .. Bg Breakpoints Alt+shift+3, B i
juspends Sawve Perspective As... E Cansale Ale4+3hiFt+Q, © -4
Reset Perspective
Debi
Close Perspective %5: shug
] Close all Perspectives Disassembly
Mavigation y|) Displary
— ; @ Error Log =
Preferences. ..
&' Expressions)
Bl i i e i i e e e i e i r'.'1Eg|'|'||:|r":..' Eq
.arations S
.'ﬂ‘ﬂ‘ﬁﬁﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘?ﬂMDdUIes lE
EE Outline s
118 Registers eq

163

The memory view appears with the “Console” view at the bottom of the Debug perspective. At this point,
nothing has been defined. Memory is displayed as one or more “memory monitors”. You can create a

memory monitor by clicking on the wr symbol. Enter the address 0x394 (address of the string “The Rain
in Spain”) in the dialog box and click “OK”.

Console | Tasks AR

x s ENEIENE

Mernory Monitors (4')2» % Memory Renderings 4 ¥

£ Monitor Memory

Enter address or expression to monitar:

(| 0x394) |
a4 I Cancel |

The memory monitor is created, although it defaults to 4-byte display mode. The display of the address
columns and the associated memory contents is called a “Rendering”.

The address 0x394 is called the Base Address; there’s a right-click menu option “Reset to Base
Address” that will automatically return you to this address if you scroll the memory display.

r[et [+t

i Memory X |§|ﬂ ’g ¥ =0

Console | Tasks

Mernory Monitors EEEE 4 & Memory Renderings EE
------ @ 0x394 0x394 ; 0x394 <Hex> |
iddress |0 - 3 |4 - - 5 - B C-F fa]

00000320 00000000 54 O S5261696E Z20696E20
00000340 53706169 GEQOOOO0 0z000300 0a0o0ooo00
000003ED0 05000000 10002000 46617374 63722074
000003C0 68616EZ0 61207370 65656469 GE6TEZ06E
00000300 7S6CECES 74000000 07000000 04000000
000003ED 05000000 45601743 OOFOZEFS 16491748
Q000O03F0 OOFOZEFE 10BCOSEC 15470000 QOCOFCFF
Qooo0400 00CZFCFF QOF1FFFF 40F4FFFF JICOFz000
00000410 OOFCFFFF OOFZFFFF 40420F00 013F4F00
00000420 013F2700 013F1400 O1BEF1400 013F0500
00000430 01BFOS00 OE3F4510 40FLFFFF 01040045
00000440 400303527 a40FZ000 OO0OFEFF aCOFZ000
00000450 000z 4540 B34A00z1 030402D5 40005040
00000460 0OOEO4000 01310904 oo04000c 090C0O829
Qo0oo0470 FaD37047 AC394L69 S207FCDE cepl17047
Q0000450 AA4SAD49 QOEQD138 44690207 0zD400z8
00000450 FSD105ED 00EE0300 S5690008 OO0E7D47
00000440 AS490120 4570FFz0 TO047F3IES OF1CO0Za8

%

There’s also a “Go to Address...” right-click menu option that will jump all over memory for you.

164

|
-

By right-clicking anywhere within the memory rendering (display area), you can select “Column Size
unit”.

Sl EIE

Console i e Yy
ermory Monitars =) & Memory Renderings =)
------ @ 0x394 0394 0x394 <Hexx |
iddress |0 - 3 |2 -7 & - B C-F ~

00000390 : 6E 20696EZ0
00000340 4 Add Rendering 00 06000000
000003 EOD 8 Remove Rendering 74 65722074

3= GESTE062
(] 04000000
13=] 16491748

ooooo3co 6E616
000003Dp0 . 756CE
O0O003ZED 05000
Qoooo3F0 00OF0z

0, Reset ko Base Address
Go ko Address..,

00000400 0OOC2F Sl }
units =

00000410 OOFCF Reformat G

00000420 O13F2 Hide Address Colurmn 8 units |

00000430 O1BFO o

00000440 40030 LE Copy Ta Clipboard . t““' ; it

00000450 00024 et as Defaul

(=) Print
0oooo460 OOEO4 ac 090Ccosz29
ooooo0470 Fa2D37 Properties oS CE617047
00000430 Aid45A949 O0EQD135 4AL69D207 o0zD400z28
00000420 FOD10SED Q0zs03D0 S8e9000e8 OO0E7047
00000440 A349012Z0 4370FFz0 TO047F3ES OFiCo0za

[€

This will repaint the memory rendering in Byte format as shown below.

i E3[ee [+

Blg~ =0

Consale | Tasks

Mermory Maonitors E % Memary Renderings E g
------ & 0x394 0394 @ 0x394 <Hex>
badress o |1 |2 [z [a [5 [s [7 & |a |a [8 [c [0 [z |F [~

ooooo03s0 m ao ao ao 54 1=} 65 Z0 52 61 =] GE Z0 =) GE z0
ooooo03 a0 53 7o 61 =) GE oo ao ao 0z ao 03 ao 0a ao ao ao
oooo03B0 OS5 ao ao ao 10 oo 20 ao 46 61 73 74 &5 Tz Z0 74
ooooo3co 68 61 &E 20 61 20 73 70 65 65 64 =] &E 67 20 62
Qoooozpo 75 eC ec 65 7a ulu] ao ao a7y oo oo oo 04 ulu] ulu] ulu]
Qoo0oo03ECD 05 uli] oo oo 45 18] 17 45 ao FO ZB Fa 16 49 17 45
Qoooa3Fo oo Fo ZE FE 10 BiC as EC 15 47 ao ano ano co Fi FF
ooooo400 oo CZ F FF ao Fi FF FF 40 F4 FF FF 3C aF Z0 ao
ooooo0410 0o FC FF FF ao Fz FF FF 40 4z aF ao o1 3F 4F ao
ooooo4z0 01 iF 27 ao o1 3F 1A ao o1 EF 1h ao o1 iF [ui=] ao
ooooo430 O1 BF [ui=] ao OE 3F 48 10 40 FD FF FF o1 04 ao AL
Qoooo440 40 03 0s 27 6 aF 20 ao oo oo FE FF ec oF 20 ulu]
aoooo4s0 0o oz 45 40 B3 45 ao 21 03 04 oz D5 40 uli] 50 40
aoooo4s0 Q0 EOQ 40 {ulu] o1l 31 as 04 ao 04 ao ac =] ac [ul=] =]
ooooo4vo F2 D3 wo 47 AC 49 44 3=} 92 av FC D5 Ca 61 wo 47
oooo0450 Ah 45 A=) 43 ao EOQ a1 38 45 =] Dz av 0z D4 ao Z8
ooooo490 F9 D1 as EOQ ao 28 a3z o =1=1 =] ao u) ao OE 7o 47
oooo004a0 A% 49 01 Z0 45 7o FF 20 70 47 Fi3 EBS aF 1c ao ZR

B3

The Eclipse memory display allows you to simply type new values into the displayed cells. Of course, this
example is in FLASH and that wouldn’t work. Memory displays in the RAM area can be edited.

Now we will add a second rendering that will display the memory monitor in ASCII.

Click on the “Toggle Split Pane” button to create a second rendering pane.

IT
EEE

Pick “ASCII" display for the new rendering.

165

Click on the “Add Rendering(s)” button to complete the specification of an additional ASCII memory
display.

Console | Tasks ﬂ g

Memary Manitars E & Memory Renderings & % Mermnory Renderings
& xast 0%394 ; 0%394 <Hex>] 0394 <0x3945]
aagress |0 [1 [z [s |4 s [s [7 [@&l] [Memorymanior: 0xaos <0xases
ooooosso Ell oo oo oo s4 e 65 2D Select rendering(s) to create:
00000340 53 70 61 63 6E 00 00 00 add Rendering(s) >
000003B0 05 00 00 00 10 00 20 00 _
000003CO 6% 61 GE 20 61 20 73 70 N{Signed In

Unsigred Integer
00o0o3Lo 75 6C 6C 65 74 00 00 OO0

000003ED 05 oo oo oo 45 60 17 45
0o0oo003Fo oo Fo ZE FE 10 BC 0s BC
goooo4o0o oo Ca FC FF oo F1 FF FF
ooooo410 oo FC FF FF oo Fz FF FF
ooooo4z0 01 3F 27 oo o1 3F 1 00
goooo4s3o 01 EBF o9 oo OE 3F 45 10
ooooo440 40 03 [uls} 27 64 oF z0 oo
ooooo4s0 Qo 0z 45 40 B3 4hr 00 21
goooo4s0 00 EO 40 oo o1 31 o9 04
00000470 F2 D3 7o 47 AC 49 44 63
oooo0o0430 AL 48 A9 49 oo EO o1 38
goooo4so F9 o1 o5 EO oo 28 03 o
< |

|

|2

Now we have an additional display of the hex values and the corresponding ASCII characters.

Click on the “Link Memory Rendering Panes” button. ‘?Q}
This means that scrolling one memory rendering will automatically scroll the other one in synchronism.
Click on the “Toggle Memory Monitors Pane” button. *‘E

This will expand the display erasing the “memory monitors” list on the left.

Console | Tasks H rej e o4 i % - = F

Memary Renderings 4 R Memory Renderings 4= %

0x394 : 0x394 <Hex>] 0394 © 0394 <ASCII>]

agaress |0 |1 [z [s |a [s5 [e [7 [8 |3 |.o/||scaress [0 |1 |z |3 |2 |5 |s |7 |8 o [a |[B [c |&
ooooosso EEll oo oo oo 54 es 65 20 s2 61 ooooozso I - r - T n e E a i n
DONOO340 53 270 61 63 BE 00D OO OO0 02 0D OpODOZAD S p & i on ¢ F r 7 F Y 1 -
DONOO3B0 05 OO0 OO 00 10 00 20 00 46 61 opooosEo | ¢ o or + ot r F a s t© e
DOnO03C0 &8 61 GE 20 61 20 73 70 65 65 000003CO0 h a n a s p e e d i n
DO0O03D0 75 &C 6C 65 74 00D OO 00 07 00 OpOOOZD0 w1 1 e t o fp r ® p p A
DODOO3ED 05 00 OO 00 48 &0 17 48 00 FO opooozEo | - o or BH O {4 H O & + a T
DONOO3FOD 00 FO 2B FB 10 BC 08 BC 18 47 opoooEFD ¢ & 9+ a o+ w P w T & r o r
pDonOO400 00 €2 O FC FF 00 F1 FF FF 40 F4 opooo4oo ¢ A o4 % ¢ BO% % OB & % ¥ <
0oO000410 00 FC O FF FF 00 F2 FF FF 40 42 ooooo40 ¢ W ¥ ¥ o & ¥ % B B ¥ o r
ooooo4zo 01 3F 0 27 00 01 3F 1& 00 01 BF ooooo4zo 0?2 ' ¢ o 0?0+ o 1 ¢ -+ r
oo000430 01 BF O 09 00 OE 3F 48 10 40 FD 00000430 ¢ r B * ®H + ® ¥ ¥ ¥ r
oO0O0440 40 03 0O 27 64 OF 20 00 00 OO ooooo440 B @ A # roor oo ounoF 1
0O0O0450 00 02 45 40 B3 4 00 21 03 04 opooo4s0 ¢ 7 H OB 1 o o+ L4 4 &
DO0OO460 00 ED 40 00 01 31 09 04 00 04 opoDo4e60 ¢ &4 B o 1 S
DonooO470 F2 D3 Y0 47 AC 49 4h 89 92 07 ooooo470 6 6 p G - I d i « i & E
DO0O0480 AER 45 A9 49 00 ED 01 38 4h 69 ODoDo4s0 * H @ I ;& 8 J i & e 4
ooooD4so F9 D1 0S5 ED OO0 28 03 DO BB 89 ¥ opopo4so o B | a ¢ ¢ L oBp - i - [w

3 | ¥ < | »

Admittedly, this Eclipse memory display is a bit complex. However, it allows you to define many “memory
monitors” and clicking on any one of them pops up the renderings instantly. It's like so many things in life,
once you learn how to do it; it seems easy!

