
84 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

Contributors

Intel® Technology Journal | Volume 17, Issue 2, 2013

Landslide is a Simics module designed for finding concurrency bugs in
operating system kernels, with a focus on Pebbles. Pebbles is a UNIX-like
kernel specification used in course 15-410, the undergraduate operating
systems class at Carnegie Mellon University, in which students implement
such a kernel in six weeks from the ground up. Landslide’s mechanism,
called systematic testing, involves deterministically executing every possible
interleaving of thread transitions in a given test case and identifying which ones
expose bugs. In this article we explain the testing environment (the course,
15-410, and the kernel, Pebbles) and the testing technique; describe how
Landslide takes advantage of certain features that Simics provides that other
testing environments (such as virtualization) do not; outline Landslide’s design,
implementation, and user interface; present some results from a preliminary
evaluation of Landslide, and discuss potential directions for future work.

Introduction
Race conditions are notoriously difficult to debug. Because of their
nondeterministic nature, they frequently do not manifest at all during testing,
and when they do manifest, it can be difficult to reproduce them reliably
enough to collect enough information to help debugging.

Many techniques exist for dynamic testing of concurrent systems for race
conditions. Systematic exploration, the strategy we focus on in this work,
involves making educated guesses as to what points during execution a
preemption would be most likely to expose a bug, enumerating the different
possibilities for interleaving threads around these points, and forcing the
system to execute all such interleavings to check if any of them results in
incorrect behavior.[1] Systematic exploration provides a better alternative to
conventional long-running stress tests, because it is less likely to overlook
buggy execution patterns, and it enables a testing framework to report more
thorough debugging information. Compared to other dynamic analyses, such
as data race detection[2], systematic exploration is able to find a wider range of
types of concurrency errors because of its ability to manipulate the execution of
the system under test.

In this article, we present Landslide, a Simics module that provides a
framework for performing systematic testing on kernel-level code.[3] Landslide
is designed with a focus on the testing environment used by students in
course 15-410, the undergraduate operating systems class at Carnegie Mellon
University (CMU). In 15-410, students implement a fully preemptible, UNIX-
like kernel from the ground up over the course of a six-week project.[4] They

“Systematic exploration is able to find

a wider range of types of concurrency

errors”

LAnDSLIDE: A SImICS* ExTEnSIon for DynAmIC TESTIng of KErnEL
ConCurrEnCy ErrorS

Ben Blum
Department of Computer Science,
Carnegie mellon university

David A. Eckhardt
Department of Computer Science,
Carnegie mellon university

Garth Gibson
Department of Computer Science,
Carnegie mellon university

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 85

Intel® Technology Journal | Volume 17, Issue 2, 2013

use the Simics simulator as their primary testing and development platform,
although they must rely on conventional stress-testing techniques to find and
track down concurrency bugs in their code. Landslide is an effort to improve
this situation by making the more sophisticated technique of systematic testing
accessible to developers of kernel code.

This article is structured as follows. In the section “15-410 and Pebbles,” we
discuss the course design, projects, and learning objectives for 15-410, with
a detailed overview of the requirements of the kernel project. In the section
“Systematic Testing,” we introduce the technique of systematic testing, explaining
its requirements, advantages, and challenges. In the section “Design and
Implementation,” we discuss the design of Landslide’s architecture, describing
the overall sequence of events involved in a systematic testing run, and the
various components of Landslide and how they fit together. In the section
“Use of Simics Features,” we focus specifically on how Landslide and Simics
fit together, highlighting the unique features that Simics offers that make
Landslide’s job possible. In the “User Interface” section, we present Landslide’s
user interface, describing the instrumentation process users must complete in
order to use Landslide, and the interface Landslide offers for fine-tuning the
search parameters and reasoning about uncovered bugs. In “Results” we discuss
a user study we conducted with volunteer students from 15-410, in which
Landslide was able to help the students uncover and fix previously-unknown race
conditions in their own kernels, and finally, in “Future Work,” we conclude with
a discussion of the most promising future work directions for this research.

15-410 and Pebbles
15-410, the Operating Systems Design and Implementation course at CMU, is
a semester-long project course comprising five projects. The projects are a stack
tracer, kernel device drivers (for timer, keyboard, and console), a 1:1 user-space
threading library to run on a Pebbles kernel, the Pebbles kernel itself, and a
small extension to the Pebbles kernel. Simics is used as the main development
and debugging environment for the latter four projects.

