
 1

Using Open Source Tools for AT91SAM7S Cross Development

Revision C

Author:

James P. Lynch
Grand Island, New York, USA

May 15, 2007

 2

TABLE OF CONTENTS

Introduction ...4
ARM Software Cross Development System ...4
Target Hardware ...12
Open Source Tools Required..13
Check for JAVA Support ...13
Downloading YAGARTO...18
Downloading the Segger J-Link GDB Server..24
Downloading the Atmel SAM-BA Boot Assistant ..28
Install All Tools ..29
Install All Tools ..30

Install OpenOCD ...30
Install YAGARTO Tool Chain ..32
Install Eclipse IDE..35
Install YAGARTO Tools...37
Install the Segger J-Link GDB Server ...39
Install the Wiggler Parallel Port Driver...42
Install the Amontec JTAGkey USB Drivers ...45
Install the Olimex ARM-USB-OCD USB Drivers ...50
Install the Atmel SAM-BA Flash Programming Utility..54

Download the Tutorial Sample Projects..56
Move the OpenOCD Configuration Files ..60
Running Eclipse for the First Time..61
Set Up Eclipse External Tools...64

Set Up OpenOCD as an Eclipse External Tool (wiggler) ..64
Set Up OpenOCD as an Eclipse External Tool (ARM-USB-OCD) ...66
Set Up OpenOCD as an Eclipse External Tool (JTAGkey)...68
Set Up J-Link GDB Server as an Eclipse External Tool (SAM-ICE) ...70
Set Up SAM-BA as an Eclipse External Tool ..72
Adding Your JTAG Tools into the “Favorites” List...74

Create an Eclipse Project..76
Using the Eclipse Editor ..83

Creating a New Source File ..83
Undo / Redo ..83
Cut, Copy and Paste Operations...84
Saving Your Code ...84
Brace Checking ...85
Searching ..85

Discussion of the Source Files – FLASH Version...89
AT91SAM7S256.H ..89
BLINKER.C..91
CRT.S..92
ISRSUPPORT.C..96
LOWLEVELINIT.C...97
MAIN.C ..99
TIMERISR.C..101
TIMERSETUP.C..102
DEMO_AT91SAM7_BLINK_FLASH.CMD..105
MAKEFILE...108
OpenOCD Programming Script File ..110

Adjusting the Optimization Level...111
Including Libraries ...111

Adding Libraries to the Link...111
Where are the Libraries ...112
Display the Modules in a Library ...113
The Bad News about Libraries ..114

Building the FLASH Application ..115
Using OpenOCD to Program the FLASH memory ...116

OpenOCD Configuration File for Wiggler (FLASH programming version)..116

 3

OpenOCD Configuration File for JTAGKey (FLASH programming version)...117
OpenOCD Configuration File for ARMUSBOCD (FLASH programming version).................................117

Using SAM-ICE and SAM-BA to Program the FLASH memory ...124
Debugging the FLASH Application ...129

Create a Debug Launch Configuration..129
Add the Debug Launch Configuration to the List of Favorites...137
Open the Eclipse Debug Prespective..138
Starting OpenOCD ..140
Starting J-Link GDB Server ...142
Start the Eclipse Debugger..143
Components of the DEBUG Perspective ..146
Debug Control ...147
Run and Stop with the Right-Click Menu...148
Setting a Breakpoint ..149
Single Stepping ...153
Inspecting and Modifying Variables...156
Watch Expressions..159
Assembly Language Debugging ...160
Inspecting Registers ..161
Inspecting Memory ..163

Create an Eclipse Project to Run in RAM...167
DEMO_AT91SAM7_BLINK_RAM.CMD..169
MAKEFILE.MAK ..171

Build the RAM Project ...172
Debugging the RAM Application ...173

Create an Embedded Debug Launch Configuration for RAM...173
Set up the hardware ..180
Open the Eclipse “Debug” Perspective ...181
Start OpenOCD ...182
Start J-Link GDB Server ..183
Start the Eclipse Debugger..184
Setting Software Breakpoints ..186
Compiling from the Debug Perspective...188

Conclusions...191
About the Author ...191
Appendix 1. Olimex AT91SAM7- P64 Board ...192
Appendix 2. SOFTWARE COMPONENTS..198

Introduction

For those on a limited budget, use of open source tools to develop embedded software for the
Atmel AT91SAM7S family of microcontrollers may be a very attractive approach. Professional
software development packages from Keil, IAR, Rowley Associates, etc are convenient, easy to
install, well-supported and fairly efficient. The problem is their price ($900 US and up) which is a
roadblock for the student, hobbyist, or engineer with limited funding.

Using free open source tools currently available on the web, a very acceptable cross
development package can be assembled in an hour’s work. It does require a high-speed internet
connection and a bit of patience.

ARM Software Cross Development System

While there are a few diehards out there who still write their C programs with Windows Notepad and use
a command prompt window to enter the GNU compile and link commands by hand, this is utter
foolishness when complete Integrated Development Environments such as Eclipse are available. Eclipse
allows entering and modifying your C programs using a modern software editor. It also provides single-
click build and debug operations.

The Eclipse IDE
does everything
for us: editing,
compiling, linking,
downloading and
debugging!

 4

In the Eclipse screen image below, the C source file “timerisr.c” is being edited. There are toolbar
buttons to compile and link your project, program it into onchip flash memory and start the integrated
debugger. This tutorial is devoted to how you can set all this up.

This button will compile
and link your project.

This button will start
the debugger.

This button will start the
OpenOCD or J-Link
GDB Server.

Clicking on this
“program” icon will
burn your program into
onchip flash memory.

The “Project”
view shows all
the elements of
your project.

The “Edit” view
allows you to
enter and
modify your
source code.

The “Make”
view shows
the alternate
make target
that programs
flash.

The “Console” view shows the results of your
compile/link operations, etc.

The C compiler and linker used in this tutorial is the Free Software Foundation GNU tool chain for ARM.
The GNU C Compiler was first developed by Richard Stallman in 1987 and has been maintained and
updated since by a cadre of independent software engineers worldwide. The GNU C compiler is noted for
its completeness and wide range of code generators targeting most of the popular microcomputer
architectures. In addition to the compiler, the GNU tool chain includes an assembler, linker, make utility
debugger, libraries and various other utilities.

This GNU open source C compiler provides a speed and code density performance very close to the best
professional compilers from ARM, Keil, Hitex, IAR and others. The GNU Make utility is used by Eclipse to
manage your builds and call the proper build tools in the correct sequence. The GNU GDB debugger is
fully integrated with the Eclipse IDE to give animated debugging with breakpoints, single stepping and
sophisticated inspection of variables and data structures.

 5

Let’s describe how all these software tools are used to develop ARM applications. The Eclipse software
editor is used to create C and assembler source files and include files. It is also used to create the make
file and linker script file.

C Source Files main.c

Assembler Source Files crt.s

Include Files Board.h

Eclipse Editor

Make file makefile (no extension)

Linker Command Script file demo_at91sam7_blink_flash.cmd

The GNU C Compiler (ARM version) and the GNU assembler (ARM version) are used to compile and
assemble the source files. The outputs of the compiler and assembler are object files. Object files are
fairly close to the final machine language instructions executed by the ARM chip, but addresses are not
filled in. These addresses are resolved and filled in later by the linker (giving the user the ability to load
the program anywhere in memory).

 GNU C Compiler

 GNU Assembler

 C Source Files main.c

Assembler Source Files crt.s

Include Files Board.h

Include Files

 Object Files main.o

 Object Files crt.o

The GNU Linker is used to collect the object files you have created, plus any object modules you need
from libraries, resolve all addresses, and combine them into a downloadable output file with the “.out”
extension. A linker command script file with the extension “.cmd” is used to specify the order and target
memory location your object modules.

The “.out” output file is complex; it includes both machine language executable instructions and
debugging information. Normally, this file is used to download into RAM memory for execution exclusively
within RAM or to simply assist the Eclipse/GDB debugger in identifying symbols and their memory
addresses, etc. The Linker also produces a “.map” file which is helpful in determining the lengths of
modules, their placement in memory, etc.

 6

 GNU Linker

Ob

ject Files main.o
 Output File main.out

Library Files libgcc.a

 Map File main.map
Linker Command Script File
(demo_at91sam7_blink_flash.cmd)

If you wish to burn your application into onchip FLASH memory, then a pure binary file is needed by the
OpenOCD JTAG debugger or the Atmel SAM-BA flash programming utility. This is created by running the
“.out” file through the GNU ObjCopy utility to create a “.bin” binary file.

 GNU Objcopy Utility Output File main.out n

As a completely optional step, the GNU Objdump utility can be used to create a “.dm
an embellishment to the map file. If this is of no interest to you, just remove it from th

 GNU Objdump UtilityOutput File main.out

You literally could do all the above operations by entering commands into a Windo
However, Eclipse uses the GNU Make utility to automate all this for you. Make scan
prepare and executes the above utilities automatically in the proper order. Ev
“dependencies” that you supply, the Make utility only compiles those source files t
you just changed). In a large project, this is a real time saver.

When you click on the Eclipse “Build All” toolbar button shown below, Eclipse wi
utility which will compile and link your project. In this case, Eclipse effectively runs
all”.

Another toolbar button in Eclipse will run the make utility with the “program” t
command “make program” – this will burn your application into onchip flash via the

 GNU Make Utility

 (make all)

 Binary File main.bi
p” dump file which is
e make file.

 7

 Dump File main.dmp

ws command prompt.
s a makefile that you
er better, using file

hat need it (the ones

ll run the GNU Make
the command “make

arget (effectively the
JTAG connection.

 Runs all the utilities above!

Debugging is a bit complicated since the application’s execution platform is a circuit board separate from
your PC. Several PC programs and a special hardware interface are required to accomplish “remote
debugging”.

When you start the Eclipse Debugger, Eclipse will automatically start an auxiliary program, the GNU GDB
Source Level Debugger (arm-elf-gdb.exe). Eclipse communicates to this program using the GDB/MI
protocol which is similar to the command line interface (CLI) that people have been using for years to
operate GDB in batch mode.

For example, Eclipse may send the command “print x” to GDB when you park the cursor over the variable
“x”.

Eclipse Debugger

GNU GDB Source Level Debugger

 Arm-elf-gdb.exe

“Print x”

Park cursor over
the variable “x”

GDB/MI protocol

GDB has access to your main.out file which has both instructions and symbol information. Using the
symbol information, it determines that the variable “x” is a long integer at memory address 0x2006D4.
GDB now emits a “read memory” debugging command in a serial protocol called RSP (Remote Serial
Protocol).

For example, it may generate a text packet like this: “$m0x2006D4,8#cs” which means read 8 bytes from
memory address 0x2006D4. This RSP packet is sent to a TCP port.

 TCP Port

localhost:3333
 Or
localhost:2331

 Read Memory: “$m0x2006D4,8#cs”

 RSP protocol

GNU GDB Source Level Debugger

 Arm-elf-gdb.exe

Main.out file

A special daemon server program (a program that operates surreptitiously in the background waiting for
commands) is required to accept the RSP protocol debugging commands from GDB and convert them
into ARM JTAG protocol commands which will go to the ARM chip’s Embedded ICE module. The ARM
JTAG protocol is complex; without going into too much detail, it involves clocking bits in and out a 38 bit
register using a send line, a receive line and a clock line.

This daemon program will either be OpenOCD or the J-Link GDB Server; which one depends on the
type of hardware JTAG interface you have purchased. The daemon operates in a client-server
arrangement. The GNU GDB Source Code Debugger is the client (it makes debugging requests) while
the daemon (such as OpenOCD) is the server (it interrogates the ARM chip via the JTAG port and returns
the result).

 8

This requires that the daemon (OpenOCD or J-Link GDB Server) must be running before GDB is started.

The connection from GDB to the OpenOCD program is via a TCP port named “localhost:3333”.
Alternately, the connection from GDB to the J-Link GDB Server program is via a TCP port named
“localhost:2331”. The OpenOCD or J-Link GDB Server then uses the PC’s USB port to communicate to
the JTAG hardware interface. Note that the OpenOCD daemon can also use the PC’s parallel printer port
to operate the JTAG lines if you have the inexpensive “wiggler” JTAG device.

 OpenOCD

 Open On-Chip Debugger

 TCP Port
 Localhost:3333

 USB Port

 “$m0x2006D4,8#cs”

 RSP protocol

 “111001000111…”

USB
protocol

JTAG

Hardware
Interface

Now we have one final element in our road to debugging, the JTAG hardware interface. The USB port is
a high speed serial interface and we have five JTAG lines to manipulate. The JTAG hardware interface
converts the USB serial signal to the JTAG clock/data format. Most JTAG/USB hardware debugger
manufacturers use the FTD2232 chip that has a “bit-bang” design wherein the incoming USB serial byte
is output on 8 bidirectional port pins. These pins are then connected to the JTAG lines of the ARM chip.
The FTD2232 circuit also translates the 5 volt USB signal to the 3.3 volt level required to drive the JTAG
pins.

If you’re using the inexpensive “wiggler” device, the PC printer port lines are simply level-shifted to 3.3
volts and applied directly to the ARM JTAG pins. This works but is notoriously slow and susceptible to
ground loop problems.

ARM7 and ARM9 microcontrollers have an Embedded-ICE macrocell. This is a hardware circuit that
implements most of the popular debugger functions on-chip. It has two hardware breakpoint/watchpoint
circuits that can monitor and then stop instruction flow if a designated address/data combination is
encountered (without degrading performance in any way). This means that you can set two breakpoints in
applications running in FLASH memory, single step the program; read and write memory and ARM
registers; program the onchip flash, and so forth. Not many years ago, this would require a special
“break-out” version of the microprocessor or an “in-circuit debugger” or a resident debugging software
monitor - all costly solutions.

JTAG

Hardware
Interface

FT2232

Atmel AT91SAM7256
Microprocessor

TCK
TDI
TMS
nTRST

TDO

JTAG
PORT

 “111001000111…”

USB
protocol

Embedded-ICE

Macrocell

5 volts

3.3 volts

 9

The diagram below shows the command flow from Eclipse through GDB and OpenOCD/J-Link on its way
to your target board’s JTAG hardware pins. Results, such as the value of a requested memory read, flow
the reverse way back to Eclipse.

Eclipse.exe

Integrated Development Environment

ARM-ELF-GDB.EXE

 Gnu Source-Level Debugger

OpenOCD-FTD2XX.EXE
 Or

 JLinkGDBServer.exe

GDB/MI Interface

RSP Protocol via
TCP connection
Localhost:3333

Client

Server

USB JTAG
 Interface

USB
protocol

ARM JTAG
 protocol

 5 volts 3.3 volts

The result of all this software cooperation is a nifty graphical debugging environment. If, for example, you
park the cursor over a variable name in the source file, Eclipse will ask the GDB Source Level Debugger
for it. Using the symbol information in your main.out file, GDB will perform a memory read request on the
appropriate memory address. The OpenOCD daemon will convert that request into the complex serial
shift register protocol required by the ARM chip’s JTAG/Embedded ICE unit. The ARM hardware will read
the symbol’s value from that address (the processor must be halted to do this) and pass it back to
OpenOCD which passes it back to the GDB Source Level Debugger which returns it to Eclipse for display.

The JTAG hardware choice is usually one of cost. Here are some popular JTAG hardware interfaces
available today.

Vendor Price Com Port Software Needed Comments

ATMEL SAM-ICE $129.00 (US) USB J-Link GDB Server Branded version of the Segger J-Link
Olimex ARM JTAG $19.95 (US) Printer Port OpenOCD Called the “wiggler”, slow download speed
Olimex ARM-USB-OCD $69.95 (US) USB OpenOCD extra serial port and 5 volt power for target
Olimex ARM-USB-Tiny $49.95 (US) USB OpenOCD Hobbyist/Student version
Amontec JTAGKey $131.78 (US) USB OpenOCD Has extra ESD protection
Amontec JTAGKey-Tiny $38.60 (US) USB OpenOCD Hobbyist/Student version
Segger J-Link-ARM $330.11 (US) USB J-Link GDB Server Has extensive software available

The author has tried most of these JTAG interfaces and they all work very well, except for the “wiggler”
which can be very temperamental. In any case, it would behoove you to purchase a USB-based hardware
interface if you can afford it as parallel ports on PC platforms are rapidly falling out of favor.

The OpenOCD software daemon which connects the Eclipse/GDB debugger to the Olimex and Amontec
JTAG devices is open source and free. Purchasers of the Atmel SAM-ICE also have a free, unlimited
license to the Segger J-Link GDB Server.

 10

When you have chosen your JTAG hardware, your setup will look like the one shown below. Here a SAM-
ICE JTAG interface is attached to the PC’s USB port and the target board’s 20-pin JTAG connector. A
simple wall-wart 9 volt DC power supply also powers the board.

 11

Target Hardware

As a hardware platform to exercise our ARM cross development tool chain, we will be using the Atmel
AT91SAM7S-EK evaluation board, shown directly below.

This board includes two serial ports, a USB
port, an Atmel Crypto memory, JTAG
connector, four buffered analog inputs, four
pushbuttons, four LEDs and a prototyping area.

The Atmel AT91SAM7S256 ARM
microcontroller includes 256 Kbytes of on chip
FLASH memory and 64 Kbytes of on chip RAM.

The board may be powered from either the
USB channel or an external DC power supply
(7v to 12v).

This board is available from Digikey and retails
for $149.00 (US) www.digikey.com

There are numerous third party AT91SAM7 boards
available. Notable is the Olimex SAM7-P256 shown on
the right (Olimex SAM7-P64 board shown, SAM7-P256
board is very similar). This board includes two serial
ports, a USB port, expansion SD memory port, two
pushbuttons, two LEDs, one analog input with
potentiometer and a prototyping area.

The Atmel AT91SAM7S256 ARM microcontroller
includes 256 Kbytes of on chip FLASH memory and 64
Kbytes of on chip RAM. The board may be powered
from either the USB channel or an external DC power
supply (7v to 12v).

This board is available from Olimex, Spark Fun
Electronics and Microcontrollershop; it retails for $69.95
(US)

www.olimex.com
www.sparkfun.com
www.microcontrollershop.com

For the rest of this tutorial, we will concentrate on the
Atmel AT91SAM7S-EK evaluation board.

The Olimex board can be substituted but the reader
must then make minor adjustments since the Olimex
board uses different I/O ports for the LEDs.
See Appendix 1 for additional instructions.

 12

Open Source Tools Required

To build this ARM cross development tool chain, we need the following components:

• Eclipse IDE version 3.2

• Eclipse CDT 3.1 Plug-in for C++/C Development (Zylin custom version)

• Native GNU C++/C Compiler suite for ARM Targets

• OpenOCD version 141 or later for JTAGKey or ARM-USB-OCD JTAG debugging

• Segger J-Link GDB Server version 3.70b for SAM-ICE JTAG debugging

• Atmel SAM-BA version 2.5 flash programming utility

The first four components (Eclipse, CDT, GNU Toolchain and OpenOCD) can be downloaded from a
single source. The YAGARTO ARM Cross Development Package was assembled by Michael Fischer of
Lohfelden, Germany. It includes the latest Eclipse release 3.2 and the Zylin-modified CDT (C/C++
Development Toolkit). The ARM compiler tool chain runs as a Windows native application with no Cygwin
DLL required. Michael has also modified the GDB debugger to improve its performance in an embedded
debug environment. Rounding out the package is the latest version of OpenOCD (the JTAG debugger).
YAGARTO is packaged as four downloads with a fool-proof installer for each. Michael’s YAGARTO web
site is non-commercial with no affiliation with any manufacturer.

Yagarto may be downloaded from here: http://www.yagarto.de/

The Segger J-Link GDB Server can be downloaded from the Segger web site: http://www.segger.de/

The Atmel SAM-BA flash programming utility can be downloaded from the Atmel web site:

 http://www.atmel.com/dyn/products/product_card.asp?part_id=3524

 Note: The Eclipse/CDT does NOT run on Windows 98 or Windows ME

Check for JAVA Support

Since the Eclipse Integrated Development Environment (IDE) is written partially in JAVA, we
must have JAVA support on our computer to run it. With the recent peace treaty between
Microsoft and Sun Microsystems, most recent desktop PCs running Windows 2000 or Windows
XP already have JAVA runtime support installed.

To check this, open a command prompt window (click on “Start – All Programs – Accessories
– Command Prompt”) and type the command c:\>java –version (thanks to Michael Fischer
for this trick).

 13

http://www.yagarto.de/
http://www.segger.de/
http://www.atmel.com/dyn/products/product_card.asp?part_id=3524

 14

If the command prompt indicates no such program as java.exe, or if the Java version is not 1.6.0_01 or
higher, you will need to download and install the JAVA runtime environment as outlined in the instructions
below. The author recommends that you always have the latest and greatest JAVA runtime installed on
your computer. Otherwise, skip to the section “Downloading YAGARTO”.

To install the JAVA Runtime Environment, go to the SUN web site and download it.

http://java.sun.com/j2se/1.4.2/download.html

The Sun JAVA web site is very dynamic so don’t be surprised if the JAVA run time download
screens differ slightly from this tutorial.

To support Eclipse, we just need the Sun JAVA Runtime Environment (JRE). Click on “Download J2SE
JRE” as shown below.

In the next download screen, shown below, click the radio button “Accept License Agreement”
and then click on “Windows Offline Installation, Multi-language”.

Start the JAVA installation by clicking on “Run”.

Now the Sun JAVA runtime installation engine will start. Click “Run” to start the installer.

 15

Click on the “Typical Setup” radio button and then accept the license terms. JAVA is free; Sun
has recently converted JAVA into an Open Source product.

A series of installation progress screens will appear. Installation only takes a couple of minutes.

 16

When the JAVA runtime installation completes, click on “Finish” to exit the installer.

To check that JAVA has been installed, create a command prompt (click on “Start – All
Programs – Accessories – Command Prompt”) and type the command c:\>java –version

 17

Note: The current revision of YAGARTO requires the latest JAVA
runtime environment (version 1.6.0_01)

Downloading YAGARTO

Michael Fischer of Lohfelden, Germany has put together a native version of the GNU compiler tool chain
for ARM targets based on MinGW (Minimalist GNU for Windows) and called it YAGARTO (YET
ANOTHER GNU ARM TOOL CHAIN). The compiler suite does not require the Cygwin package and is
therefore a bit more efficient running in a Windows environment.

Eclipse, a superior open-source Integrated Development Environment (IDE), coupled with the C
Development Toolkit (CDT) plug-in provides an editor and source code debugger.

The OpenOCD JTAG debugger, developed by German student Dominic Rath, interfaces the Eclipse GDB
source code debugger with the AT91SAM7S JTAG port. OpenOCD supports run/stop control, memory
and register inspection, software and hardware breakpoints and can also be used to program the
AT91SAM7S internal FLASH memory.

Each of these four components (compiler, Eclipse IDE, YAGARTO Tools and OpenOCD) are downloaded
separately and each has its own automatic installer that is fool-proof and convenient.

Michael Fischer’s YAGARTO web site, which is loaded with great software examples and tutorials, can be
accessed at the following link.

http://www.yagarto.de

The YAGARTO web site should look something like this, shown below.

 18

http://www.yagarto.de/

Scroll down the YAGARTO web site until you see the four download components displayed, as shown
below.

Using Windows Explorer, create an empty folder called “c:\download” to hold the four downloaded
YAGARTO installation packages. This will let us easily reinstall things if we make a mistake.

Click on the link for the “Open On-Chip Debugger” package as shown above. We’re going to save these
packages in the “c:\download” folder and run them later. Select “Save” as shown below on the left and
then specify the download folder “c:\download” as shown on the right below. Click “Save” in the “Save
As” screen below on the right to start the download process.

 19

The OpenOCD (Open On-Chip Debugger) package downloads quickly since it is only 2.2 Mb.
Click on “Close” as shown below on the right to finish the download.

Click on the link for the “Yagarto Tools” package as shown in the Yagarto Download section above.
Select “Save” as shown below on the left and then specify the download folder “c:\download” as shown
on the right below. Click “Save” in the “Save As” screen below on the right to start the download process.

The “Yagarto Tools” package downloads quickly since it is only 700 Kb. Click on “Close” as shown below
on the right to finish the download.

 20

Now click on the link for the “Yagarto GNU ARM toolchain” package as shown in the Yagarto Download
section above. Select “Save” as shown below on the left and then specify the download folder
“c:\download” as shown on the right below. Click “Save” in the “Save As” screen below on the right to
start the download process.

The “Yagarto GNU ARM toolchain” package takes several minutes to download since it is 30.8 Mb. Click
on “Close” as shown below on the right to finish the download.

Click on the link for the “Integrated Development Environment” package as shown in the Yagarto
Download section above. Select “Save” as shown below on the left and then specify the download folder
“c:\download” as shown on the right below. Click “Save” in the “Save As” screen below on the right to
start the download process.

 21

The “Integrated Development Environment” package takes several minutes to download since it is 44.6
Mb. Click on “Close” as shown below on the right to finish the download.

Now if you inspect the “c:\download” folder using Windows Explorer, you will see the four YAGARTO
downloads. Each of these is an installer executable. We will double-click on each one in turn to install the
various parts of our ARM Cross Development system.

 22

There are four files in the c:\download folder:

openocd-2007re141-setup-rc01.exe Installer for OpenOCD support

yagarto-tools-20070303-setup.exe Installer for JLINK support

yagarto-bu-2.17_gcc-4.1.1-c-c++_nl-1.14.0_gi-6.5.5.exe Installer for GNU compiler suite for ARM

yagarto-ide-20061002-setup.exe Installer for Eclipse IDE

Note to Readers:
Michael Fischer is constantly improving the YAGARTO package. If you get a newer
version when you download YAGARTO, rest assured that Michael has made sure that
all the components work harmoniously together.

In this tutorial, the OpenOCD JTAG debugger system is stored in the following folder:

 c:\Program Files\openocd-2007re141\

If Michael has posted a newer version, that folder name may change to:

 c:\Program Files\openocd-2007re154\

For example, the OpenOCD executable and configuration files for this revision are
stored in this folder: “c:\Program Files\openocd-2007re141\bin”. Obviously, a newer
revision will place these files is a different folder – you need to be aware of this if you
download a newer version of YAGARTO.

We’ll try to indicate throughout the tutorial those places where you will need to adjust
the folder name to accommodate the new revision.
 23

Downloading the Segger J-Link GDB Server

You may skip this section if you are planning to use the Olimex wiggler, the Olimex ARM-USB-
OCD or the Amontec JTAGKey hardware debuggers.

If you have purchased the Atmel AT91SAM7S256-EK evaluation board, you may have also
purchased a JTAG debugger called the SAM-ICE. In reality, this is a branded version of the
Segger J-Link ARM Emulator that interfaces the Eclipse graphical debugger to the Atmel
AT91SAM7S256 ARM chip’s JTAG hardware interface. To use the SAM-ICE or the J-Link, we
will need a Windows software program called the Segger J-Link GDB Server. The J-Link GDB
Server can be downloaded from the following link:

 http://www.segger.com/download_jlink.html

Note: there is a link to this on the Atmel www.at91.com web site but going directly to the Seeger
web site guarantees access to the latest version.

This brings up the specific link to the J-Link ARM download. Click on “Software and
documentation pack V3.70b” as shown below.

 24

http://www.segger.com/download_jlink.html
http://www.at91.com/

In the “File Download” screen shown below left, click “Save”. Since we have a “c:\download”
folder already set up, direct the Segger download to that folder as shown in the “Save As” screen
shown below on the right. Click “Save” to start the download process.

 25

The Segger J-Link download just takes a few seconds to download and leaves the Segger zip file
in the “c:\download” folder. Click on “Close” when the download completes, as shown below right.

Double-click on the Segger zip file “Setup_JLinkARM_V370b.zip” as shown below and extract it
to the c:\download folder using the standard Windows file decompression techniques.

Double-click on this to start
Windows file decompression.

The Windows file decompression wizard will start up; Click on “Extract all files” to start the
decompression.

Click on “Next” on the “Welcome” screen on the left below. For the destination of the extracted
file, take the default which will place it as a sub-folder of the c:\download directory. Click “Next”
on the screen on the right below to actually start the file extraction process.

Click on “Finish” below to complete the Windows file extraction operation.

 26

If you navigate down into the Segger sub-folder in the c:\download directory, you will see the
Segger J-Link package installer. This is the application “Setup_JLinkARM_V370b.exe” as
shown below. We will be installing the J-Link GDB Server later, assuming that you have the
SAM-ICE JTAG hardware.

Don’t be alarmed if the Segger web site shows a more recent revision of the Segger J-Link GDB Server, it
is always prudent to use the latest and greatest version available!

 27

Downloading the Atmel SAM-BA Boot Assistant

Atmel provides a very nice Windows utility called the SAM Boot Assistant (SAM-BA) which can
be used to program the onchip FLASH memory. SAM-BA can operate over the COM port with a
standard RS-232 straight-through cable and also operate over the USB port if you have a
standard USB cable. It can also connect via the USB port to the JTAG port if you have the SAM-
ICE JTAG hardware interface. You cannot use the SAM-BA with the Olimex ARM-USB-OCD or
the Amontec JTAGKey JTAG hardware interfaces; for those the OpenOCD software can be
utilized to program the FLASH and debug the application. In any event, it makes good sense to
have this handy utility available on your Eclipse cross development system.

To download SAM-BA, click on the following link:

 http://www.atmel.com/dyn/products/product_card.asp?part_id=3524

The Atmel main web site for the AT91 family will appear as shown below.

Scroll down until you see under “Tools and Software” the file “AT91-ISP.exe”. Click on the CD-
ROM symbol to start the download.