166

Create an Eclipse Project to Run in RAM

There are two reasons to run an application entirely within onboard RAM memory; to gain a speed
advantage and to be able to set an unlimited number of software breakpoints.

Execution within RAM is about two times faster than execution within FLASH memory. Many
programmers will just copy the routines that need the increased execution speed from FLASH to RAM at
run-time and thenceforth call the routines resident in RAM. This is not the subject of this tutorial so we will
not address this idea any further.

In the FLASH example shown previously, the OpenOCD and J-Link GDB Server utilities permitted the
Eclipse debugger to use the two on-chip breakpoint units; thus allowing a breakpoint to be set in FLASH.
This limits us to just two breakpoints. Note also that the OpenOCD and J-Link setup converted every
Eclipse breakpoint specification into a hardware-assisted breakpoint. This works great but there may be
occasions where the two-breakpoint limit is not satisfactory.

Creating an Eclipse project that runs entirely out of on-chip RAM is simple if a bit counter-intuitive. We use
the Linker command script to place the code (.text), initialized variables (.data) and uninitialized variables
(.bss) all into FLASH at address 0x00000000. When the debugger starts up, we toggle the MC Memory
Remap Control Register to place the RAM memory at address 0x000000. We then use our JTAG
hardware interface to load the main.out file (containing the executable code) into RAM now at address
0x00000000 and away we go! It's almost as if Flash memory has become read/write.

With this approach, we get an unlimited number of software breakpoints and can use the JTAG debugger
interface to download the code (we don’t have to use the OpenOCD or SAM-BA flash programming
facility). The disadvantage, of course, is that the application is limited to 64 Kbytes.

Close the current Eclipse project using the “Project” pull-down menu and then selecting “Close Project”.

Click on “File — New — Standard Make C Project” as shown below.

& C/C++ - Eclipse Platform

AlctShift+r F S T -

& Standard Make © Project

Conwverk to a CfC++ Make Project
Managed Make C Project
Standard Make C++ Project
Managed Make C++ Project

&% source Folder

% Folder

I£<|> Source File

[K] Header File

[File
Corrvett Line Delimiters To 4 @ Class

% Gther. ..

Switch Workspace. ..

£ Import. ..
£ Export...

1 demo_at91sam?_blink_ram.crmd [demo_a...]
2 main.map [demo_at91sam7_blink_ram]

3 main.dmp [demo_ak91sam? _blink_ram]

4 main.c [demo_ak91sam? _blink_ram]

Exit 167

Give the new project the name “demo_at91sam7_blink_ram” and click “Finish”.

& New Project

C/Make Project
Create a Mew C Project using 'make’ to build it

Project name: | dema_at91sam7_blink_ram|

Project contents
¥ Use default

Directary: | ciheclipseiworkspaceidemo_ak91sam7?_blink_ram Browse, ,, |

—

< Back | Mexk = G Finish) Cancel |

‘v

Now we have a project that has no files.

& C/C++ - Eclipse SDK

File Edit Refactor Mavigate Search Project Run ‘Window Help

|- |& et -8 - - [%-0-Q%-|®F [~ B Fsoebug |E@CicH
= E m))1 = E

-

An outline is not
available,

Problems | B Console 52 Prnperties‘Search| e | E" 5@ | =EB-r4-=0
OpenCOCD [Program] C:\Program Files\GNUARMIbinlopenocd. exe

l Jdema_at91sam7 _blink_ram

Now import the source files from the c:\download\atmel_tutorial_source\demo_at91sam7_blink_ram\ folder for
the project demo_at91sam7_blink_ram using the techniques learned earlier.

Only two files are different from the previous FLASH version:

demo_at91sam7_blink_ram.cmd - This file is different in that all code and variables are linked and
loaded into address 0x00000000.

makefile.mak - this file references the file above (demo_at91sam7_blink_ram.cmd) so there are some
minor edits therein.

All other files are exactly the same as the FLASH example.

168

Now we have a project with the proper files imported.

& C/C++ - main.c - Eclipse Platform

File Edit Refactor Mavigate Search Project Run Window Help
iMrlel @i s -G 0-G @Y R F b Ef % Debug B cict+ | i
Hg cic++ Proj... 52 Navigat0r| =0 m = O|(5= cutline 2 =0
3 E q)(“; el ll."ll." ﬂ‘ﬁﬂ‘*ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁ#*t*t***ﬁt***ﬁﬂ.‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘*#ﬁt*t***ﬁ******tﬁ**ﬁﬁ#*tﬁ***ﬁﬁ******'.2 laz ﬁ ‘05 o =
P 2T demo_ata1sam7_blink_Flash ‘o maimes o W &I ara1samyszss.h
ERES demao_at91sam?_blink_ram i i . board.h
. i Demonstration program for Atmel ATI1SAM7S256-EE Evaluation Bosrd
& Archives math.h
(2 Inchudes ‘o))) - stdlib.h
- [B) AT915AM7S256.h ii 21?“:3 EEES tpin iig’ with an_endSE?S loop 2oo string.h
@ (B oardh i v : SUL ;ii; ; u51ngF;1m§r e ruen mizgzraiél Piz Tmerhtander
E]---@ math.h sx:lt,c . [abl tr;gge;sb o] 1nt,erru1?t,, turns on [Pin 1 FigHandler
& [stdib.b i plenty of wvari ez for debugger practice LowLevellnit
- [B] string.h i . TimerSetup
- [blinker.c /¢ Author: James P Lynch April 15, Z0O7 enableIRG
."f."f e e e i e e e e e e e e e e i e e e e e e e e i e e e e i
[]...@ crt.s enableFIQ
E]---@ isrsupport.c FigCount
E]---@lowleve"nitc .'"’."" ol o o o o ol o o o o e ol o o o ol ol o o o o q
&[] main.c ' I Header Files .
E] @t I_ .'"’."" ol o o o o ol o o o o e ol o o o ol ol o o o o
imetist . H
[:l"'@ bimersstup.c #include "ATS1SAMTIZS6.h" m
w2 libe.a #include "board.h" n
o ! i rr- r
EJ---@: libgec.a #?nclude math.. h a
&-F libm.a #include "stdlib.h" camms
o ! i " 3 L
demo_at?1sam? _blink_ram,cmd #include "string.h Channel
..... [& makefile - @ main
B N tocd .'"’."" ol o o o o ol o o o o e ol o o o ol ol o o o o
=| script.
= = I Function Frototypes
ll."ll." ol o o o o ol o o o o e ol o o o ol ol o o o o
roid TimerOIrgHandler (void): W
o —
Problems | B Console 2 Properties S Bl BE-r5-=0
C-Build [demo_at91sam? _blink_ram]
o® | wiritable | Smart Insert | 139:1

Only two files have changes and they are shown below. The few things that have been changed for RAM
execution are colored in blue.

DEMO_AT91SAM7_BLINK_RAM.CMD

/* 3K 5K 3K >k >k 3k 3k 5K 5K K >k >k 3k 5K 5K 5K K >k 3k 3k 5K 5K 5K >k >k 3k 3k 5K 5K K %k >k 3k 5K 5K 5K >k >k 3k 3k 5K 5K >k >k >k 3k 3k 5K 5K >k >k >k 3k 5K 5K 5K >k >k 3k 3k 5K 5K 5K >k >k 3k 3k 5K 5K >k %k >k 3k 5K 5K 5K K >k >k 3k 5K 5K 5K %k >k 5k 3k 5K 5K K %k >k %k 3K 5K K K *k %k k kK X */
/* demo_at91sam7_blink_ram.cmd LINKER SCRIPT */
/i Y
/* i
/* The Linker Script defines how the code and data emitted by the GNU C compiler and assembler are &
/* to be loaded into memory (code goes into RAM, variables go into RAM). =i
A i
/* Any symbols defined in the Linker Script are automatically global and available to the rest of the &
7= program. &
7 iy
/* To force the linker to use this LINKER SCRIPT, just add the -T demo_at9lsam7_blink_ram.cmd &
7= directive to the linker flags in the makefile. For example, */
/*]
/* LFLAGS = -Map main.map -nostartfiles -T demo_at91sam7_blink_ram.cmd i
7 v
7+ */
/= The order that the object files are listed in the makefile determines what .text section is &7
/* placed first. */
e Y
/* For example: $(LD) $(LFLAGS) -o main.out crt.o main.o lowlevelinit.o */
7 /A
Vs crt.o is first in the list of objects, so it will be placed at address 0x00000000 &
7 i/
a Y
/* The top of the stack (stack end) is (last byte of ram +1) - 4 &
/* */
/* Therefore: _stack_end = (0x0000FFFF + 1) - 4 = 0x00010000 - 4 = 0x0000FFFC 7
7 */

169

/* Note that this symbol (stack end) is automatically GLOBAL and will be used by the crt.s */
/* startup assembler routine to specify all stacks for the various ARM modes */
/* i
[MEMORY MAP “)
7 | [=/
/% ,somcasas Sf|coccsscascastozasaote aoscacacone | 0x00010000 */
/3 . | |0x0000FFFC <---------- _stack_end &
/& 3 | UDF Stack 16 bytes | 7/
/* o | | *7
ek o [=mmmmm e | 0x0000FFEC */
/* o | | */
/* . | ABT Stack 16 bytes | */
7 o | | &/
] o [-mmmmm - | ©x0000FFDC */
/* o | |)
/e . | [i
/* . | FIQ Stack 128 bytes | */
7 | [*/
[* . | | Y
7= 3 [=mmmm | 0x0000FF5C &/
/* d | | k4
7% 0 | | >
/X . | IRQ Stack 128 bytes | */
7 [[Y
[* s | | i/
7 o [-mmm e | 9x0000FEDC 2/
7 . | | g/
/* . | SVC Stack 16 bytes | e/
7 . | | Y
/% X |ocoalsosanaac sanaancadoocaacansas | ©x0000FECC */
1/ . | | Y
/* | stack area for user program | */
/* | | */
/* | | */
7 | | */
i | | */
Ve | [Y
/& | | */
] | [Y
/* . | free ram | */
7 ram | | */
/* . | | &/
7 o | | R/
/* . e o WU TUSE O SR |0x00001398 <---------- _bss_end */
7= o | | */
/* d | .bss uninitialized variables | Y
/* " ki o o CII: o o BESNENIIN d o oo oSk o |0x00001380 <---------- _bss start, edata &5
e . | | */
/* . | .data initialized variables | */
/* . | | */
/% : |ocooseacoszacaastanaaEgaat aaeaanas | 0X0000OF3C <-------=--- _etext */
17 | | Y
7% | [&/
7 . | [i)
/* . | C code | 7
/* : | | K
/4 | | /|
/* ; | | i
/* : locasecocaomacaansatsaosaanos 2 aas |0x0000015C main() */
7 | [&/
/* ; | Startup Code (crt.s) | 53/
1/ g | (assembler) | &
/* . | | &7
/% ; Jecoocancasaasaasnassamaacscoanaas | 0x00000020 */
/* . | | ¥y
/*) | Interrupt Vector Table | */
/* : | 32 bytes |]
(/7 R > e |0x00000000 vec reset &Y/
7 Y
Vs &/
/* Author: James P. Lynch May 12, 2007]
7+ */