The course has many learning objectives, ranging from acquiring detailed factual
knowledge about hardware features through practicing advanced cognitive
processes such as open-ended design. Students study high-level concepts such
as protection (least privilege, access control lists vs. capabilities), file-system
internals, and log-based storage. We place emphasis on acquiring information
from primary sources, including both manufacturer-provided hardware
documentation and a non-textbook technical-literature reading assignment.
Students begin with a blank slate rather than a kernel-source template or an
existing operating system, so they must synthesize design requirements from
multiple sources and must choose their own module boundaries and inter-
module conventions. Due to the foundational nature of kernel code, the
assignment design and grading encourage students to think about corner cases,
including resource exhaustion, instead of being satisfied by “the right basic idea”
implementations that handle only auspicious situations. Finally, most relevant to

“The assignment design and grading

encourage students to think about

corner cases, instead of being satisfied by

‘the right basic idea’ implementations.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

86 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

this work, students gain substantial experience in analyzing and writing lock-
based multi-threaded code and thread-synchronization objects. They practice
detecting and documenting deadlock and race conditions, including both thread/
thread concurrency and thread/interrupt concurrency.

Project Overview
In the course of a semester, students work on five programming assignments; the
first two are individual, and the remaining three, including the kernel project itself,
are the products of two-person teams. Here we are primarily concerned with the
kernel project, though we will also briefly describe the others.

Introductory Projects
The first project is a stack crawler: when invoked by a client program, it
displays the program’s stack symbolically, rendering saved program-counter
values as function names and printing function parameters in accordance
with their types. This project enables students to review key process-model
and language-runtime concepts from the prerequisite course[5]; it introduces
students to our expectations about design, analysis, and making choices; finally,
because C pointers are unsafe, it requires students to consider robustness.

The second project is a simple game, such as Hangman, which runs without an
underlying operating system. The project requires students to implement a device
driver library consisting of console output, keyboard input, and a hardware timer
handler. This project and the remaining ones are written in C with some x86-32
assembly code, which is then compiled and linked into an ELF executable, stored
into a 1.44-megabyte 3.5-inch floppy-disk image, and booted via GRUB. If
the image is copied to a real floppy or embedded into an “El Torito” bootable
compact disc image, it can be booted on standard PC hardware; however,
students most often use Simics, to take advantage of its debugging facilities.

The third project is a 1:1 thread library for user-space programs, essentially a
stripped-down version of POSIX Pthreads. Students begin by designing mutexes
using any x86-32 atomic instructions they choose. They then write other thread-
synchronization primitives (condition variables, semaphores, and reader/writer
locks), infrastructure components (stack allocation/recycling and a thread registry),
and low-level code to launch and shut down threads. Student library code is linked
with small test programs provided by the course staff. The test programs run on
a reference kernel written by the course staff and provided in binary form, the
behavior of which is specified in a twelve-page document. In addition to providing
a reliable execution substrate, the reference kernel schedules the execution of user-
space threads created by student code according to a variety of interleaving policies.

The Pebbles Kernel Project
For the fourth project, two-student teams produce a kernel which implements
the same specification as the reference kernel they previously relied on. They
design and implement some approach to synchronizing and blocking threads
while they are in kernel space, a simple round-robin scheduler, basic virtual
memory, a program loader, code to handle various x86 exceptions, and code

“Two-student teams produce a kernel

which implements the same specification

as the reference kernel they previously

relied on.”

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 87

Intel® Technology Journal | Volume 17, Issue 2, 2013

for setting up and tearing down threads and processes (they reuse their game-
project device drivers). We briefly describe each of the 25 system calls in the
Pebbles specification in Table 1.

Name System Call Description

Lifecycle Management
fork Duplicates the invoking task, including all memory

regions.
thread_fork Creates a new thread in the current task.
exec Replaces the program currently running in the

invoking task with a new one.
set_status Records the exit status of the current task.
vanish Terminates execution of the calling thread.
wait Blocks execution until another task terminates, and

collects its exit status.
task_vanish* Causes all threads of a task to vanish.

Thread management
gettid Returns the ID of the invoking thread.
yield Defers execution to a specified thread.
deschedule Blocks execution of the invoking thread.
make_runnable Wakes up another descheduled thread.
get_ticks Gets the number of timer ticks since bootup.
sleep Blocks a thread for a given number of ticks.
swexn Registers a user-space function as a software

execption handler.
Memory Management

new_pages Allocates a specified region of memory.
remove_pages Deallocates same.

Console I/O
getchar* Reads one character from keyboard input.
readline Reads the next line from keyboard input.
print Prints a given memory buffer to the console.
set_term_color Sets the color for future console output.
set_cursor_pos Sets the console cursor location.
get_cursor_pos Retrieves the console cursor location

Miscellaneous
readfile Loads a given buffer with the names of files stored

in the RAM disk “file system.”
halt Ceases execution of the operating system.
misbehave* Selects among several thread-scheduling policies.