 28

http://www.atmel.com/dyn/products/product_card.asp?part_id=3524

In the “File Download” window below left, click on “Save”. Select our “c:\download” folder as the
destination and the click “Save” to start the download, as shown below right.

The SAM-BA installer will download in a few seconds. Click “Close” when the download completes.

 29

The “c:\download” folder should now show the Atmel SAM-BA installer, called “Install AT91-ISP
v1.9.exe”.

Install All Tools

Everything we need has been downloaded into the “c:\download” folder. Now we will install each tool
individually. Michael Fischer has made everything simple, in most cases just take the defaults presented
by the installers!

Install OpenOCD

Even if you are planning to use the Atmel SAM-ICE JTAG hardware debugger, we will install OpenOCD
anyway because it contains the executable for the GNU make utility. Michael Fischer’s OpenOCD installer
automatically places the location of the “make.exe” executable into the Windows path environment
variable, making it easy for Eclipse to find it when you hit the “Build All” button.

Eclipse/CDT has a fabulous graphical source code debugger that is built on top of the venerable GNU
GDB command line debugger. The only problem is how to connect it to a remote target such as a
microprocessor circuit board. GDB communicates to the target via a Remote Serial Protocol that can be
utilized over a parallel port or an internet port. To make the Eclipse/JTAG connection, we need a daemon
(a program that runs in the background), waiting for GDB Remote Serial Protocol commands coming over
the TCP port and then manipulate the AT91SAM7 microprocessor JTAG pins according to the JTAG
protocol established by ARM.

In the past, most people have used the Macraigor OCDRemote utility that reads GDB serial commands
and manipulates the ARM JTAG lines using the PC’s parallel port and a simple hardware level-shifting
device called a “wiggler”. The Macraigor OCDRemote utility has always been available for free (in binary
form) but it is not open source. Macraigor could withdraw it at any time.

To the rescue is German college student Dominic Rath who developed an open source ARM JTAG
debugger as his diploma thesis at the University of Applied Sciences, FH-Augsburg in Bavaria. Dominic’s
thesis can be found here: http://openocd.berlios.de/thesis.pdf . Dominic also has a website on the Berlios
Open Source repository here: http://openocd.berlios.de/web/

Finally, Dominic participates in the OpenOCD message board at the SparkFun site here:
http://www.sparkfun.com

OpenOCD can be used with the inexpensive “wiggler” JTAG device as well as the USB JTAG devices
such as the Amontec JTAGKey, the Olimex ARM-USB-OCD and others coming on the market. It cannot
be used with the SAM-ICE JTAG interface.

Double-click on the file “Openocd-2007re131-setup-rc01.exe” to start the OpenOCD installer.

 30

http://www.sparkfun.com/

In the “Welcome” screen below on the left, click the “Next” button. The next screen is a standard GNU
license agreement; click the top radio button to accept the License Agreement and click the “Next” button
to continue.

In the “Choose Components” screen shown below on the left, select all three components (OpenOCD,
Make Utils and Driver). Click “Next” to continue. On the “Choose Install Location” screen below on the
right, take the default location “c:\Program Files\openocd-2007re141” and click “Next” to continue.

This folder may change
if you download a newer
revision of YAGARTO

Take the default in the “Choose Start Menu Folder” screen shown below left. The OpenOCD debugger
will be normally called from within Eclipse, so execution from the Start menu would be rare. You could
click the checkbox “Do not Create Shortcuts” if desired. Click “Install” to take the default and continue.

 31

OpenOCD installs very fast (less than a minute) as shown in the “Installing” screen above on the right.

Click “Next” when the installation completes, as shown in the screen below on the left.

Click “Finish”, as shown on the screen below to the right, to terminate the OpenOCD installer.

Make a mental note that the installer has placed all OpenOCD components in the following folder:
c:\Program\Files\openocd-2007re141\. If your download includes a more recent revision of OpenOCD,
remember the folder address – we will use it later in the tutorial.

Install YAGARTO Tool Chain

There are a number of pre-built GNU ARM compiler toolsets available on the web and they are all very
good. For this tutorial, we will be using the YAGARTO pre-built ARM compiler tool suite developed by
Michael Fischer of Lohfelden, Germany. Michael’s version of the GNU compiler toolset for ARM has been
natively compiled for the Intel/Windows platform; therefore the Cygwin utilities are not needed. This makes
the compiler run faster and simplifies the installation. Michael has also performed some tweaks on the
included GNU GDB debugger to make it perform better in the Eclipse environment.

Double-click on the file Yagarto-bu-2.17_gcc-4.1.1-c-c++_nl-1.14.0_gi-6.5.5.exe to start the YAGARTO
tool chain installer.

 32

In the “Welcome” screen shown on the left below, click on “Next” to continue. Click the ”I Accept …”
radio button on the “License Agreement” screen below on the right and then click “Next” to continue.

In the “Choose Components” screen on the left below, take all the defaults by simply clicking “Next” to continue.
Note that this installs the Insight debugger that we will not use, but no harm is done including it. On the “Choose
Install Location” screen on the right below, take the default again by clicking “Next” to continue.

Click “Install” on the “Choose Start Menu Folder” shown below left and the YAGARTO tool chain installer
will commence. This installation takes several minutes.

 33

When tool chain installation completes, click “Next” as shown below on the left followed by clicking
“Finish” on YAGARTO completion screen shown on the right below. This will terminate the YAGARTO
installer.

Make a mental note that the YAGARTO compiler tool chain is installed in the following folder:

C:\Program Files\Yagarto\

 34

Install Eclipse IDE

IBM has been a competitor in recent years to Microsoft and at one time was building an alternative to
Microsoft’s Visual Studio (specifically for the purpose of developing JAVA software). This effort was called
the Eclipse Project and in 2004 IBM donated Eclipse to the Open Software movement, created an
independent Eclipse Foundation to support it and invited programmers worldwide to contribute to it. The
result has been an avalanche of activity that has catapulted Eclipse from a simple JAVA editor to a multi-
platform tool for developing just about any language, including C/C++ projects.

Eclipse by itself makes a wonderful Integrated Development Environment (IDE) for JAVA software. There
are numerous books available on the Eclipse JAVA platform and many PC and Web applications are
being built with it. Be sure to visit the Eclipse web site: www.eclipse.org

Our purpose is to build an IDE for embedded software development; this normally implies C/C++
programming. To do this, we need to install the CDT (C Development Toolkit) plug-in. The problem is that
Eclipse/CDT has had difficulties working with remote debuggers. Oyvind Harboe and the Norwegian
company Zylin has developed, with the cooperation of the CDT team, a custom version of the CDT plug-in
that solves these problems. The Zylin version of CDT properly starts the remote debugger in idle mode so
you can start execution, single-step, etc.

The only proviso is that we must select a version of Eclipse compatible with the Zylin CDT plug-in. Rest
assured that the Zylin CDT included in the YAGARTO download was chosen for its compatibility with the
new Eclipse 3.2 release. The Zylin website is at this address: www.zylin.com

Double-click on the file “Yagarto-ide-20061002-setup.exe” to start the Eclipse IDE installer.

The initial “Welcome” screen is shown below to the left; click on “Next” to continue. Accept the terms of
the license agreement by clicking the “I accept …” radio button in the screen below right and then click
“Next” to continue.

 35

You are forced to select Eclipse and the Zylin plug-ins in the “Choose Components” screen shown below
to the left. Click on “Next” to continue. Take the default in the “Choose Install Location” screen below on
the right. Click “Next” to continue.

The Eclipse IDE can be added to the Start menu as shown in the “Choose Start Menu Folder” screen
below on the left. Click “Install” to start the Eclipse installer. The Eclipse installer will commence and it will
just take at most a couple of minutes. Click “Next” when the Eclipse installer finishes, as shown below to
the right.

Finally, click “Finish” to exit the Eclipse installer as shown in the screen below. Make a mental note that
YAGARTO installed the Eclipse components in the following folder: c:\Program Files\Yagarto IDE\

 36

Install YAGARTO Tools

The YAGARTO Tools includes the GNU Make utility. Double-click on the file Yagarto-tools-
20070303-setup.exe to start the YAGARTO tools installer.

In the “Welcome” screen below on the left, click “Next” to continue. In the “License Agreement” screen
below on the right, check the radio button to accept the license agreement and then click “Next” to
proceed.

In the “Choose Components” screen below on the left, take the default (select both components) and
click “Next” to continue.

In the “Choose Install Location” screen below on the right, take the default which is the destination folder
“c:\Program Files\yagarto-tools-20070303\”. Click on “Next” to proceed.

 37

In the “Choose Start Menu Folder” screen below on the left, click “Install” to start the installation. You
could elect to check the box labeled “Do not create shortcuts” since the Make utility is typically started
from within Eclipse. The Yagarto tools will install quickly. When the “Installation Complete” screen
appears as shown below in the right; click “Next” to continue.

Finally, click on “Finish” as shown below to complete installation of the Yagarto tools.

 38

Install the Segger J-Link GDB Server

If you have purchased the Atmel SAM-ICE JTAG hardware interface, install the Seeger J-Link GDB
Server as shown in this section.

SEGGER Microcontroller Systeme GmbH of Hilden, Germany supply hardware and software
tools for the embedded software industry. They are manufacturers of the J-Link JTAG hardware
debuggers and supply numerous software products in support thereof. One product of special
interest is the J-Link GDB Server for connection to the Eclipse/GDB graphical debugger and
another is the J-Flash EPROM programmer which can program on-chip and off-chip flash for a
wide variety of microcontrollers.

An Atmel branded version of the J-Link ARM debugger hardware, called the SAM-ICE, is
available for use with the Atmel AT91SAM7 evaluation boards for $129 (US). That’s a pretty
good deal given that a standard Segger J-Link ARM USB JTAG hardware debugger retails for
$327(US) or €248(Euro).

The Segger J-Link GDB Server interfaces the GDB Remote Serial Protocol emitted by Eclipse to
the SAM-ICE JTAG Debugger. It operates as a daemon, a Windows program that operates in the
background waiting for commands to process. If you have purchased an Atmel SAM-ICE, you
automatically have an unlimited license to use the Segger J-Link GDB Server. The Atmel license
for the Segger J-Link GDB Server software is a very good value since the commercial license for
this product is $261(US) or €198(Euro).

The J-Link GDB Server cannot be used to program the onchip flash. Again, a Segger software
package called J-Flash is available to do this for $525(US) or €398(Euro). Fortunately, the free
Atmel SAM-BA utility can be used to program flash via the SAM-ICE JTAG Interface.

In the photo shown directly below, the SAM-ICE hardware debugger is connected to the PC’s
USB port and to the AT91SAM7S256-EK evaluation board’s 20-pin JTAG connector. The board
power is supplied by a standard 9 volt DC “wall wart” power supply.

 39

If you are using the Atmel SAM-ICE or Segger J-Link JTAG hardware, the following installation will give
Eclipse a compatible J-Link GDB Server to communicate to the target’s JTAG port. Click on the installer
“Setup_JLinkARM_V370b.exe” in the “c:\download\Setup_JLinkARM_V370b” folder.

Double-click on this to start the
Segger J-Link GDB Server Installer

Ignore the Windows belly-aching about publisher verification and click on “Run” to continue.

The Segger “License Agreement” will be presented. Click on “Yes” to accept it.

In the “Welcome” screen shown below left, click on “Next” to get started.

In the “Choose Destination Location” screen shown below right, take the default which will put the Segger
components in a “c:\Program Files” subfolder. Click “Next” to continue.

 40

In the “Choose Options” panel shown below left, un-check the “Create entry in start menu”
since we will be starting the Segger J-Link GDB Server from within Eclipse itself. Click “Next to
continue.

Click on “Next” to start the installation in the “Start Installation” screen shown below on the right.

The Segger J-Link package will install quickly; click on “Finish” as shown in the screen below
right.

 41

Install the Wiggler Parallel Port Driver

If you have purchased the Olimex ARM-JTAG hardware interface (called the “wiggler”), install the
giveio.sys parallel port driver as shown in this section.

Unless you are a perfect programmer, you will occasionally require the services of a debugger to trap and
identify software bugs. The AT91SAM7S256 microprocessor has special debug circuits on chip that can
start and stop execution, read and write memory, and provide two hardware-assisted breakpoints. The
interface to the outside world is a standard JTAG interface (essentially a very complicated and slow serial
shift register protocol). You need a device called a JTAG debugger to connect your PC to the ARM chip’s
JTAG pins. You also need a software program to operate that debugger and interface the JTAG protocol
to the Eclipse/GDB source code debugger protocol; that software program is OpenOCD and you’ve
already installed it.

One way to connect your PC to the AT91SAM7S-EK target board’s JTAG connector is to use an
inexpensive device called a “wiggler”. This can be purchased from Olimex for $19.00 (US). It’s just a
simple voltage level-shifter and it plugs into your PC’s parallel port.

The ARM-JTAG device is available from:

 www.olimex.com

www.sparkfun.com

www.microcontrollershop.com

The following is the hardware setup to debug the Atmel
AT91SAM7S-EK evaluation board using the inexpensive
“wiggler” device. A standard USB cable is connected to supply
board power. The ARM-JTAG interface is attached to the PC’s
printer port; in the author’s setup, a stock parallel port cable from
the local computer store was employed. The JTAG 20-pin
connector is keyed so it can’t be inserted improperly.

USB cable
supplies power.

Wiggler

Standard Printer
cable

20-pin JTAG
Connector

42

There are two well known criticisms of the “wiggler” device. First, the printer port of a PC limits operation
of the JTAG to 500 Khz and this translates into slow downloading. Second, many PCs are now being
manufactured without the customary serial and parallel port; the PC world is gravitating to the USB
protocol.

If you are planning to use the inexpensive “wiggler” JTAG interface, a special giveio.sys driver
has to be installed. This only needs to be done once.

The giveio.sys driver is in the folder: c:\Program Files\openocd-2007re141\driver\parport\

Note: check if this folder name has changed
due to a newer YAGARTO release

Start the installation of the giveio.sys driver by opening up a Command Prompt window (for really
experienced readers, that’s the old DOS window). The “command prompt” can be found in your Windows
start menu “Start – All Programs – Accessories”. If your Command Prompt window is not at the root
folder c:\, you can type the CD \ command shown below to locate yourself at the root folder.

>cd \

We need to change to the directory: c:\Program Files\openocd-2007re141\driver\parport\ since it
contains the giveio.bat installation batch file. Type the CD command again as shown below to do this.
Now the command prompt window will show that we are inside that folder.

>cd c:\Program Files\openocd-2007re141\driver\parport\

 43

Now take a look at the contents of this folder by typing the DIR command.

Run this batch file

We want to run the command batch file “install_giveio.bat”. This will install the giveio.sys driver and load
and start it. The batch file may be run by entering its name on the command line and hitting “Enter”. As
you can see from the command history below, giveio was successfully installed as a Windows driver.

The giveio.sys driver is a permanent installation; you only have to do this once.

 44

Install the Amontec JTAGkey USB Drivers

If you have purchased one of the Amontec JTAG hardware interfaces, install the Amontec USB drivers as
shown in this section.

In Dominic Rath’s thesis about the OpenOCD project, a USB-JTAG interface based on the FTDI FT2232C
engine was described with a schematic. The Swiss engineering firm Amontec has developed and
marketed a professional version of this USB JTAG interface called the JTAGkey. Its price is є139 (euros)
or $177 (us). The JTAGkey is professionally designed and manufactured with additional bells and whistles,
such as status LEDs and ESD protection. JTAGkey also automatically senses and adjusts the level
shifters for the ARM voltage level; this will come in handy when lower voltage versions (e.g. 1.8 volts) of
the ARM become available. The Amontec JTAGKey can be purchased online from here:

 http://www.amontec.com/jtagkey.shtml

Amontec has also addressed the hobbyist and student market with the JTAGkey-Tiny device, priced at
є29 (euros) or $37 (us) and illustrated below. This smaller JTAGkey-Tiny device plugs directly into the 20-
pin JTAG connector and uses a mini-USB cable to attach to the PC (you have to supply this cable – it’s
similar to the USB cables supplied with digital cameras). The installation procedure is similar to that of the
more expensive JTAGkey shown below.

Professionals would tend to select the more expensive JTAGkey for its ESD protection and the flat ribbon
cable that attaches to the prototype system, as seen in the hardware setup coming up. It also has an
integrated USB cable fitted with a ferrite filter. The JTAGkey-Tiny plugs directly into the application board’s
20-pin JTAG connector and therefore must have the vertical clearance to permit this fitting.

The hardware setup, shown below, includes the Amontec JTAGkey plugged into the 20-pin JTAG header
on the AT91SAM7S-EK target board and also into the PC’s USB port. The JTAG does not supply board
power, so in this example a 9-volt DC “wall wart” power supply is fitted to the power connector. If you have
a spare USB port on your PC, you could use another USB cable to supply board power instead.

 45

USB port on PC

JTAGkey

9 volt DC
Power Supply

Plug in the Amontec JTAGk
by the following screen indic

The virtual device drivers ar
OpenOCD installation progr
for the drivers by clicking on

20-pin JTAG
Connector
ey into the USB port. You should hear the familiar USB “beep” sound followed
ating that new USB hardware has been detected.

e already on our “c:\Program Files\openocd” folder thanks to Michael Fischer’s
am we ran earlier in this tutorial. Therefore, advise Windows NOT to search
 “No, not this time” as shown below. Click “Next” to continue.

 46

Instruct Windows to “Install from a list or specific location (Advanced)” as shown on the left hand
screen below. Click “Next to continue. Now use the “Browse” button to find the directory “c:\Program
Files\openocd-2007re141\driver\jtagkey_utils_060307\” as shown below on the right hand screen. Click
“Next to continue.

Note: folder name
may have changed
due to a newer
YAGARTO release

Pay no attention to Windows complaints about Logo testing by clicking on “Continue Anyway” on the left
screen below. The virtual device driver installation for Channel A will now run to completion.

 47

When the Channel A driver installation has
completed, you will see the screen below indicating
successful installation. Click “Finish” to exit the
channel A installation as shown below.

Click “Finish” to complete installation of the Channel A driver.

The JTAGkey is built around the FTDI FT2232C engine which has two channels. Exactly the same
installation sequence is required for channel B. Follow the screens on this page in sequence, exactly like
the channel A virtual device driver installation.

Note: folder name may
have changed due to a
newer YAGARTO release

When the Channel B driver has completed, you will see the screen below right indicating successful
installation. Click “Finish” to exit the channel B installation as shown below.

B)

 48

To be sure of successful installation of these JTAGkey virtual device drivers, use the Windows Start menu
to look at the “Control Panel – System – Hardware - Device Manager”, inspecting carefully the USB
controllers. As can be seen below, the Amontec JTAGkey channel A and channel B USB ports are
successfully installed.

 49

Install the Olimex ARM-USB-OCD USB Drivers

If you have purchased one of the Olimex JTAG hardware interfaces, install the Olimex USB drivers as
shown in this section.

Olimex also developed a version of the USB-based JTAG debugger mentioned in Dominic Rath’s
OpenOCD thesis. It includes a couple of unique features such as an extra serial port (might come in
handy if you have a laptop with no serial port) and a DC power supply that can be strapped for 5v, 9v or
12v operation. This DC supply includes a cable that can power your board, if needed. The Olimex ARM-
USB-OCD debugger is є55 (euros) or $69.95 (US). If you want to use the Olimex ARM-USB-OCD JTAG
device to program on chip flash memory, it would be better to use a wall-wart external power supply for
the target board since the ARM-USB-OCD device doesn’t supply enough power for the Atmel
AT91SAM7S256-EK board during flash programming operations.

Recently, Olimex has added a low end USB-based JTAG debugger called the ARM-USB-Tiny. It costs
$49.95 (US) or є37.34 (euros) and comes without the extra serial port or power supply.

 Olimex ARM-USB-OCD Olimex ARM-USB-Tiny

To use the ARM-USB-OCD power supply, there are jumpers to set the voltage. While the Atmel
specification for the AT91SAM7S256-EK board is 7 – 12 volts for the DC supply, it worked for the author
at all the above voltage ranges. Just to be safe, strap the Olimex ARM-USB-OCD DC supply to +9 volts
(right-hand jumper installed).

Power
Supply

Right-hand
jumper fitted
gives +9 volts

 50

The hardware setup for the Atmel AT91SAM7S256-EK board is shown below. The 20-pin JTAG ribbon
cable connectors are keyed so they can’t be fitted improperly. The DC supply cable from the ARM-USB-
OCD dongle powers the board.

Standard 20-pin
JTAG Connector

Olimex ARM-USB-
OCD JTAG interface

Standard USB
Cable

Olimex-supplied
cable to power the
board.

Note: Not enough
current to program
the flash. Use a 9-
volt “wall-wart” DC
supply in that case.

Plug in the Olimex ARM-USB-OCD dongle into the USB port. You should hear the familiar USB “beep”
sound followed by the following screen indicating that new USB hardware has been detected.

The virtual device drivers are already on our “c:\Program Files\openocd-2007re141\driver\arm_usb_ocd\” folder
thanks to Michael Fischer’s OpenOCD installation program we ran earlier in this tutorial. Therefore, advise
Windows NOT to search for the drivers by clicking on “No, not this time” as shown below. Click “Next” to
continue.

51

Instruct Windows to “Install from a list or specific location (Advanced)” as shown on the left hand
screen below. Click “Next to continue. Now use the “Browse” button to find the directory “c:\Program
Files\openocd-2007re141\driver\arm_usb_ocd\” as shown below on the right hand screen. Click “Next
to continue.

Note: folder name may
have changed due to a
newer YAGARTO release

Ignore the Windows XP complaint about “Logo Testing” by clicking “Continue Anyway” as shown on the
left below. The installer will now start installation activities.

When the driver installation for the Olimex ARM-USB-OCD JTAG debugger is done, click on “Finish” on
the screen shown below to exit the installer.

52

Remember that the Olimex ARM-USB-OCD also supports a auxillary serial port. Windows will now start a
dialog to install that virtual driver. Since we know exactly where the driver files are, click the radio button
“No, not this time” on the window below left and click “Next” to continue. Also click the “Install from a
list or specific location (Advanced)” radio button below on the right and then click “Next” to continue.

Now use the “Browse” button to find the directory “c:\Program Files\openocd-
2007re141\driver\arm_usb_ocd\” as shown below on the left hand screen. Click “Next to continue. Once
again, ignore the Windows complaints about Logo testing and click “Continue Anyway” as shown below
right.

Note: folder name may
have changed due to a
newer YAGARTO release

The serial driver installs very rapidly. When the “Found New Hardware Wizard” screen reappears, click
“Finish” to exit. Installation of the Olimex ARM-USB-OCD drivers is now completed.

 53

Install the Atmel SAM-BA Flash Programming Utility

No matter what JTAG hardware interface you have purchased, it still behooves you to install and become
familiar with the Atmel SAM-BA flash programming utility. It works with the COM port, the SAM-ICE USB-
based JTAG interface or just a simple USB cable.

Click on “Install AT91-ISP v1.9.exe” in the c:\download folder, as shown below.

Ignore the Windows belly-aching about software verification and click “Run” to start the installation as
shown below left. When the setup wizard appears, click “Next” to continue as shown below right.

In the two “License Agreement” screens below, click on “I agree” and “Next to continue.

 54

Take the default install location by clicking “Next” below left. Also take the default start menu folder by
clicking “Install” as shown below right.

When installation completes, click “Next” as shown below right to continue.

Since we will be starting SAM-BA from the Eclipse “Run” pull-down menu, uncheck all the shortcuts as
shown on the screen below left and click “Next”. Finally, click “Reboot now” followed by “Next” to
complete the installation. The SAM-BA utility is registered in the Windows registry and you need to re-
boot your computer.

 55

Download the Tutorial Sample Projects

Before we start up the Eclipse IDE, let’s first download the tutorial source and OpenOCD configuration
files. This material may be downloaded from the Atmel ARM Product support site using this link:

http://www.at91.com

Click on “Documents” as shown below. If you are reading this tutorial, you have probably already done all
this anyway.

Now browse through the available documents until you see “Using Open Source Tools for AT91SAM7
Cross Development” and then click on it.

 56

http://www.at91.com/

Under the “Key Resources” tab, click on “Using Open Source Tools for AT91SAM7 Cross
Development”; this will bring up the download for the tutorial in pdf format, the sample projects and
OpenOCD configuration files. Clicking on just the “AN” icon will simply download and display a one page
summary of the tutorial.

Now click on “Source package” as shown below to start the download.

 57

Click on “Save” as shown below left and then select the “c:\download” folder as the destination in the
“Save As” screen below right. Click “Save” to start the download of the sample code and configuration
files.

Now the c:\download folder shows the file “c:\download\atmel_tutorial_source.zip” as shown below.

Double-click to
unzip this file.

Double-click on the file “c:\download\atmel_tutorial_source.zip” to start the Windows file
decompression facility.

The Windows Compressed Folders Extraction Wizard will start as shown below on the left. Click on “Next”
to start the wizard. Take the default destination folder as shown below right and click “Next to proceed.

 58

The file decompression will finish in a few seconds; click “Finish” to complete the unzipping of the tutorial
components as shown below.

Inspecting the “c:\download” folder, we see a sub folder “c:/download/atmel_tutorial_source/”.

There are four sample projects. Two are for the Atmel AT91SAM7-EK evaluation board and two are for
the Olimex SAM7-P64 board. We will be “importing” these projects into Eclipse very shortly, so make a
mental note of the folder where you stored them.

In the sample folder below, there are six OpenOCD configuration files with the extension “.cfg”. There are
two configuration files for the wiggler, two for the Amontec JTAGKey, and two for the Olimex ARM-USB-
OCD device. With respect to each hardware device, one configuration file is for debugging whilst one is
for on chip flash memory programming. We will be copying the configuration files into the OpenOCD bin
folder shortly so that OpenOCD can access them easily.

 59

Finally the sample folder contains the tutorial itself in pdf format.

Sample Projects

This tutorial in pdf format

Move the OpenOCD Configuration Files

Using Windows Explorer, select and move the six OpenOCD configuration files shown above into the
“c:\Program Files\openocd-2007re141\bin” folder. These configuration files will be used by the sample
projects later in the tutorial. Additionally, this destination folder already has a Windows path defined for it
and thus simplifies setting up the OpenOCD as an external tool.

If you have downloaded a newer revision of YAGARTO, the destination folder will change. Make sure that
you take this into account!

The OpenOCD folder should now look as shown below.

New OpenOCD configuration
files added from the “sample
projects” download

Note: folder name
may have changed
due to a newer
YAGARTO release

 60

Running Eclipse for the First Time

The Yagarto installer creates a desktop icon for starting Eclipse, as shown below. Click on this
icon to start the Eclipse IDE.

Now the Eclipse splash screen will open up, as shown below.

At this point, Eclipse will present a “Workspace Launcher” dialog, shown below. This is where you specify
the location of the “workspace” that will hold your Eclipse/CDT projects. You may place the workspace
anywhere you wish but for this tutorial I placed it in the root folder as “C:\workspace”.

Click the check box so the folder “C:\workspace” can be assigned to be the default anytime you enter
Eclipse. Click “OK” to accept the workspace assignment and continue with Eclipse start-up.

Type the folder
C:\workspace
in this text box.

 61

Now Eclipse will officially start and show the “Welcome” page. Since most of the informational icons refer
to the JAVA aspects of Eclipse, discard the “welcome” screen by clicking on the “x” as shown below.

What follows is the “Resource” perspective. A perspective is simply a layout of “views” on the display
surface (the Resource perspective includes “Navigator”, “Editor”, “Outline” and “Tasks” views.

 62

Let’s switch to the C/C++ perspective. Click on “Window – Open Perspective – Other…”, then click on
“C/C++” to open Eclipse into the C/C++ perspective.

This is the C/C++ perspective. We will be learning more about the various component parts later in this
tutorial.

 63

Set Up Eclipse External Tools

We have installed on our desktop PC several tools; such as the OpenOCD or the J-Link GDB Server and
the SAM-BA flash programming utility. We would like to have a convenient way to start these tools from
the Eclipse screen. Eclipse has just such a facility – it’s called Eclipse “External Tools”. The tools installed
this way can be conveniently started from the “Run” pull-down menu or via a toolbar button.

Set Up OpenOCD as an Eclipse External Tool (wiggler)

If you have purchased an Olimex ARM-JTAG (wiggler), you need to set up OpenOCD as an external tool
and tailor it specifically for operation with the “wiggler”.

When it’s time to debug an application, we must be able to conveniently start the OpenOCD debugger.
OpenOCD runs as a daemon; a program that runs in the background waiting for commands to be
submitted to it. Eclipse has a very nice “external tool” feature that allows us to add OpenOCD to the RUN
pull-down menu.

Click on “Run – External Tools – External Tools…”

The “External Tools” window will appear. Click on “Program” and then “New” button to
establish a new External Tool.

64

Fill out the “External Tools” form exactly as shown below.

In the “Name” text box, call this external tool “OpenOCD”

There are two versions of OpenOCD; openocd-pp.exe supports the parallel-port “wiggler” device (ARM-
JTAG from Olimex) while openocd-ftd2xx.exe supports the USB-based devices from Amontec and
Olimex. In this section we are installing the “wiggler” version of OpenOCD as an Eclipse external tool.

In the “Location:” pane, use the “Browse File System…” button to search for the OpenOCD executable; it
will be in this folder: c:\Program Files\openocd-2007re141\bin\openocd-pp.exe”.

In the “Working Directory” pane, use the “Browse File System…” button to specify “c:\Program
Files\openocd-2007re131\bin\” as the working directory.

In the “Arguments” pane, enter the argument “-f at91sam7s256-wiggler.cfg” to specify the OpenOCD
configuration file designed for the wiggler. Remember that we copied the six OpenOCD configuration files
into the “c:\Program Files\openocd-2007re131\bin\” earlier. In this case, we need the “wiggler” version.