R L e L L LR

/* identify the Entry Point (vec reset is defined in file crt.s) */
ENTRY(_vec reset)

/* specify the AT91SAM7S256 memory areas */

MEMORY
flash : ORIGIN = 0, LENGTH = 256K /* FLASH EPROM &
ram : ORIGIN = 0x00200000, LENGTH = 64K /* static RAM area*/

/* define a global symbol stack end (see analysis in annotation above) */
_stack_end = OxFFFC;

170

/* now define the output sections */
SECTIONS
{

. =0; /* set location counter to address zero */

.text /* collect all sections that should go into FLASH after startup */
(.text) / all .text sections (code) */

(.rodata) / all .rodata sections (constants, strings, etc.) */
(.rodata) /* all .rodata* sections (constants, strings, etc.) */

(.qglue 7) / all .glue 7 sections (no idea what these are) */

(.glue_7t) / all .glue 7t sections (no idea what these are) */

_etext = .; /* define a global symbol etext just after the last code byte */

} >ram /* put all the above into RAM */

.data : /* collect all initialized .data sections that go into RAM */
_data = .; /* create a global symbol marking the start of the .data section */
(.data) / all .data sections */

_edata = .; /* define a global symbol marking the end of the .data section */

} >ram /* put all the above into RAM */

.bss : /* collect all uninitialized .bss sections that go into RAM */

{

_bss start = .; /* define a global symbol marking the start of the .bss section */
(.bss) / all .bss sections */

} >ram /* put all the above in RAM (it will be cleared in the startup code */

. = ALIGN(4); /* advance location counter to the next 32-bit boundary */

_bss end = . ; /* define a global symbol marking the end of the .bss section */

}
~end = .; /* define a global symbol marking the end of application RAM */

MAKEFILE.MAK

3k 3k 5K 5K >k >k 3k 3k 5K 5K K >k >k 3k 5K 5K 5K K >k 3k 3k 5K 5K 5K >k >k 3k 3k 5K 5K K %k %k 3k 5K 5K 5K >k >k 3k 3k 5K 5K >k >k >k %k 3k 5K 5K >k >k >k %k 5k 5K >k K >k %k kK k.
Faet Makefile for Atmel AT91SAM75256 - ram execution &
* *
* *
* James P Lynch May 12, 2007 *
FE KRR A KA KA KKK KKK KK KKK KKK KoK KoK K KK K KoK KoK oK oK oK oK K KKK KoK ok ok ok ok ok ok

NAME = demo_at9lsam7_blink_ram

variables

cc = arm-elf-gcc

LD = arm-elf-1d -v

AR = arm-elf-ar

AS = arm-elf-as

cpP = arm-elf-objcopy

oD = arm-elf-objdump

CFLAGS = -I./ -c -fno-common -00 -g

AFLAGS = -ahls -mapcs-32 -0 crt.o

LFLAGS = -Map main.map -Tdemo_at91lsam7_blink_ram.cmd
CPFLAGS = --output-target=binary

ODFLAGS = -x --syms

OBJECTS = crt.o main.o timerisr.o timersetup.o isrsupport.o lowlevelinit.o blinker.o

make target called by Eclipse (Project -> Clean ...)
clean:
-rm $(OBJECTS) crt.lst main.lst main.out main.bin main.hex main.map main.dmp

#make target called by Eclipse (Project -> Build Project)
all: main.out

@ echo "...copying"

$(CP) $(CPFLAGS) main.out main.bin

$(0D) $(ODFLAGS) main.out > main.dmp

171

main.out: $(OBJECTS) demo_at9lsam7_blink_ram.cmd
@ echo "..linking"
$(LD) $(LFLAGS) -o main.out $(OBJECTS) libc.a 1libm.a libgcc.a

crt.o: crt.s
@ echo ".assembling"
$(AS) $(AFLAGS) crt.s > crt.lst

main.o: main.c
@ echo ".compiling"
$(CC) $(CFLAGS) main.c

timerisr.o: timerisr.c
@ echo ".compiling"
$(CC) $(CFLAGS) timerisr.c

lowlevelinit.o: lowlevelinit.c
@ echo ".compiling"
$(CC) $(CFLAGS) lowlevelinit.c

timersetup.o: timersetup.c
@ echo ".compiling"
$(CC) $(CFLAGS) timersetup.c

isrsupport.o: isrsupport.c
@ echo ".compiling"
$(CC) $(CFLAGS) isrsupport.c

blinker.o: blinker.c
@ echo ".compiling"
$(CC) $(CFLAGS) blinker.c

Build the RAM Project

Using the “Build All” button, build the new RAM Project.

lipse Platform

File Edit Refactor Mavigate Search Project Run Window Help
»

=k @@ B0 R PG e B 4 oot (Bcic |
%CIC++ Proj... i Mavigator | = O [[€] main.c 22 =0 EE Outline &2 =g
2| B~] wwwwwwwwwwwxfﬁxfﬂrfﬂrfﬂrfﬂrfﬂrfﬂfﬁxxxxxxxxxxxxxx1(1(1(1(1111111771111111111111#:J_; AR e ¥
12 dema_at91sam?_blink_flash o wRLRE - aro15am7szse A
=125 demo_at31sam?_blink_ram o S board.h
o Binatles I Demonstration program for Atmel ATS913AMTSEZ56-EK Evaluation EBoard [1] math.h
£ archives 4 = stdibb =
glndudes I blinks LEDO (pin PAD) with an endless loop [T} string.h
@ ATO1SAM7SI56.h I hlinks LEDI1 (pin PA1l) using timer0 interrupt (200 m3ec rate) = TimarﬁlruHandIe
A Boardh I switch SW1 (PA19) triggers FIQ interrupt, turns on LEDZ (Pin PA2) 'H FicHandier
. I plenty of wvarisbles for debugger practice : .
m mat.h.h vy v 'H LowLevelInit v
&[] stdib.h f1] > < | ¥
string.h — — — —
blirker.c Problems Properties @ G| F5-=0

crt.s i_-Build [dema_at91sam7_blink_ram]
isrsupport.c mwake -k all
lawlevelinit.c .assenbling
main. c arw-elf-as -ahls -mapcs-32 -0 CEL.O CKL.S > CFL, lsSt
timerist.c coomwpiling
timersetup.c arm-elf-gee -I./ -c -fno-common -0O0 -g main.c
blinker.o - [armle] coowpiling
k.o - [armie] arw—elf-gee -1./ -c -fno-common -00 —-g timerisr.c
isrsuppart.o - [armle] .compiling
lowlevelinit.o - [armle] arw-elf-goe -I1./ -¢ -fno-common -0Q0 —-g timersetup.c
main. o - [armleg] coowpiling
f}‘main‘ﬂut-[arm\e] arm-elf-gee -I./ -c -fno-common -00 -g isrsupport.c
timerisr.o - [armle] coowpiling
timersetup.o - [armla] arw-elf-goe -1,/ -o -fno-common -00 —g lowlewvelinit.o
ﬁ; libc.a ccompiling
ﬁ:libgcc‘a arw-elf-goe -I./ -¢ -fno-common -O0 -g blinker.c
F, tbm.a .. linking
= crtulst arm-elf-1d -v -Map main.map -Tdemo_at3isam? blink ram.cwd -0 main.out crt.o main.o timerisr.o
demn_athsam?_hlink_ram.tmd timersetup.o isrsupport.o lowlevelinit.o blinker.o libc.a libm.a libgec.a
= main, bin GNU 1ld wversion 2.17
\=l main,dmp .. .copying
= main.map arm-elf-objcopy --output-target=hinary main.out main.bin
L@ makefile arm-elf-chjdump -x --3ymws main.out > mwain.dwmp
= script.ocd

In this version, we will be using the “main.out” file to download the executable into RAM via the JTAG.

172

Debugging the RAM Application

Debugging an application loaded entirely into RAM is very similar to debugging in Flash. The advantage
is that you have an unlimited number of software breakpoints and the application is automatically loaded
into RAM at debugger startup.

Create an Embedded Debug Launch Configuration for RAM

A separate Debug Launch Configuration is appropriate since the debugger startup script will be different
and the downloading of executable code into RAM will be performed by the JTAG hardware interface.

Click on “Run” followed by “Debug...".

indow Help

E % Run Last Launched Chrl+F11 L

®, Debug Last Launched F11
i iy
E Run History L4 J_
1 PRunés LT
[Run... Lt
q Diebug History 4

3

@ External Tools 4

[S

When the Debug “Create, manage, and run configurations” screen appears, click on “Embedded debug
(Native)” followed by the “New” button.

Create, manage, and run configurations

B .
_... _E| 1K Configure launch settings From this dialog:
| tpe Filter text I_‘I’ - Press the 'Mew' bukton to create a configuration of the selected tvpe,

5 E C}iZ++ Attach to Local Applicatior
[&] Cjc++ Lacal Application
: [£] cjc++ Pastmartem debugger

- Press the 'Duplicate’ button to copy the selected configuration,

- Press the 'Delete’ button to remove the selected configuration,

ko i

Embiadded debl - Press the 'Fileer' button to configure filkering options,

+ 3G demo_at91sam?_|

- Edit or view an existing configuration by selecting it.

Configure launch perspective settings From the Perspectives preference page.

173

A new and empty “Embedded debug launch” configuration screen will appear. Under the “Main” tab, fill
out the new configuration screen as shown below. Once again, | selected the project name
“‘demo_at91sam7_blink_ram” as the debug launch configuration name. Use the “Browse” buttons to find
the project and the C/C++ Application file as shown below.

Create, manage, and run configurations

e — P \
B B Z-
DEX BS5 Name:" demao_at91sam?_blink_ram I
tvpe filker text = ’ -
| | Debuager | Bl Commands | B Source | B commen |
~[&] CJC++ Atkach ko Local Application)
E ClC++ Local Application Project:
: E CJC4++ Postmortem debugger N
; Embedded debug (Cygwing | dermo_st91sam?_blink_ram I | [Browse, ..]
Embedded debug {Mative) C/C++ Application:
+- 5 demo_at91sam?_blink_flash | ey | [5 e] ’ m]
Fo main. ou earch Project... rOMSE, .
~-FG demo_atd1sam?_blink_ram J ! K =
Apply Rewert
@ [Debug] [Close J

Under the “Debugger” tab, fill out the screen as shown below. Note that we checked the “Stop on startup
at:” check box so that the debugger will stop at the entry point of main().

Also use the “Browse” button to find the GDB debugger (it is the file: c:\Program Files\yagarto\bin\arm-
elf-gdb.exe).

& Debug

Create, manage, and run configurations

[a [Main]: Project must be opened l

CEX 05"

Marne: | demo_at91sam? _blink_ram |

| tvpe filkar text |

' Main 7] Commandsl IEg‘// Source! =] gommonl |

€] C)C++ Attach ta Local Application
€] CiCH+ Lacal Application Debugger: |Embedded GDE [stop on startup at:
: [€] ¢jc++ Postmartem debugger
: ; Embedded debug {Cygwin) Debugger Options

5¢ Embedded debug (Mative) Main
=53 demo_at91sam?_blink_Flash
¢ demo_at91sam7_blink_ram GDE debugger: | C:\Program Files|vagartobiniarm-elf-gdb . exe | [Browse. ..]

GDE command file: | |[Bromwse, .,]

{\Warning: Some commands in this file may inkerfere with the startup operation of the debugger, for
example "run'.)

GDE command set: |Standard %

Protocal: mi W

[Jverbose console mode:

[Apply H Revert]

@ Debug Close

174

Now select the “Comands” tab as shown below.

If you are using OpenOCD, enter the single GDB command “target remote localhost:3333” in the
“Initialize commands” text window exactly as shown below. This command tells the GDB debugger to emit

commands in RSP format to the TCP port “localhost:3333” (the port OpenOCD will be listening to).