Table 1: The 25 system calls described in the Pebbles specification.
Students are not required to implement the three system calls marked with
an asterisk (*).
(Source: Pebbles kernel specification, 2013.[4])

Intel® Technology Journal | Volume 17, Issue 2, 2013

88 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

For most students in the class, this is the largest and most complicated software
artifact they have produced. Because the test suite and the grading criteria
emphasize robustness and preemptibility of kernel code, there are many
cross-cutting concerns. As students are responsible for ensuring the runtime
invariants underlying all compiler-generated code in the system (kernel and
user-space), they gain experience with debugging at both the algorithm level
and the register/bit-field level.

Widely regarded as the most difficult concurrency problem in the project is
that of coordinating a parent and a child task that “simultaneously” exit: when
a task completes, live children and exited zombies must be handed off to the
task’s parent or to the system’s “init” process, at a time when the task’s parent
may itself be exiting; meanwhile, threads in tasks that receive new children may
need to be awakened from the wait() system call. Due to design constraints
imposed by other parts of the kernel specification, solutions that are not
carefully designed are prone to data races or deadlocks.

Students who complete the kernel project on time then work on a kernel-
extension project, with varying content depending on the semester. Past
projects have included writing a sound card driver, a file system, hibernation
(suspend to disk), kernel profiling, and an in-kernel debugger. Two recent,
more aggressive, projects have been adding paravirtualization so that their
kernels can host guest kernels and adding multiprocessor support to their
single-processor kernels.

Use of Simics
Simics serves as the main execution and debugging platform in 15-410. Unlike
some emulators, which focus on fast execution of correct code, Simics provides
very faithful bit-level support not only for code that behaves correctly but also
for kernels that accidentally “abuse” hardware. Unlike hardware virtualization
environments, Simics contains substantial debugger support: single-stepping,
printing of source-level symbolic expressions, stack tracing, display of TLB
entries, and even summaries of x86 hardware-defined descriptor tables. All of
these features make Simics a helpful platform for students to test their code.
A major advantage of using Simics over the QEMU emulator in particular
is that QEMU issues timer interrupts only at basic-block boundaries, which
would dramatically undermine our goal of teaching students that threads can
interleave with each other at any time.[6]

Systematic Testing
The underlying idea of systematic testing is to view the set of all possible execution
sequences, which can change due to concurrency nondeterminism, as an execution
tree. The root of this tree denotes the start of the test case, each branch represents
one execution sequence, and nodes in the tree are decision points: time points
during the execution where Landslide should attempt to force a different thread
to run, thereby making progress through the state space.

“For most students in the class, this

is the largest and most complicated

software artifact they have produced.”

“Unlike some emulators, which focus

on fast execution of correct code, Simics

provides very faithful support not only

for correct code but also for kernels that

accidentally abuse hardware.”

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 89

Intel® Technology Journal | Volume 17, Issue 2, 2013

Example
Consider the example code in Code 1, which demonstrates how the thread_fork()
system call might be implemented. If a timer interrupt occurs at line 4, the
child thread can run, exit, and free its state, causing the access on line 5 to be
a use-after-free. Here, the necessary decision point for finding the bug is at
line 4. Landslide will know that there should be a decision point here because
it automatically interprets new threads becoming runnable as important
concurrency events. Other decision points may also exist, for example, during
the construction of the new thread_t struct, or during the new thread’s execution.
Together, the set of decision points defines an execution tree that contains this
bug, depicted in Figure 1.

1 int thread_fork() {
2 thread_t *child = construct_new_thread();
3 add_to_runqueue(child);
4 // note: at this point child may run and exit
5 return child->tid;
6 }
Code 1. Example implementation of the thread_fork() system call. This
example contains a race condition, described in the comment on line 4.
Source: Landslide: Systematic dynamic race detection in kernel space, 2011.[3]

Figure 1: The set of possible execution sequences can
be viewed as a tree of thread interleavings, in which a
concurrency bug is only exposed in some branches. This
particular tree is derived from the example code in Code 1.
(Source: Landslide: Systematic dynamic race detection in
kernel space, 2011.[3])

(no bug) (no bug) Use-after-free!

vanish ()child->tid

free TCB free TCB

free TCBvanish () child->tid

child->tid

add_to_runqueue ()

Challenges
In any systematic testing tool, there is an inherent tradeoff when defining the
set of decision points: searching with few decision points results in coarser-
grained interleavings, faster test completion, but less likelihood of finding
unexpected bugs; whereas searching with more decision points results in the
opposite. Accordingly, Landslide provides an interface for adjusting the set of

“There is an inherent tradeoff when

defining the set of decision points.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

90 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

considered decision points, which we discuss further in the section, “Use of
Simics Features.”