Note: folder names
may have changed
due to a newer
YAGARTO release

No changes are required to the other tabs in the form (Refresh, Environment, and Common).
Click on “Apply” and “Close” to register OpenOCD as an external tool.

 65

Set Up OpenOCD as an Eclipse External Tool (ARM-USB-OCD)

If you have purchased an Olimex ARM-USB-JTAG, you need to set up OpenOCD as an external tool and
tailor it specifically for operation with the Olimex ARM-USB-OCD JTAG interface.

When it’s time to debug an application, we must be able to conveniently start the OpenOCD debugger.
OpenOCD runs as a daemon; a program that runs in the background waiting for commands to be
submitted to it. Eclipse has a very nice “external tool” feature that allows us to add OpenOCD to the RUN
pull-down menu.

Click on “Run – External Tools – External Tools…”

The “External Tools” window will appear. Click on “Program” and then “New” button to
establish a new External Tool.

 66

Fill out the “External Tools” form exactly as shown below.

In the “Name” text box, call this external tool “OpenOCD”

There are two versions of OpenOCD; openocd-pp.exe supports the parallel-port “wiggler” device (ARM-
JTAG from Olimex) while openocd-ftd2xx.exe supports the USB-based devices from Amontec and
Olimex. In this section we are installing the “USB” version of OpenOCD as an Eclipse external tool.

In the “Location:” pane, use the “Browse File System…” button to search for the OpenOCD executable; it
will be in this folder: c:\Program Files\openocd-2007re131\bin\openocd-ftd2xx.exe”.

In the “Working Directory” pane, use the “Browse File System…” button to specify “c:\Program
Files\openocd-2007re131\bin\” as the working directory.

In the “Arguments” pane, enter the argument “-f at91sam7s256-armusbocd.cfg” to specify the
OpenOCD configuration file designed for the Olimex ARM-USB-OCD.

Note: folder names
may have changed
due to a newer
YAGARTO release

No changes are required to the other tabs in the form (Refresh, Environment, and Common).
Click on “Apply” and “Close” to register OpenOCD as an external tool.

 67

Set Up OpenOCD as an Eclipse External Tool (JTAGkey)

If you have purchased an Amontec JTAGKey, you need to set up OpenOCD as an external tool and tailor
it specifically for operation with the JTAGKey.

When it’s time to debug an application, we must be able to conveniently start the OpenOCD debugger.
OpenOCD runs as a daemon; a program that runs in the background waiting for commands to be
submitted to it. Eclipse has a very nice “external tool” feature that allows us to add OpenOCD to the RUN
pull-down menu.

Click on “Run – External Tools – External Tools…”

The “External Tools” window will appear. Click on “Program” and then “New” button to
establish a new External Tool.

 68

Fill out the “External Tools” form exactly as shown below.

In the “Name” text box, call this external tool “OpenOCD”.

There are two versions of OpenOCD; openocd-pp.exe supports the parallel-port “wiggler” device (ARM-
JTAG from Olimex) while openocd-ftd2xx.exe supports the USB-based devices from Amontec and
Olimex. In this section we are installing the “USB” version of OpenOCD as an Eclipse external tool.

In the “Location:” pane, use the “Browse File System…” button to search for the OpenOCD executable; it
will be in this folder: c:\Program Files\openocd-2007re131\bin\openocd-ftd2xx.exe”.

In the “Working Directory” pane, use the “Browse File System…” button to specify “c:\Program
Files\openocd-2007re131\bin\” as the working directory.

In the “Arguments” pane, enter the argument “-f at91sam7s256-jtagkey.cfg” to specify the OpenOCD
configuration file designed for the Amontec JTAGKey and its little brother, the JTAGKey-Tiny.

Note: folder names
may have changed
due to a newer
YAGARTO release

No changes are required to the other tabs in the form (Refresh, Environment, and Common).
Click on “Apply” and “Close” to register OpenOCD as an external tool.

 69

Set Up J-Link GDB Server as an Eclipse External Tool (SAM-ICE)

If you have purchased an Atmel SAM-ICE, you need to set up the J-Link GDB Server as an external tool
and tailor it specifically for operation with the SAM-ICE.

When it’s time to debug an application, we must be able to conveniently start the J-Link GDB Server. J-
Link GDB Server runs as a daemon; a program that runs in the background waiting for commands to be
submitted to it. Eclipse has a very nice “external tool” feature that allows us to add J-Link GDB Server to
the RUN pull-down menu.

Click on “Run – External Tools – External Tools…”

The “External Tools” window will appear. Click on “Program” and then “New” button to
establish a new External Tool.

 70

Fill out the “External Tools” form exactly as shown below.

In the “Name” text box, call this external tool “J-Link GDB Server

In the “Location:” pane, use the “Browse File System…” button to search for the J-Link GDB Server
executable; it will be in this folder: c:\Program Files\SEGGER\JLinkARM_V370b\JLinkGDBServer.exe”.

In the “Working Directory” pane, use the “Browse File System…” button to specify “c:\Program
Files\SEGGER\JLinkARM_V370b\” as the working directory.

The “Arguments” pane may be left empty

No changes are required to the other tabs in the form (Refresh, Environment, and Common).
Click on “Apply” and “Close” to register J-Link as an external tool.

 71

Set Up SAM-BA as an Eclipse External Tool

In any case, you should have the Atmel SAM-BA Flash Programming utility in your Eclipse toolbox. Use
the following instructions to set up the SAM-BA utility as an Eclipse external tool.

Click on “Run – External Tools – External Tools…”

The “External Tools” window will appear. Click on “Program” and then “New” button to
establish a new External Tool.

 72

Fill out the “External Tools” form exactly as shown below.

In the “Name” text box, call this external tool “SAM-BA”.

In the “Location:” pane, use the “Browse File System…” button to search for the SAM-BA executable; it will
be in this folder: “c:\Program Files\ATMEL Corporation\AT91-ISP v1.9\SAM-BA.exe”.

In the “Working Directory” pane, use the “Browse File System…” button to specify “c:\Program
Files\ATMEL Corporation\AT91-ISP v1.9\” as the working directory.

The “Arguments” pane may be left empty

No changes are required to the other tabs in the form (Refresh, Environment, and Common).
Click on “Apply” and “Close” to register SAM-BA as an external tool.

 73

Adding Your JTAG Tools into the “Favorites” List

We have just installed the JTAG debugger daemon and the Atmel SAM-BA flash programming utility as
Eclipse external tools. Just one more operation is needed to actually place them at the top of the “Run”
pull-down menu; that is to add them to the “favorites” list.

Click on “Run – External Tools – Organize Favorites …” as shown below.

In the “Organize External Tools …” window below left, click on “Add …”. This brings up the “Add External
Tools Favorites” window in the middle below. Click on “Select All” followed by “OK”.

The “Organize External Tools window reappears as shown below right. Click on “OK” to register
OpenOCD or J-Link GDB Server and SAM-BA as “favorites”. Note in the example below, we installed
OpenOCD and SAM-BA as “favorites”. If you have the SAM-ICE JTAG debugger, then you would install J-
Link and SAM-BA as your favorites.

 74

There are two convenient ways to start the JTAG software daemon; the RUN menu or the External Tools
toolbar button.

The toolbar button is the most convenient. Click on the little pull-down arrow on the External Tools button.
The JTAG executable appears at the top of the list, just click on it to start the OpenOCD JTAG daemon.

Click on pull-
down arrow to
reveal the
external tools
you’ve installed.

Click to start OpenOCD

Eclipse always remembers the last external tool you selected. Therefore, the next time just clicking on the
External Tool toolbar button itself will start the previously selected tool.

Click on the “External
Tools” button itself to
run the previously
selected tool.

Finally, you can also start the JTAG software daemon from the “Run” pull-down menu itself, as shown
below. Click on “Run” followed by “External Tools” and then the tool itself (OpenOCD in this example).
There will typically be multiple tools installed; for example the Atmel SAM-BA boot assistant utility can be
conveniently started the same way.

75

Create an Eclipse Project

Now all our hard work preparing an open source Eclipse tool set will pay off. We can now actually create a
bona fide Atmel AT91SAM7 application using the Eclipse IDE and the open source compilers and
debuggers.

Click on the desktop Eclipse icon to start Eclipse.

Let’s jump right in and create an Eclipse C/C++ project. This project will run out of FLASH memory.
Specifically the project will blink LED1 in a main program background loop. It will blink LED2 on an IRQ
interrupt from onboard Timer1. Finally, if you push switch SW1 it will assert a FIQ interrupt that flashes
LED3 and increments a counter. There are also plenty of variables defined for debug practice.

In the File pull-down menu, click on “File – New – Project…” to get started, as shown below.

If this appears,
click it instead!

In the “New Project” wizard shown below, expand the C type by clicking on the “+” sign and then select
“Standard Make C Project”. Click “Next” to continue.

 76

Enter the sample project name “demo_at91sam7_blink_flash” into the text window below. Click “Finish”
to continue.

Now the C/C++ perspective shows a valid project, as shown below in the C/C++ Projects view on the left,
but there are no source files in that project. Normally you would select “File – New – Source File” and
enter a file name and start typing. This time, however, we will be importing source files already prepared
by the author to demonstrate Eclipse’s features.

 77

In the Eclipse screen below, click on “File – Import…”; this will bring up the file import dialog.

In the “Import” screen below, click on “File System” and then click “Next” to continue.

In the “Import – File system” screen below, use the “Browse” button associated with the “From directory”
text box to search for the sample project to be imported. In this case, it resides in the folder you created
earlier: c:\download\atmel_tutorial_source\demo_at91sam7_blink_flash.

By the way, you will use this procedure many times in the future to create a new Eclipse project from the
components of a previous project.

 78

Check the box for the folder “demo_at91sam7_blink_flash” and then click the “Select All” button below
because we want to import every one of these files.

The “Into folder:” text box should already be filled in properly; if not, click the “Browse” button to specify
the project folder “demo_at91sam7_blink_flash”. Click “Finish” to start the File Import operation.

79

Now if you expand the demo_at91sam7_blink_flash project in the C/C++ Projects view below, you will
see that all the source files have been imported into our project. By clicking on the “+” sign on the project
name in the C/C++ Projects panel on the left, the imported files are revealed.

The source files have been
imported into the project!

In the Eclipse window below, the main.c file has been selected by clicking on it and it thus displays in the
source file editor view in the center.

Projects
View

Source File
Editor View

Console
View

Outline
View

 80

In the “C/C++ Projects” view on the left, you can click on any source file and the Source Window will
jump to that file.

Source modules can be expanded (by clicking on the “+” expander icon) to reveal the variables and
functions contained therein. This allows a very quick way to find the definition of a variable in the file.

In the sample directly below, we expanded the main.c source file to reveal the variables and functions. By
clicking on the variable “h” in the C/C++ Projects view on the left, the source window jumps to the
definition of that variable. This feature is more dramatic when you have a very large source file and it’s
tedious to scroll through all of it looking for a particular variable or function.

In the “Outline” view on the right, any C/C++ file being displayed in the source window in the center will
have a tabular list of all important C/C++ elements (such as enumerations, structures, typedefs, variables,
etc) to allow quick location of those elements in the source file.

In the example below, clicking on “nbytes” in the comms structural variable will cause the source file to
jump to the definition of the “nbytes” element.

 81

At the bottom of the Eclipse screen is the “Console” view. This shows, for example, the execution of the
Make utility. In the example shown below, you can see the GNU assembler, compiler and linker steps
being executed. If there are problems, you can select the “Problems” tab to see more information
pertaining to any problems that occur.

 82

Eclipse CDT has a fairly comprehensive User’s Guide that can be downloaded from here:

http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/cdt-
home/user/C_C++_Development_Toolkit_User_Guide.pdf?cvsroot=Tools_Project

Using the Eclipse Editor

The Eclipse editor works like most editors you have used. Since it’s a “software” editor, the fonts are fixed-
pitch and that makes indented code line up very nicely.

Creating a New Source File

To create a new file from scratch, just click “File – New – Source File” as shown below left. You will be
asked for a file name, enter the name and extension as shown below right.

Click “Finish” above right to create a new editing window, as shown below. The new file name appears in
your Eclipse project view on the far left. Now you can type in your new file!

Undo / Redo

Eclipse has a full “Undo” facility; it’s found in the Edit pull-down menu as shown below.

 83

Cut, Copy and Paste Operations

Cut, Copy and Paste operations are in the “Edit” pull-down menu, but right-clicking anywhere in the editing
window will bring up the “right-click” menu wherein you can select the Cut, Copy or Paste operation, as
shown below. There is currently no “column copy and paste” operation available, but the thousands who
complained have been promised this feature in the summer 2007 release of Eclipse.

Right-click anywhere in
the editing window to
bring up the Cut, Copy
and Paste operations

Saving Your Code

If you modify a source line as shown below, Eclipse tags the line as modified by a notation in the left
margin and illuminates the “Save” button in the toolbar. Clicking the toolbar “Save” button updates the file
copy with your changes and removes the “modified” notation.

In the “Windows – Preferences – General – Workspace” pull-down menu, you can set up Eclipse to
automatically save before a build and automatically save every few minutes.

Modify this line

Eclipse flags it
as modified

“Save” toolbar button
now illuminates for use

 84

Brace Checking

Locating the closing brace is quite easy; just position the cursor just after the opening brace and the
closing brace will be immediately identified by Eclipse with a little box as shown below. This works in
reverse at the closing brace. The same trick also works for parentheses.

Place the cursor just
after the opening brace

Eclipse will mark the
closing brace.

Searching

Eclipse has extremely sophisticated search/replace capabilities. To simplify things a bit, the novice user is
probably interested in just two search features:

• Show me the definition of the variable I’ve selected

• Show me every place in the project where I’ve used it

First, we have to make sure the Eclipse Indexer is turned on. In the Projects pull-down menu, click on
“Project – Properties – C/C++ Indexer”. This brings up the C/C++ Indexer window, as shown below.

Select the “Full C/C++ Indexer” even though it has been slandered as “slow but accurate”. If you’ve built
a huge project, then you may prefer the faster but less accurate indexer.

 85

Before doing any heavy duty searching, it behooves you to command Eclipse to rebuild the index. In the
C/C++ Projects view on the far left, click in the project name (make sure it is selected). Then use the
“right-click” menu to select “Rebuild Index” as shown below.

Make sure the
project name is
selected and
illuminated.

Right-Click Menu

To find the definition of a variable, just select and highlight it and hit the F3 button on your keyboard.

Hit F3 to go directly
to the definition

In a flash, Eclipse will jump to the definition of the constant AT91C_BASE_AIC; note that it’s in a different
file as shown below.

 86

To find all occurrences of a variable, function, constant or any string, select the target text as shown below.
Here we’d like to see every occurrence of the function Timer0IrqHandler in the entire project.

Double-click to select

Click on the “Search” toolbar button.

This will bring up the “Search” window, click on the “File Search” tab. By previous selection of the text, the
target search text should already appear in the window. Set the scope of the search to “Enclosing
Projects” and click “Search” to command Eclipse to find all occurrences.

 87

Now Eclipse will pop-up the “Search” view right below the editing window and it will show 3 occurrences
as shown below.

These two block arrows
will walk through each
occurrence of the string
“Timer0IrqHandler”

Successive clicks of the yellow block arrows in the Search view will walk through each of the three
occurrences of the target string. Note in the sequence directly below, the string appears in two different
files.

 88

Discussion of the Source Files – FLASH Version

We will not describe every source file in detail. Most of these files are derived from other Atmel
documentation and are simply modified to be compatible with the GNU tools. The source files designed by
the author are heavily annotated and you shouldn’t have too much trouble understanding them.

AT91SAM7S256.H

This is the standard H file for the Atmel AT91SAM7S256 microprocessor.

// --
// ATMEL Microcontroller Software Support - ROUSSET -
// --
// DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
// DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
// OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// --
// File Name: AT91SAM7S256.h
// Object: AT91SAM7S256 definitions
// Generated: AT91 SW Application Group 11/02/2005 (17:07:34)
//
// CVS Reference: /AT91SAM7XC256.pl/1.1/Wed Nov 2 13:59:10 2005//

#ifndef AT91SAM7XC256_H
#define AT91SAM7XC256_H

typedef volatile unsigned int AT91_REG; // Hardware register definition

// ***
// SOFTWARE API DEFINITION FOR System Peripherals
// ***
typedef struct _AT91S_SYS {
 AT91_REG AIC_SMR[32]; // Source Mode Register
 AT91_REG AIC_SVR[32]; // Source Vector Register
 AT91_REG AIC_IVR; // IRQ Vector Register
 AT91_REG AIC_FVR; // FIQ Vector Register
 AT91_REG AIC_ISR; // Interrupt Status Register
 AT91_REG AIC_IPR; // Interrupt Pending Register
 AT91_REG AIC_IMR; // Interrupt Mask Register
 AT91_REG AIC_CISR; // Core Interrupt Status Register
 AT91_REG Reserved0[2]; //
 AT91_REG AIC_IECR; // Interrupt Enable Command Register
 AT91_REG AIC_IDCR; // Interrupt Disable Command Register
 AT91_REG AIC_ICCR; // Interrupt Clear Command Register
 AT91_REG AIC_ISCR; // Interrupt Set Command Register
 AT91_REG AIC_EOICR; // End of Interrupt Command Register
 AT91_REG AIC_SPU; // Spurious Vector Register
 AT91_REG AIC_DCR; // Debug Control Register (Protect)
 AT91_REG Reserved1[1]; //
 AT91_REG AIC_FFER; // Fast Forcing Enable Register
 AT91_REG AIC_FFDR; // Fast Forcing Disable Register
 AT91_REG AIC_FFSR; // Fast Forcing Status Register
 AT91_REG Reserved2[45]; //
 AT91_REG DBGU_CR; // Control Register
 AT91_REG DBGU_MR; // Mode Register
 AT91_REG DBGU_IER; // Interrupt Enable Register
 AT91_REG DBGU_IDR; // Interrupt Disable Register
 AT91_REG DBGU_IMR; // Interrupt Mask Register
 AT91_REG DBGU_CSR; // Channel Status Register
 AT91_REG DBGU_RHR; // Receiver Holding Register
 AT91_REG DBGU_THR; // Transmitter Holding Register
 AT91_REG DBGU_BRGR; // Baud Rate Generator Register
 AT91_REG Reserved3[7]; //
 89

BOARD.H

This is the standard Atmel board definition file for the AT91SAM7S-EK Evaluation Board.

//--
// ATMEL Microcontroller Software Support - ROUSSET -
//--
// The software is delivered "AS IS" without warranty or condition of any
// kind, either express, implied or statutory. This includes without
// limitation any warranty or condition with respect to merchantability or
// fitness for any particular purpose, or against the infringements of
// intellectual property rights of others.
//--
// File Name: Board.h
// Object: AT91SAM7S Evaluation Board Features Definition File.
//
// Creation: JPP 16/June/2004
//--
#ifndef Board_h
#define Board_h

#include "AT91SAM7S256.h"
#define __inline inline

#define true -1
#define false 0

//---
// SAM7Board Memories Definition
//---
// The AT91SAM7S64 embeds a 16-Kbyte SRAM bank, and 64 K-Byte Flash

#define INT_SARM 0x00200000
#define INT_SARM_REMAP 0x00000000

#define INT_FLASH 0x00000000
#define INT_FLASH_REMAP 0x01000000

#define FLASH_PAGE_NB 512
#define FLASH_PAGE_SIZE 128

//------------------------
// Leds Definition
//------------------------
#define LED1 (1<<0) // PA0
#define LED2 (1<<1) // PA1
#define LED3 (1<<2) // PA2
#define LED4 (1<<3) // PA3
#define NB_LEB 4
#define LED_MASK (LED1|LED2|LED3|LED4)
 AT91_REG DBGU_CIDR; // Chip ID Register
 AT91_REG DBGU_EXID; // Chip ID Extension Register
 AT91_REG DBGU_FNTR; // Force NTRST Register
 AT91_REG Reserved4[45]; //
 AT91_REG DBGU_RPR; // Receive Pointer Register
 AT91_REG DBGU_RCR; // Receive Counter Register
 AT91_REG DBGU_TPR; // Transmit Pointer Register
 AT91_REG DBGU_TCR; // Transmit Counter Register
 AT91_REG DBGU_RNPR; // Receive Next Pointer Register
 AT91_REG DBGU_RNCR; // Receive Next Counter Register
 AT91_REG DBGU_TNPR; // Transmit Next Pointer Register
 AT91_REG DBGU_TNCR; // Transmit Next Counter Register
 AT91_REG DBGU_PTCR; / PDC Transfer Control Register
 AT91_REG DBGU_PTSR; // PDC Transfer Status Register
 AT91_REG Reserved5[54]; //
 AT91_REG PIOA_PER; // PIO Enable Register
 AT91_REG PIOA_PDR; // PIO Disable Register
 :
 :
 :
 This is a very large file !

 90

B

T
i
b

//----------------------------------
// Push Buttons Definition
//-----------------------------------
#define SW1_MASK (1<<19) // PA19
#define SW2_MASK (1<<20) // PA20
#define SW3_MASK (1<<15) // PA15
#define SW4_MASK (1<<14) // PA14
#define SW_MASK (SW1_MASK|SW2_MASK|SW3_MASK|SW4_MASK)

#define SW1 (1<<19) // PA19
#define SW2 (1<<20) // PA20
#define SW3 (1<<15) // PA15
#define SW4 (1<<14) // PA14

//-------------------------
// USART Definition
//-------------------------
// SUB-D 9 points J3 DBGU*/
#define DBGU_RXD AT91C_PA9_DRXD // JP11 must be close
#define DBGU_TXD AT91C_PA10_DTXD // JP12 must be close
#define AT91C_DBGU_BAUD 115200 // Baud rate
#define US_RXD_PIN AT91C_PA5_RXD0 // JP9 must be close
#define US_TXD_PIN AT91C_PA6_TXD0 // JP7 must be close
#define US_RTS_PIN AT91C_PA7_RTS0 // JP8 must be close
#define US_CTS_PIN AT91C_PA8_CTS0 // JP6 must be close

//--------------
// Master Clock
//--------------
#define EXT_OC 18432000 // Exetrnal ocilator MAINCK
#define MCK 47923200 // MCK (PLLRC div by 2)
#define MCKKHz (MCK/1000) //

#endif // Board_h
LINKER.C

he blinker routine is entered if the application code crashes due to a prefetch abort interrupt, a data abort
nterrupt or an undefined instruction abort interrupt. The function enters an endless loop and emits an LED
link code identifying the source of the abort. The system must be RESET to recover.

 91

// ***
// blinker.c
//
// Endless loop blinks a code for crash analysis
//
// Inputs: Code - blink code to display
// 1 = undefined instruction (one blink long pause)
// 2 = prefetch abort (two blinks long pause)
// 3 = data abort (three blinks long pause)
//
// Author: James P Lynch May 12, 2007
// ***
#include "AT91SAM7S256.h"
#include "board.h"

unsigned long blinkcount; // global variable

void blinker(unsigned char code) {
 volatile AT91PS_PIO pPIO = AT91C_BASE_PIOA; // pointer to PIO register structure
 volatile unsigned int j,k; // loop counters

 // endless loop
 while (1) {
 for (j = code; j != 0; j--) { // count out the proper number of blinks
 pPIO->PIO_CODR = LED1; // turn LED1 (DS1) on
 for (k = 600000; k != 0; k--); // wait 250 msec
 pPIO->PIO_SODR = LED1; // turn LED1 (DS1) off
 for (k = 600000; k != 0; k--); // wait 250 msec
 }
 for (k = 5000000; (code != 0) && (k != 0); k--); // wait 2 seconds
 blinkcount++;
 }
}

CRT.S

This assembly language startup file includes parts of the standard Atmel startup file with a few changes by
the author to conform to the GNU assembler.

The interrupt vector table is implemented as branch instructions with one interesting difference; the FIQ
interrupt service routine is completely implemented right after the vector table. The designers of the ARM
microprocessor purposely placed the FIQ vector last in the vector table for this very purpose. This is the
most efficient implementation of a FIQ interrupt. The AT91F_Fiq_Handler routine, coded completely in
assembler, turns on LED3 and increments a global variable.

The AT91F_Irq_Handler routine is derived from Atmel documentation and supports nested IRQ interrupts.
For a detailed technical discussion of this topic, consult pages 336 – 342 in the book “ARM System
Developer’s Guide” by Andrew Sloss et. al. Another great advantage of this technique is that the assembly
language nested interrupt handler calls a standard C Language function to do most of the work servicing
the IRQ interrupt. You don’t have to deal with the GNU C extensions that support ARM interrupt
processing.

The start-up code called by the RESET vector sets up 128 byte stacks for the IRQ and FIQ interrupt
modes and finally places the CPU in “System” mode with the FIQ and IRQ interrupts disabled. System
mode operation allows the main() program to enable the IRQ and FIQ interrupts after all peripherals have
been properly initialized.

The start-up code also initializes all variables that require it and clears all uninitialized variables to zero
before branching to the C Language main() routine.

The author would like to thank Eric Pasquier for noting deficiencies in the Revision B version of the IRQ
handler. As per Eric’s suggestions, the standard Atmel IRQ code is used in this revision.

/* *** */
/* crt.s */
/* */
/* Assembly Language Startup Code for Atmel AT91SAM7S256 */
/* */
/* */
/* */
/* */
/* Author: James P Lynch May 12, 2007 */
/* *** */

/* Stack Sizes */
.set UND_STACK_SIZE, 0x00000010 /* stack for "undefined instruction" interrupts is 16 bytes */
.set ABT_STACK_SIZE, 0x00000010 /* stack for "abort" interrupts is 16 bytes */
.set FIQ_STACK_SIZE, 0x00000080 /* stack for "FIQ" interrupts is 128 bytes */
.set IRQ_STACK_SIZE, 0X00000080 /* stack for "IRQ" normal interrupts is 128 bytes */
.set SVC_STACK_SIZE, 0x00000080 /* stack for "SVC" supervisor mode is 128 bytes */

/* Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs (program status registers) */
.set ARM_MODE_USR, 0x10 /* Normal User Mode */
.set ARM_MODE_FIQ, 0x11 /* FIQ Processing Fast Interrupts Mode */
.set ARM_MODE_IRQ, 0x12 /* IRQ Processing Standard Interrupts Mode */
.set ARM_MODE_SVC, 0x13 /* Supervisor Processing Software Interrupts Mode */
.set ARM_MODE_ABT, 0x17 /* Abort Processing memory Faults Mode */
.set ARM_MODE_UND, 0x1B /* Undefined Processing Undefined Instructions Mode */
.set ARM_MODE_SYS, 0x1F /* System Running Priviledged Operating System Tasks Mode */
.set I_BIT, 0x80 /* when I bit is set, IRQ is disabled (program status registers) */
.set F_BIT, 0x40 /* when F bit is set, FIQ is disabled (program status registers) */

/* Addresses and offsets of AIC and PIO */
.set AT91C_BASE_AIC, 0xFFFFF000 /* (AIC) Base Address */
.set AT91C_PIOA_CODR, 0xFFFFF434 /* (PIO) Clear Output Data Register */
.set AT91C_AIC_IVR, 0xFFFFF100 /* (AIC) IRQ Interrupt Vector Register */
.set AT91C_AIC_FVR, 0xFFFFF104 /* (AIC) FIQ Interrupt Vector Register */
.set AIC_IVR, 256 /* IRQ Vector Register offset from base above */
.set AIC_FVR, 260 /* FIQ Vector Register offset from base above */
.set AIC_EOICR, 304 /* End of Interrupt Command Register */

 92

/* identify all GLOBAL symbols */
global _vec_reset
global _vec_undef
global _vec_swi
global _vec_pabt
global _vec_dabt
global _vec_rsv
global _vec_irq

vec_fiq
T91F_Irq_Handler

 AT91F_Fiq_Handler
 AT91F_Default_FIQ_handler
 AT91F_Default_IRQ_handler

global AT91F_Spurious_handler
 AT91F_Dabt_Handler

global AT91F_Pabt_Handler
global AT91F_Undef_Handler

NU assembler controls */
ext /* all assembler code that follows will go into .text section */

arm /* compile for 32-bit ARM instruction set */
 /* align section on 32-bit boundary */

* == */
* VECTOR TABLE */
* */
* Must be located in FLASH at address 0x00000000 */
* */
* Easy to do if this file crt.s is first in the list */
* for the linker step in the makefile, e.g. */
* */
* $(LD) $(LFLAGS) -o main.out crt.o main.o */
* */
* == */

c_reset: b _init_reset /* RESET vector - must be at 0x00000000 */
_undef: b AT91F_Undef_Handler /* Undefined Instruction vector */
_swi: b _vec_swi /* Software Interrupt vector */
_pabt: b AT91F_Pabt_Handler /* Prefetch abort vector */

vec_dabt: b AT91F_Dabt_Handler /* Data abort vector */
_rsv: nop /* Reserved vector */
_irq: b AT91F_Irq_Handler /* Interrupt Request (IRQ) vector */
_fiq: /* Fast interrupt request (FIQ) vector */

* == */
* Function: AT91F_Fiq_Handler */

 */
he FIQ interrupt asserts when switch SW1 is pressed. */

* */
his simple FIQ handler turns on LED3 (Port PA2). The LED3 will be */

turned off by the background loop in main() thus giving a visual */
ndication that the interrupt has occurred. */

* */
* This FIQ_Handler supports non-nested FIQ interrupts (a FIQ interrupt */
* cannot itself be interrupted). */
 */

* The Fast Interrupt Vector Register (AIC_FVR) is read to clear the interrupt */
 */

* A global variable FiqCount is also incremented. */
* */
* Remember that switch SW1 is not debounced, so the FIQ interrupt may */

ccur more than once for a single button push. */
* */
* Programmer: James P Lynch */
* == */

andler:

ust LR_irq */
ub lr, lr, #4

* Read the AIC Fast Interrupt Vector register to clear the interrupt */
dr r12, =AT91C_AIC_FVR

 r11, [r12]

* Turn on LED3 (write 0x0008 to PIOA_CODR at 0xFFFFF434) */
dr r12, =AT91C_PIOA_CODR

ov r11, #0x04
tr r11, [r12]

Increment the _FiqCount variable */
dr r12, =FiqCount

 r11, [r12]
 r11, r11, #1

tr r11, [r12]

* Return from Fiq interrupt */
ovs pc, lr

.