'Tnitialize’ commands

target remote localhost:3333

If you are using OpenOCD, enter the following GDB and OpenOCD commands into the “Run commands”
text window, exactly as shown below. The “Source” and “Common” tabs can be left in their default state.

'Run' commands

monitor soft_reset_halt

monitor armv4_5 core_state arm

monitor mww Oxffffff60 0x00320100
monitor mww Oxfffffd44 0xa0008000
monitor mww Oxfffffc20 0xa0000601
monitor wait 100

monitor mww Oxfffffc2c 0x00480a0e
monitor wait 200

monitor mww Oxfffffc30 0x7

monitor wait 100

monitor mww Oxfffffdo8 0xa5000401

set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
monitor mww Oxfffffdoo 0xa5000004
monitor mww Oxffffffoe 0x0l

monitor reg pc 0x00000000

monitor arm7_9 sw_bkpts enable

load

continue

(3

£ |

Below is the Debug Launch Configuration “Commands” tab for use with OpenOCD and flash execution.
Note that the ‘Run’ commands window below only shows a portion of the commands that were entered.

Be sure to enter all the commands as shown above.

The “Source” and “Common” tabs can be left in their default condition. Click on “Close” to complete

definition of the Debug Launch Configuration for flash debugging with OpenOCD.

Author’s Note: GDB manual states “Any text from a # to the end of a line is a comment; it does

these comments so they have been left out of all debug windows.

nothing”. Unfortunately, I've noted that these systems get tripped up occasionally by

175

& Debug

Create, manage, and run configurations

e = = 4 . '
.I_IGEIu = 5 |

Mame; | demo_at21sam7_blink_ram

~[E] CJC++ Attach to Local Application
- CIC++ Local Application

'Initialize’ commands

k filker bext o
Lapefrte | (o] 35 oo RO % e 5 oo

: E CIC++ Postrortemn debugger

o
m
o

5¢ Embedded debug (Native)
56 demo_at91sam? _blink_flash

g Al demo_at2]sam?_blink_rarm

5¢ Embedded dsbug {Cygwin) target remote localhost: 3333

'Run’ commands

manitor soft_reset_halt
monitar armyd_5 core_skake arm
monikor sy D=FFFFFFS0 000320100
monitor rwey 0xFFFFFd44 020008000
monitor rvaw DFFFFFC20 0xa0000601
manikar waik 100

manikor mwwy DFEFFFcZe 000480208

|2

| £

Apply Revert

I_Debug l [Close

To make entry of the ‘Run’ commands more convenient, here is a list of the commands that can be used

for “cut-and-paste” transfer to Eclipse.

monitor soft_reset_halt

monitor armv4_5 core_state arm

monitor mww 0xffffff60 0x00320100
monitor mww 0xfffffd44 0xa0008000
monitor mww 0xfffffc20 0xa0000601
monitor wait 100

monitor mww 0xfffffc2c 0x00480a0e
monitor wait 200

monitor mww 0xfffffc30 0x7

monitor wait 100

monitor mww 0xfffffd08 0xa5000401

set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
monitor mww 0xfffffd00 0xa5000004
monitor mww 0xffffff00 0x01

monitor reg pc 0x00000000

monitor arm7_9 sw_bkpts enable

load

continue

\

s

J

Copy these commands into the
“Run Commands” window.

The GDB startup commands for OpenOCD operation shown above require some explanation. If the
command line starts with the word “monitor”, then that command is an OpenOCD command. Otherwise, it

is a legacy GDB command.

OpenOCD commands are described in the OpenOCD documentation which can be downloaded from:
http://developer.berlios.de/docman/display doc.php?docid=1367&group id=4148

176

GDB commands are described in several books and in the official document that can be downloaded from:
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/gnu-debugger.pdf

First, we have to halt the processor.
monitor soft_reset_halt # OpenOCD command to halt the processor and wait
Next, we identify the ARM core being used
monitor armv4_5 core_state arm # OpenOCD command to select the core state
Now we set up the processor’s clocks, etc. using the register settings in the lowlevelinit.c function. These

are OpenOCD memory write commands used to set the various AT91SAM7S256 clock registers. This
guarantees that the processor will be running at full speed when the “continue” command is asserted.

monitor mww 0xffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
monitor mww 0xfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)
monitor mww 0xfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
monitor wait 100 # wait 100 ms

monitor mww 0xfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)
monitor wait 200 # wait 200 ms

monitor mww 0xfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
monitor wait 100 # wait 100 ms

Enable the Reset button in the AT91SAM7S-EK board.
monitor mww 0xfffffd08 0xa5000401 # enable user reset AT91C_RSTC_RMR

Now increase the GDB packet size to 1024. This will have a slight improvement on FLASH debugging as
reads of large data structures, etc. may be speeded up. These are legacy GDB commands.

set remote memory-write-packet-size 1024 # Setup GDB for faster downloads
set remote memory-write-packet-size fixed # Setup GDB for faster downloads
set remote memory-read-packet-size 1024 # Setup GDB for faster downloads
set remote memory-read-packet-size fixed # Setup GDB for faster downloads

This is an OpenOCD command to force a peripheral reset. This guarantees that the next command (set
MC Remap Control register to 1) starts from a known initial state (MC Remap Control Register is a
“toggle” action).

monitor mww 0xfffffd00 0xa5000004 # force a peripheral RESET AT91C_RSTC_RCR

This OpenOCD command sets the AT91SAM7S256 MC Remap Control register to 1 which toggles the
remap state. This action effectively overlays RAM memory on top of low memory at address 0x00000000.

monitor mww 0xffffff00 0x01 # toggle the remap register to place RAM at 0x00000000
This OpenOCD command sets the PC to the reset vector address 0x00000000

monitor reg pc 0x00000000 # set the PC to 0x00000000
This is an OpenOCD command to enable software breakpoints.

monitor arm7_9 sw_bkpts enable # enable use of software breakpoints
Now we load the application into RAM. This is a legacy GDB command.

load # download the application using file main.out

Finally we emit the legacy GDB command “continue”. The processor was already halted at the Reset vector
and will thus start executing until it hits the breakpoint set at main().

continue # resume execution from reset vector - will break at main()

177

If you are using the J-Link GDB Server, enter the single GDB command “target remote localhost:2331”

in the “Initialize commands” text window exactly as shown below. This command tells the GDB debugger
to emit commands in RSP format to the TCP port “localhost:2331” (the port the J-Link GDB Server will be

listening to).

'Initialize’ commands

target remote localhost:2331

If you are using the J-Link GDB Server, enter the following GDB and J-Link GDB Server commands into

the “Run commands” text window, exactly as shown below. The “Source” and “Common” tabs can be left
in their default state.

'Run’ commands

monitor
monitor
monitor
monitor
monitor
monitor
monitor
monitor
monitor
monitor

load

continue

reset

long Oxffffffe0
long Oxfffffd44
long Oxfffffc20
sleep 100

long Oxfffffc2c
sleep 200

long Oxfffffc30
sleep 100

long Oxfffffdo8

0x00320100
0xa0008000
0xa0000601
0x00480a0e
0x7

0xa5000401

set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
monitor long Oxfffffdoo0 0xa5000004
monitor long Oxffffffoo 0x01

monitor reg pc 0x00000000

| ¥

<

Below is the Debug Launch Configuration “Commands” tab for use with the J-Link GDB Server and
FLASH execution. Note that the ‘Run’ commands window only shows a portion of the commands that

were entered. Be sure to enter all the commands as shown above.

5

Create, manage, and run configurations

=
b =

| | type Filker text

2 E CfC++ Attach ko Local Application
€] C/C++ Local Application
! [&] C/C++ Postmartem debugger
56 Embedded debug {Cygwin)
[=-5¢ Embedded debug {Native)
8= Hl demno_at91sam7_blink_flash
<G demo_at91sam?_blink_ram

®

| Mame: |demo_atg1sam?_b|ink_f|ash

:_D&__Main ﬁ Debuggar_ mﬁp Source | = g:mmun:

‘Tnitialize’ commands

| target remate localhost: 2331

| Run' commands

monitor reset

monitor speed 30

monitor speed auko

monitor long OxFFFFEFED Ox00320100
monitor long OxfFFFFde4 0xa0005000
monitor long OxFFFFFC20 Oxal000601
monitor sleep 100

[

4

Apply Revert

178

Click on “Close” above to complete definition of the Debug Launch Configuration for flash debugging with
the J-Link GDB Server.

To make entry of the ‘Run’ commands more convenient, here is a list of them for “cut-and-paste” transfer
to Eclipse.

monitor reset \
monitor long 0xffffff60 0x00320100

monitor long 0xfffffd44 0xa0008000

monitor long 0xfffffc20 0xa0000601

monitor sleep 100

monitor long 0xfffffc2c 0x00480a0e

monitor sleep 200

monitor long 0xfffffc30 0x7

monitor sleep 100 .
monitor long OxFfffd08 0xa5000401 > Copy these commands into the
set remote memory-write-packet-size 1024 Run Commands” window.

set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
monitor long 0xfffffd00 0xa5000004
monitor long 0xffffff00 0x01

monitor reg pc 0x00000000

load
continue /

The GDB startup commands for the J-Link GDB Server operation shown above require some explanation.
If the command line starts with the word “monitor”, then that command is a J-Link GDB Server command.
Otherwise, it is a legacy GDB command.

J-Link GDB Server commands are described in the document “JLinkGDBServer.pdf’ which is in the Segger
documentation folder that you downloaded (“c:\Program Files\SEGGER\JLinkARM_V368b\Doc\Manuals\”)

GDB commands are described in several books and in the official document that can be downloaded from:
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/gnu-debugger.pdf

First, we have to halt the processor.

monitor reset # Reset the chip to get to a known state.

Next, we set up the JTAG speed

monitor speed 30 # Set JTAG speed to 30 kHz
monitor speed auto # Set auto JTAG speed

Now we set up the processor’s clocks, etc. using the register settings in the lowlevelinit.c function. These
are J-Link GDB Server memory write commands used to set the various AT91SAM7S256 clock registers.
This guarantees that the processor will be running at full speed when the “continue” command is asserted.

monitor long 0xffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
monitor long 0xfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)
monitor long 0xfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
monitor sleep 100 # wait 100 ms

monitor long 0xfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)
monitor sleep 200 # wait 200 ms

monitor long 0xfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
monitor sleep 100 # wait 100 ms

179

Enable the Reset button in the AT91SAM7S-EK board.

monitor long 0xfffffd08 0xa5000401 # enable user reset AT91C_RSTC_RMR

Now increase the GDB packet size to 1024. This will have a slight improvement on FLASH debugging as
reads of large data structures, etc. may be speeded up. These are legacy GDB commands.

set remote memory-write-packet-size 1024 # Setup GDB for faster downloads
set remote memory-write-packet-size fixed # Setup GDB for faster downloads
set remote memory-read-packet-size 1024 # Setup GDB for faster downloads
set remote memory-read-packet-size fixed # Setup GDB for faster downloads

This is an OpenOCD command to force a peripheral reset. This guarantees that the next command (set
MC Remap Control register to 1) starts from a known initial state (MC Remap Control Register is a
“toggle” action).

monitor long 0xfffffd00 0xa5000004 # force a peripheral RESET AT91C_RSTC_RCR

This OpenOCD command sets the AT91SAM7S256 MC Remap Control register to 1 which toggles the
remap state. This action effectively overlays RAM memory on top of low memory at address 0x00000000.

monitor long 0xffffff00 0x01 # toggle the remap register to place RAM at 0x00000000
This command sets the PC to the reset vector address 0x00000000

monitor reg pc 0x00000000 # set the PC to 0x00000000
Now we load the application into RAM. This is a legacy GDB command.

load # download the application using file main.out

Finally we emit the legacy GDB command “continue”. The processor was already halted at the Reset vector
and will thus start executing until it hits the breakpoint set at main().

continue # resume execution from reset vector - will break at main()

Set up the hardware

Whatever debugger you are using (SAM-ICE,
wiggler, JTAGKey or ARM-USB-OCD), the
same hardware setup used for FLASH
programming and debugging will also apply to
RAM-based applications. Shown below is the
hardware setup for the Olimex ARM-USB-
OCD JTAG debugger.

180

Open the Eclipse “Debug” Perspective

As shown earlier, click on the “Debug” perspective button located at the upper right part of the Eclipse
screen.

F5Debug CiCH+ &JJava

EIEIE L N

Now the Debug perspective will appear, as shown below.

& Debug - main.c - Eclipse Platform

File Edit Refactor Mavigate Search Project Run Window Help

N EHSD % 0-Q I dQ G- f-F- w6 B (o | Boicr
35 Debug 52 e «§“ - w7 Lo g 5, 3 i2 ¥ T O (6= variables 2 Ereakpoints £'|"'>ﬁ| 5 R & ¥ =0
[main.c &2 demo_at91sam? _blink_ram.crmd | @ makefile = 8 |outline (Disassembly &2 =0

lll"lll" ol o o o o o o ol ol o ol ol o o o ol o ol ol ol ol o o o o o o o o AI]

I main. o El

I

I Demonstration program for Atmel ATS1S5AMTSZS56-EE Evaluation Board

I

£ blinks LEDO (pin PAD) with an endless loop

I blinks LED1 (pin PA1) using timer0 interrupt (50 msec rate)

I switch SW1 (PAa19) triggers FIQ interrupt, turns on LEDZ (Pin PAZ)

£ plency of wvarisbhles for debugger practice

I

/¢ buthor: James P Lynch Septewber 23, 2006

."fu"f Ea R o R R o o o o o o R o o

lll"lll" o o o o o o o ol o o ol o ol ol ol o o o o o o

.-’.-’ Header Files |

£ il] l.

Tasks | CfC++ Projects @& =B -9-—08

_-Build [demo_at91sam? _blink_ram]

181

Start OpenOCD

If you have the Olimex or Amontec JTAG hardware interfaces, OpenOCD must be started before
launching the Eclipse debugger.

To start OpenOCD, click on the “External Tools” toolbar button’s down arrowhead and then select
“OpenOCD”. Alternatively, you can click on the “Run” pull-down menu and select “External Tools”
followed by “OpenOCD”.

1 Project Run Window Help
QL- ™™ |-
Q1 5amE

Run As 4
Q External Tools. ..

Organize Favoarites...

The debug view will show that OpenOCD is running and the console view shows no errors (warnings are
OK).

& Debug - main.c - Eclipse Platform

File Edit Refactor Navigate Search Project Run Window Help
Wil @ {W-0-Q- i@ B3R e B | %5 pebug | BE crot+ »

%&Debug Py &% «§" L i % T i ¥ T O|[6d=variables 2 Ereakpaints £|-‘.>t=| = | &7 &K & ¥ =08
=] Q OpendCD [Program]
5-----;@ C:\Program Files\openocd-2006re93 bin\openacd-Frd 2o exe

€] main.c 2 demna_at91sam? _blink_ram.cmd L@ makefile = O || outline (Disassembly &2 =0
lf/ i o o o o o o o ol ol o o o o ol o o o o o o o (s}
I main. o :
I
Iy Demonstration program for Atmel ATO1Z3AMTIZS56-EK Evaluation Board
I
I blinks LEDO (pin PAD) with an endless loop
Iy blinks LED1 (pin PA1) using timer0 interrupt (50 msSese rate)
I switch SW1 (PA19) triggers FIQ interrupt, turns on LEDZ (Pin PAZ)
I plenty of wvariables for debugger practice
I
/¢ Author: James P Lynch September 23, Z006
P R R R R L R T T
MR EA R EAA TR EAERRAAAREATARAMNTAAATARAMSAAATARAASTTT
I Header Files 2
< 3

2 ole X Tasks | C/C++ Projects m X% ERl #B-F5-—0O

OpenOCD [Pragram] C:\Pragram Files|openocd-2006re93hin openocd-frd2xo. exe

Info: openocd.c:82 main(): Open On-Chip Debugger (2006-08-31 15:00 CEST)
Marning: arm? 9 common.c: 879 arm? 9 assert reset(): srst resets test logic, too
&

182

Start J-Link GDB Server

If you have the Atmel SAM-ICE JTAG hardware interface, the J-Link GDB Server must be started before
launching the Eclipse debugger.

To start the J-Link GDB Server, click on the “External Tools” toolbar button’s down arrowhead and then
select “J-Link GDB Server’. Alternatively, you can click on the “Run” pull-down menu and select
“External Tools” followed by “J-Link GDB Server”.

Q- @Y -

@, 1 OpenOCD

| @ 2 5aM-BA .
[¥_ 3 I-Link GDE Server]

Fun s k
% External Tools.,.

Organize Favarites, .

First, a Segger J-Link GDB Server status window will appear as shown below. Notice that the green
indicators show that the J-Link GDB Server is connected to your SAM-ICE and the target microprocessor
core has been identified. The Debugger status light is indicating red; this is OK since we haven’t launched
our Eclipse/GDB integrated graphical debugger yet. You should now minimize the Segger status display.

Whatever you do, don’t click the button; that will terminate the J-Link GDB Server!

3= J-Link GDB Server V3.70b
File Help

Debugger |Waiting for connection I Initial JTAG speed |30 kHz - g fta-"' D'nu:tlﬂp
v Log window

J-Lirk |Eonnected Current JTAG zpeed |30 kHz [Logta file

: - ¥ Cache reads
Target [ARM7, Core |d: 0x3FOFOFOF | 331V | |Litleendian =] I Verify download

Log output; Clear lag

J-Linlk GDE Serwer V3 .70b

JLinkARM dl11 ¥3 . 70b (DILL compiled Mawy 18 2007 16:17:44)
Li=tening on TCP-IF port 2331

J-Link connected
Firmware: J-Link compiled Mawy 10 2007 13:05:02 ARM Rew . &

J-Linlk found 1 JTAG device. Total IRLen = 4
JTAG ID: 0x3FOFOFOF (ARM7)

0 Bytes downloaded 1 ITAG device

183

The debug view will show that J-Link GDB Server is running and the console view shows no errors
(warnings are OK).

& Debug - main.c - Eclipse Platform

File Edit Refactor Mavigate Search Run Project Window Help

il @ -0 Q- @ B G [[% Debug |BR cic++
m = O ||variables (90 EBreakpaints &3 Expressionsl =0
% 3 LS | i Y XA BEER T
= % J-Link GDE Server [Program]] O e = ko blisl doesim o Tl]
b , i P P < q g
;H CiiProgram Files\SEGGER LinkARM_W370b) JLinkGDEServer .exe < J-Llnk GDB Server is
(€] main.c B2 [h] AT915AM7S256.h = O ||outline (Disasse... &1 =0
llu"llu" e e i Ol O Ol ol O Ol i Ol O il i el e ol)
£ main.c []
i
i Demonstration progrsm for Atmel AT913AMYEZS56-EE Evaluation Board
e
i blinks LEDO (pin PAD) with an endless loop
i blinks LED1 (pin PAl) using tiwer0 interrupt (200 wmsec rate)
I switch 3W1 (PA19) triggers FIQ interrupt, turns on LEDEZ (Pin PAZ)
i plenty of variashles for debugger practice
I

/¢ huthor: James P Lynch May 12, 2007
lll"lll" e ol o o o ol o o ol o o o o o ol i o ol ol ol ol ol o o o o ol e o ol o

-~
iz

>

B console 52 Tasks B X % | Epl AE-5-70
J-Link GDE Server [Program] C:\Program FilesiSEGGER) JLinkaRM _Y370b4Y LinkGDEServer, exe

Start the Eclipse Debugger

To start the Eclipse debugger, click on the “Debug” toolbar button’s down arrowhead and select the
debug launch configuration “demo_at91sam7_blink_ram” as shown below.

Alternatively, you can start the debugger by clicking on “Run — Debug...” and then select the
“‘demo_at91sam7_blink_ram” embedded launch configuration and then click “debug”. Obviously, the
debug toolbar button is more convenient.

. = Debug - main.c - Eclipse SDK

File Edit Refactor Mawigate 3Search Project Run Window Help

I3 -5 & B0 -Q- @S |-

2 demo_at91sam7_blink_ram

Debug as 4

i Debug...

d Crganize Favorites. ..

The Eclipse debugger will run through the initializations you specified and then download the application
into RAM. There will be a “progress bar” at the lower right corner of the Eclipse display showing the
download in action. For these sample projects, this should only take a few seconds.

184

If the Eclipse debugger doesn’t connect properly, then the progress bar at the bottom right status line will
run forever. In this case, terminate everything, check your debug launch configuration very carefully and
then start over again.

If the Eclipse debugger starts properly, the debug view (upper left) shows that the debugger has stopped

at line 60 in main().

There is very little difference in starting up the Eclipse debugger between the OpenOCD and the J-Link
GDB Server. The Eclipse debugger starting up using OpenOCD is shown below.

& Debug - main.c - Eclipse Platform

File Edit Refactor Mavigate Search Project Run Window Help

N EHORi$ 0" i@ G- iH F-wo-a 5 (%5 oebug | B cicrr >
35 Debug 52 i -«§" b S O e T “ i ¥ T O || variables (00 Breakpaints &3 Expressions|Registers|ModuIes| =0
-4 OpenOCD [Program] -~ b4 & & o= =] <'===D =

""'E C\Program Flesiopenord-2007ve13Libinopenocd-frdzocexe T ,3 Ciiworkspacetdemo_at91sam?_blink_ramimain,out [Function: main]
demo_at91sam7 _blink_ram [Embedded debug {Mative)]
=& Embedded GDE (4/29/07 10:00 AM) (Suspended)
E!---g? Thread [0] {Suspended)
w2 1 main) at C:iworkspacedemo_at31sam7_blink_ramimain.ci64 0x0020016c
p‘ﬂ C:\Program Files\yagartoibintarm-elf-gdb.exe (4/29/07 10:00 AM)
------ w4 Crlwnrksnareidemn at91sam? hlink ramimain. ook (412907 10:00 AMY b
(€] main.c B2 = O || cutline (Disassembly &3 =0
double x5; /f warisble to test library @& int wain (void) { ~
douhble ¥5 = —-172.451; /f wariable to test library : Ox0020015c <main>: MoV rl—
const char DigitBuffer[] = "™16383"; /4 wariable to test library : O0x00200160 <main+ds>: stmdh =p
0x00200164 <mwain+ds: sub rl
I Ox00200168 <main+l2:>: sub =p
int main (veoid) {
/¢ lots of variables for del
/¢ lots of wariasbles for debugging practice int a, b, o
int a, b, c: Jf uninitialized warisbhles char d;
char d: ff uninitialized wvariable 3 int wo= 1 3
< S . S l_ _i_____. | e i_
B Console X Tasks | Project Explorer|C0nsoIe|Memory| ® 9w G Eﬁ #E-55-70
demo_at91sam7 _blink_ram [Embedded debug (Mative)] C:iworkspaceidemao_at91sam7 _blink_ramimain,out {42907 10:00 AM)
egquesting target halt and executing a soft reset L]
pc (/32): 0x00000000
software breakpoints enabled
A

185

The Eclipse debugger starting up using J-Link GDB Server is shown below.