.

.

.

.

.

.

.global _

.global A

.global

.global

.global

.

.global

.

.

/* G
.t
.
.align

/
/
/
/
/
/
/
/
/
/
/

_ve
_vec
_vec
_vec
_
_vec
_vec
_vec

/
/
/*
/* T
/
/* T
/*
/* i
/
/
/
/*
/
/*
/
/
/
/* o
/
/
/
AT91F_Fiq_H

/* Adj
 s

/
 l
 ldr

/
 l
 m
 s

/*
 l
 ldr
 add
 s

/
 m
 93

/* === */
/* _init_reset Handler */
/* */
/* RESET vector 0x00000000 branches to here. */
/* */
/* ARM microprocessor begins execution after RESET at address 0x00000000 */
/* in Supervisor mode with interrupts disabled! */
/* */
/* _init_reset handler: creates a stack for each ARM mode. */
/* sets up a stack pointer for each ARM mode. */
/* turns off interrupts in each mode. */
/* leaves CPU in SYS (System) mode. */
/* */
/* block copies the initializers to .data section */
/* clears the .bss section to zero */
/* */
/* branches to main() */
/* === */

.text /* all assembler code that follows will go into .text section */
.align /* align section on 32-bit boundary */

_init_reset:
 /* Setup a stack for each mode with interrupts initially disabled. */
 ldr r0, =_stack_end /* r0 = top-of-stack */

 msr CPSR_c, #ARM_MODE_UND|I_BIT|F_BIT /* switch to Undefined Instruction Mode */
 mov sp, r0 /* set stack pointer for UND mode */
 sub r0, r0, #UND_STACK_SIZE /* adjust r0 past UND stack */

 msr CPSR_c, #ARM_MODE_ABT|I_BIT|F_BIT /* switch to Abort Mode */
 mov sp, r0 /* set stack pointer for ABT mode */
 sub r0, r0, #ABT_STACK_SIZE /* adjust r0 past ABT stack */

 msr CPSR_c, #ARM_MODE_FIQ|I_BIT|F_BIT /* switch to FIQ Mode */
 mov sp, r0 /* set stack pointer for FIQ mode */
 sub r0, r0, #FIQ_STACK_SIZE /* adjust r0 past FIQ stack */

 msr CPSR_c, #ARM_MODE_IRQ|I_BIT|F_BIT /* switch to IRQ Mode */
 mov sp, r0 /* set stack pointer for IRQ mode */
 sub r0, r0, #IRQ_STACK_SIZE /* adjust r0 past IRQ stack */

 msr CPSR_c, #ARM_MODE_SVC|I_BIT|F_BIT /* switch to Supervisor Mode */
 mov sp, r0 /* set stack pointer for SVC mode */
 sub r0, r0, #SVC_STACK_SIZE /* adjust r0 past SVC stack */

 msr CPSR_c, #ARM_MODE_SYS|I_BIT|F_BIT /* switch to System Mode */
 mov sp, r0 /* set stack pointer for SYS mode */
 /* we now start execution in SYSTEM mode */
 /* This is exactly like USER mode (same stack) */
 /* but SYSTEM mode has more privileges */

 /* copy initialized variables .data section (Copy from ROM to RAM) */
 ldr R1, =_etext
 ldr R2, =_data
 ldr R3, =_edata
1: cmp R2, R3
 ldrlo R0, [R1], #4
 strlo R0, [R2], #4
 blo 1b

 /* Clear uninitialized variables .bss section (Zero init) */
 mov R0, #0
 ldr R1, =_bss_start
 ldr R2, =_bss_end
2: cmp R1, R2
 strlo R0, [R1], #4
 blo 2b

 /* Enter the C code */
 b main

 94

/* === */
/* Function: AT91F_Irq_Handler */
/* */
/* This IRQ_Handler supports nested interrupts (an IRQ interrupt can itself */
/* be interrupted). */
/* */
/* This handler re-enables interrupts and switches to "Supervisor" mode to */
/* prevent any corruption to the link and IP registers. */
/* */
/* The Interrupt Vector Register (AIC_IVR) is read to determine the address */
/* of the required interrupt service routine. The ISR routine can be a */
/* standard C function since this handler minds all the save/restore */
/* protocols. */
/* */
/* */
/* Programmers: */
/*---*/
/* ATMEL Microcontroller Software Support - ROUSSET - */
/*---*/
/* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS */
/* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED */
/* WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR */
/* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR */
/* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT */
/* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, */
/* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE */
/* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
/* File source : Cstartup.s79 */
/* Object : Generic CStartup to AT91SAM7S256 */
/* 1.0 09/May/06 JPP : Creation */
/* */
/* */
/* Note: taken from Atmel web site (www.at91.com) */
/* Keil example project: AT91SAM7S-Interrupt_SAM7S */
/* === */

AT91F_Irq_Handler:

/* Manage Exception Entry */
/* Adjust and save LR_irq in IRQ stack */
 sub lr, lr, #4
 stmfd sp!, {lr}

/* Save r0 and SPSR (need to be saved for nested interrupt) */
 mrs r14, SPSR
 stmfd sp!, {r0,r14}

/* Write in the IVR to support Protect Mode */
/* No effect in Normal Mode */
/* De-assert the NIRQ and clear the source in Protect Mode */
 ldr r14, =AT91C_BASE_AIC
 ldr r0 , [r14, #AIC_IVR]
 str r14, [r14, #AIC_IVR]

/* Enable Interrupt and Switch in Supervisor Mode */
 msr CPSR_c, #ARM_MODE_SVC

/* Save scratch/used registers and LR in User Stack */
 stmfd sp!, { r1-r3, r12, r14}

/* Branch to the C-language IRQ handler routine pointed by the AIC_IVR */
 mov r14, pc
 bx r0

/* Manage Exception Exit */
/* Restore scratch/used registers and LR from User Stack */
 ldmia sp!, { r1-r3, r12, r14}

/* Disable Interrupt and switch back in IRQ mode */
 msr CPSR_c, #I_BIT | ARM_MODE_IRQ

/* Mark the End of Interrupt on the AIC */
 ldr r14, =AT91C_BASE_AIC
 str r14, [r14, #AIC_EOICR]

/* Restore SPSR_irq and r0 from IRQ stack */
 ldmia sp!, {r0,r14}
 msr SPSR_cxsf, r14

/* Restore adjusted LR_irq from IRQ stack directly in the PC */
 ldmia sp!, {pc}^

 95

I

T
K

/* === */
/* Function: AT91F_Dabt_Handler */
/* */
/* Entered on Data Abort exception. */
/* Enters blink routine (3 blinks followed by a pause) */
/* processor hangs in the blink loop forever */
/* */
/* === */
AT91F_Dabt_Handler: mov R0, #3
 b blinker

/* === */
/* Function: AT91F_Pabt_Handler */
/* */
/* Entered on Prefetch Abort exception. */
/* Enters blink routine (2 blinks followed by a pause) */
/* processor hangs in the blink loop forever */
/* */
/* === */
AT91F_Pabt_Handler: mov R0, #2
 b blinker

/* === */
/* Function: AT91F_Undef_Handler */
/* */
/* Entered on Undefined Instruction exception. */
/* Enters blink routine (1 blinks followed by a pause) */
/* processor hangs in the blink loop forever */
/* */
/* === */
AT91F_Undef_Handler: mov R0, #1
 b blinker

AT91F_Default_FIQ_handler: b AT91F_Default_FIQ_handler

AT91F_Default_IRQ_handler: b AT91F_Default_IRQ_handler

AT91F_Spurious_handler: b AT91F_Spurious_handler

.end
SRSUPPORT.C

he isrsupport module is adapted from an example posted to the Yahoo LPC2000 user’s group by Bill
night and contains various utility functions to enable/disable interrupts, etc.

// **
//
// File Name: isrsupport.c
// Title: interrupt enable/disable functions
//
//
// This module provides the interface routines for setting up and controlling the various interrupt
// modes present on the ARM processor.
//
// Copyright 2004, R O SoftWare
// No guarantees, warrantees, or promises, implied or otherwise.
// May be used for hobby or commercial purposes provided copyright
// notice remains intact.
//
// Note from Jim Lynch:
// This module was developed by Bill Knight, RO Software and used with his permission.
// Taken from the Yahoo LPC2000 User's Group - Files Section 'UT050418A.ZIP'
// Specifically, the module armVIC.c with the include file references removed
//
// **

#define IRQ_MASK 0x00000080
#define FIQ_MASK 0x00000040
#define INT_MASK (IRQ_MASK | FIQ_MASK)
 96

L

T
h

static inline unsigned __get_cpsr(void)
{
 unsigned long retval;
 asm volatile (" mrs %0, cpsr" : "=r" (retval) : /* no inputs */);
 return retval;
}

static inline void __set_cpsr(unsigned val)
{
 asm volatile (" msr cpsr, %0" : /* no outputs */ : "r" (val));
}

unsigned disableIRQ(void)
{
 unsigned _cpsr;
 _cpsr = __get_cpsr();
 __set_cpsr(_cpsr | IRQ_MASK);
 return _cpsr;
}

unsigned restoreIRQ(unsigned oldCPSR)
{
 unsigned _cpsr;
 _cpsr = __get_cpsr();
 __set_cpsr((_cpsr & ~IRQ_MASK) | (oldCPSR & IRQ_MASK));
 return _cpsr;
}

unsigned enableIRQ(void)
{
 unsigned _cpsr;
 _cpsr = __get_cpsr();
 __set_cpsr(_cpsr & ~IRQ_MASK);
 return _cpsr;
}

unsigned disableFIQ(void)
{
 unsigned _cpsr;
 _cpsr = __get_cpsr();
 __set_cpsr(_cpsr | FIQ_MASK);
 return _cpsr;
}

unsigned restoreFIQ(unsigned oldCPSR)
{
 unsigned _cpsr;
 _cpsr = __get_cpsr();
 __set_cpsr((_cpsr & ~FIQ_MASK) | (oldCPSR & FIQ_MASK));
 return _cpsr;
}

unsigned enableFIQ(void)
{
 unsigned _cpsr;
 _cpsr = __get_cpsr();
 __set_cpsr(_cpsr & ~FIQ_MASK);
 return _cpsr;
}
OWLEVELINIT.C

his function, developed by Atmel Technical Support, initializes the PLL clock system. Some annotation
as been extended by the author.

// --
// ATMEL Microcontroller Software Support - ROUSSET -
// --
// The software is delivered "AS IS" without warranty or condition of any
// kind, either express, implied or statutory. This includes without
// limitation any warranty or condition with respect to merchantability or
// fitness for any particular purpose, or against the infringements of
// intellectual property rights of others.
// --
// File Name : Cstartup_SAM7.c
// Object : Low level initializations written in C for IAR tools
// 1.0 08/Sep/04 JPP : Creation
// 1.10 10/Sep/04 JPP : Update AT91C_CKGR_PLLCOUNT filed
// --
 97

// Include the board file description
#include "AT91SAM7S256.h"
#include "Board.h"

// The following functions must be write in ARM mode this function called directly
// by exception vector
extern void AT91F_Spurious_handler(void);
extern void AT91F_Default_IRQ_handler(void);
extern void AT91F_Default_FIQ_handler(void);

//*--
//* \fn AT91F_LowLevelInit
//* \brief This function performs very low level HW initialization
//* this function can be use a Stack, depending the compilation
//* optimization mode
//*--
void LowLevelInit(void)
{
 int i;
 AT91PS_PMC pPMC = AT91C_BASE_PMC;

 //* Set Flash Wait sate
 // Single Cycle Access at Up to 30 MHz, or 40
 // if MCK = 48054841 I have 50 Cycle for 1 usecond (flied MC_FMR->FMCN
 // result: AT91C_MC_FMR = 0x00320100 (MC Flash Mode Register)
 AT91C_BASE_MC->MC_FMR = ((AT91C_MC_FMCN)&(50 <<16)) | AT91C_MC_FWS_1FWS;

 //* Watchdog Disable
 // result: AT91C_WDTC_WDMR = 0x00008000 (Watchdog Mode Register)
 AT91C_BASE_WDTC->WDTC_WDMR= AT91C_WDTC_WDDIS;

 //* Set MCK at 48 054 841
 // 1 Enabling the Main Oscillator:
 // SCK = 1/32768 = 30.51 uSecond
 // Start up time = 8 * 6 / SCK = 56 * 30.51 = 1,46484375 ms
 // result: AT91C_CKGR_MOR = 0x00000601 (Main Oscillator Register)
 pPMC->PMC_MOR = ((AT91C_CKGR_OSCOUNT & (0x06 <<8) | AT91C_CKGR_MOSCEN));

 // Wait the startup time
 while(!(pPMC->PMC_SR & AT91C_PMC_MOSCS));

 // PMC Clock Generator PLL Register setup
 //
 // The following settings are used: DIV = 14
 // MUL = 72
 // PLLCOUNT = 10
 //
 // Main Clock (MAINCK from crystal oscillator) = 18432000 hz (see AT91SAM7-EK schematic)
 // MAINCK / DIV = 18432000/14 = 1316571 hz
 // PLLCK = 1316571 * (MUL + 1) = 1316571 * (72 + 1) = 1316571 * 73 = 96109683 hz
 //
 // PLLCOUNT = number of slow clock cycles before the LOCK bit is set
 // in PMC_SR after CKGR_PLLR is written.
 //
 // PLLCOUNT = 10
 //
 // OUT = 0 (not used)
 // result: AT91C_CKGR_PLLR = 0x00000000480A0E (PLL Register)
 pPMC->PMC_PLLR = ((AT91C_CKGR_DIV & 14) |
 (AT91C_CKGR_PLLCOUNT & (10<<8)) |
 (AT91C_CKGR_MUL & (72<<16)));

 // Wait the startup time (until PMC Status register LOCK bit is set)
 while(!(pPMC->PMC_SR & AT91C_PMC_LOCK));

 // PMC Master Clock (MCK) Register setup
 //
 // CSS = 3 (PLLCK clock selected)
 //
 // PRES = 1 (MCK = PLLCK / 2) = 96109683/2 = 48054841 hz
 //
 // Note: Master Clock MCK = 48054841 hz (this is the CPU clock speed)
 // result: AT91C_PMC_MCKR = 0x00000007 (Master Clock Register)
 pPMC->PMC_MCKR = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_2;

 // Set up the default interrupts handler vectors
 AT91C_BASE_AIC->AIC_SVR[0] = (int) AT91F_Default_FIQ_handler;
 for (i=1;i < 31; i++)
 {
 AT91C_BASE_AIC->AIC_SVR[i] = (int) AT91F_Default_IRQ_handler;
 }
 AT91C_BASE_AIC->AIC_SPU = (int) AT91F_Spurious_handler;

}

 98

MAIN.C

The Main() program, designed by the author, provides a background wait loop that flashes LED1 at
approximately a 1 Hz rate, flashes LED2 at a 10 Hz rate triggered by a Timer0 IRQ interrupt, and flashes
LED3 whenever you push switch SW1 which triggers a FIQ interrupt . There are also plenty of variables
for debugging practice.

There are code snippets, currently commented out, that can trigger an ABORT interrupt that results in a
crash blinker code that will identify the source of the abort.

// ***
// main.c
//
// Demonstration program for Atmel AT91SAM7S256-EK Evaluation Board
//
// blinks LED0 (pin PA0) with an endless loop
// blinks LED1 (pin PA1) using timer0 interrupt (200 msec rate)
// switch SW1 (PA19) triggers FIQ interrupt, turns on LED2 (Pin PA2)
// plenty of variables for debugger practice
//
// Author: James P Lynch May 12, 2007
// ***

// ***
// Header Files
// ***
#include "AT91SAM7S256.h"
#include "board.h"
#include "string.h"
#include "math.h"
#include "stdlib.h"

// ***
// Function Prototypes
// ***
void Timer0IrqHandler(void);
void FiqHandler(void);

// ***
// External References
// ***
extern void LowLevelInit(void);
extern void TimerSetup(void);
extern unsigned enableIRQ(void);
extern unsigned enableFIQ(void);

// ***
// Global Variables
// ***
unsigned int FiqCount = 0; // global uninitialized variable
int q; // global uninitialized variable
int r; // global uninitialized variable
int s; // global uninitialized variable
int m = 2; // global initialized variable
int n = 3; // global initialized variable
int o = 6; // global initialized variable

struct comms {
 int nBytes;
 char *pBuf;
 char Buffer[32];
} Channel = {5, &Channel.Buffer[0], {"Faster than a speeding bullet"}};

 99

// ***
// main.c
//
// Demonstration program for Atmel AT91SAM7S256-EK Evaluation Board
//
// blinks LED0 (pin PA0) with an endless loop
// blinks LED1 (pin PA1) using timer0 interrupt (200 msec rate)
// switch SW1 (PA19) triggers FIQ interrupt, turns on LED2 (Pin PA2)
// plenty of variables for debugger practice
//
// Author: James P Lynch May 12, 2007
//
// ***
int main (void) {

 // lots of variables for debugging practice
 int a, b, c; // uninitialized variables
 char d; // uninitialized variable
 int w = 1; // initialized variable
 int k = 2; // initialized variable
 static long x = 5; // static initialized variable
 static char y = 0x04; // static initialized variable
 const char *pText = "The rain in Spain"; // initialized string pointer variable
 struct EntryLock { // initialized structure variable
 long Key;
 int nAccesses;
 char Name[17];
 } Access = {14705, 0, "Sophie Marceau"};
 unsigned long j; // loop counter (stack variable)
 unsigned long IdleCount = 0; // idle loop blink counter (2x)
 int *p; // pointer to 32-bit word
 typedef void (*FnPtr)(void); // create a "pointer to function" type
 FnPtr pFnPtr; // pointer to a function
 double x5; // variable to test library function
 double y5 = -172.451; // variable to test library function
 const char DigitBuffer[] = "16383"; // variable to test library function
 long n; // variable to test library function

 // Initialize the Atmel AT91SAM7S256 (watchdog, PLL clock, default interrupts, etc.)
 LowLevelInit();

 // enable the Timer0 peripheral clock
 volatile AT91PS_PMC pPMC = AT91C_BASE_PMC; // pointer to PMC data structure
 pPMC->PMC_PCER = (1<<AT91C_ID_TC0); // enable Timer0 peripheral clock

 // Set up the LEDs (PA0 - PA3)
 volatile AT91PS_PIO pPIO = AT91C_BASE_PIOA; // pointer to PIO data structure
 pPIO->PIO_PER = LED_MASK | SW1_MASK; // PIO Enable Register - allow PIO to control pins P0 - P3 and pin 19
 pPIO->PIO_OER = LED_MASK; // PIO Output Enable Register - sets pins P0 - P3 to outputs
 pPIO->PIO_SODR = LED_MASK; // PIO Set Output Data Register - turns off the four LEDs

 // Select PA19 (pushbutton) to be FIQ function (Peripheral B)
 pPIO->PIO_BSR = SW1_MASK;

 // Set up the AIC registers for Timer 0
 volatile AT91PS_AIC pAIC = AT91C_BASE_AIC; // pointer to AIC data structure
 pAIC->AIC_IDCR = (1<<AT91C_ID_TC0); // Disable timer 0 interrupt in AIC Interrupt Disable Command Register

 pAIC->AIC_SVR[AT91C_ID_TC0] = // Set the TC0 IRQ handler address in AIC Source
 (unsigned int)Timer0IrqHandler; // Vector Register[12]
 pAIC->AIC_SMR[AT91C_ID_TC0] = // Set the interrupt source type and priority
 (AT91C_AIC_SRCTYPE_INT_HIGH_LEVEL | 0x4); // in AIC Source Mode Register[12]
 pAIC->AIC_ICCR = (1<<AT91C_ID_TC0); // Clear the TC0 interrupt in AIC Interrupt Clear Command Register
 pAIC->AIC_IDCR = (0<<AT91C_ID_TC0); // Remove disable timer 0 interrupt in AIC Interrupt Disable Command Reg

 pAIC->AIC_IECR = (1<<AT91C_ID_TC0); // Enable the TC0 interrupt in AIC Interrupt Enable Command Register

 // Set up the AIC registers for FIQ (pushbutton SW1)
 pAIC->AIC_IDCR = (1<<AT91C_ID_FIQ); // Disable FIQ interrupt in AIC Interrupt Disable Command Register
 pAIC->AIC_SMR[AT91C_ID_FIQ] = // Set the interrupt source type in AIC Source
 (AT91C_AIC_SRCTYPE_INT_POSITIVE_EDGE); // Mode Register[0]
 pAIC->AIC_ICCR = (1<<AT91C_ID_FIQ); // Clear the FIQ interrupt in AIC Interrupt Clear Command Register
 pAIC->AIC_IDCR = (0<<AT91C_ID_FIQ); // Remove disable FIQ interrupt in AIC Interrupt Disable Command Register

 pAIC->AIC_IECR = (1<<AT91C_ID_FIQ); // Enable the FIQ interrupt in AIC Interrupt Enable Command Register

 // Three functions from the libraries
 a = strlen(pText); // strlen() returns length of a string
 x5 = fabs(y5); // fabs() returns absolute value of a double
 n = atol(DigitBuffer); // atol() converts string to a long

 100

T

T
st
ca

T
up
gi

 // Setup timer0 to generate a 10 msec periodic interrupt
 TimerSetup();

 // enable interrupts
 enableIRQ();
 enableFIQ();

 // endless blink loop
 while (1) {
 if ((pPIO->PIO_ODSR & LED1) == LED1) // read previous state of LED1
 pPIO->PIO_CODR = LED1; // turn LED1 (DS1) on
 else
 pPIO->PIO_SODR = LED1; // turn LED1 (DS1) off

 for (j = 1000000; j != 0; j--); // wait 1 second 1000000

 IdleCount++; // count # of times through the idle loop
 pPIO->PIO_SODR = LED3; // turn LED3 (DS3) off

 // uncomment following four lines to cause a data abort(3 blink code)
 //if (IdleCount >= 10) { // let it blink 5 times then crash
 // p = (int *)0x800000; // this address doesn't exist
 // *p = 1234; // attempt to write data to invalid address
 //}

 // uncomment following four lines to cause a prefetch abort (two blinks)
 //if (IdleCount >= 10) { // let it blink 5 times then crash
 // pFnPtr = (FnPtr)0x800000; // this address doesn't exist
 // pFnPtr(); // attempt to call a function at a illegal address
 //}
 }
}
IMERISR.C

he Timer0 interrupt service routine is called by the AT91F_Irq_Handler in the crt.s assembly language
art-up module. The AT91F_Irq_Handler in the start-up routine supports “nested” IRQ interrupts and thus
lls a standard C function do most of the interrupt work.

he C language IRQ support routine below clears the interrupt by reading the TCO status register. It then
dates a global variable tickcount; which can be inspected by the debugger. Finally it toggles LED2 to

ve a visual indication that the timer interrupt is functioning properly.

// ***
// timerisr.c
//
// Timer 0 Interrupt Service Routine
//
// entered when Timer0 RC compare interrupt asserts (200 msec period)
// blinks LED2 (pin PA2)
//
// Author: James P Lynch May 12, 2007
// ***

#include "AT91SAM7S256.h"
#include "board.h"

unsigned long tickcount = 0; // global variable counts interrupts

void Timer0IrqHandler (void) {

 volatile AT91PS_TC pTC = AT91C_BASE_TC0; // pointer to timer channel 0 register structure
 volatile AT91PS_PIO pPIO = AT91C_BASE_PIOA; // pointer to PIO register structure
 unsigned int dummy; // temporary

 dummy = pTC->TC_SR; // read TC0 Status Register to clear interrupt
 tickcount++; // increment the tick count

 if ((pPIO->PIO_ODSR & LED2) == LED2)
 pPIO->PIO_CODR = LED2; // turn LED2 (DS2) on
 else
 pPIO->PIO_SODR = LED2; // turn LED2 (DS2) off
}

 101

TIMERSETUP.C
All the peripherals on the Atmel AT91SAM7S256 chip are complex; there is no substitute for a careful and
thorough study of the Atmel documentation. In this application, we are using the Timer0 counter/timer to
count out a 50 msec time interval. The timersetup.c routine shown below is extensively annotated to make
it clear how the clock frequencies and count-match values were determined to get the 50 msec repetition
rate. The timer counts up, comparing at each tick the current count with the value in the timer compare
register C. When the values match, the IRQ interrupt is asserted. Timer 0 has been set up to automatically
restart the timer beginning at zero for the next interval.

// ***
// timersetup.c
//
// Purpose: Set up the 16-bit Timer/Counter
//
// We will use Timer Channel 0 to develop a 50 msec interrupt.
//
// The AT91SAM7S-EK board has a 18,432,000 hz crystal oscillator.
//
// MAINCK = 18432000 hz
// PLLCK = (MAINCK / DIV) * (MUL + 1) = 18432000/14 * (72 + 1)
// PLLCLK = 1316571 * 73 = 96109683 hz
//
// MCK = PLLCLK / 2 = 96109683 / 2 = 48054841 hz
//
// TIMER_CLOCK5 = MCK / 1024 = 48054841 / 1024 = 46928 hz
//
// TIMER_CLOCK5 Period = 1 / 46928 = 21.309239686 microseconds
//
// A little algebra: .050 sec = count * 21.3092396896*10**-6
// count = .050 / 21.3092396896*10**-6
// count = 2346
//
//
// Therefore: set Timer Channel 0 register RC to 9835
// turn on capture mode WAVE = 0
// enable the clock CLKEN = 1
// select TIMER_CLOCK5 TCCLKS = 100
// clock is NOT inverted CLKI = 0
// enable RC compare CPCTRG = 1
// enable RC compare interrupt CPCS = 1
// disable all the other timer 0 interrupts
//
// Author: James P Lynch May 12, 2007
// ***

/**
 Header files
 **/
#include "AT91SAM7S256.h"
#include "board.h"

void TimerSetup(void) {

 // TC Block Control Register TC_BCR (read/write)
 //
 // |--|------|
 // | SYNC |
 // |--|------|
 // 31 1 0
 //
 // SYNC = 0 (no effect) <===== take default
 // SYNC = 1 (generate software trigger for all 3 timer channels simultaneously)
 //
 AT91PS_TCB pTCB = AT91C_BASE_TCB; // create a pointer to TC Global Register structure
 pTCB->TCB_BCR = 0; // SYNC trigger not used

 102

 // TC Block Mode Register TC_BMR (read/write)

|-------------------------------------|-----------|-----------|-----------|
// | TC2XC2S TCXC1S TC0XC0S |

|-------------------------------------|-----------|-----------|-----------|
// 31 5 4 3 2 1 0

// TC0XC0S Select = 00 TCLK0 (PA4)
// = 01 none <===== we select this one
// = 10 TIOA1 (PA15)
// = 11 TIOA2 (PA26)
//
// TCXC1S Select = 00 TCLK1 (PA28)
// = 01 none <===== we select this one
// = 10 TIOA0 (PA15)
// = 11 TIOA2 (PA26)
//
// TC2XC2S Select = 00 TCLK2 (PA29)
// = 01 none <===== we select this one
// = 10 TIOA0 (PA00)
// = 11 TIOA1 (PA26)

pTCB->TCB_BMR = 0x15; // external clocks not used

// TC Channel Control Register TC_CCR (read/write)

|----------------------------------|--------------|------------|-----------|
// | SWTRG CLKDIS CLKENS |

|----------------------------------|--------------|------------|-----------|
// 31 2 1 0

// CLKEN = 0 no effect
// CLKEN = 1 enables the clock <===== we select this one
//
// CLKDIS = 0 no effect <===== take default
// CLKDIS = 1 disables the clock
//
// SWTRG = 0 no effect
// SWTRG = 1 software trigger aserted counter reset and clock starts <===== we select this one

AT91PS_TC pTC = AT91C_BASE_TC0; // create a pointer to channel 0 Register structure
pTC->TC_CCR = 0x5; // enable the clock and start it

// TC Channel Mode Register TC_CMR (read/write)

|-----------------------------------|------------|---------------|
// | LDRB LDRA |

|-----------------------------------|------------|---------------|
// 31 19 18 17 16

|----------|---------|--------------|------------|---------------|
// |WAVE = 0 CPCTRG ABETRG ETRGEDG |

|----------|---------|--------------|------------|---------------|
// 15 14 13 11 10 9 8

|----------|---------|--------------|------------|---------------|
// | LDBDIS LDBSTOP BURST CLKI TCCLKS |

|----------|---------|--------------|------------|---------------|
// 7 6 5 4 3 2 0

// CLOCK SELECTION
// TCCLKS = 000 TIMER_CLOCK1 (MCK/2 = 24027420 hz)
// 001 TIMER_CLOCK2 (MCK/8 = 6006855 hz)
// 010 TIMER_CLOCK3 (MCK/32 = 1501713 hz)
// 011 TIMER_CLOCK4 (MCK/128 = 375428 hz)
// 100 TIMER