& Debug - main.c - Eclipse Platform

Fle Edit Refactor Mavigate Search Project Run Window Help
P g Bi%d -0-Q- i ®PL -8 5-%e-q I [%5 Debug | By cict+ ”
i zé}‘ (13 [R % i ¥ T O variatles (00 EBreakpoints &3 Expressiuns|Ragisters|MUdu|es| =0

%J-LinkGDB Server [Program] ~ ® & & e W =] <)===> =
5 C\Program Files\SEGEER!ILinkARM_Y3680) ILinkGDEServer exe
L demo_at31isam?_blink_ram [Embedded debug {Mative)]
B@ Embedded GDE (4/29j07 9:52 AM) (Suspended)
. Eg® Thread [0] (Suspended)

=

| ,3 Ciiworkspaceldema_at1sam? _blink_ram'main. out [function: main]

\main.c:

= C:\Program Files\yagartalbiniarm-elf-gdb.exe (4/23/07 9:52 AM)

in, ot (479107 952 AR \s
[2] main.c 2 = O ||outlire (Disassembly &3 =0
int main (woid) ¢ »~ int a, b, o ~
char d; -
f/ lots of variahles for debugging practice int wo=1:
int a, b, o} /¢ uninitialized varisbles HOx0020016c <waintlér: mov r3
char d: /4 uninitialized wvarisble I Ox00200170 <wain+zZ0»: Str r3
» int w o= 1; /4 initialized varisble int k=2:
int k=Z; /¢ initialized wvariable 0x00200174 <main+24x: mov r3
static long x = 5; £ static initialized warisb. 0x00200178 <main+28>: str r3
static char v = 0Ox04; /¢ static initialized wvariab. static long x = 5;
const char *pText = "The rain in Spain'™; ff initialized string pnlnte]v static char v = 0x04: =
’ . - . L . | i_ a i - l__

Bl Consale Tasks | Project Explorer | Console | Memory| X

M B -0
demo_at91sam?_blink_ram [Embedded debug {MNative)] C:\workspaceldemao_at91sam7_blink_ramimain. out {4/29/07 9:52 AM)
Writing 0x00000001 @ address O0xFFFFFFOO0 A
Writing register (R15 (PC) = 0Ox00000000)
)
b

Setting Software Breakpoints

The big advantage of running entirely from on chip RAM is that you can set an unlimited number of
software breakpoints. In the example below, we have set four breakpoints plus the breakpoint set at
main().

B manc x g 0
FS
ff Set up the AIC registers for Timer 0O .
volatile ATS1P3 AIC pAIC = ATS1C EBASE ATC; /4 pointer to ALIC data struct
LB PAIC->AIC IDCE = (1<<AT91C_ID_TCO) Jf Disable timer 0 interrupt
PAIC-»AIC SVR[ATS1C_ID_TCO] = J4 8et the TCO IRQ handler =
{unsigned int) TimerOIrgHandler; /f Wector Register[1Z2]
e piIC->AIC SMR[ATS1C_ID_TCO] = ff Set the interrupt source 1
[AT91C AIC SRCTYPE INT HIGH LEWVEL | Ox4): J4 in AIC Zource Mode Registe
PAIC->AIC ICCER = [1<<AT21C ID TCO) ; /4 Clear the TCO interrupt iz
PAIC->AIC IDCE = (0<<ATS1C_ID_ TCO): /¢ Bemove disskle timer 0 im
PAIC->AIC IECE = (1<<ATS1C_ID_ TcO): /¢ Enable the TCO interrupt
S48 Zet up the AIC registers for FIQ (pushbutton 3W1)
¥l PAIC->AIC IDCE = (1<<AT91C_ID_FIQ): Jf Disable FIQ interrupt in .
piIC->AIC SMR[ATS1C_ID_FIQ] = ff Set the interrupt source 1
[AT91C_AIC_SRCTYPE_INT POSITIVE_EDGE) ; /f Mode Register[0]
pALIC->AIC ICCR = [1<<AT21C_ID FIOQ): ff Clear the FIQ interrupt i1
piLIC->AIC IDCR = (0<<AT21C_ID FIOQ): 4/ Rewmove dissble FIQ interm
pLIC->AIC IECR = (1<<AT21C ID FIOQ): /4 Enable the FIQ interrupt —
Jf Three functionz from the libraries
e a = strlenipText); /f strlen() returns length «
x5 = fahs(y5); ff fabhsi() returns absolute -
n = atol(DigitEuffer): S atoli | conwerts String tis
< 4

186

Let's remind ourselves that the Eclipse debugger can handle multiple threads of execution. Since our
ARM system only has one thread, you must click on it (highlight it) to enable the execution control

commands to work. As shown below, the thread “1 main() at main.c:57” has been clicked and thus
highlighted.

— . = ot
3D | i T T
EI % OpenOCD [Program]

P g C\Program Files\openocdibinopenocd-pp.exe
= G demo_at31sam?_blink_ram [Embedded debug launch]
El ﬁ Embedded GDE (5/6/06 6:13 PM) (Suspended)

Click this thread to enable
E- m’? Thread [0] (Suspended) these execution control
o= 1 maing) ak main,c:57 <

: buttons.
- BE Debugger Process (S)6/06 6:13 PM)

Click on the “Resume” button [JE= and the debugger executes to our first breakpoint.

A4 Initialize the Atmel ATI13AMTIZ256 (watchdog, PLL clock,
Pa LowLewvelInit (] :

Click on the “Resume” DP button again and the debugger executes to our second breakpoint.

AT91PS PIO pPIO = AT91C BASE PIOL;
Ba pPIO->PI0 PER = LED MASE:
pPIO->PI0 OER = LED MASE:

Click on the “Resume” DF‘ button again and the debugger executes to our third breakpoint.

pPIO->FIO OER = LED MASK;
B pPIO->FI0 SODR = LED MASK;

And so on, now we have an unlimited number of breakpoints available.

Now you can run through all the debugger operations covered earlier in this tutorial. Considering that
modern desktop PCs and laptops are being manufactured without serial or parallel ports, a USB-based
JTAG interface will soon be the only way to debug target boards.

187

Compiling from the Debug Perspective

You can conveniently stop the debugger and the OpenOCD or J-Link GDB Server, modify your source file
and re-compile your application all within the Debug perspective. The following procedure is a safe way to

do this.

o Stop the Eclipse Debugger

Click on the execution thread to highlight it and then click on the KILL button to terminate it.

3 Debug - main.c - Eclipse SDK

File Edit Refactor Mavigate Search Projeck Rum Window Help

I -HE @ [H-0-%- | ®™®™P | -3 -% Click on the Kill
—~ .
_ (E) e ‘ button to terminate
) and remove the
El {; OpenCCD [Program) e debugger
£ .E C\Program Files\openocdibinlopenocd-pp.exe

E|::l.‘: demo_at91zam7_blink_ram [Embedded debug launch]
E|1ﬁI Embedded GDE (5706 11:11 AM) (Suspended)
=4 Thread [0] (Suspended: Breakpoint hit.) . 1
| L L I‘_ Click on the execution
thread first.

----- .E Debugger Process (517706 11011 ANM)

e Stop OpenOCD or the J-Link GDB Server

Click on OpenOCD followed by clicking on the KILL button to terminate the OpenOCD or J-Link
GDB Server. This operation may not be necessary, | often leave these daemons running and
everything works OK.

Debug - main.c - Eclipse SDK

File: Edit Refactor Mavigate Search FProject Fun Click on the Kill
- Q- button to terminate

s > | B % - & e / the debugger

m ~

(i Rl B S o o I 7
=4 penof [Prog s Click on OpenOCD first
| =----.E Ci\Program Files\openocdibintopenocd-pp.exe | < ’

[-(: <terminated =demo_at¥1sam?_blink_rarn [Embedded debug launch]

." <kerminated >Embedded GDE (5/7/06 11:11 AM)
=----E§ <kerminated, exit value: 0=0ebugger Process (5/7)06 11:11 AM)

188

o Erase the Debug Pane

Click on the Erase button to clear everything from the Debug pane.

“ Debug - main.c - Eclipse SDK

File Edit Refactor Mawvigate Search Project Rum Window Hel

s = = Click on the Erase button
IBS-Bo @ % -0-Q- |86 & |~ to clear everything from
% Debug X W __— c -

T CE L= =

¢ Modify the Source File

Here we have changed the wait time by modifying the loop counts.

(B nanc x =D
/4 endlesz blink loop |
while (1) {

if {(pPICO->PIO ODSR & LED1) == LEDI1] /¢ read previous state of LE]
pPIO->PIO CODR = LEDL: £ turn LEDL (D31) on
else
pPIO->PIO JODR = LEDL: f¢f turn LEDL (D31) off
for (j =|100000;| 3 !'= 0; j-- 1: ff wait 1 second 1000000
IdleCount++; £ count § of times through 1)
pFIC->PIO 3CDR = LED3; /4 turn LED3 (D33) off
:I
i. 1111] l.

e Re-Compile and Link the Application

To change the blink rate, we modified the loop counts. We then saved the source file using the
“Save” button.

Next we re-built the application by clicking on the “Build All” button, as shown below. The
Console view shows that the compile and link steps ran successfully. Note that it only compiled
the source file main.c.

& Debug - main.c - Eclipse Platform

Fil= Edit Refactor Mavigate Search Project Run Window Help
(e (@E)r-0 - i®my i@ i8-Foee- - S %5 Dot | B Clcr+ >
5 Debug 52 %% -<§" g T L = 3 i Y T 8| variables (oo Breakpoints &2 Expressions| ® % q® o w <.===(> ¥ =0
= 8| outline (Disassembly &3 =g
/¢ endless blink loop | @
while (1) {
if {(pPIO->PIC ODSR & LED1) == LED1) // read previous state of LE]
PFIO->FIO CODR = LEDL: // turn LED1 (DS1) on
else
pPIO->FIO 30DR = LED1; // turn LED1 (D31} off
for (i =[100000;] 3 '= 0; 3--): f/ wait 1 second ipoooOD)
IdleCount++; // count # of times through 1w
rall i}] =
T T T

T8Y

e Start OpenOCD or the J-Link GDB Server
Using the External Tools toolbar button, find and start the OpenOCD or J-Link GDB ServerJTAG

1 Project Run Window He
QLo | &&= 5 | L
1@y 158MEBA I

Run As 4
% External Toals...
Jrganize Favorites, ,,

utility.

o Start the Eclipse Debugger

Using the Debug toolbar button, find and start the at91sam7_blink_ram debug configuration.

Yigate Search Project Run Window
$Jo-a-|®® v |
£¢ 1 demo_atd1sam7_blink_flash

[— E 2 demo_at9isam7_blink_ram
Debug As

% Debug...

Organize Favoarites...

e Repeat your Debugging Session

Now the Eclipse debugger is stopped at the function main(), awaiting your next instructions.
Once you have this procedure committed to memory, you will find RAM-based debugging a real

pleasure.

190

Conclusions

Professional embedded software development packages from Rowley, IAR, Keil and ARM are complete,
efficient, and easy-to-install and have telephone support if you encounter problems. For the professional
programmer, they are worth the expense since “time is money”. Some of these companies offer “kick
start” versions of their packages for free, albeit with some reduced functionality such as a 32K code limit,
etc.

The Open Source tools described herein are an attractive alternative and are free. Thanks to the tireless
contributions of open-source heroes such as Michael Fischer and Dominic Rath, the acquisition and
installation of Open Source tools is becoming less complex and time-consuming. The reader needs a high
speed internet connection to download the various components and a couple hours of time to install and
test the lot.