 //
 //

 //

 //

 //

 //
 //

 //

 //

 //

 //
 //

 //

 //
 //

 //

 //
 //

 //

 //

_CLOCK5 (MCK/1024 = 46928 hz) <===== we select this one
// 101 XC0
// 101 XC1
// 101 XC2

// CLOCK INVERT
// CLKI = 0 counter incremented on rising clock edge <===== we select this one
// CLKI = 1 counter incremented on falling clock edge

// BURST SIGNAL SELECTION
// BURST = 00 clock is not gated by any external system <===== take default
// 01 XC0 is anded with the clock
// 10 XC1 is anded with the clock
// 11 XC2 is anded with the clock

// COUNTER CLOCK STOPPED WITH RB LOADING
// LDBSTOP = 0 counter clock is not stopped when RB loading occurs <===== take default
// = 1 counter clock is stopped when RB loading occur

// COUNTER CLOCK DISABLE WITH RB LOADING
// LDBDIS = 0 counter clock is not disabled when RB loading occurs <===== take default
// = 1 counter clock is disabled when RB loading occurs

 //

 //

 //

 //

 103

 //
 // EXTERNAL TRIGGER EDGE SELECTION
 // ETRGEDG = 00 (none) <===== take default
 // 01 (rising edge)
 // 10 (falling edge)
 // 11 (each edge)
 //
 // TIOA OR TIOB EXTERNAL TRIGGER SELECTION
 // ABETRG = 0 (TIOA is used) <===== take default
 // 1 (TIOB is used)
 //
 // RC COMPARE TRIGGER ENABLE
 // CPCTRG = 0 (RC Compare has no effect on the counter and its clock)
 // 1 (RC Compare resets the counter and starts the clock) <===== we select this one
 //
 // WAVE
 // WAVE = 0 Capture Mode is enabled <===== we select this one
 // 1 Waveform Mode is enabled
 //
 // RA LOADING SELECTION
 // LDRA = 00 none) <===== take default
 // 01 (rising edge of TIOA)
 // 10 (falling edge of TIOA)
 // 11 (each edge of TIOA)
 //
 // RB LOADING SELECTION
 // LDRB = 00 (none) <===== take default
 // 01 (rising edge of TIOA)
 // 10 (falling edge of TIOA)
 // 11 (each edge of TIOA)
 //
 pTC->TC_CMR = 0x4004; // TCCLKS = 1 (TIMER_CLOCK5)
 // CPCTRG = 1 (RC Compare resets the counter and restarts the clock)
 // WAVE = 0 (Capture mode enabled)

 // TC Register C TC_RC (read/write) Compare Register 16-bits
 //
 // |----------------------------------|--|
 // | not used RC |
 // |----------------------------------|--|
 // 31 16 15 0
 //
 // Timer Calculation: What count gives 50 msec time-out?
 //
 // TIMER_CLOCK5 = MCK / 1024 = 48054841 / 1024 = 46928 hz
 //
 // TIMER_CLOCK5 Period = 1 / 46928 = 21.309239686 microseconds
 //
 // A little algebra: .050 sec = count * 21.3092396896*10**-6
 // count = .050 / 21.3092396896*10**-6
 // count = 2346
 //
 pTC->TC_RC = 2346;

 // TC Interrupt Enable Register TC_IER (write-only)
 //
 //
 // |------------|-------|-------|-------|-------|--------|--------|--------|--------|
 // | ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS |
 // |------------|-------|-------|-------|-------|--------|--------|--------|--------|
 // 31 8 7 6 5 4 3 2 1 0
 //
 // COVFS = 0 no effect <===== take default
 // 1 enable counter overflow interrupt
 //
 // LOVRS = 0 no effect <===== take default
 // 1 enable load overrun interrupt
 //
 // CPAS = 0 no effect <===== take default
 // 1 enable RA compare interrupt
 //
 // CPBS = 0 no effect <===== take default
 // 1 enable RB compare interrupt
 //
 // CPCS = 0 no effect
 // 1 enable RC compare interrupt <===== we select this one
 //
 // LDRAS = 0 no effect <===== take default
 // 1 enable RA load interrupt
 //
 // LDRBS = 0 no effect <===== take default
 // 1 enable RB load interrupt
 //
 // ETRGS = 0 no effect <===== take default
 // 1 enable External Trigger interrupt
 //
 pTC->TC_IER = 0x10; // enable RC compare interrupt

 104

 // TC Interrupt Disable Register TC_IDR (write-only)

|------------|-------|-------|-------|-------|--------|--------|--------|--------|
// | ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS |

|------------|-------|-------|-------|-------|--------|--------|--------|--------|
// 31 8 7 6 5 4 3 2 1 0

// COVFS = 0 no effect
// 1 disable counter overflow interrupt <===== we select this one

// LOVRS = 0 no effect
// 1 disable load overrun interrupt <===== we select this one

// CPAS = 0 no effect
// 1 disable RA compare interrupt <===== we select this one

// CPBS = 0 no effect
// 1 disable RB compare interrupt <===== we select this one

// CPCS = 0 no effect <===== take default
// 1 disable RC compare interrupt

// LDRAS = 0 no effect
// 1 disable RA load interrupt <===== we select this one

// LDRBS = 0 no effect
// 1 disable RB load interrupt <===== we select this one

// ETRGS = 0 no effect
// 1 disable External Trigger interrupt <===== we select this one

pTC->TC_IDR = 0xEF; // disable all except RC compare interrupt

 //
 //
 //

 //

 //

 //

 //

 //

 //

 //

 //

 //

 //

}
 105

DEMO_AT91SAM7_BLINK_FLASH.CMD

The Linker command script instructs the linker where to place the various parts of your program into
FLASH and RAM.

The layout of memory and the subsequent specification of the TOS (top of stack) are critical. In the
snippet below we specify 256K of FLASH starting at address 0x00000000 and 64K of RAM starting at
address 0x00200000. Given the RAM starting at 0x00200000 and being 65536 bytes in length, the Top of
Stack is placed 4 bytes from the end of RAM at 0x0020FFFC. The specification of the “top of stack”
(_stack_end = 0x20FFFC) is used by the start-up routine, crt.s, to create the stacks for the various
interrupt modes. The statements excerpted below are the ones that you would modify when moving to a
different memory layout.

/* specify the AT91SAM7S256S */
MEMORY
{
 flash : ORIGIN = 0, LENGTH = 256K /* FLASH EPROM */
 ram : ORIGIN = 0x00200000, LENGTH = 64K /* static RAM area */
}

/* define a global symbol _stack_end (see analysis in annotation above) */
_stack_end = 0x20FFFC;

It’s a good idea to remind ourselves that the executable code (.text section) goes into FLASH memory and
therefore the FLASH must be programmed before attempting execution. I can’t tell you how many times
the author has built an application and forgotten to program the FLASH with the new code before starting
the debugger.

 106

/* ** */
/* demo_at91sam7_blink_flash.cmd LINKER SCRIPT */
/* */
/* */
/* The Linker Script defines how the code and data emitted by the GNU C compiler and assembler are */
/* to be loaded into memory (code goes into FLASH, variables go into RAM). */
/* */
/* Any symbols defined in the Linker Script are automatically global and available to the rest of the */
/* program. */
/* */
/* To force the linker to use this LINKER SCRIPT, just add the -T demo_at91sam7_blink_flash.cmd */
/* directive to the linker flags in the makefile. For example, */
/* */
/* LFLAGS = -Map main.map -nostartfiles -T demo_at91sam7_blink_flash.cmd */
/* */
/* */
/* The order that the object files are listed in the makefile determines what .text section is */
/* placed first. */
/* */
/* For example: $(LD) $(LFLAGS) -o main.out crt.o main.o lowlevelinit.o */
/* */
/* crt.o is first in the list of objects, so it will be placed at address 0x00000000 */
/* */
/* */
/* The top of the stack (_stack_end) is (last_byte_of_ram +1) - 4 */
/* */
/* Therefore: _stack_end = (0x00020FFFF + 1) - 4 = 0x00021000 - 4 = 0x0020FFFC */
/* */
/* Note that this symbol (_stack_end) is automatically GLOBAL and will be used by the crt.s */
/* startup assembler routine to specify all stacks for the various ARM modes */
/* */
/* MEMORY MAP */
/* | | */
/* .----..->|---------------------------------|0x00210000 */
/* . | |0x0020FFFC <---------- _stack_end */
/* . | UDF Stack 16 bytes | */
/* . | | */
/* . |---------------------------------|0x0020FFEC */
/* . | | */
/* . | ABT Stack 16 bytes | */
/* . | | */
/* . |---------------------------------|0x0020FFDC */
/* . | | */
/* . | | */
/* . | FIQ Stack 128 bytes | */
/* . | | */
/* . | | */
/* RAM |---------------------------------|0x0020FF5C */
/* . | | */
/* . | | */
/* . | IRQ Stack 128 bytes | */
/* . | | */
/* . | | */
/* . |---------------------------------|0x0020FEDC */
/* . | | */
/* . | SVC Stack 16 bytes | */
/* . | | */
/* . |---------------------------------|0x0020FECC */
/* . | | */
/* . | stack area for | */
/* . | user program | */
/* . | | */
/* . | | */
/* . | free ram | */
/* . | | */
/* . |......................................|0x0020045C <---------- _bss_end */
/* . | .bss | */
/* . | uninitialized variables | */
/* . |......................................|0x00200444 <---------- _bss_start, _edata */
/* . | .data | */
/* . | initialized variables | */
/* . | | */
/* .------>|_________________________|0x00200000 */
/* */
/* */

/* .-----> |----------------------------------|0x00040000 */
/* . | | */
/* . | | */
/* . | free flash | */
/* . | | */
/* . | | */
/* . |.......................................|0x00001380 <---------- _bss_start, _edata */
/* . | Copy of .data area | */
/* . | | */
/* . | (initialized variables) | */
/* . |----------------------------------|0x00000F3C <----------- _etext */
/* . | | */
/* FLASH | C code | */
/* . | | */
/* . | | */
/* . |----------------------------------|0x0000015C ---------- main() */
/* . | | */
/* . | Startup Code (crt.s) | */
/* . | (assembler) | */
/* . | | */
/* . |----------------------------------|0x00000020 */
/* . | | */
/* . | Interrupt Vector Table | */
/* . | 32 bytes | */
/* .------>|----------------------------------|0x00000000 _vec_reset */
/* */
/* */
/* Author: James P. Lynch May 12, 2007 */
/* */
/* ** */

/* identify the Entry Point (_vec_reset is defined in file crt.s) */
ENTRY(_vec_reset)

/* specify the AT91SAM7S256 memory areas */
MEMORY
{
 flash : ORIGIN = 0, LENGTH = 256K /* FLASH EPROM */
 ram : ORIGIN = 0x00200000, LENGTH = 64K /* static RAM area */
}

/* define a global symbol _stack_end (see analysis in annotation above) */
_stack_end = 0x20FFFC;

/* now define the output sections */
SECTIONS
{
 . = 0; /* set location counter to address zero */

 .text : /* collect all sections that should go into FLASH after startup */
 {
 (.text) / all .text sections (code) */
 (.rodata) / all .rodata sections (constants, strings, etc.) */
 (.rodata) /* all .rodata* sections (constants, strings, etc.) */
 (.glue_7) / all .glue_7 sections (no idea what these are) */
 (.glue_7t) / all .glue_7t sections (no idea what these are) */
 _etext = .; /* define a global symbol _etext just after the last code byte */
 } >flash /* put all the above into FLASH */

 .data : /* collect all initialized .data sections that go into RAM */
 {
 _data = .; /* create a global symbol marking the start of the .data section */
 (.data) / all .data sections */
 _edata = .; /* define a global symbol marking the end of the .data section */
 } >ram AT >flash /* put all the above into RAM (but load the LMA initializer copy into FLASH) */

 .bss : /* collect all uninitialized .bss sections that go into RAM */
 {
 _bss_start = .; /* define a global symbol marking the start of the .bss section */
 (.bss) / all .bss sections */
 } >ram /* put all the above in RAM (it will be cleared in the startup code */

 . = ALIGN(4); /* advance location counter to the next 32-bit boundary */
 _bss_end = . ; /* define a global symbol marking the end of the .bss section */
}
 _end = .; /* define a global symbol marking the end of application RAM */

 107

MAKEFILE

The makefile was kept intentionally simple so that a beginner need only read the first chapter of the “GNU
Make” document by Richard Stallman and Roland McGrath to understand everything in the makefile.

The makefile is composed of two parts; the part that assembles, compiles and links your program to
create a .bin file that you can load into flash, and a special “program” target that is used to independently
program the FLASH on chip memory using the OpenOCD JTAG utility.

The essential component of a Makefile is the “rule”. The rule is composed of a target file and dependent
files on a single line. If any of the dependent files are newer than the target file, then the commands
directly below the rule are executed. The one or more commands MUST be indented by a TAB character
(this little nuance beleaguers many novices). For example:

 main.o: main.c AT91SAM7S256.h board.h

 arm-elf-gcc -I./ -c -fno-common -O0 –g main.c

This has to be indented
with a TAB character!

 This is a rule

 This is a command

In the example rule above, if you edit either the main.c source file or the AT91SAM7S256.h or the board.h
include files, they will then be “newer” than the main.o target file. Therefore, the commands below must be
executed. The single compile command shown updates the target object file so that the target and the
dependent files now have the same creation date.

The Make utility checks the rules from top to bottom and this has the effect of only compiling those source
files that are “out of date”.

If you click the Eclipse “Project - Clean” pull-down menu option, the “clean” target below is performed first
followed by the “all” target. This has the effect of recompiling everything since all the objects and binary
files are erased first.

If you click the Eclipse “Project – Build Project” pull-down menu option, the “all” target is performed and
only those source files that are out-of-date are recompiled. In a large application with many source files,
this is a real convenience and time saver.

Note that the “clean” and “all” targets are NOT files. In this case, Make will only process them unless you
specifically direct it to do so (make clean all or make all). This also explains why in scanning from top to
bottom during a “make all”, make stops when it encounters the “program” target (used to program the
FLASH). This is explained in more detail in a section to follow.

The ARM7 architecture supports two instruction sets, ARM and THUMB. The ARM instruction set is
composed of 32-bit instructions and is very fast (most instructions execute in a single clock cycle). The
THUMB instruction set is composed of 16-bit instructions that require less memory space but take longer
to execute. To keep this tutorial simple, we’ve set up the project exclusively for the ARM 32-bit instruction
set. If you would like to see a good example of mixing ARM and THUMB instruction sets in an ARM7
application, take a look at Richard Barry’s FreeRTOS kernel at www.freertos.com.

This make file is composed of two parts. The first part (identified as the targets “clean:” and “all:”)
assembles, compiles and links your program. It creates a binary file suitable for programming into flash
using the OpenOCD flash programming facility or the Atmel SAM-BA flash programming utility. It also
produces a map file and a dump file that you can inspect to locate addresses of variables, storage limits
and so forth.

The second part (identified as the target “program:”) does a batch execution of the OpenOCD JTAG
utility to program the binary file into onchip flash. Note that the OpenOCD script file for programming the
flash (script.ocd) is part of the project itself. The programming part of the makefile executes just once and
OpenOCD is terminated when the flashing is complete. Obviously, the makefile assumes that OpenOCD
is not running when it starts the programming operation.

 108

If you are using the SAM-ICE debugger and plan to use the SAM-BA flash programming utility, then the
flash programming part of the makefile shown below can be removed if desired.

* Makefile for Atmel AT91SAM7S256 - flash execution *
* *
* *
* James P Lynch May 12, 2007 *

NAME = demo_at91sam7_blink_flash

variables
CC = arm-elf-gcc
LD = arm-elf-ld -v
AR = arm-elf-ar
AS = arm-elf-as
CP = arm-elf-objcopy
OD = arm-elf-objdump

CFLAGS = -I./ -c -fno-common -O0 -g
AFLAGS = -ahls -mapcs-32 -o crt.o
LFLAGS = -Map main.map -Tdemo_at91sam7_blink_flash.cmd
CPFLAGS = --output-target=binary
ODFLAGS = -x --syms

OBJECTS = crt.o main.o timerisr.o timersetup.o isrsupport.o lowlevelinit.o blinker.o

make target called by Eclipse (Project -> Clean ...)
clean:
 -rm $(OBJECTS) crt.lst main.lst main.out main.bin main.hex main.map main.dmp

#make target called by Eclipse (Project -> Build Project)
all: main.out
 @ echo "...copying"
 $(CP) $(CPFLAGS) main.out main.bin
 $(OD) $(ODFLAGS) main.out > main.dmp

main.out: $(OBJECTS) demo_at91sam7_blink_flash.cmd
 @ echo "..linking"
 $(LD) $(LFLAGS) -o main.out $(OBJECTS) libc.a libm.a libgcc.a

crt.o: crt.s
 @ echo ".assembling"
 $(AS) $(AFLAGS) crt.s > crt.lst

main.o: main.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) main.c

timerisr.o: timerisr.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) timerisr.c

lowlevelinit.o: lowlevelinit.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) lowlevelinit.c

timersetup.o: timersetup.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) timersetup.c

isrsupport.o: isrsupport.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) isrsupport.c

blinker.o: blinker.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) blinker.c

 109

**
FLASH PROGRAMMING

Alternate make target for flash programming only

You must create a special Eclipse make target (program) to run this part of the makefile
(Project -> Create Make Target... then set the Target Name and Make Target to "program")

OpenOCD is run in "batch" mode with a special configuration file and a script file containing
the flash commands. When flash programming completes, OpenOCD terminates.

Note that the script file of flash commands (script.ocd) is part of the project

Programmers: Martin Thomas, Joseph M Dupre, James P Lynch
**

specify output filename here (must be *.bin file)
TARGET = main.bin

specify the directory where openocd executable resides (openocd-ftd2xx.exe or openocd-pp.exe)
OPENOCD_DIR = 'c:\Program Files\openocd-2007re141\bin\'

specify OpenOCD executable (pp is for the wiggler, ftd2xx is for the USB debuggers)
#OPENOCD = $(OPENOCD_DIR)openocd-pp.exe
OPENOCD = $(OPENOCD_DIR)openocd-ftd2xx.exe

specify OpenOCD configuration file (pick the one for your device)
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-wiggler-flash-program.cfg
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-jtagkey-flash-program.cfg
OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-armusbocd-flash-program.cfg

program the AT91SAM7S256 internal flash memory
program: $(TARGET)
 @echo "Flash Programming with OpenOCD..." # display a message on the console
 $(OPENOCD) -f $(OPENOCD_CFG) # program the onchip FLASH here
 @echo "Flash Programming Finished." # display a message on the console

OpenOCD Programming Script File

OpenOCD normally runs as a “daemon” processing debugger commands when required. To program the
onchip FLASH, OpenOCD is run as a one-time-only execution with a list of programming commands read
from a script file named script.ocd. This file is part of the project. Note that it contains register setups to
reset the processor and establish the PLL clocks to full speed. This is necessary to program the FLASH at
full speed. Review the source code for lowlevelinit.c to understand how the register settings were derived.

OpenOCD Target Script for Atmel AT91SAM7S256

Programmer: James P Lynch

wait_halt # halt the processor and wait
armv4_5 core_state arm # select the core state
mww 0xffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
mww 0xfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)
mww 0xfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
wait 100 # wait 100 ms
mww 0xfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)
wait 200 # wait 200 ms
mww 0xfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
wait 100 # wait 100 ms
mww 0xfffffd08 0xa5000401 # enable user reset AT91C_RSTC_RMR
flash write 0 main.bin 0x0 # program the onchip flash
reset # reset processor
shutdown # stop OpenOCD

 110

Adjusting the Optimization Level

It’s a fact of life in embedded programming that debuggers hate optimized code. When you attempt to
single-step optimized code, the debuggers will do strange things and appear not to work. To get around
this problem, change the compiler optimization level to ZERO. This is already done in the makefile above;
note that we modified the CFLAGS macro substitution as follows:

CFLAGS = -I./ -c -fno-common -O0 –g Where the switch: -O0 means no optimization.

When debugging is completed, you can increase the optimization level to –O3 which will result in more
compact and efficient code.

Including Libraries

A library is a collection of already-compiled functions. The GNU linker will search the libraries you specify
for any functions you have invoked in the application and only include those functions in the final link (it
doesn’t include the entire library – just the functions you need). Specifying the libraries and arranging for
successful searching in the linker command is a constant source of trouble for the novice programmer as
the GNU linker manual can be, well, a little confusing on this subject.

There are three libraries included in YAGARTO that you should be aware of.

libgcc.a ARM-specific library supporting floating point and extended arithmetic (must be included)

libc.a Newlib C Library – has functions like strlen(), isdigit() etc. (optional)

libm.a Newlib Math Library – has functions like exp(), sin() etc. (optional)

Adding Libraries to the Link

There is a foolproof way of dealing with libraries: import the libraries directly into your project and include
the libraries on the linker command line after specification of all the object files. For example, the libraries
libc.a, libm.a and libgcc.a are imported into the project folder and are specified in the linker command
line as follows:
 $(LD) $(LFLAGS) -o main.out $(OBJECTS) libc.a libm.a libgcc.a

Expanding the macro substitutions above and splitting the linker command line into two lines for the sake
of clarity, the linker command actually looks like this:

 111

arm-elf-ld -v -Map main.map -Tdemo_at91sam7_blink_flash.cmd -o main.out crt.o main.o timerisr.o
timersetup.o isrsupport.o lowlevelinit.o blinker.o libc.a libm.a libgcc.a

Include your libraries after
specification of all the object files!

Note: libgcc.a should always be last

The libgcc.a must be included; it supports ARM extended precision arithmetic and floating point
operations (remember that the ARM7 doesn’t have hardware floating point) and without it any floating
point operations will cause an “undefined reference” error. The example project includes the libgcc.a
library and it should always be appended to the very end of the linker command line, as shown earlier.

The reason for placing the libraries last on the linker command line is that the GNU linker searches from
left to right. Any unresolved function calls after searching all the object files you have specified will resort
to searching the remaining libraries on the right. The library may not be searched at all for any unresolved
references if the library is specified before the object files (or in the middle of them).

For instance, the function atol() in the libc.a library will do some extended precision arithmetic and will
therefore need some of the support routines in the libgcc.a library. Since the extended precision arithmetic
support library libgcc.a is on the far right, the linker will successfully resolve the needed support routines.
If libgcc.a was specified before (to the left of) libc.a, then an “undefined reference” error will result.

You might be tempted to say “Why should I have a copy of the library in every project and waste disk
space?” The idea is to prevent the GNU Linker from hunting for your library. Having the library right in your
project folder and specified last on the linker command line is fool-proof. Anyway, disk space on modern
PCs is huge – relax!

Where are the Libraries

Michael Fisher has built ARM-compatible versions of the standard GNU libraries as part of YAGARTO.
The libraries used in the sample project may be found here:

 Library Path to library location

libgcc.a

C:\Program Files\yagarto\arm-elf\lib\

libc.a
libm.a

C:\Program Files\yagarto\lib\gcc\arm-elf\4.1.1\

Just like a source or include file, you import the libraries into the project. Click on “File – Import – File
System” followed by “Next”. In the example below, we are importing the libc.a and libm.a libraries. The
sample project already includes the three aforementioned libraries and you have thus already imported
them. The screenshot below is included just to remind you that libraries are “imported” also.

112

Display the Modules in a Library

If you are attempting to sort out an “unresolved reference” problem concerning the libraries, here is a
convenient way to look at the object module names in a library.

Open a command window and then navigate to the folder where the library resides (see the table above).

As an example, the following command will navigate to the folder where libgcc.a resides.

 >cd c:\Program Files\yagarto\lib\gcc\arm-elf\4.1.1\

Use the GNU utility AR to display the object modules contained in the libgcc.a library. In the example
below, we run the AR utility and send it’s output to the temporary file libgcc.txt in our project workspace (if
this file doesn’t exist, it will create it). Here’s the command to do this.

 >ar –t libgcc.a >> c:\workspace\demo_at91sam7_blink_flash\libgcc.txt

Now from within your Eclipse project, you can use “File – Open File …” to inspect the temporary text file
containing the object module names from the library file libgcc.a. This file is temporary and is not part of
your project. You can call up the “right-click” menu to delete it when finished.

 113

 114

The Bad News about Libraries

Dealing with libraries in an embedded software development environment is fraught with difficulties that
test one’s patience. Not all the library modules you want to use will work.

For example, many programmers love the printf() routine for its convenience and formatting capabilities.
Keep in mind that these GNU library routines were written for PC-based LINUX and Windows systems
where memory storage is not an issue. Also, we would typically print to the Standard Output (the screen).

In an embedded environment, there is no Standard Output or screen to write to. So where does this
printf() output go? Do we output to the serial port and, if so, which one? Now we need a putc() and getc()
routine and interrupt support. You will also be shocked to see the compiled size of a routine like printf(), it
may be over 30 Kbytes due to the sophisticated formatting capabilities included.

 If you select a library module and use it in your application and it builds with an “undefined reference” link
error, chances are that some needed software elements are missing. You can try looking for them in
some of the other libraries included in YAGARTO but in many of these cases the search will be frustrating.

The truth is that NewLib (libc.a and libm.a) tend to be too big and incomplete for an embedded
environment. It's better to find a small library intended for embedded work and use bits and pieces of that
as needed. One good example is Pascal Stang's ARMLIB.

 http://hubbard.engr.scu.edu/embedded/arm/armlib/index.html

SourceForge is another good place to look for embedded libraries for the ARM architecture. The SourceForge
web site is here:

 http://sourceforge.net/

To be fair, the more expensive professional tool chains usually have special copies of the libraries designed
and compiled specifically for the embedded environment.

http://hubbard.engr.scu.edu/embedded/arm/armlib/index.html
http://sourceforge.net/

Building the FLASH Application

The “Project” pull-down menu has several options to build the application. “Clean” will erase all object, list,
map, and output and dump files, thus forcing Eclipse to compile, assemble and link every file. This may be
time-consuming in a large project with many files. “Build All” will only compile and link those files that are
“out-of-date”.

The usual procedure is to “Build All” and this may be selected from the “Projects” pull-down menu, as
shown below.

Even more convenient is the “Build All” button in the Eclipse toolbar.

The Console view at the bottom of the Eclipse screen will show the progress of the build operation.

Notice that the “objcopy” utility has created a “main.bin” file; this is required by the OpenOCD flash
programming facility. The makefile also creates a “main.out” file that has symbol information; this is used
in debugging and also is “loaded” into RAM when you create a RAM-based executable.

If there are compile or link errors, they will be visible in the Console view and the “Problems” tab will show
more detail about any problems. You can click on the individual “problems” and jump directly to the
offending source line.

 115

Using OpenOCD to Program the FLASH memory

If you have purchased the Olimex ARM-USB-OCD or the Amontec JTAGKey JTAG hardware interface,
you can use the OpenOCD utility to program the flash.

OpenOCD is a utility that converts Eclipse/GDB remote serial protocol to the JTAG protocol supported by
the AT91SAM7 on chip debugging unit. In this role, it acts as a “daemon” which is a program that operates
in the background, waiting for you to supply a command. We will see plenty of examples of that when we
run the debugger shortly.

The other role for OpenOCD is to program the on chip FLASH using the JTAG. In this role, OpenOCD is
run in a “batch” mode where the program is executed with a special configuration file and a “script” file
with the flash programming commands.

The OpenOCD configuration files to support flash programming on an Atmel AT91SAM7S are as follows.
If you are interested in understanding every nuance of these files, refer to the OpenOCD Wiki here:

http://openfacts.berlios.de/index-en.phtml?title=Open_On-Chip_Debugger

It’s worth mentioning that the non-flash-programming versions of these configuration files are simply the
part that’s above the FLASH programming commands. When FLASH programming is completed,
OpenOCD is automatically terminated.