Still, many thousands have managed successful application of Open Source tools for embedded software
development. The GNU compilers are very close to the code efficiency of the professional compilers from
Keil, IAR and ARM. The Eclipse and GNU Open Source tools bring the world of embedded software
development to anyone on the planet that has imagination, skill and dedication but not the corporate bank
account. Promoting the involvement of everyone in microprocessor development, not just an elite few, will
allow us all to profit from their accomplishments.

About the Author

Jim Lynch lives in Grand Island, New York and is a software developer for Control Techniques, a
subsidiary of Emerson Electric. He develops embedded software for the company’s industrial drives (high
power motor controllers) which are sold all over the world.

Mr. Lynch has previously worked for Mennen Medical, Calspan
Corporation and the Boeing Company. He has a BSEE from Ohio
University and a MSEE from State University of New York at
Buffalo. Jim is a single Father and has two grown children who now
live in Florida and Nevada. He has two brothers, one is a Viet Nam
veteran in Hollywood, Florida and the other is the Bishop of St.
Petersburg, also in Florida. Jim plays the guitar, enjoys
woodworking and hopes to write a book very soon that will teach
students and hobbyists how to use these high-powered ARM
microcontrollers. Lynch can be reached via e-mail at:
lynch007@gmail.com

191

Appendix 1. Olimex AT91SAM7- P64 Board

The Olimex AT91SAM7-P64 board has two LED’s and two pushbutton switches while the Atmel
AT91SAM7S-EK board has four LEDs and four pushbutton switches. The application described in this
tutorial uses one switch and three LEDs. Fortunately, the pushbutton switches use the same PIO ports as
the Atmel AT91SAM7S-EK board, so no change is required for the single switch. The Olimex board uses
different PIO ports for the LEDs, so we are required to do two things; add a LED to the board and adjust
the board.h file to specify the correct ports.

Since LED3 was port PA2 in the Atmel evaluation board, the author added the following simple circuit to
the Olimex board.
470 Q

3.3 volt @—/\/\/\/\/\—
Anode -
'\r\\ Cathode

PA2 athode Anode

Radio Shack Red LED
276-026 T-1 size
3volt15ma 2.5 mcd

Below is a photograph showing the added LED3. The board.h include file was modified to specify the
correct ports for the LEDs and the switches. The major changes are indicated with bold-faced type.

Warning: The author discovered that the Olimex ARM-USB-OCD JTAG interface’s built-in power supply
tends to latch up during OpenOCD FLASH programming. Possibly the Olimex board draws more current
than the Atmel board; it does have a pot installed for A/D input. If you are planning to use OpenOCD
FLASH programming with the Olimex board, it behooves you to use a separate “wall-wart” power supply
instead.

gaooopoopopopop

sloflofofofe
.
.

192

BOARD . H

// The software is delivered "AS IS" without warranty or condition of any

// kind, either express, implied or statutory.

This includes without

// limitation any warranty or condition with respect to merchantability or
// fitness for any particular purpose, or against the infringements of

// intellectual property rights of others.

// File Name: Board.h
// Object:

// Creation: JPP 16/June/2004

#ifndef Board_h
#define Board h

#include "AT91SAM7S256.h"
#define __inline inline

#define true -1
#define false 0

// SAM7Board Memories Definition

(/5555 =05550050506=0605055000000 2900000000005
// The AT91SAM7S64 embeds a 16-Kbyte SRAM bank,

#define INT_SRAM 0x06200000
#define INT SRAM REMAP 0x00000000

#define INT_FLASH 0x00000000
#define INT_FLASH_REMAP 0x00100000

#define FLASH PAGE NB 512
#define FLASH PAGE SIZE 128

ol =S, - T - - -

// Leds Definition

7z - - - - T - - - -
#define LED1 (1<<18)
#define LED2 (1<<17)
#define LED3 (1<<2)
#define NB_LEB 3

#define LED_MASK (LED1|LED2|LED3)

[ZE== - - - - - - - il - - S - -
// Push Buttons Definition

7/--9 - - -------F- - -
#define SW1_MASK (1<<19)

#define SW2 MASK (1<<20)

#define SW_MASK (SW1_MASK|SW2_MASK)
#define SW1 (1<<19)

#define SW2 (1<<20)

e e b GEEEEL

// USART Definition
(//>=52-9000855c0c000050

// SUB-D 9 points J3 DBGU

#define DBGU RXD AT91C_PA9 DRXD
#define DBGU_TXD AT91C_PA16_DTXD
#define AT91C DBGU BAUD 115200
#define US RXD PIN AT91C_PA5 RXDO
#define US_TXD PIN AT91C_PA6_TXDO
#define US_RTS PIN AT91C_PA7 RTSO
#define US_CTS PIN AT91C PA8 CTS®

1/ - -anniaas W™

// Master Clock

W =S

#define EXT 0C 18432000
#define MCK 47923200
#define MCKKHz (MCK/1000)

#endif // Board h

AT91SAM7S Evaluation Board Features Definition File.

and 64 K-Byte Flash

// PAl18
// PA17
// PA2 (LED added to board by author)

// PA19
// PA20

// PA19
// PA20

// JP11 must be close
// JP12 must be close
// Baud rate

// JP9 must be close
// JP7 must be close
// JP8 must be close
// JP6 must be close

// Exetrnal ocilator MAINCK
// MCK (PLLRC div by 2)
//

193

The Olimex AT91SAM7-P64 board used the AT91SAM7S64 chip, which has 64K of FLASH and 16K of
RAM. The linker command script, demo_at91sam7_p64_blink_flash.cmd, is modified to support these
memory limits.

/*

demo_at91sam7_p64_blink_flash.cmd LINKER SCRIPT

The Linker Script defines how the code and data emitted by the GNU C compiler and assembler are
to be loaded into memory (code goes into FLASH, variables go into RAM).

Any symbols defined in the Linker Script are automatically global and available to the rest of the

program.

To force the linker to use this LINKER SCRIPT, just add the -T demo_at9lsam7_p64 blink_flash.cmd

directive to the linker flags in the makefile. For example,

LFLAGS = -Map main.map -nostartfiles -T demo_at91sam7_p64_blink_flash.cmd

The order that the object files are listed in the makefile determines what .text section is
placed first.

For example: $(LD) $(LFLAGS) -o main.out crt.o main.o lowlevelinit.o

crt.o is first in the list of objects, so it will be placed at address 0x00000000

The top of the stack (_stack end) is (last byte of ram +1) - 4
Therefore: _stack_end = (0x000203FFF + 1) - 4 = 0x00204000 - 4 = 0x00203FFC

Note that this symbol (stack end) is automatically GLOBAL and will be used by the crt.s
startup assembler routine to specify all stacks for the various ARM modes

MEMORY MAP

I |

R I e LR LR R |0x00203000
| |0x00203FFC <---------- _stack_end
| UDF Stack 16 bytes |
I |
R R |0x00203FEC
I I
| ABT Stack 16 bytes |
I |
R e T T |0x00203FDC
| |
| FIQ Stack 128 bytes |
I I

RAM B e e . - | 9x00203F5C

' | |
| IRQ Stack 128 bytes |
I |
|-- - -0 - - |0x00203EDC
I I
| SVC Stack 16 bytes |
I |
R R R |0x00203ECC
I
| stack area for user program
I I
I I
I I
| free ram |
I
(1o O oo o P AR . o o ook B0 |0x002006D8 <---------- _bss_end
I
| .bss uninitialized variables |
(@68 o o agiiab o 0 a o T oo o060 SR G |0x002006D0 <---------- _bss_start, _edata
I I
| .data initialized variables |
I I

________ >| |0x00200000

/* 3K >k >k >k 3k 3k K K >k >k >k 3k K K ok >k >k >k 3k K 5K ok >k >k 3k 3k K ok >k >k >k 3k 3k K ok >k >k >k 3k K K ok >k >k sk 3k 3k 5k >k >k >k 3k 3k K ok >k >k 3k 3k K K ok >k >k 3k 3k 3k 3K >k >k >k 3k 3K 5K 5k >k >k >k 3k 3k K 5k >k >k 3k 3k K K >k >k >k >k 3k K ok ok ok >k kokok ok */

194

/* e L e TP LT |0x00010000 &/
/* | | */
/* o | | iy
/* . | free flash | */
/* g | | Y
7 |)
e OB 6 oo o o Ok . o o Ddille 000 0 0 08 00 oo |0x000006D0 <---------- _bss_start, _edata &)
[. | | */
/* 1 | .data initialized variables | *%
E | | &
/* |oomorcontocaccacatonacaansataoana | 0X000006CE <----=--=--- _etext */
/= | | */
/* | C code | g/
/i | | “Y
[/ [| &
[R LT T |0x00000118 main() */
e | | */
/* o | Startup Code (crt.s) | &
/* R | (assembler) | &2/
/e | | &
/* |anzesconsccescansaseasnanaansasaa | 000000020 */
/* ; | | -
/* : | Interrupt Vector Table | */
7 A | 32 bytes | &
/* e > e |0x00000000 vec reset */
/* “
/5 Y
/* Author: James P. Lynch May 12, 2007 */
[Y

/* K 3K >k >k 3k 3k 5K 5K K >k >k 5k 5K 5K 5K K >k >k 3k 5K 5K 5K >k >k %k 3k 5K K K %k %k K kKK Kk

/* identify the Entry Point (_vec_reset
ENTRY(_vec reset)

/* specify the AT91SAM7S64 memory areas
MEMORY
{
flash : ORIGIN
ram : ORIGIN

/* define a global symbol stack end (s
_stack_end = 0x203FFC;

/* now define the output sections */
SECTIONS

{
= 0; /*
.text /*
*(.text) /5
(.rodata) /
(.rodata) /3
(.glue_7) /
(.glue 7t) /
_etext = .; a5
} >flash Vs
.data : /*
{
_data = .; /*
*(.data) 1
_edata = .; /*
} >ram AT >flash
FLASH) */
.bss : [
{
_bss_start = .;
*(.bss) 7=
} >ram /*
. = ALIGN(4); /*
_bss end = . ; /*
}
~end = .; />

K 3K >k >k 3k 3K 5K 5K >k >k >k 3k 5K 5K 5K >k >k 5k 3k 5K 5K % %k >k 5k 3k 5K 5K % >k >k 3k 5K 5K 5K >k >k 3k 3k 5K 5K >k %k %k 3k 3k 5K >k % %k >k 3k 5k 5K K %k >k %k %k >k >k Xk %k k */

is defined in file crt.s) */

*/

0, LENGTH = 64K /* FLASH EPROM &
0x00200000, LENGTH =

16K /* static RAM area*/

ee analysis in annotation above) */

set location counter to address zero */
collect all sections that should go into FLASH after startup */

all .text sections (code) */

all .rodata sections (constants, strings, etc.) */

all .rodata* sections (constants, strings, etc.) */

all .glue 7 sections (no idea what these are) */

all .glue 7t sections (no idea what these are) */

define a global symbol etext just after the last code byte */
put all the above into FLASH */

collect all initialized .data sections that go into RAM */

create a global symbol marking the start of the .data section */

all .data sections */

define a global symbol marking the end of the .data section */

/* put all the above into RAM (but load the LMA initializer copy into
collect all uninitialized .bss sections that go into RAM */

/* define a global symbol marking the start of the .bss section */
all .bss sections */

put all the above in RAM (it will be cleared in the startup code */

advance location counter to the next 32-bit boundary */
define a global symbol marking the end of the .bss section */

define a global symbol marking the end of application RAM */

195

The makefile has three small changes; all concern the reference to the linker command script file. The
changes are indicated in bold-face type.

MAKEFILE

3K 3k >k >k 3k 3k ok K ok >k >k 3k 3k K ok >k >k >k 3k K K ok >k >k 3k 3k K 5K >k >k >k 3k K K ok ok >k >k 3k K 5k 3k >k >k 3k 3k K K ok >k >k 3k 3k K ok ok ok >k k kK ok ok
£ Makefile for Atmel AT91SAM7S64 - flash execution &
* *
* *
* James P Lynch May 12, 2007 *
SRR KKK KKK KKK oK oK K K KK KK KKK oK oK oK oK K K KK KK KoK oK oK ok oK oK KKK KoK Kok ok ok

NAME = demo_at91sam7_p64_blink_flash

variables

ccC = arm-elf-gcc

LD = arm-elf-1d -v

AR = arm-elf-ar

AS = arm-elf-as

CcP = arm-elf-objcopy

oD = arm-elf-objdump

CFLAGS = -I./ -c -fno-common -00 -g

AFLAGS = -ahls -mapcs-32 -o crt.o

LFLAGS = -Map main.map -Tdemo_at9lsam7_p64_blink_flash.cmd
CPFLAGS = --output-target=binary

ODFLAGS = -x --syms

OBJECTS = crt.o main.o timerisr.o timersetup.o isrsupport.o lowlevelinit.o blinker.o

make target called by Eclipse (Project -> Clean ...)
clean:
-rm $(OBJECTS) crt.lst main.lst main.out main.bin main.hex main.map main.dmp

#make target called by Eclipse (Project -> Build Project)
all: main.out

@ echo "...copying"

$(CP) $(CPFLAGS) main.out main.bin

$(0D) $(ODFLAGS) main.out > main.dmp

main.out: $(OBJECTS) demo_at9lsam7_p64_blink_flash.cmd
@ echo "..linking"
$(LD) $(LFLAGS) -o main.out $(OBJECTS) libc.a libm.a libgcc.a

crt.o: crt.s
@ echo ".assembling"
$(AS) $(AFLAGS) crt.s > crt.lst

main.o: main.c
@ echo ".compiling"
$(CC) $(CFLAGS) main.c

timerisr.o: timerisr.c
@ echo ".compiling"
$(CC) $(CFLAGS) timerisr.c

lowlevelinit.o: lowlevelinit.c
@ echo ".compiling"
$(CC) $(CFLAGS) lowlevelinit.c

timersetup.o: timersetup.c
@ echo ".compiling"
$(CC) $(CFLAGS) timersetup.c

isrsupport.o: isrsupport.c
@ echo ".compiling"
$(CC) $(CFLAGS) isrsupport.c

blinker.o: blinker.c
@ echo ".compiling"
$(CC) $(CFLAGS) blinker.c

196

K 3k >k >k 3k 3k ok K ok >k >k 3k 3k K ok ok >k >k 3k 5k 5K ok >k >k 3k 3k 5k ok >k >k >k 3k 3k K ok >k >k >k 3k 5k 5k ok >k >k 3k 3k ok ok ok >k >k 3k 3k 3k ok >k >k >k 3k 5k ok ok >k >k 3k 3k 5k ok ok >k >k Sk 3k ok ok >k >k >k 3k 5k ok ok >k >k >k 3k ok ok >k kK k ok ok

FLASH PROGRAMMING
Alternate make target for flash programming only

You must create a special Eclipse make target (program) to run this part of the makefile
(Project -> Create Make Target... then set the Target Name and Make Target to "program")

Open0CD is run in "batch" mode with a special configuration file and a script file containing
the flash commands. When flash programming completes, OpenOCD terminates.

Note that the script file of flash commands (script.ocd) is part of the project

Programmers: Martin Thomas, Joseph M Dupre, James P Lynch
sk 3k 3k ok ok ok 3k ok ok ok 3k oK ok ok 3k oK oK oK 3k ok ok ok 3k oK ok 3k 3K oK ok ok 3k oK ok 3k 3k ok ok 3k 3k oK ok 3k 3 oK ok 3k 3 oK ok 3k 3 ok ok 3k 3k oK ok 3k 3 oK ok 3K K oK ok 3k ok ok 3k o ok ok 3k K ok ok 3k oK ok ok 3k ok oK ok 3k ok ok ok kK ok ok K

#H HHHHBHHHHEFHHHHRHR

specify output filename here (must be *.bin file)
ARGET = main.bin

—

specify the directory where openocd executable and configuration files reside (note: use forward slashes /)
OPENOCD DIR = 'c:/Program Files/openocd-2007rel4l/bin/'

specify OpenOCD executable (pp is for the wiggler, ftd2xx is for the USB debuggers)
#0PENOCD = $(OPENOCD DIR)openocd-pp.exe
OPENOCD = $(OPENOCD_DIR)openocd-ftd2xx.exe

specify OpenOCD configuration file (pick the one for your device)
#0PENOCD_CFG = $(OPENOCD DIR)at9lsam7s256-wiggler-flash-program.cfg
#0PENOCD CFG = $(OPENOCD DIR)at9lsam7s256-jtagkey-flash-program.cfg
OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-armusbocd-flash-program.cfg

program the AT91SAM7S256 internal flash memory
program: $(TARGET)

@echo "Flash Programming with OpenOCD..." # display a message on the console
$(OPENOCD) -f $(OPENOCD CFG) # program the onchip FLASH here
@echo "Flash Programming Finished." # display a message on the console

The download package containing the sample programs also includes two sample projects for the Olimex
board, one for FLASH execution and one for RAM execution. You will have to define a new Debug
Launch Configuration for the Olimex projects; just employ the methods shown earlier in this tutorial.

If you have a 256K version of the Olimex board (AT91SAM7-P256), you will need to adjust the memory
limits and top-of-stack specification in the linker command file shown above.

For the 64K board, these specifications are:

I* specify the AT91SAM7S64 */
MEMORY

flash : ORIGIN =0, LENGTH = 64K I* FLASH EPROM */
ram : ORIGIN =0x00200000, LENGTH = 16K [* static RAM area */

}

I* define a global symbol _stack_end (see analysis in annotation above) */
_stack_end = 0x203FFC;

For the 256K board, these specifications are:

I* specify the AT91SAM7S256 */
MEMORY

flash : ORIGIN =0, LENGTH = 256K /* FLASH EPROM */
ram : ORIGIN = 0x00200000, LENGTH =64K /* static RAM area */

I* define a global symbol _stack_end (see analysis in annotation above) */
_stack_end = 0x20FFFC;

197

Appendix 2. SOFTWARE COMPONENTS

One common problem in setting up a software development system composed of disparate
modules downloaded from multiple sources on the web is ensuring that the various components
will work harmoniously with each other.
To build this ARM cross development tool chain, we need the following components:
e YAGARTO - Eclipse IDE version 3.2
e YAGARTO - Eclipse CDT 3.1 Plug-in for C++/C Development (Zylin custom version)
e YAGARTO - Native GNU C++/C Compiler suite for ARM Targets
e YAGARTO - OpenOCD version 141 or later for JTAGKey or ARM-USB-OCD JTAG debugging
o Segger J-Link GDB Server version 3.70b for SAM-ICE JTAG debugging

o Atmel SAM-BA version 2.5 flash programming utility

Yagarto may be downloaded from here: _http://www.yagarto.de/

The Segger J-Link GDB Server can be downloaded from the Segger web site: http://www.segger.de/

The Atmel SAM-BA flash programming utility can be downloaded from the Atmel web site:

http://www.atmel.com/dyn/products/product card.asp?part id=3524

A short zip file containing the tutorial and the sample Eclipse projects are hosted by Atmel at the
following web address:

www.AT91.com

On the Atmel support web site above, go to the “Documents” section and search for this document
“Using Open Source Tools for AT91SAM7 Cross Development”. Follow the instructions given on page
56 of this document (Download the Tutorial Sample Projects) to retrieve the sample projects and
configuration files.

A safe approach is to build the ARM software development system using the YAGARTO
package above, get it to work and become familiar with it. Then you can monitor the Eclipse,
Zylin, Yagarto and OpenOCD web sites for new versions and choose at a later time if you want
to upgrade. So far, Michael has been very diligent in having the “latest and greatest” as part of
YAGARTO.

198

	UIntroduction
	ARM Software Cross Development System
	Target Hardware
	Open Source Tools Required
	Check for JAVA Support
	Downloading YAGARTO
	Downloading the Segger J-Link GDB Server
	Downloading the Atmel SAM-BA Boot Assistant
	Install All Tools
	Install OpenOCD
	Install YAGARTO Tool Chain
	Install Eclipse IDE
	Install YAGARTO Tools
	Install the Segger J-Link GDB Server
	Install the Wiggler Parallel Port Driver
	Install the Amontec JTAGkey USB Drivers
	Install the Olimex ARM-USB-OCD USB Drivers
	Install the Atmel SAM-BA Flash Programming Utility

	Download the Tutorial Sample Projects
	Move the OpenOCD Configuration Files
	Running Eclipse for the First Time
	Set Up Eclipse External Tools
	Set Up OpenOCD as an Eclipse External Tool (wiggler)
	Set Up OpenOCD as an Eclipse External Tool (ARM-USB-OCD)
	Set Up OpenOCD as an Eclipse External Tool (JTAGkey)
	Set Up J-Link GDB Server as an Eclipse External Tool (SAM-IC
	Set Up SAM-BA as an Eclipse External Tool
	Adding Your JTAG Tools into the “Favorites” List

	Create an Eclipse Project
	Using the Eclipse Editor
	Creating a New Source File
	Undo / Redo
	Cut, Copy and Paste Operations
	Saving Your Code
	Brace Checking
	Searching

	Discussion of the Source Files – FLASH Version
	AT91SAM7S256.H
	BLINKER.C
	CRT.S
	ISRSUPPORT.C
	LOWLEVELINIT.C
	MAIN.C
	TIMERISR.C
	TIMERSETUP.C
	DEMO_AT91SAM7_BLINK_FLASH.CMD
	MAKEFILE
	OpenOCD Programming Script File

	Adjusting the Optimization Level
	Including Libraries
	Adding Libraries to the Link
	Where are the Libraries
	Display the Modules in a Library
	The Bad News about Libraries

	Building the FLASH Application
	Using OpenOCD to Program the FLASH memory
	OpenOCD Configuration File for Wiggler (FLASH programming ve
	OpenOCD Configuration File for JTAGKey (FLASH programming ve
	OpenOCD Configuration File for ARMUSBOCD (FLASH programming

	Using SAM-ICE and SAM-BA to Program the FLASH memory
	Debugging the FLASH Application
	Create a Debug Launch Configuration
	Add the Debug Launch Configuration to the List of Favorites
	Open the Eclipse Debug Prespective
	Starting OpenOCD
	Starting J-Link GDB Server
	Start the Eclipse Debugger
	Components of the DEBUG Perspective
	Debug Control
	Run and Stop with the Right-Click Menu
	Setting a Breakpoint
	Single Stepping
	Inspecting and Modifying Variables
	Watch Expressions
	Assembly Language Debugging
	Inspecting Registers
	Inspecting Memory

	Create an Eclipse Project to Run in RAM
	DEMO_AT91SAM7_BLINK_RAM.CMD
	MAKEFILE.MAK

	Build the RAM Project
	Debugging the RAM Application
	Create an Embedded Debug Launch Configuration for RAM
	Set up the hardware
	Open the Eclipse “Debug” Perspective
	Start OpenOCD
	Start J-Link GDB Server
	Start the Eclipse Debugger
	Setting Software Breakpoints
	Compiling from the Debug Perspective

	Conclusions
	About the Author
	Appendix 1. Olimex AT91SAM7- P64 Board
	Appendix 2. SOFTWARE COMPONENTS