OpenOCD Configuration File for Wiggler (FLASH programming version)

#define our ports
telnet_port 4444
gdb_port 3333

#commands specific to the Wiggler
interface parport
parport_port 0x378
parport_cable wiggler
jtag_speed 0
jtag_nsrst_delay 200
jtag_ntrst_delay 200

#reset_config <signals> [combination] [trst_type] [srst_type]
reset_config srst_only srst_pulls_trst

#jtag_device <IR length> <IR capture> <IR mask> <IDCODE instruction>
jtag_device 4 0x1 0xf 0xe

#daemon_startup <'attach'|'reset'>
daemon_startup reset

#target <type> <endianess> <reset_mode> <jtag#> [variant]
target arm7tdmi little run_and_init 0 arm7tdmi_r4

#run_and_halt_time <target#> <time_in_ms>
run_and_halt_time 0 30

commands below are specific to AT91sam7 Flash Programming

#target_script specifies the flash programming script file
target_script 0 reset script.ocd

#working_area <target#> <address> <size> <'backup'|'nobackup'>
working_area 0 0x40000000 0x4000 nobackup

#flash bank at91sam7 0 0 0 0 <target#>
flash bank at91sam7 0 0 0 0 0
 116

http://openfacts.berlios.de/index-en.phtml?title=Open_On-Chip_Debugger

OpenOCD Configuration File for JTAGKey (FLASH programming version)

O

#define our ports
telnet_port 4444
gdb_port 3333

#commands specific to the Amontec JTAGKey
interface ft2232
ft2232_device_desc "Amontec JTAGkey A"
ft2232_layout jtagkey
ft2232_vid_pid 0x0403 0xcff8
jtag_speed 2
jtag_nsrst_delay 200
jtag_ntrst_delay 200

#reset_config <signals> [combination] [trst_type] [srst_type]
reset_config srst_only srst_pulls_trst

#jtag_device <IR length> <IR capture> <IR mask> <IDCODE instruction>
jtag_device 4 0x1 0xf 0xe

#daemon_startup <'attach'|'reset'>
daemon_startup reset

#target <type> <endianess> <reset_mode> <jtag#> [variant]
target arm7tdmi little run_and_init 0 arm7tdmi_r4

#run_and_halt_time <target#> <time_in_ms>
run_and_halt_time 0 30

commands below are specific to AT91sam7 Flash Programming

#target_script specifies the flash programming script file
target_script 0 reset script.ocd

#working_area <target#> <address> <size> <'backup'|'nobackup'>
working_area 0 0x40000000 0x4000 nobackup

#flash bank at91sam7 0 0 0 0 <target#>
flash bank at91sam7 0 0 0 0 0
penOCD Configuration File for ARMUSBOCD (FLASH programming version)

#define our ports
telnet_port 4444
gdb_port 3333

#commands specific to the Olimex ARM-USB-OCD
interface ft2232
ft2232_device_desc "Olimex OpenOCD JTAG A"
ft2232_layout "olimex-jtag"
ft2232_vid_pid 0x15BA 0x0003
jtag_speed 2
jtag_nsrst_delay 200
jtag_ntrst_delay 200

#reset_config <signals> [combination] [trst_type] [srst_type]
reset_config srst_only srst_pulls_trst

#jtag_device <IR length> <IR capture> <IR mask> <IDCODE instruction>
jtag_device 4 0x1 0xf 0xe

#daemon_startup <'attach'|'reset'>
daemon_startup reset

 117

N

T
c
c

S

I
b
t
S

I
b

#target <type> <endianess> <reset_mode> <jtag#> [variant]
target arm7tdmi little run_and_init 0 arm7tdmi_r4

#run_and_halt_time <target#> <time_in_ms>
run_and_halt_time 0 30

commands below are specific to AT91sam7 Flash Programming

#target_script specifies the flash programming script file
target_script 0 reset script.ocd

#working_area <target#> <address> <size> <'backup'|'nobackup'>
working_area 0 0x40000000 0x4000 nobackup

#flash bank at91sam7 0 0 0 0 <target#>
flash bank at91sam7 0 0 0 0 0

ote that all three of the configuration files (for FLASH programming) have the following command line:

target_script 0 reset script.ocd

his is directing OpenOCD to execute the script file “script.ocd” which has the flash programming
ommands. The file “script.ocd” is normally included in your project and typically has the following
ontents as shown below.

CRIPT.OCD (normal version)

 118

OpenOCD Target Script for Atmel AT91SAM7S256

Programmer: James P Lynch

wait_halt # halt the processor and wait
armv4_5 core_state arm # select the core state
mww 0xffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
mww 0xfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)
mww 0xfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
wait 100 # wait 100 ms
mww 0xfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)
wait 200 # wait 200 ms
mww 0xfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
wait 100 # wait 100 ms
mww 0xfffffd08 0xa5000401 # enable user reset AT91C_RSTC_RMR
flash write 0 main.bin 0x0 # program the onchip flash
reset # reset processor
shutdown # stop OpenOCD

f the flash programming doesn’t work, it may well be that you have accidentally set the “lock” bits on the
ottom two pages of flash. You can easily do this by powering up the board with the TST jumper installed;

his installs a USB support program in your FLASH memory to enable the board to communicate with the
AM-BA flash programming utility.

n this case, you could add two additional commands to clear the lock bits. Be forewarned that the lock
its can only be set or cleared 100 times, so don’t leave these two commands in the script file.

SCRIPT.OCD (to remove lock bits)

OpenOCD Target Script for Atmel AT91SAM7S256

Programmer: James P Lynch

wait_halt # halt the processor and wait
armv4_5 core_state arm # select the core state

mww 0xffffff64 0x5a000004 # clear lock bit 0

mww 0xffffff64 0x5a002004 # clear lock bit 1

mww 0xffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
mww 0xfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)
mww 0xfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
wait 100 # wait 100 ms
mww 0xfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)
wait 200 # wait 200 ms
mww 0xfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
wait 100 # wait 100 ms
mww 0xfffffd08 0xa5000401 # enable user reset AT91C_RSTC_RMR
flash write 0 main.bin 0x0 # program the onchip flash
reset # reset processor
shutdown # stop OpenOCD

Add these two commands if you
think the flash memory lock
bits are set.

Martin Thomas, guru of the WinARM tool chain, suggested that the flash programming using OpenOCD
could be integrated into the makefile as an additional target.

Let’s review again the part of the makefile that programs the flash.

**
FLASH PROGRAMMING

Alternate make target for flash programming only

You must create a special Eclipse make target (program) to run this part of the makefile
(Project -> Create Make Target... then set the Target Name and Make Target to "program")

OpenOCD is run in "batch" mode with a special configuration file and a script file containing
the flash commands. When flash programming completes, OpenOCD terminates.

Note that the script file of flash commands (script.ocd) is part of the project

Programmers: Martin Thomas, Joseph M Dupre, James P Lynch
**

specify output filename here (must be *.bin file)
TARGET = main.bin

specify the directory where openocd executable resides (openocd-ftd2xx.exe or openocd-pp.exe)
OPENOCD_DIR = 'c:\Program Files\openocd-2007re141\bin\'

specify OpenOCD executable (pp is for the wiggler, ftd2xx is for the USB debuggers)
#OPENOCD = $(OPENOCD_DIR)openocd-pp.exe
OPENOCD = $(OPENOCD_DIR)openocd-ftd2xx.exe

specify OpenOCD configuration file (pick the one for your device)
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-wiggler-flash-program.cfg
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-jtagkey-flash-program.cfg
OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-armusbocd-flash-program.cfg

program the AT91SAM7S256 internal flash memory
program: $(TARGET)
 @echo "Flash Programming with OpenOCD..." # display a message on the console
 $(OPENOCD) -f $(OPENOCD_CFG) # program the onchip FLASH here
 @echo "Flash Programming Finished." # display a message on the console

 119

There are three places in the above makefile excerpt that you must customize.

First, you must correctly specify the folder name where the OpenOCD executable and the configuration
files reside as this can change if a newer version of YAGARTO is downloaded.

specify the directory where openocd executable resides (openocd-ftd2xx.exe or openocd-pp.exe)
Note: you may have to adjust this if a newer version of YAGARTO has been downloaded
OPENOCD_DIR = 'c:\Program Files\openocd-2007re141\bin\'

Second, you must choose which version of OpenOCD you are running (wiggler or USB).

specify OpenOCD executable (pp is for the wiggler, ftd2xx is for the USB debugger)
#OPENOCD = $(OPENOCD_DIR)openocd-pp.exe
OPENOCD = $(OPENOCD_DIR)openocd-ftd2xx.exe

Finally, you must choose which OpenOCD configuration file you will be using (wiggler, JTAGKey or
ARMUSBOCD).

specify OpenOCD configuration file (pick the one for your device)
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-wiggler-flash-program.cfg
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-jtagkey-flash-program.cfg
OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-armusbocd-flash-program.cfg

Assuming that you have already performed a “Build All” on the sample program and have an output file
(main.bin) to program into the FLASH plus you have set up the hardware as shown earlier, you can now
program the FLASH by running the “program” target in the makefile.

To prepare to do this, we need to establish “program” as a secondary make target. Click “Project –
Create Make Target…” as shown below. Note that you must have the project itself highlighted in the
“Projects” view to enable this.

Make sure this is
highlighted !

 120

In the “Create a New Make Target” dialog, enter “program” into the Target Name text box. Enter
“program” into the Make Target text box also. Click “Create” to finish.

There are two ways to execute the alternate Make target. The first way is to use the Project pull-down
menu. Click on “Project – Build Make Target” as shown below.

Click on the “program” icon below to highlight it (there can be multiple alternate targets defined) and then
click “Build” to execute the makefile alternate target called “program” and thereby program the FLASH.

The FLASH programming algorithm built into OpenOCD will now start. Since the sample program is
relatively small, this will run through to completion in just a few seconds.

The results of the FLASH programming activity are displayed in the “Console” view as shown below.

 121

 122

To test the application, hit the “Reset” button on the Atmel AT91SAM7S-EK. LED1 should be blinking at
about a 1 Hz rate. LED2 should be blinking at a 10 Hz rate (Timer0 interrupt). If you push switch SW1,
labeled PA19 on the AT91SAM7S256-EK board, you should see LED3 light up (it will turn off as part of
the background loop).

Push button PA19
to turn on LED3.

LED1 and LED2
should be blinking
at different rates!

Congratulations! You now have a full-fledged ARM cross development system operational and it didn’t
cost a thing!

There’s one other way to conveniently launch the alternate make target to program the flash. We can
display a special “Make Targets” view. Click “Window – Show View – Make Targets” as shown below.

Now the “Make Targets” view is presented with the “Outline” view on the right and if you double-click on
“program’ the alternate make file target will immediately run and the FLASH will be programmed.

Click on the
program “bulls-
eye” to start
programming the
flash memory.

If you are having trouble getting the OpenOCD FLASH programming to work, make sure that the
configuration files supplied with the sample programs were copied to the same folder that the OpenOCD
executable resides (c:\Program Files\openocd-2007re141\bin). Verify that you adjusted the makefile to
select the OpenOCD executable and OpenOCD configuration file that match the debugger hardware
device you are using (wiggler, JTAGKey or ARMUSBOCD).

 123

Using SAM-ICE and SAM-BA to Program the FLASH memory

If you have purchased the Atmel SAM-ICE JTAG interface, you can use the free Atmel SAM-BA Flash
Programming Utility to program the FLASH using the JTAG connection as described in this section.

In the hardware setup shown below, the AT91SAM7S-EK evaluation board is powered by a simple 9 volt
“wall wart” power supply. The SAM-ICE JTAG interface is connected to the PC with a standard USB cable
and is connected to the target board’s 20-pin JTAG connecter with a ribbon cable.

Using the Eclipse “Run” pull-down menu, click on “Run – External Tools – SAM-BA”.

 124

When the small SAM-BA communications dialog window appears, select your board (in this case, it’s
“AT91SAM7S256-EK”). Also select the “\jlink\ARM0” connection. Click “Connect” to establish a link to
the SAM-ICE.

The SAB-BA main screen will appear. There’s a nice memory display on the top wherein you can browse
memory. Under the “Scripts” view, there’s a script to erase the entire flash. Since programming the flash
with SAM-BA automatically erases it first, there’s rarely a need to use the “erase” script.

SAM-BA defaults to the “Flash” tab; click it if this is not the case.

Click on the symbol associated with the “Send File Name:” text box above

 to bring up a standard file navigation screen and use it to browse to the project’s “main.bin” file.

 125

Select the “main.bin” as shown below and click “Open” to select this file to be programmed into your
FLASH on-chip memory.

Now in the main SAM-BA screen below, click on “Send File” to program the flash.

 126

If one or more of the flash regions is “locked”, SAM-BA may ask you if you want to “unlock” the region.
Always answer affirmative (Yes) since we don’t want any locked regions before we start programming.

After programming the flash, SAM-BA will ask you if you want to lock the regions just programmed. To be
on the safe side, always answer “No” and leave the regions unlocked as shown below.

The little console display at the bottom indicates that 4992 bytes were sent to the flash memory.

If you look at the AT91SAM7S-EK evaluation board, you will notice that the application appears frozen.

You must do a power-cycle to get the application to start. This seems to be a bug in the Revision 2.5 of
the SAM-BA.

 127

Alert readers might notice that the summary indicates that the 4992 bytes were loaded at address
0x100000. This is true. However, page 19 of AT91SAM7S256 data package shows that FLASH is actually
at address 0x100000 and is subsequently “mapped” into the 1 mb region at address 0x000000 at boot
when the remap control register MC_RCR bit 0 is cleared (the default).

To test the application, cycle the power and hit the “Reset” button on the Atmel AT91SAM7S-EK. The
board is still powered from the “wall wart” DC power supply. The LEDs should start blinking.

Push button PA19
to turn on LED3.

LED1 and LED2
should be blinking
at different rates!

Reset
Button

Congratulations! You now have a full-fledged ARM cross development system operational and it didn’t
cost a thing!

 128

Debugging the FLASH Application

The author once interviewed a job applicant whose response to the question “Describe your debugging
technique?” was “I try not to make any errors!” Well, unless you are an infallible programmer like that guy,
you will occasionally require the services of a debugger to trap and identify software errors. Eclipse has a
wonderful visual source code debugger that interfaces to the GNU GDB debugger.

You can debug an application programmed into on chip FLASH; the built-in on chip JTAG debug circuits
allow this. There is only one restriction; you are limited to just two breakpoints. Attempting to specify more
than two hardware breakpoints at a time may cause the debugger to malfunction. Otherwise all Eclipse
debugging features work properly, such as single-stepping, inspection and modification of variables,
memory dumps, etc.

Create a Debug Launch Configuration

Before we can debug the FLASH application, we have to create a Debug Launch Configuration for this
project. The Debug Launch Configuration locates the GDB debugger for Eclipse, locates the project’s
executable file (in this case it’s only used to look up symbol information), and provides a startup script of
GDB commands that are to be run as the debugger starts up. Most people will define a Debug Launch
Configuration for each project they create.

Click on “Run – Debug…” to bring up the Debug Configuration Window.

In the “Debug – Create, manage, and run configurations” window shown below, click on “Embedded debug
(Native)” followed by the “New” button. This is the special debug launch configuration created by Zylin.

 129

The Debug “Create, manage and run configurations” window changes to the dialog shown below. Start by
making sure that the “Main” tab is selected.

In the “Name:” text box, enter the name of this debug launch configuration. The Name can be anything
you choose, but since there is usually going to be a debug configuration for each project you set up, the
name of the project itself is a wise choice. In this example, we simply use the project name
“demo_at91sam7_blink_flash” for this purpose.

In the “Project” text box, use the “Browse” button to find the project “demo_at91sam7_blink_flash”.

In the “C/C++ Application” text box, use the “Search Project…” button to find the application file
“main.out”.

You might be inclined to ask why this is not the “main.bin” file? The binary file was used earlier to
program the flash, but the debugger needs the application file that has the symbols; this is the “main.out”
file. While the “main.out” file also has the executable code within it, the debugger only uses the symbol
information for FLASH debugging.

Now select the “Debugger” tab as shown below.

Check the check box that says “Stop on startup at...” as this provides our breakpoint at the entry point of
main().

In the dialog labeled “Debugger Options”, use the “Browse” button to locate the GDB Debugger “arm-elf-
gdb.exe” file. It will be found in the “c:\Program Files\yagarto\bin” folder. The rest of the dialog can be left
in its default form.

 130

Now select the “Comands” tab as shown below.

If you are using OpenOCD, enter the single GDB command “target remote localhost:3333” in the
“Initialize commands” text window exactly as shown below. This command tells the GDB debugger to emit
commands in RSP format to the TCP port “localhost:3333” (the port OpenOCD will be listening to).

target remote localhost:3333

If you are using OpenOCD, enter the following GDB and OpenOCD commands into the “Run commands”
text window, exactly as shown below. The “Source” and “Common” tabs can be left in their default state.

monitor soft_reset_halt
monitor armv4_5 core_state arm
monitor mww 0xffffff60 0x00320100
monitor mww 0xfffffd44 0xa0008000
monitor mww 0xfffffc20 0xa0000601
monitor wait 100
monitor mww 0xfffffc2c 0x00480a0e
monitor wait 200
monitor mww 0xfffffc30 0x7
monitor wait 100
monitor mww 0xfffffd08 0xa5000401
set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
monitor arm7_9 force_hw_bkpts enable
symbol-file main.out
continue

 131

Below is the Debug Launch Configuration “Commands” tab for use with OpenOCD and flash execution.
Note that the ‘Run’ commands window below only shows a portion of the commands that were entered.
Be sure to enter all the commands as shown above.

The “Source” and “Common” tabs can be left in their default condition. Click on “Close” to complete
definition of the Debug Launch Configuration for flash debugging with OpenOCD.

To make entry of the ‘Run’ commands more convenient, here is a list of them for “cut-and-paste” transfer
to Eclipse.

Copy these commands into the
“Run Commands” window.

monitor soft_reset_halt
monitor armv4_5 core_state arm
monitor mww 0xffffff60 0x00320100
monitor mww 0xfffffd44 0xa0008000
monitor mww 0xfffffc20 0xa0000601
monitor wait 100
monitor mww 0xfffffc2c 0x00480a0e
monitor wait 200
monitor mww 0xfffffc30 0x7
monitor wait 100
monitor mww 0xfffffd08 0xa5000401
set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
monitor arm7_9 force_hw_bkpts enable
symbol-file main.out
continue

The GDB startup commands for OpenOCD operation shown above require some explanation. If the
command line starts with the word “monitor”, then that command is an OpenOCD command. Otherwise, it
is a legacy GDB command.

OpenOCD commands are described in the OpenOCD documentation which can be downloaded from:

http://developer.berlios.de/docman/display_doc.php?docid=1367&group_id=4148

 132

GDB commands are described in several books and in the official document that can be downloaded from:
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/gnu-debugger.pdf

First, we have to halt the processor.

monitor soft_reset_halt # OpenOCD command to halt the processor and wait

Next, we identify the ARM core being used

monitor armv4_5 core_state arm # OpenOCD command to select the core state

Now we set up the processor’s clocks, etc. using the register settings in the lowlevelinit.c function. These
are OpenOCD memory write commands used to set the various AT91SAM7S256 clock registers. This
guarantees that the processor will be running at full speed when the “continue” command is asserted.

monitor mww 0xffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
monitor mww 0xfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)
monitor mww 0xfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
monitor wait 100 # wait 100 ms
monitor mww 0xfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)
monitor wait 200 # wait 200 ms
monitor mww 0xfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
monitor wait 100 # wait 100 ms

Enable the Reset button in the AT91SAM7S-EK board.

monitor mww 0xfffffd08 0xa5000401 # enable user reset AT91C_RSTC_RMR

Now increase the GDB packet size to 1024. This will have a slight improvement on FLASH debugging as
reads of large data structures, etc. may be speeded up. These are legacy GDB commands.

set remote memory-write-packet-size 1024 # Setup GDB for faster downloads
set remote memory-write-packet-size fixed # Setup GDB for faster downloads
set remote memory-read-packet-size 1024 # Setup GDB for faster downloads
set remote memory-read-packet-size fixed # Setup GDB for faster downloads

This is an OpenOCD command to convert all Eclipse breakpoints to “hardware” breakpoints. Remember,
we are only allowed two hardware breakpoints – defining more than two will crash the debugger.

monitor arm7_9 force_hw_bkpts enable # convert all breakpoints to hardware breakpoints

Now we have to identify the file that has the symbol information. This is a legacy GDB command.

symbol-file main.out # read the symbol information from main.out

Finally we emit the legacy GDB command “continue”. The processor was already halted at the Reset vector
and will thus start executing until it hits the breakpoint set at main().

continue # resume execution from reset vector - will break at main()

 133

Author’s Note: GDB manual states “Any text from a # to the end of a line is a comment; it does
nothing”. Unfortunately, I’ve noted that these systems get tripped up occasionally by
these comments so they have been left out of all debug windows.

If you are using the J-Link GDB Server, enter the single GDB command “target remote localhost:2331”
in the “Initialize commands” text window exactly as shown below. This command tells the GDB debugger
to emit commands in RSP format to the TCP port “localhost:2331” (the port the J-Link GDB Server will be
listening to).

target remote localhost:2331

If you are using the J-Link GDB Server, enter the following GDB and J-Link GDB Server commands into
the “Run commands” text window, exactly as shown below. The “Source” and “Common” tabs can be left
in their default state.

monitor reset
monitor speed 30
monitor speed auto
monitor long 0xffffff60 0x00320100
monitor long 0xfffffd44 0xa0008000
monitor long 0xfffffc20 0xa0000601
monitor sleep 100
monitor long 0xfffffc2c 0x00480a0e
monitor sleep 200
monitor long 0xfffffc30 0x7
monitor sleep 100
monitor long 0xfffffd08 0xa5000401
set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
symbol-file main.out
continue

Below is the Debug Launch Configuration “Commands” tab for use with the J-Link GDB Server and
FLASH execution. Note that the ‘Run’ commands window only shows a portion of the commands that
were entered. Be sure to enter all the commands as shown above.

134

Click on “Close” above to complete definition of the Debug Launch Configuration for flash debugging with
the J-Link GDB Server.

To make entry of the ‘Run’ commands more convenient, here is a list of them for “cut-and-paste” transfer
to Eclipse.

monitor reset

Copy these commands into the
“Run Commands” window.

monitor speed 30
monitor speed auto
monitor long 0xffffff60 0x00320100
monitor long 0xfffffd44 0xa0008000
monitor long 0xfffffc20 0xa0000601
monitor sleep 100
monitor long 0xfffffc2c 0x00480a0e
monitor sleep 200
monitor long 0xfffffc30 0x7
monitor sleep 100
monitor long 0xfffffd08 0xa5000401
set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
symbol-file main.out
continue

The GDB startup commands for the J-Link GDB Server operation shown above require some explanation.
If the command line starts with the word “monitor”, then that command is a J-Link GDB Server command.
Otherwise, it is a legacy GDB command.

J-Link GDB Server commands are described in the document “JLinkGDBServer.pdf” which is in the Segger
documentation folder that you downloaded (“c:\Program Files\SEGGER\JLinkARM_V368b\Doc\Manuals\”)

GDB commands are described in several books and in the official document that can be downloaded from:

http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/gnu-debugger.pdf

First, we have to halt the processor.

monitor reset # Reset the chip to get to a known state.

Next, we set up the JTAG speed

monitor speed 30 # Set JTAG speed to 30 kHz
monitor speed auto # Set auto JTAG speed

Now we set up the processor’s clocks, etc. using the register settings in the lowlevelinit.c function. These
are J-Link GDB Server memory write commands used to set the various AT91SAM7S256 clock registers.
This guarantees that the processor will be running at full speed when the “continue” command is asserted.

monitor long 0xffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
monitor long 0xfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)
monitor long 0xfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)
monitor sleep 100 # wait 100 ms
monitor long 0xfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)
monitor sleep 200 # wait 200 ms
monitor long 0xfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
monitor sleep 100 # wait 100 ms

 135

 136

Enable the Reset button in the AT91SAM7S-EK board.

monitor long 0xfffffd08 0xa5000401 # enable user reset AT91C_RSTC_RMR

Now increase the GDB packet size to 1024. This will have a slight improvement on FLASH debugging as
reads of large data structures, etc. may be speeded up. These are legacy GDB commands.

set remote memory-write-packet-size 1024 # Setup GDB for faster downloads
set remote memory-write-packet-size fixed # Setup GDB for faster downloads
set remote memory-read-packet-size 1024 # Setup GDB for faster downloads
set remote memory-read-packet-size fixed # Setup GDB for faster downloads

Now we have to identify the file that has the symbol information. This is a legacy GDB command.

symbol-file main.out # read the symbol information from main.out

Finally we emit the legacy GDB command “continue”. The processor is already halted at the Reset vector and
will thus start executing until it hits the breakpoint set at main().

continue # resume execution from reset vector - will break at main()

Add the Debug Launch Configuration to the List of Favorites

One final maneuver is to add the “demo_at91sam7_blink_flash” embedded debug launch configuration
into the Debug pull-down menu’s list of favorites. This operation is very similar to putting the external tools
into the “list of favorites” that you did earlier.

In the toolbar, click on the down arrowhead next to the debug symbol and then click “Organize
Favorites…”

In a sequence similar to other “Organize Favorites” operations that we have already performed, click on
“Add…” and either checkmark the “demo_at91sam7_blink_flash” or click the “Select All” button. Finally,
click “OK” to enter this debug launch configuration into the debugger list of favorites, as shown below.

Now when you click on the Debug Toolbar button’s down arrowhead, you will see the
“demo_at91SAM7_blink_flash” debug launch configuration installed as a favorite, as shown below.

The Debug
toolbar

There it is!

Now everything is in place to debug the project that we loaded into FLASH memory via OpenOCD or
SAM-BA.

 137

Open the Eclipse Debug Prespective

To debug, we need to switch from the C/C++ perspective to the Debug perspective. The standard way is
to click on “Window – Open Perspective – Debug” as shown below.

A more convenient way to switch perspectives is to click on the “perspective” buttons at the Eclipse upper-
right window location. Click on the “OpenPerspective” toolbar button below on the left and then choose
“Debug” when the other perspectives are displayed.

Now we have a “Debug” button as shown below. You may have to drag on the edge to expose all the
perspective buttons. You can also right-click on any of the buttons and “Close” them to narrow the display
to only the perspectives you are interested in.

Drag on this
edge to expose
all the available
perspectives.

Click on the “Debug” perspective button at the upper-right to open the Debug Perspective display, shown
below.

 138

If your display doesn’t look exactly like the debug display above, click on “Window – Show View” and
select any of the missing elements.

 139

Starting OpenOCD

If you have purchased an Olimex or Amontec JTAG debugger, you must have OpenOCD running in the
background before starting the Eclipse graphical debugger.

To start OpenOCD, click on the “External Tools” toolbar button’s down arrowhead and then select
“OpenOCD”. Alternatively, you can click on the “Run” pull-down menu and select “External Tools”
followed by “OpenOCD”.

Eclipse remembers the last button you selected, so you can usually just click on the red toolbox button
itself to start OpenOCD. If you’re not sure what “external tool” will be selected, just hover the cursor over
the toolbox icon and the “hints” feature will show that “OpenOCD” will be selected.

The debug view will show that OpenOCD is running and the console view shows no errors, just warnings.

Directly below is the Debug perspective just after OpenOCD has started up.

 140

If for some reason, OpenOCD will not properly start in your system, you can try the following things.

• Cycle power on the target board before starting OpenOCD

• Make sure your computer is not running cpu-intensive applications in the background, such as
internet telephone applications (SKYPE for example). The OpenOCD/wiggler system does “bit-
banging” on the LPT1 printer port which is fairly low in the Windows priority order.

For Windows XP users, here is a simple way to get rid of all those background programs. Click
“Start – Help and Support – Use Tools… - System Configuration Utility – Open System
Configuration Utility – Startup Tab”. Click on “Disable All”. Windows will ask you to re-boot
and the PC will restart with none of the start-up programs running. Use the same procedure to
reverse this action.

 141

Starting J-Link GDB Server

If you have purchased the Atmel SAM-ICE JTAG debugger, you must have the J-Link GDB Server
running in the background before starting the Eclipse graphical debugger.

To start J-Link, click on the “External Tools” toolbar button’s down arrowhead and then select “J-Link
GDB Server”. Alternatively, you can click on the “Run” pull-down menu and select “External Tools”
followed by “J-Link GDB Server”.

Eclipse remembers the last button you selected, so you can usually just click on the red toolbox button
itself to start J-Link. If you’re not sure what “external tool” will be selected, just hover the cursor over the
toolbox icon and the “hints” feature will show that “J-Link GDB Server” will be selected.

First, a Segger J-Link GDB Server status window will appear as shown below. Notice that the green
indicators show that the J-Link GDB Server is connected to your SAM-ICE and the target microprocessor
core has been identified. The Debugger status light is indicating red; this is OK since we haven’t launched
our Eclipse/GDB integrated graphical debugger yet. You should now minimize the Segger status display.

 142

Whatever you do, don’t click the button; that will terminate the J-Link GDB Server!

The debug view will show that J-Link GDB Server is running and the console view shows no errors.

J-Link GDB Server is running!

Start the Eclipse Debugger

To start the Eclipse debugger, click on the “Debug” toolbar button’s down arrowhead and select the
debug launch configuration “demo_at91sam7_blink_flash” as shown below.

 Alternatively, you can start the debugger by clicking on “Run – Debug…” and then select the
“demo_at91sam7_blink_flash” embedded launch configuration and then click “debug”. Obviously, the
debug toolbar button is more convenient.

There’s not a lot of difference in the behavior of the Eclipse/GDB integrated graphical debugger whether
you run it from OpenOCD or the J-Link GDB Server.

 143

Eclipse Debugger Startup - OpenOCD

 144

Eclipse Debugger Startup – J-Link GDB Server

 145

In both examples, Eclipse started the application and stopped at the main() entry point. Specifically, it
stopped on line 59 of the source file main.c.

If the Eclipse debugger doesn’t connect properly, then there will be a progress bar at the bottom right
status line that runs forever. In this case, terminate everything and power cycle the target board again.

Components of the DEBUG Perspective

Before operating the Eclipse debugger, let’s review the components of the Debug perspective.

Debug
Control

Variable display
Breakpoint summary
Register display, etc.

C Code Display

Assembler
Display

GDB Debugger
Command Window

Full SizeCollapse

While this may be obvious to most, you can expand to full screen and then
collapse any of the windows in the Debug perspective by clicking on the
“maximize” and “minimize” buttons at the top right corner of each window.

 146

Debug Control

The Debug view should be on display at all times. It has the Run, Stop and Step buttons. The tree-
structured display shows what is running; in this case it’s the OpenOCD utility and our application, shown
as Thread[0].

Run-to-Main() and
Resume Button.

Stop Button

Kill Button
This stops
everything

Clear Button
Erases debug view
after Kill

Step
Into

Step
Over

Step
Out

Switch between C-
language stepping
and assembler
stepping

Tree-view shows what’s
running.

Notes:

• When you resume execution by clicking on the Resume/Continue button, many of the buttons
are “grayed out.” Click on “Thread[0]” to highlight it and the buttons will re-appear. This is due to
the possibility of multiple threads running simultaneously and you must choose which thread to
pause or step. In our ARM development system, we only have one thread.

• You can only set two breakpoints at a time when debugging FLASH. If you are stepping, it

behooves you to have no breakpoints set since Eclipse needs one of the hardware breakpoints
for single-stepping.

• If you re-compile your application, you must stop the debugger and OpenOCD or J-Link GDB

Server, re-build and burn the main.bin file into FLASH using the OpenOCD FLASH programming
facility or the Atmel SAM-BA flash programming utility.

 147

Run and Stop with the Right-Click Menu

The easiest method of running is to employ the right-click menu. In the example below, the blue
arrowhead cursor indicates where the program is currently stopped - just after main().

To go to the pPIO->PIO_SODR = LED_MASK; statement several lines away, click on the line where you
want to go (this should highlight the line and place the cursor there).

Now right click on that line. Notice that the rather large pop-up menu has a “Run to Line” option.

We were stopped here.

Click on this line
– this is where
we want to go.

Right-click next to bring up
this pop-up menu

Click on “Run to line” to
execute to the clicked line.

When you click on the “Run to line” choice, the program will execute to the line the cursor resides on and
then stop (N.B. it will not execute the line).

 148

We stopped here

Note: this line WAS NOT
executed!

You can right-click the “Resume at Line” choice to continue execution from that point. If there are no
other breakpoints set, then the Blink application will start blinking continuously.

Setting a Breakpoint

Setting a breakpoint is very simple; just double-click on the far left edge of the line. Double-clicking on the
same spot will remove it.

Double-Click in the left margin area
to set/clear breakpoints.

Note in the upper right “Breakpoint Summary” pane, the new breakpoint at line 82 has been indicated, as
shown below.

 149

Now click on the “Run/Continue” button in the Debug view.

Assuming that this is the only breakpoint set, the program will execute to the breakpoint line and stop.

Stops before
executing this
line.

Since this is a FLASH application and breakpoints are “hardware” breakpoints, you are limited to only
two breakpoints specified at a time. Setting more than two breakpoints will cause the debugger to
malfunction!

The breakpoints can be more complex. For example, to ignore the breakpoint 5 times and then
stop, right-click on the breakpoint symbol on the far left.

This brings up the pop-up menu below; click on “Breakpoint Properties …”.

 150

In the “Properties for C/C++ breakpoint” window, set the Ignore Count to 5. This means that the
debugger will ignore the first five times it encounters the breakpoint and then stop.

To test this setup, we must terminate and re-launch the debugger.

Get used to this sequence:

Kills both the OpenOCD and the debugger

Erases the terminated processes in the tree

Start the OpenOCD; keep trying until it starts
properly.

Launch the debugger and download the
application’s symbols

Start and run to main()

 151

Now when you hit the Run/Continue button again, the program will blink 5 times and stop. Don’t expect
this feature to run in real-time. Each time the breakpoint is encountered the debugger will automatically
continue until the “ignore” count is reached. This involves quite a bit of debugger communication at a very
slow baud rate especially if you’re using a “wiggler”. The “wiggler” works by bit-banging the PC’s parallel
LPT1 port; this limits the JTAG speed to less than 500 kHz.

In addition to specifying a “ignore” count, the breakpoint can be made conditional on an expression. The
general idea is that you set a breakpoint and then specify a conditional expression that must be met
before the debugger will stop on the specified source line.

In this example, there’s a line in the blink loop that increments a variable “IdleCount”. Double-click on that
line to set a breakpoint.

Right click on the breakpoint symbol and select “Breakpoint Properties”. In the Breakpoint Properties
window, set the condition text box to “IdleCount == 9”.

 152

If you need to restart the debugger, you need to kill the OpenOCD and the Debugger and then restart
both; as specified above. This is necessary for this release of CDT because the “Restart” button appears
inoperative. The advantage is that you don’t have to change the Eclipse perspective – just stay in the
Debug perspective.

Start the application and it will stop on the breakpoint line (this will take a long time, 9 seconds on my Dell
computer). If you park the cursor over the variable IdleCount after the program has suspended on the
breakpoint, it will display that the current value is 9.

If you specify that it should break when IdleCount == 50000, you will essentially wait forever. The way this
works, the debugger breaks on the selected source line every pass through that source line and then
queries via JTAG for the current value of the variable IdleCount. When IdleCount==50000, the debugger
will stop. Obviously, that requires a lot of serial communication at a very slow baud rate. Still, you may
find some use for this feature.

In the Breakpoint Summary view, you can see all the breakpoints you have created and the right-click
menu lets you change the properties, remove or disable any of the breakpoints, etc.

Single Stepping

Single-stepping is the single most useful feature in any debugging environment. The debug view has
three buttons to support this.

Step Into Step Over Step Out Of

 153

Step Into

If the cursor is at a function call, this will step into the function.
It will stop at the first instruction inside the function.

If cursor is on any other line, this will execute one instruction.

Step Over

If the cursor is at a function call, this will step over the function. It will execute
the entire function and stop on the next instruction after the function call.

If cursor is on any other line, this will execute one instruction

Step Out Of

If the cursor is within a function, this will execute the remaining instructions in
the function and stop on the next instruction after the function call.

This button will be “grayed-out” if cursor is not within a function.

As a simple example, restart the debugger and set a breakpoint on the line that calls the LowLevelInit()
function. Hit the Start button to go to that breakpoint.

Click the “Step Into” button The debugger will enter the LowLevelInit() function.

 154

The debugger will execute the remaining instructions in LowLevelInit() and return to just after the function
call.

Click the “Step Over” button The debugger will execute one instruction.

Notice that the “Step Out Of” button is illuminated. Click the “Step Out Of” button

 155

Inspecting and Modifying Variables

The simple way to inspect variables is to just park the cursor over the variable name in the source window;
the current value will pop up in a tiny text box. Execution must be stopped for this to work; either by
breakpoint or pause. In this operation, try to position the text cursor within the variable name.

For a structured variable, parking the cursor over the variable name will show the values of all the internal
component parts.

Another way to look at the local variables is to inspect the “Variables” view. This will automatically display
all automatic variables in the current stack frame. It can also display any global variables that you choose.
For simple scalar variables, the value is printed next to the variable name.

Text cursor is parked
over the variable
“Access”

Text cursor is parked
over the variable “z”

Current value
will pop up.

 156

If you click on a variable, its value appears in the summary area at the bottom. This is handy for a
structured variable or a pointer; wherein the debugger will expand the variable in the summary area.

The Variables view can also expand structures. Just click on any “+” signs you see to expand the
structure and view its contents.

Global variables have to be individually selected for display within the “Variables” view.

Use the “Add Global Variables” button to open the selection dialog.

Click on the structured
variable to highlight it.

The structure contents will
display in the summary area.

 157

Check the variables you want to display and then click “OK” to add them to the Variables view,

You can easily change the value of a variable at any time. Assuming that the debugger has stopped, click
on the variable you wish to change and right click. In the right-click menu, select “Change Value…” and
enter the new value into the pop-up window as shown below. In this example, we change the variable “c”
to 52. Resist the temptation to hit the “Enter” key on your keyboard to signal completion of the new value;
doing so will invalidate your entry. You must click the “OK” button to register your change.

 158

 159

Now the “Variables” view should show the new value for the variable “c”. Note that it has been back
lighted to the color yellow to indicate that it has been changed.

Watch Expressions

The “Expressions” view can display the results of expressions (any legal C Language expression). Since
it can pick any local or global variable, it forms the basis of a customizable variable display; showing only
the information you want.

For example, to display the 6th character of the name in the structured variable “Access”, bring up the
right-click menu and select “Add Watch Expression…”.

Enter the fully qualified name of the 6th character of the name[] array.

Note that it now appears in the “Expressions” view.

You can type in very complicated expressions. Here we defined the expression (i + z)/h

 160

Assembly Language Debugging

Note that the debugger is currently stopped at the assembler line at address 0x0000150.

The “Step Into” and “Step Out Of” buttons work in the same way as for C code.

The Debug perspective includes an Assembly Language view.

Note: It pains the author greatly to report that the Eclipse 3.2 release has a bug wherein assembly
language breakpoints do not function. Monitor the chat boards to see when this is resolved. Truthfully,
you shouldn’t be programming in assembly language anyway!

If you click on the Instruction Stepping Mode toggle button in the Debug view,

the assembly language window becomes active and the single-step buttons apply to the assembler
window. The single-step buttons will advance the program by a single assembler instruction. Note
that the “Disassembly” tab lights up when the assembler view has control.

If we click the “Step Over” button in the Debug view, the debugger will execute one
assembler line.

Inspecting Registers

Unfortunately, parking the cursor over a register name (R3 e.g.) does not pop up its current value. For
that, you can refer to the “Registers” view.

 161

lick on the “+” symbol next to Main and the registers will appear. The Atmel AT91SAM7S256 doesn’t
ting point registers so registers F0 through FPS are not applicable.

If you don’t like a particular register’s numeric format, you can click to highlight it and then bring up the
right-click menu. You can, of course, drag the mouse cursor to highlight them all if desired.

C
have any floa

 162

The “Format” option permits you to change the numeric format to hexadecimal, for example.

Now R3 is displayed in hexadecimal.

 163

Of course, the right click menu lets you change the value of any register. For example, to change r1 from
128 to 0x1F8, just select the register, right-click and select “Change Value…”

In the “Set Value” dialog box, enter the hexadecimal value 0x1F8 and click “OK” to accept.

The register display now shows the new value for R1 (we also changed the display format to hexadecimal
using the right-click menu).

It goes without saying that you had better use this feature with great care! Make sure you know what you
are doing before tampering with the ARM registers.

Inspecting Memory

Viewing memory is a bit complex in Eclipse. First, the memory view is not part of the default debug launch
configuration. You can add it by clicking “Window – Show View – Memory” as shown below.

The memory view appears with the “Console” view at the bottom of the Debug perspective. At this point,
nothing has been defined. Memory is displayed as one or more “memory monitors”. You can create a

memory monitor by clicking on the “+” symbol. Enter the address 0x394 (address of the string “The Rain
in Spain”) in the dialog box and click “OK”.

The memory monitor is created, although it defaults to 4-byte display mode. The display of the address
columns and the associated memory contents is called a “Rendering”.

The address 0x394 is called the Base Address; there’s a right-click menu option “Reset to Base
Address” that will automatically return you to this address if you scroll the memory display.

There’s also a “Go to Address…” right-click menu option that will jump all over memory for you.

 164

By right-clicking anywhere within the memory rendering (display area), you can select “Column Size – 1
unit”.

 165

This will repaint the memory rendering in Byte format as shown below.

The Eclipse memory display allows you to simply type new values into the displayed cells. Of course, this
example is in FLASH and that wouldn’t work. Memory displays in the RAM area can be edited.

 Now we will add a second rendering that will display the memory monitor in ASCII.

Click on the “Toggle Split Pane” button to create a second rendering pane.

Pick “ASCII” display for the new rendering.

Click on the “Add Rendering(s)” button to complete the specification of an additional ASCII memory
display.

 166

Now we have an additional display of the hex values and the corresponding ASCII characters.

Admittedly, this Eclipse memory display is a bit complex. However, it allows you to define many “memory
monitors” and clicking on any one of them pops up the renderings instantly. It’s like so many things in life,
once you learn how to do it; it seems easy!

Click on the “Link Memory Rendering Panes” button.

This means that scrolling one memory rendering will automatically scroll the other one in synchronism.

Click on the “Toggle Memory Monitors Pane” button.

This will expand the display erasing the “memory monitors” list on the left.

 167

Create an Eclipse Project to Run in RAM

There are two reasons to run an application entirely within onboard RAM memory; to gain a speed
advantage and to be able to set an unlimited number of software breakpoints.

Execution within RAM is about two times faster than execution within FLASH memory. Many
programmers will just copy the routines that need the increased execution speed from FLASH to RAM at
run-time and thenceforth call the routines resident in RAM. This is not the subject of this tutorial so we will
not address this idea any further.

In the FLASH example shown previously, the OpenOCD and J-Link GDB Server utilities permitted the
Eclipse debugger to use the two on-chip breakpoint units; thus allowing a breakpoint to be set in FLASH.
This limits us to just two breakpoints. Note also that the OpenOCD and J-Link setup converted every
Eclipse breakpoint specification into a hardware-assisted breakpoint. This works great but there may be
occasions where the two-breakpoint limit is not satisfactory.

Close the current Eclipse project using the “Project” pull-down menu and then selecting “Close Project”.

Click on “File – New – Standard Make C Project” as shown below.

Creating an Eclipse project that runs entirely out of on-chip RAM is simple if a bit counter-intuitive. We use
the Linker command script to place the code (.text), initialized variables (.data) and uninitialized variables
(.bss) all into FLASH at address 0x00000000. When the debugger starts up, we toggle the MC Memory
Remap Control Register to place the RAM memory at address 0x000000. We then use our JTAG
hardware interface to load the main.out file (containing the executable code) into RAM now at address
0x00000000 and away we go! It’s almost as if Flash memory has become read/write.

With this approach, we get an unlimited number of software breakpoints and can use the JTAG debugger
interface to download the code (we don’t have to use the OpenOCD or SAM-BA flash programming
facility). The disadvantage, of course, is that the application is limited to 64 Kbytes.

 168

Give the new project the name “demo_at91sam7_blink_ram” and click “Finish”.

Now we have a project that has no files.

er for

Now import the source files from the c:\download\atmel_tutorial_source\demo_at91sam7_blink_ram\ fold
the project demo_at91sam7_blink_ram using the techniques learned earlier.

Only two files are different from the previous FLASH version:

demo_at91sam7_blink_ram.cmd - This file is different in that all code and variables are linked and

loaded into address 0x00000000.

makefile.mak - this file references the file above (demo_at91sam7_blink_ram.cmd) so there are some

minor edits therein.

All other files are exactly the same as the FLASH example.

Now we have a project with the proper files imported.

Only two files have changes and they are shown below. The few things that have been changed for RAM
execution are colored in blue.

DEMO_AT91SAM7_BLINK_RAM.CMD

/* *** */
/* demo_at91sam7_blink_ram.cmd LINKER SCRIPT */
/* */
/* */
/* The Linker Script defines how the code and data emitted by the GNU C compiler and assembler are */
/* to be loaded into memory (code goes into RAM, variables go into RAM). */
/* */
/* Any symbols defined in the Linker Script are automatically global and available to the rest of the */
/* program. */
/* */
/* To force the linker to use this LINKER SCRIPT, just add the -T demo_at91sam7_blink_ram.cmd */
/* directive to the linker flags in the makefile. For example, */
/* */
/* LFLAGS = -Map main.map -nostartfiles -T demo_at91sam7_blink_ram.cmd */
/* */
/* */
/* The order that the object files are listed in the makefile determines what .text section is */
/* placed first. */
/* */
/* For example: $(LD) $(LFLAGS) -o main.out crt.o main.o lowlevelinit.o */
/* */
/* crt.o is first in the list of objects, so it will be placed at address 0x00000000 */
/* */
/* */
/* The top of the stack (_stack_end) is (last_byte_of_ram +1) - 4 */
/* */
/* Therefore: _stack_end = (0x0000FFFF + 1) - 4 = 0x00010000 - 4 = 0x0000FFFC */
/* */
 169

/* */
/* Note that this symbol (_stack_end) is automatically GLOBAL and will be used by the crt.s */
/* startup assembler routine to specify all stacks for the various ARM modes */
/* */
/* MEMORY MAP */
/* | | */
/* .-------->|---------------------------------|0x00010000 */
/* . | |0x0000FFFC <---------- _stack_end */
/* . | UDF Stack 16 bytes | */
/* . | | */
/* . |---------------------------------|0x0000FFEC */
/* . | | */
/* . | ABT Stack 16 bytes | */
/* . | | */
/* . |---------------------------------|0x0000FFDC */
/* . | | */
/* . | | */
/* . | FIQ Stack 128 bytes | */
/* . | | */
/* . | | */
/* . |---------------------------------|0x0000FF5C */
/* . | | */
/* . | | */
/* . | IRQ Stack 128 bytes | */
/* . | | */
/* . | | */
/* . |---------------------------------|0x0000FEDC */
/* . | | */
/* . | SVC Stack 16 bytes | */
/* . | | */
/* . |---------------------------------|0x0000FECC */
/* . | | */
/* . | stack area for user program | */
/* . | | */
/* . | | */
/* . | | */
/* . | | */
/* . | | */
/* . | | */
/* . | | */
/* . | free ram | */
/* ram | | */
/* . | | */
/* . | | */
/* . |.................................|0x00001398 <---------- _bss_end */
/* . | | */
/* . | .bss uninitialized variables | */
/* . |.................................|0x00001380 <---------- _bss_start, _edata */
/* . | | */
/* . | .data initialized variables | */
/* . | | */
/* . |---------------------------------|0x00000F3C <----------- _etext */
/* . | | */
/* . | | */
/* . | | */
/* . | C code | */
/* . | | */
/* . | | */
/* . | | */
/* . |---------------------------------|0x0000015C main() */
/* . | | */
/* . | Startup Code (crt.s) | */
/* . | (assembler) | */
/* . | | */
/* . |---------------------------------|0x00000020 */
/* . | | */
/* . | Interrupt Vector Table | */
/* . | 32 bytes | */
/* .--------->|---------------------------------|0x00000000 _vec_reset */
/* */
/* */
/* Author: James P. Lynch May 12, 2007 */
/* */
/* *** */

/* identify the Entry Point (_vec_reset is defined in file crt.s) */
ENTRY(_vec_reset)

/* specify the AT91SAM7S256 memory areas */
MEMORY
{
 flash : ORIGIN = 0, LENGTH = 256K /* FLASH EPROM */
 ram : ORIGIN = 0x00200000, LENGTH = 64K /* static RAM area */
}

/* define a global symbol _stack_end (see analysis in annotation above) */
_stack_end = 0xFFFC;
 170

M

/* now define the output sections */
SECTIONS
{
 . = 0; /* set location counter to address zero */

 .text : /* collect all sections that should go into FLASH after startup */
 {
 (.text) / all .text sections (code) */
 (.rodata) / all .rodata sections (constants, strings, etc.) */
 (.rodata) /* all .rodata* sections (constants, strings, etc.) */
 (.glue_7) / all .glue_7 sections (no idea what these are) */
 (.glue_7t) / all .glue_7t sections (no idea what these are) */
 _etext = .; /* define a global symbol _etext just after the last code byte */
 } >ram /* put all the above into RAM */

 .data : /* collect all initialized .data sections that go into RAM */
 {
 _data = .; /* create a global symbol marking the start of the .data section */
 (.data) / all .data sections */
 _edata = .; /* define a global symbol marking the end of the .data section */
 } >ram /* put all the above into RAM */

 .bss : /* collect all uninitialized .bss sections that go into RAM */
 {
 _bss_start = .; /* define a global symbol marking the start of the .bss section */
 (.bss) / all .bss sections */
 } >ram /* put all the above in RAM (it will be cleared in the startup code */

 . = ALIGN(4); /* advance location counter to the next 32-bit boundary */
 _bss_end = . ; /* define a global symbol marking the end of the .bss section */
}
 _end = .; /* define a global symbol marking the end of application RAM */

AKEFILE.MAK

* Makefile for Atmel AT91SAM7S256 - ram execution *
* *
* *
* James P Lynch May 12, 2007 *

NAME = demo_at91sam7_blink_ram

variables
CC = arm-elf-gcc
LD = arm-elf-ld -v
AR = arm-elf-ar
AS = arm-elf-as
CP = arm-elf-objcopy
OD = arm-elf-objdump

CFLAGS = -I./ -c -fno-common -O0 -g
AFLAGS = -ahls -mapcs-32 -o crt.o
LFLAGS = -Map main.map -Tdemo_at91sam7_blink_ram.cmd
CPFLAGS = --output-target=binary
ODFLAGS = -x --syms

OBJECTS = crt.o main.o timerisr.o timersetup.o isrsupport.o lowlevelinit.o blinker.o

make target called by Eclipse (Project -> Clean ...)
clean:
 -rm $(OBJECTS) crt.lst main.lst main.out main.bin main.hex main.map main.dmp

#make target called by Eclipse (Project -> Build Project)
all: main.out
 @ echo "...copying"
 $(CP) $(CPFLAGS) main.out main.bin
 $(OD) $(ODFLAGS) main.out > main.dmp

 171

U

B

I

main.out: $(OBJECTS) demo_at91sam7_blink_ram.cmd
 @ echo "..linking"
 $(LD) $(LFLAGS) -o main.out $(OBJECTS) libc.a libm.a libgcc.a

crt.o: crt.s
 @ echo ".assembling"
 $(AS) $(AFLAGS) crt.s > crt.lst

main.o: main.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) main.c

timerisr.o: timerisr.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) timerisr.c

lowlevelinit.o: lowlevelinit.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) lowlevelinit.c

timersetup.o: timersetup.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) timersetup.c

isrsupport.o: isrsupport.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) isrsupport.c

blinker.o: blinker.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) blinker.c

 172

sing the “Build All” button, build the new RAM Project.

uild the RAM Project

n this version, we will be using the “main.out” file to download the executable into RAM via the JTAG.

 173

Debugging the RAM Application

A separate Debug Launch Configuration is appropriate since the debugger startup script will be different
and the downloading of executable code into RAM will be performed by the JTAG hardware interface.

Click on “Run” followed by “Debug…”.

Debugging an application loaded entirely into RAM is very similar to debugging in Flash. The advantage
is that you have an unlimited number of software breakpoints and the application is automatically loaded
into RAM at debugger startup.

Create an Embedded Debug Launch Configuration for RAM

When the Debug “Create, manage, and run configurations” screen appears, click on “Embedded debug
(Native)” followed by the “New” button.

A new and empty “Embedded debug launch” configuration screen will appear. Under the “Main” tab, fill
out the new configuration screen as shown below. Once again, I selected the project name
“demo_at91sam7_blink_ram” as the debug launch configuration name. Use the “Browse” buttons to find
the project and the C/C++ Application file as shown below.

Under the “Debugger” tab, fill out the screen as shown below. Note that we checked the “Stop on startup
at:” check box so that the debugger will stop at the entry point of main().

Also use the “Browse” button to find the GDB debugger (it is the file: c:\Program Files\yagarto\bin\arm-
elf-gdb.exe).

 174

 175

If you are using OpenOCD

Now select the “Comands” tab as shown below.

, enter the single GDB command “target remote localhost:3333” in the
“Initialize commands” text window exactly as shown below. This command tells the GDB debugger to emit
commands in RSP format to the TCP port “localhost:3333” (the port OpenOCD will be listening to).

If you are using OpenOCD

target remote localhost:3333

, enter the following GDB and OpenOCD commands into the “Run commands”
text window, exactly as shown below. The “Source” and “Common” tabs can be left in their default state.

Below is the Debug Launch Configuration “Commands” tab for use with OpenOCD and flash execution.
Note that the ‘Run’ commands window below only shows a portion of the commands that were entered.
Be sure to enter all the commands as shown above.

The “Source” and “Common” tabs can be left in their default condition. Click on “Close” to complete
definition of the Debug Launch Configuration for flash debugging with OpenOCD.

monitor soft_reset_halt
monitor armv4_5 core_state arm
monitor mww 0xffffff60 0x00320100
monitor mww 0xfffffd44 0xa0008000
monitor mww 0xfffffc20 0xa0000601
monitor wait 100
monitor mww 0xfffffc2c 0x00480a0e
monitor wait 200
monitor mww 0xfffffc30 0x7
monitor wait 100
monitor mww 0xfffffd08 0xa5000401
set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
monitor mww 0xfffffd00 0xa5000004
monitor mww 0xffffff00 0x01
monitor reg pc 0x00000000
monitor arm7_9 sw_bkpts enable
load
continue

Author’s Note: GDB manual states “Any text from a # to the end of a line is a comment; it does
nothing”. Unfortunately, I’ve noted that these systems get tripped up occasionally by
these comments so they have been left out of all debug windows.

 176

monitor armv4_5 core_state arm

monitor mww 0xfffffd08 0xa5000401

set remote memory-read-packet-size 1024

monitor reg pc 0x00000000

OpenOCD commands are described in the OpenOCD documentation which can be downloaded from:

http://developer.berlios.de/docman/display_doc.php?docid=1367&group_id=4148

To make entry of the ‘Run’ commands more convenient, here is a list of the commands that can be used
for “cut-and-paste” transfer to Eclipse.

Copy these commands into the
“Run Commands” window.

monitor soft_reset_halt

monitor mww 0xffffff60 0x00320100
monitor mww 0xfffffd44 0xa0008000
monitor mww 0xfffffc20 0xa0000601
monitor wait 100
monitor mww 0xfffffc2c 0x00480a0e
monitor wait 200
monitor mww 0xfffffc30 0x7
monitor wait 100

set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed

set remote memory-read-packet-size fixed
monitor mww 0xfffffd00 0xa5000004
monitor mww 0xffffff00 0x01

monitor arm7_9 sw_bkpts enable
load
continue

The GDB startup commands for OpenOCD operation shown above require some explanation. If the
command line starts with the word “monitor”, then that command is an OpenOCD command. Otherwise, it
is a legacy GDB command.

 177

GDB commands are described in several books and in the official document that can be downloaded from:
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/gnu-debugger.pdf

monitor soft_reset_halt # OpenOCD command to halt the processor and wait

Next, we identify the ARM core being used

Now we set up the processor’s clocks, etc. using the register settings in the lowlevelinit.c function. These
are OpenOCD memory write commands used to set the various AT91SAM7S256 clock registers. This
guarantees that the processor will be running at full speed when the “continue” command is asserted.

monitor mww 0xffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
monitor mww 0xfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)

monitor wait 100 # wait 100 ms
monitor mww 0xfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)

monitor mww 0xfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)

monitor mww 0xfffffd08 0xa5000401 # enable user reset AT91C_RSTC_RMR

Now increase the GDB packet size to 1024. This will have a slight improvement on FLASH debugging as
reads of large data structures, etc. may be speeded up. These are legacy GDB commands.

set remote memory-write-packet-size 1024 # Setup GDB for faster downloads
set remote memory-write-packet-size fixed # Setup GDB for faster downloads
set remote memory-read-packet-size 1024 # Setup GDB for faster downloads
set remote memory-read-packet-size fixed # Setup GDB for faster downloads

This is an OpenOCD command to force a peripheral reset. This guarantees that the next command (set
MC Remap Control register to 1) starts from a known initial state (MC Remap Control Register is a
“toggle” action).

monitor mww 0xfffffd00 0xa5000004 # force a peripheral RESET AT91C_RSTC_RCR

This OpenOCD command sets the AT91SAM7S256 MC Remap Control register to 1 which toggles the
remap state. This action effectively overlays RAM memory on top of low memory at address 0x00000000.

monitor reg pc 0x00000000 # set the PC to 0x00000000

This is an OpenOCD command to enable software breakpoints.

Now we load the application into RAM. This is a legacy GDB command.

load # download the application using file main.out

continue # resume execution from reset vector - will break at main()

First, we have to halt the processor.

monitor armv4_5 core_state arm # OpenOCD command to select the core state

monitor mww 0xfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)

monitor wait 200 # wait 200 ms

monitor wait 100 # wait 100 ms

Enable the Reset button in the AT91SAM7S-EK board.

monitor mww 0xffffff00 0x01 # toggle the remap register to place RAM at 0x00000000

This OpenOCD command sets the PC to the reset vector address 0x00000000

monitor arm7_9 sw_bkpts enable # enable use of software breakpoints

Finally we emit the legacy GDB command “continue”. The processor was already halted at the Reset vector
and will thus start executing until it hits the breakpoint set at main().

If you are using the J-Link GDB Server, enter the single GDB command “target remote localhost:2331”
in the “Initialize commands” text window exactly as shown below. This command tells the GDB debugger
to emit commands in RSP format to the TCP port “localhost:2331” (the port the J-Link GDB Server will be
listening to).

If you are using the J-Link GDB Server

target remote localhost:2331

, enter the following GDB and J-Link GDB Server commands into
the “Run commands” text window, exactly as shown below. The “Source” and “Common” tabs can be left
in their default state.

Belo
FLA
wer

monitor reset
monitor long 0xffffff60 0x00320100
monitor long 0xfffffd44 0xa0008000
monitor long 0xfffffc20 0xa0000601
monitor sleep 100
monitor long 0xfffffc2c 0x00480a0e
monitor sleep 200
monitor long 0xfffffc30 0x7
monitor sleep 100
monitor long 0xfffffd08 0xa5000401
set remote memory-write-packet-size 1024
set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024
set remote memory-read-packet-size fixed
monitor long 0xfffffd00 0xa5000004
monitor long 0xffffff00 0x01
monitor reg pc 0x00000000
load
continue
w is the Debug Launch Configuration “Commands” tab for use with the J-Link GDB Server and
SH execution. Note that the ‘Run’ commands window only shows a portion of the commands that
e entered. Be sure to enter all the commands as shown above.

 178

 179

monitor reset
monitor long 0xffffff60 0x00320100
monitor long 0xfffffd44 0xa0008000
monitor long 0xfffffc20 0xa0000601
monitor sleep 100
monitor long 0xfffffc2c 0x00480a0e
monitor sleep 200

monitor long 0xfffffd08 0xa5000401
set remote memory-write-packet-size 1024

set remote memory-read-packet-size fixed
monitor long 0xfffffd00 0xa5000004
monitor long 0xffffff00 0x01
monitor reg pc 0x00000000
load

The GDB startup commands for the J-Link GDB Server operation shown above require some explanation.
If the command line starts with the word “monitor”, then that command is a J-Link GDB Server command.
Otherwise, it is a legacy GDB command.

GDB commands are described in several books and in the official document that can be downloaded from:
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/gnu-debugger.pdf

Click on “Close” above to complete definition of the Debug Launch Configuration for flash debugging with
the J-Link GDB Server.

To make entry of the ‘Run’ commands more convenient, here is a list of them for “cut-and-paste” transfer
to Eclipse.

Copy these commands into the
“Run Commands” window.

monitor long 0xfffffc30 0x7
monitor sleep 100

set remote memory-write-packet-size fixed
set remote memory-read-packet-size 1024

continue

J-Link GDB Server commands are described in the document “JLinkGDBServer.pdf” which is in the Segger
documentation folder that you downloaded (“c:\Program Files\SEGGER\JLinkARM_V368b\Doc\Manuals\”)

First, we have to halt the processor.

monitor reset # Reset the chip to get to a known state.

Next, we set up the JTAG speed

monitor speed 30 # Set JTAG speed to 30 kHz
monitor speed auto # Set auto JTAG speed

Now we set up the processor’s clocks, etc. using the register settings in the lowlevelinit.c function. These
are J-Link GDB Server memory write commands used to set the various AT91SAM7S256 clock registers.
This guarantees that the processor will be running at full speed when the “continue” command is asserted.

monitor long 0xffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
monitor long 0xfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)

monitor sleep 100 # wait 100 ms
monitor long 0xfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)

monitor long 0xfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
monitor sleep 100 # wait 100 ms

monitor long 0xfffffc20 0xa0000601 # enable main oscillator (AT91C_PMC_MOR)

monitor sleep 200 # wait 200 ms

 180

Enable the Reset button in the AT91SAM7S-EK board.

monitor long 0xfffffd08 0xa5000401 # enable user reset AT91C_RSTC_RMR

set remote memory-read-packet-size 1024 # Setup GDB for faster downloads

This is an OpenOCD command to force a peripheral reset. This guarantees that the next command (set
MC Remap Control register to 1) starts from a known initial state (MC Remap Control Register is a
“toggle” action).

monitor long 0xfffffd00 0xa5000004 # force a peripheral RESET AT91C_RSTC_RCR

This OpenOCD command sets the AT91SAM7S256 MC Remap Control register to 1 which toggles the
remap state. This action effectively overlays RAM memory on top of low memory at address 0x00000000.

monitor long 0xffffff00 0x01 # toggle the remap register to place RAM at 0x00000000

This command sets the PC to the reset vector address 0x00000000

monitor reg pc 0x00000000 # set the PC to 0x00000000

Now we load the application into RAM. This is a legacy GDB command.

Finally we emit the legacy GDB command “continue”. The processor was already halted at the Reset vector
and will thus start executing until it hits the breakpoint set at main().

continue # resume execution from reset vector - will break at main()

Set up the hardware

Now increase the GDB packet size to 1024. This will have a slight improvement on FLASH debugging as
reads of large data structures, etc. may be speeded up. These are legacy GDB commands.

set remote memory-write-packet-size 1024 # Setup GDB for faster downloads
set remote memory-write-packet-size fixed # Setup GDB for faster downloads

set remote memory-read-packet-size fixed # Setup GDB for faster downloads

load # download the application using file main.out

Whatever debugger you are using (SAM-ICE,
wiggler, JTAGKey or ARM-USB-OCD), the
same hardware setup used for FLASH
programming and debugging will also apply to
RAM-based applications. Shown below is the
hardware setup for the Olimex ARM-USB-
OCD JTAG debugger.

Open the Eclipse “Debug” Perspective

As shown earlier, click on the “Debug” perspective button located at the upper right part of the Eclipse
screen.

Now the Debug perspective will appear, as shown below.

 181

 182

Start OpenOCD

To start OpenOCD, click on the “External Tools” toolbar button’s down arrowhead and then select
“OpenOCD”. Alternatively, you can click on the “Run” pull-down menu and select “External Tools”
followed by “OpenOCD”.

The debug view will show that OpenOCD is running and the console view shows no errors (warnings are
OK).

If you have the Olimex or Amontec JTAG hardware interfaces, OpenOCD must be started before
launching the Eclipse debugger.

 183

Start J-Link GDB Server

If you have the Atmel SAM-ICE JTAG hardware interface, the J-Link GDB Server must be started before
launching the Eclipse debugger.

First, a Segger J-Link GDB Server status window will appear as shown below. Notice that the green
indicators show that the J-Link GDB Server is connected to your SAM-ICE and the target microprocessor
core has been identified. The Debugger status light is indicating red; this is OK since we haven’t launched
our Eclipse/GDB integrated graphical debugger yet. You should now minimize the Segger status display.

To start the J-Link GDB Server, click on the “External Tools” toolbar button’s down arrowhead and then
select “J-Link GDB Server”. Alternatively, you can click on the “Run” pull-down menu and select
“External Tools” followed by “J-Link GDB Server”.

Whatever you do, don’t click the button; that will terminate the J-Link GDB Server!

 184

To start the Eclipse debugger, click on the “Debug” toolbar button’s down arrowhead and select the
debug launch configuration “demo_at91sam7_blink_ram” as shown below.

 Alternatively, you can start the debugger by clicking on “Run – Debug…” and then select the
“demo_at91sam7_blink_ram” embedded launch configuration and then click “debug”. Obviously, the
debug toolbar button is more convenient.

The debug view will show that J-Link GDB Server is running and the console view shows no errors
(warnings are OK).

J-Link GDB Server is

Start the Eclipse Debugger

The Eclipse debugger will run through the initializations you specified and then download the application
into RAM. There will be a “progress bar” at the lower right corner of the Eclipse display showing the
download in action. For these sample projects, this should only take a few seconds.

If the Eclipse debugger doesn’t connect properly, then the progress bar at the bottom right status line will
run forever. In this case, terminate everything, check your debug launch configuration very carefully and
then start over again.

 185

If the Eclipse debugger starts properly, the debug view (upper left) shows that the debugger has stopped
at line 60 in main().

There is very little difference in starting up the Eclipse debugger between the OpenOCD and the J-Link
GDB Server. The Eclipse debugger starting up using OpenOCD is shown below.

 186

The Eclipse debugger starting up using J-Link GDB Server is shown below.

Setting Software Breakpoints

The big advantage of running entirely from on chip RAM is that you can set an unlimited number of
software breakpoints. In the example below, we have set four breakpoints plus the breakpoint set at
main().

Let’s remind ourselves that the Eclipse debugger can handle multiple threads of execution. Since our
ARM system only has one thread, you must click on it (highlight it) to enable the execution control
commands to work. As shown below, the thread “1 main() at main.c:57” has been clicked and thus
highlighted.

 187

And so on, now we have an unlimited number of breakpoints available.

Click this thread to enable
these execution control
buttons.

Click on the “Resume” button and the debugger executes to our first breakpoint.

Click on the “Resume” button again and the debugger executes to our second breakpoint.

Click on the “Resume” button again and the debugger executes to our third breakpoint.

Now you can run through all the debugger operations covered earlier in this tutorial. Considering that
modern desktop PCs and laptops are being manufactured without serial or parallel ports, a USB-based
JTAG interface will soon be the only way to debug target boards.

 188

Compiling from the Debug Perspective

You can conveniently stop the debugger and the OpenOCD or J-Link GDB Server, modify your source file
and re-compile your application all within the Debug perspective. The following procedure is a safe way to
do this.

• Stop the Eclipse Debugger

Click on the execution thread to highlight it and then click on the KILL button to terminate it.

• Stop OpenOCD or the J-Link GDB Server

Click on the execution
thread first.

Click on the Kill
button to terminate
and remove the
debugger

Click on OpenOCD followed by clicking on the KILL button to terminate the OpenOCD or J-Link
GDB Server. This operation may not be necessary, I often leave these daemons running and
everything works OK.

Click on OpenOCD first.

Click on the Kill
button to terminate
the debugger

 189

• Modify the Source File

Here we have changed the wait time by modifying the loop counts.

• Re-Compile and Link the Application

• Erase the Debug Pane

Click on the Erase button to clear everything from the Debug pane.

Click on the Erase button
to clear everything from
th D b

To change the blink rate, we modified the loop counts. We then saved the source file using the
“Save” button.

Next we re-built the application by clicking on the “Build All” button, as shown below. The
Console view shows that the compile and link steps ran successfully. Note that it only compiled
the source file main.c.

 190

• Start the Eclipse Debugger

Using the Debug toolbar button, find and start the at91sam7_blink_ram debug configuration.

• Start OpenOCD or the J-Link GDB Server

Using the External Tools toolbar button, find and start the OpenOCD or J-Link GDB ServerJTAG
utility.

• Repeat your Debugging Session

Now the Eclipse debugger is stopped at the function main(), awaiting your next instructions.
Once you have this procedure committed to memory, you will find RAM-based debugging a real
pleasure.

 191

Conclusions

Still, many thousands have managed successful application of Open Source tools for embedded software
development. The GNU compilers are very close to the code efficiency of the professional compilers from
Keil, IAR and ARM. The Eclipse and GNU Open Source tools bring the world of embedded software
development to anyone on the planet that has imagination, skill and dedication but not the corporate bank
account. Promoting the involvement of everyone in microprocessor development, not just an elite few, will
allow us all to profit from their accomplishments.

About the Author

Jim Lynch lives in Grand Island, New York and is a software developer for Control Techniques, a
subsidiary of Emerson Electric. He develops embedded software for the company’s industrial drives (high
power motor controllers) which are sold all over the world.

Mr. Lynch has previously worked for Mennen Medical, Calspan
Corporation and the Boeing Company. He has a BSEE from Ohio
University and a MSEE from State University of New York at
Buffalo. Jim is a single Father and has two grown children who now
live in Florida and Nevada. He has two brothers, one is a Viet Nam
veteran in Hollywood, Florida and the other is the Bishop of St.
Petersburg, also in Florida. Jim plays the guitar, enjoys
woodworking and hopes to write a book very soon that will teach
students and hobbyists how to use these high-powered ARM
microcontrollers. Lynch can be reached via e-mail at:
lynch007@gmail.com

Professional embedded software development packages from Rowley, IAR, Keil and ARM are complete,
efficient, and easy-to-install and have telephone support if you encounter problems. For the professional
programmer, they are worth the expense since “time is money”. Some of these companies offer “kick
start” versions of their packages for free, albeit with some reduced functionality such as a 32K code limit,
etc.

The Open Source tools described herein are an attractive alternative and are free. Thanks to the tireless
contributions of open-source heroes such as Michael Fischer and Dominic Rath, the acquisition and
installation of Open Source tools is becoming less complex and time-consuming. The reader needs a high
speed internet connection to download the various components and a couple hours of time to install and
test the lot.

Appendix 1. Olimex AT91SAM7- P64 Board

The Olimex AT91SAM7-P64 board has two LED’s and two pushbutton switches while the Atmel
AT91SAM7S-EK board has four LEDs and four pushbutton switches. The application described in this
tutorial uses one switch and three LEDs. Fortunately, the pushbutton switches use the same PIO ports as
the Atmel AT91SAM7S-EK board, so no change is required for the single switch. The Olimex board uses
different PIO ports for the LEDs, so we are required to do two things; add a LED to the board and adjust
the board.h file to specify the correct ports.

Since LED3 was port PA2 in the Atmel evaluation board, the author added the following simple circuit to
the Olimex board.

 192

Below is a photograph showing the added LED3. The board.h include file was modified to specify the
correct ports for the LEDs and the switches. The major changes are indicated with bold-faced type.

470 Ω

3.3 volt

PA2

Radio Shack Red LED
276-026 T-1 size
3 volt 15 ma 2.5 mcd

Cathode Anode
Cathode

Anode

Warning: The author discovered that the Olimex ARM-USB-OCD JTAG interface’s built-in power supply
tends to latch up during OpenOCD FLASH programming. Possibly the Olimex board draws more current
than the Atmel board; it does have a pot installed for A/D input. If you are planning to use OpenOCD
FLASH programming with the Olimex board, it behooves you to use a separate “wall-wart” power supply
instead.

 193

BOARD.H

//--
// ATMEL Microcontroller Software Support - ROUSSET -
//--
// The software is delivered "AS IS" without warranty or condition of any
// kind, either express, implied or statutory. This includes without
// limitation any warranty or condition with respect to merchantability or
// fitness for any particular purpose, or against the infringements of
// intellectual property rights of others.
//--
// File Name: Board.h
// Object: AT91SAM7S Evaluation Board Features Definition File.
//
// Creation: JPP 16/June/2004
//--
#ifndef Board_h
#define Board_h

#include "AT91SAM7S256.h"
#define __inline inline

#define true -1
#define false 0

//---
// SAM7Board Memories Definition
//---
// The AT91SAM7S64 embeds a 16-Kbyte SRAM bank, and 64 K-Byte Flash

#define INT_SRAM 0x00200000
#define INT_SRAM_REMAP 0x00000000

#define INT_FLASH 0x00000000
#define INT_FLASH_REMAP 0x00100000

#define FLASH_PAGE_NB 512
#define FLASH_PAGE_SIZE 128

//------------------------
// Leds Definition
//------------------------
#define LED1 (1<<18) // PA18
#define LED2 (1<<17) // PA17
#define LED3 (1<<2) // PA2 (LED added to board by author)
#define NB_LEB 3
#define LED_MASK (LED1|LED2|LED3)

//----------------------------------
// Push Buttons Definition
//-----------------------------------
#define SW1_MASK (1<<19) // PA19
#define SW2_MASK (1<<20) // PA20
#define SW_MASK (SW1_MASK|SW2_MASK)

#define SW1 (1<<19) // PA19
#define SW2 (1<<20) // PA20

//-------------------------
// USART Definition
//-------------------------
// SUB-D 9 points J3 DBGU
#define DBGU_RXD AT91C_PA9_DRXD // JP11 must be close
#define DBGU_TXD AT91C_PA10_DTXD // JP12 must be close
#define AT91C_DBGU_BAUD 115200 // Baud rate
#define US_RXD_PIN AT91C_PA5_RXD0 // JP9 must be close
#define US_TXD_PIN AT91C_PA6_TXD0 // JP7 must be close
#define US_RTS_PIN AT91C_PA7_RTS0 // JP8 must be close
#define US_CTS_PIN AT91C_PA8_CTS0 // JP6 must be close

//--------------
// Master Clock
//--------------
#define EXT_OC 18432000 // Exetrnal ocilator MAINCK
#define MCK 47923200 // MCK (PLLRC div by 2)
#define MCKKHz (MCK/1000) //

#endif // Board_h

The Olimex AT91SAM7-P64 board used the AT91SAM7S64 chip, which has 64K of FLASH and 16K of
RAM. The linker command script, demo_at91sam7_p64_blink_flash.cmd, is modified to support these
memory limits.

/* ** */
/* demo_at91sam7_p64_blink_flash.cmd LINKER SCRIPT */
/* */
/* */
/* The Linker Script defines how the code and data emitted by the GNU C compiler and assembler are */
/* to be loaded into memory (code goes into FLASH, variables go into RAM). */
/* */
/* Any symbols defined in the Linker Script are automatically global and available to the rest of the */
/* program. */
/* */
/* To force the linker to use this LINKER SCRIPT, just add the -T demo_at91sam7_p64_blink_flash.cmd */
/* directive to the linker flags in the makefile. For example, */
/* */
/* LFLAGS = -Map main.map -nostartfiles -T demo_at91sam7_p64_blink_flash.cmd */
/* */
/* */
/* The order that the object files are listed in the makefile determines what .text section is */
/* placed first. */
/* */
/* For example: $(LD) $(LFLAGS) -o main.out crt.o main.o lowlevelinit.o */
/* */
/* crt.o is first in the list of objects, so it will be placed at address 0x00000000 */
/* */
/* */
/* The top of the stack (_stack_end) is (last_byte_of_ram +1) - 4 */
/* */
/* Therefore: _stack_end = (0x000203FFF + 1) - 4 = 0x00204000 - 4 = 0x00203FFC */
/* */
/* Note that this symbol (_stack_end) is automatically GLOBAL and will be used by the crt.s */
/* startup assembler routine to specify all stacks for the various ARM modes */
/* */
/* */
/* MEMORY MAP */
/* | | */
/* .-------->|---------------------------------|0x00203000 */
/* . | |0x00203FFC <---------- _stack_end */
/* . | UDF Stack 16 bytes | */
/* . | | */
/* . |---------------------------------|0x00203FEC */
/* . | | */
/* . | ABT Stack 16 bytes | */
/* . | | */
/* . |---------------------------------|0x00203FDC */
/* . | | */
/* . | | */
/* . | FIQ Stack 128 bytes | */
/* . | | */
/* . | | */
/* RAM |---------------------------------|0x00203F5C */
/* . | | */
/* . | | */
/* . | IRQ Stack 128 bytes | */
/* . | | */
/* . | | */
/* . |---------------------------------|0x00203EDC */
/* . | | */
/* . | SVC Stack 16 bytes | */
/* . | | */
/* . |---------------------------------|0x00203ECC */
/* . | | */
/* . | stack area for user program | */
/* . | | */
/* . | | */
/* . | | */
/* . | free ram | */
/* . | | */
/* . |.................................|0x002006D8 <---------- _bss_end */
/* . | | */
/* . | .bss uninitialized variables | */
/* . |.................................|0x002006D0 <---------- _bss_start, _edata */
/* . | | */
/* . | .data initialized variables | */
/* . | | */
/* .-------->|_________________________________|0x00200000 */
/* */
/* */

 194

/* .-------->|---------------------------------|0x00010000 */
/* . | | */
/* . | | */
/* . | free flash | */
/* . | | */
/* . | | */
/* . |.................................|0x000006D0 <---------- _bss_start, _edata */
/* . | | */
/* . | .data initialized variables | */
/* . | | */
/* . |---------------------------------|0x000006C4 <----------- _etext */
/* . | | */
/* . | C code | */
/* . | | */
/* . | | */
/* . |---------------------------------|0x00000118 main() */
/* . | | */
/* . | Startup Code (crt.s) | */
/* . | (assembler) | */
/* . | | */
/* . |---------------------------------|0x00000020 */
/* . | | */
/* . | Interrupt Vector Table | */
/* . | 32 bytes | */
/* .-------->|---------------------------------|0x00000000 _vec_reset */
/* */
/* */
/* Author: James P. Lynch May 12, 2007 */
/* */
/* ** */

/* identify the Entry Point (_vec_reset is defined in file crt.s) */
ENTRY(_vec_reset)

/* specify the AT91SAM7S64 memory areas */
MEMORY
{
 flash : ORIGIN = 0, LENGTH = 64K /* FLASH EPROM */
 ram : ORIGIN = 0x00200000, LENGTH = 16K /* static RAM area */
}

/* define a global symbol _stack_end (see analysis in annotation above) */
_stack_end = 0x203FFC;

/* now define the output sections */
SECTIONS
{
 . = 0; /* set location counter to address zero */

 .text : /* collect all sections that should go into FLASH after startup */
 {
 (.text) / all .text sections (code) */
 (.rodata) / all .rodata sections (constants, strings, etc.) */
 (.rodata) /* all .rodata* sections (constants, strings, etc.) */
 (.glue_7) / all .glue_7 sections (no idea what these are) */
 (.glue_7t) / all .glue_7t sections (no idea what these are) */
 _etext = .; /* define a global symbol _etext just after the last code byte */
 } >flash /* put all the above into FLASH */

 .data : /* collect all initialized .data sections that go into RAM */
 {
 _data = .; /* create a global symbol marking the start of the .data section */
 (.data) / all .data sections */
 _edata = .; /* define a global symbol marking the end of the .data section */
 } >ram AT >flash /* put all the above into RAM (but load the LMA initializer copy into
FLASH) */

 .bss : /* collect all uninitialized .bss sections that go into RAM */
 {
 _bss_start = .; /* define a global symbol marking the start of the .bss section */
 (.bss) / all .bss sections */
 } >ram /* put all the above in RAM (it will be cleared in the startup code */

 . = ALIGN(4); /* advance location counter to the next 32-bit boundary */
 _bss_end = . ; /* define a global symbol marking the end of the .bss section */
}
 _end = .; /* define a global symbol marking the end of application RAM */

 195

The makefile has three small changes; all concern the reference to the linker command script file. The
changes are indicated in bold-face type.

**
* Makefile for Atmel AT91SAM7S64 - flash
*
*
* James P Lynch May 12, 2007
**

NAME = demo_at91sam7_p64_blink_flash

variables
CC = arm-elf-gcc
LD = arm-elf-ld -v
AR = arm-elf-ar
AS = arm-elf-as
CP = arm-elf-objcopy
OD = arm-elf-objdump

CFLAGS = -I./ -c -fno-common -O0 -g
AFLAGS = -ahls -mapcs-32 -o crt.o
LFLAGS = -Map main.map -Tdemo_at91sam7_p64_b
CPFLAGS = --output-target=binary
ODFLAGS = -x --syms

OBJECTS = crt.o main.o timerisr.o timersetup

make target called by Eclipse (Project -> Cl
clean:
 -rm $(OBJECTS) crt.lst main.lst main.out ma

#make target called by Eclipse (Project -> Bu
all: main.out
 @ echo "...copying"
 $(CP) $(CPFLAGS) main.out main.bin
 $(OD) $(ODFLAGS) main.out > main.dmp

main.out: $(OBJECTS) demo_at91sam7_p64_blink_f
 @ echo "..linking"
 $(LD) $(LFLAGS) -o main.out $(OBJECTS) libc

crt.o: crt.s
 @ echo ".assembling"
 $(AS) $(AFLAGS) crt.s > crt.lst

main.o: main.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) main.c

timerisr.o: timerisr.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) timerisr.c

lowlevelinit.o: lowlevelinit.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) lowlevelinit.c

timersetup.o: timersetup.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) timersetup.c

isrsupport.o: isrsupport.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) isrsupport.c

blinker.o: blinker.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) blinker.c

MAKEFILE

 execution *
 *
 *
 *

link_flash.cmd

.o isrsupport.o lowlevelinit.o blinker.o

ean ...)

in.bin main.hex main.map main.dmp

ild Project)

lash.cmd

.a libm.a libgcc.a
 196

The
boa
Lau

If yo
limi

For

/* sp

{

 ra

_sta

 ra

_sta

MEM

 fl

}

/* de

For

/* sp
MEM
{
 fl

}

/* de

**
FLASH PROGRAMMING

Alternate make target for flash programming only

You must create a special Eclipse make target (program) to run this part of the makefile
(Project -> Create Make Target... then set the Target Name and Make Target to "program")

OpenOCD is run in "batch" mode with a special configuration file and a script file containing
the flash commands. When flash programming completes, OpenOCD terminates.

Note that the script file of flash commands (script.ocd) is part of the project

Programmers: Martin Thomas, Joseph M Dupre, James P Lynch
**

specify output filename here (must be *.bin file)
TARGET = main.bin

specify the directory where openocd executable and configuration files reside (note: use forward slashes /)
OPENOCD_DIR = 'c:/Program Files/openocd-2007re141/bin/'

specify OpenOCD executable (pp is for the wiggler, ftd2xx is for the USB debuggers)
#OPENOCD = $(OPENOCD_DIR)openocd-pp.exe
OPENOCD = $(OPENOCD_DIR)openocd-ftd2xx.exe

specify OpenOCD configuration file (pick the one for your device)
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-wiggler-flash-program.cfg
#OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-jtagkey-flash-program.cfg
OPENOCD_CFG = $(OPENOCD_DIR)at91sam7s256-armusbocd-flash-program.cfg

program the AT91SAM7S256 internal flash memory
program: $(TARGET)
 @echo "Flash Programming with OpenOCD..." # display a message on the console
 $(OPENOCD) -f $(OPENOCD_CFG) # program the onchip FLASH here
 @echo "Flash Programming Finished." # display a message on the console
 197

 download package containing the sample programs also includes two sample projects for the Olimex
rd, one for FLASH execution and one for RAM execution. You will have to define a new Debug
nch Configuration for the Olimex projects; just employ the methods shown earlier in this tutorial.

u have a 256K version of the Olimex board (AT91SAM7-P256), you will need to adjust the memory
ts and top-of-stack specification in the linker command file shown above.

 the 64K board, these specifications are:

ecify the AT91SAM7S64 */

m : ORIGIN = 0x00200000, LENGTH = 16K /* static RAM area */

ck_end = 0x203FFC;

m : ORIGIN = 0x00200000, LENGTH = 64K /* static RAM area */

ck_end = 0x20FFFC;

ORY

ash : ORIGIN = 0, LENGTH = 64K /* FLASH EPROM */

fine a global symbol _stack_end (see analysis in annotation above) */

 the 256K board, these specifications are:

ecify the AT91SAM7S256 */
ORY

ash : ORIGIN = 0, LENGTH = 256K /* FLASH EPROM */

fine a global symbol _stack_end (see analysis in annotation above) */

 198

Appendix 2. SOFTWARE COMPONENTS

One common problem in setting up a software development system composed of disparate
modules downloaded from multiple sources on the web is ensuring that the various components
will work harmoniously with each other.

To build this ARM cross development tool chain, we need the following components:

• YAGARTO - Eclipse IDE version 3.2

• YAGARTO - Eclipse CDT 3.1 Plug-in for C++/C Development (Zylin custom version)

• YAGARTO - Native GNU C++/C Compiler suite for ARM Targets

• YAGARTO - OpenOCD version 141 or later for JTAGKey or ARM-USB-OCD JTAG debugging

• Atmel SAM-BA version 2.5 flash programming utility

Yagarto may be downloaded from here: http://www.yagarto.de/

• Segger J-Link GDB Server version 3.70b for SAM-ICE JTAG debugging

The Segger J-Link GDB Server can be downloaded from the Segger web site: http://www.segger.de/

The Atmel SAM-BA flash programming utility can be downloaded from the Atmel web site:

 http://www.atmel.com/dyn/products/product_card.asp?part_id=3524

A short zip file containing the tutorial and the sample Eclipse projects are hosted by Atmel at the
following web address:

 www.AT91.com

On the Atmel support web site above, go to the “Documents” section and search for this document
“Using Open Source Tools for AT91SAM7 Cross Development”. Follow the instructions given on page
56 of this document (Download the Tutorial Sample Projects) to retrieve the sample projects and
configuration files.

A safe approach is to build the ARM software development system using the YAGARTO
package above, get it to work and become familiar with it. Then you can monitor the Eclipse,
Zylin, Yagarto and OpenOCD web sites for new versions and choose at a later time if you want
to upgrade. So far, Michael has been very diligent in having the “latest and greatest” as part of
YAGARTO.

	UIntroduction
	ARM Software Cross Development System
	Target Hardware
	Open Source Tools Required
	Check for JAVA Support
	Downloading YAGARTO
	Downloading the Segger J-Link GDB Server
	Downloading the Atmel SAM-BA Boot Assistant
	Install All Tools
	Install OpenOCD
	Install YAGARTO Tool Chain
	Install Eclipse IDE
	Install YAGARTO Tools
	Install the Segger J-Link GDB Server
	Install the Wiggler Parallel Port Driver
	Install the Amontec JTAGkey USB Drivers
	Install the Olimex ARM-USB-OCD USB Drivers
	Install the Atmel SAM-BA Flash Programming Utility

	Download the Tutorial Sample Projects
	Move the OpenOCD Configuration Files
	Running Eclipse for the First Time
	Set Up Eclipse External Tools
	Set Up OpenOCD as an Eclipse External Tool (wiggler)
	Set Up OpenOCD as an Eclipse External Tool (ARM-USB-OCD)
	Set Up OpenOCD as an Eclipse External Tool (JTAGkey)
	Set Up J-Link GDB Server as an Eclipse External Tool (SAM-IC
	Set Up SAM-BA as an Eclipse External Tool
	Adding Your JTAG Tools into the “Favorites” List

	Create an Eclipse Project
	Using the Eclipse Editor
	Creating a New Source File
	Undo / Redo
	Cut, Copy and Paste Operations
	Saving Your Code
	Brace Checking
	Searching

	Discussion of the Source Files – FLASH Version
	AT91SAM7S256.H
	BLINKER.C
	CRT.S
	ISRSUPPORT.C
	LOWLEVELINIT.C
	MAIN.C
	TIMERISR.C
	TIMERSETUP.C
	DEMO_AT91SAM7_BLINK_FLASH.CMD
	MAKEFILE
	OpenOCD Programming Script File

	Adjusting the Optimization Level
	Including Libraries
	Adding Libraries to the Link
	Where are the Libraries
	Display the Modules in a Library
	The Bad News about Libraries

	Building the FLASH Application
	Using OpenOCD to Program the FLASH memory
	OpenOCD Configuration File for Wiggler (FLASH programming ve
	OpenOCD Configuration File for JTAGKey (FLASH programming ve
	OpenOCD Configuration File for ARMUSBOCD (FLASH programming

	Using SAM-ICE and SAM-BA to Program the FLASH memory
	Debugging the FLASH Application
	Create a Debug Launch Configuration
	Add the Debug Launch Configuration to the List of Favorites
	Open the Eclipse Debug Prespective
	Starting OpenOCD
	Starting J-Link GDB Server
	Start the Eclipse Debugger
	Components of the DEBUG Perspective
	Debug Control
	Run and Stop with the Right-Click Menu
	Setting a Breakpoint
	Single Stepping
	Inspecting and Modifying Variables
	Watch Expressions
	Assembly Language Debugging
	Inspecting Registers
	Inspecting Memory

	Create an Eclipse Project to Run in RAM
	DEMO_AT91SAM7_BLINK_RAM.CMD
	MAKEFILE.MAK

	Build the RAM Project
	Debugging the RAM Application
	Create an Embedded Debug Launch Configuration for RAM
	Set up the hardware
	Open the Eclipse “Debug” Perspective
	Start OpenOCD
	Start J-Link GDB Server
	Start the Eclipse Debugger
	Setting Software Breakpoints
	Compiling from the Debug Perspective

	Conclusions
	About the Author
	Appendix 1. Olimex AT91SAM7- P64 Board
	Appendix 2. SOFTWARE COMPONENTS