Combining the technique of systematic testing with a kernel-space execution
environment presents some additional challenges. First, a testing tool must
control all sources of nondeterministic input to the system, and account for all
the scheduling options by each such source of input at each decision point. In the
Pebbles environment, the only sources of nondeterminism are timer interrupts
and keyboard input. With Landslide, we focus exclusively on timer interrupts, as
they can be used to directly control the kernel’s context switching.

A second challenge of systematic testing in kernel-space is that of the scheduler.
Because kernels contain their own concurrency implementation, it can
be difficult to find bugs in the scheduler itself while also being able to use
assumptions about the scheduler’s behavior to optimize our search for bugs in
other parts of the kernel.

A third challenge is the issue of multiprocessor kernels: when multiple CPUs
can be running different threads simultaneously, additional nondeterminism
can arise from the order in which their instructions are executed. Some race
conditions may even require multiple active CPUs in order to manifest.
However, as 15-410 does not require student kernels to be capable of SMP
execution, Landslide assumes kernels will only ever use one processor. Lifting
this limitation is left to future research.

Design and Implementation
This section describes the important components of Landslide’s architecture.
Conceptually, Landslide is designed as follows. Students annotate their
code so that Landslide knows which kernel thread is currently running.
After one kernel thread has run for some time, Landslide triggers artificial
clock interrupts to force the scheduler to run a different thread. When a
test program finishes execution according to one pattern of thread switches,
Landslide rewinds the kernel’s state and resumes the test according to a
different thread interleaving. After each instruction, Landslide applies several
bug-detection predicates to the kernel’s state to detect illegal heap accesses,
deadlock, infinite loops, and panics. In theory, by forcing a thread switch
after every non-scheduler instruction, Landslide could apply its bug-detection
predicates to every reachable execution state. Because this would require a
prohibitively large amount of time to complete, in practice Landslide uses a
variety of techniques to thread-switch less often and to avoid repeating bug-
equivalent execution paths.

In order to achieve this exploration of the state space, Landslide comprises
several components, which are depicted visually in Figure 2 and described in
the following sections.

“Combining systematic testing with a

kernel-space execution environment

presents some additional challenges.”

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 91

Intel® Technology Journal | Volume 17, Issue 2, 2013

Figure 2: Visual representation of landslide’s architecture and its interface with the
kernel under test.
(Source: Landslide: Systematic dynamic race detection in kernel space, 2011.[3])

Thread Scheduler
The Landslide scheduler is responsible for keeping track of which threads exist in
the guest kernel: which are runnable at any given time, and when they are created
and destroyed. It maintains a “mirror image” of the guest kernel’s scheduler state
in the form of three queues, a pointer to the currently-running thread, and a
pointer to the previously-running thread. The queues are the runqueue, containing
the runnable threads, the sleep queue, containing threads which become runnable
after a certain number of timer ticks, and the deschedule queue, which might not
correspond to a data structure in the guest kernel, but contains all other threads
that exist on the system that are not runnable for whatever reason.

Though we define timer interrupts as the only source of nondeterminism in
our environment, it is more useful to view the concurrent behavior with a
higher-level abstraction, in terms of the set of runnable threads and the ability to
preempt the currently running thread with any different runnable one. Hence,
the scheduler also contains the mechanism for translating the tree explorer’s high-
level decisions about which thread should run next into a lower-level sequence of
timer interrupts (which trigger context switches). Note that multiple interrupts

Guest Kernel

Simulated Execution

tell_landslide()

Timer Interrupts

Test
Lifecycle

Tree Explorer

Kernel
Instrumentation

Memory
Tracking

Simics

Decision Tree

Landslide

Scheduler

Runqueues

Intel® Technology Journal | Volume 17, Issue 2, 2013

92 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

may sometimes be necessary to force the desired thread to run; for example, if the
kernel scheduler uses a round-robin policy and has a runqueue of thread IDs 1,
2, and 3 (with thread ID 1 currently running), if the Landslide scheduler desires
to run thread 3, it will take 2 interrupts before thread 3 begins running.

Memory Access Tracking
Landslide maintains a mirror image of the guest kernel’s dynamic allocation
heap, so it can know at any point which memory ranges are allocated and
which ranges used to be allocated but now are freed. This set is updated each
time the guest kernel calls malloc() or free(). This heap tracking provides
the ability to check for dynamic allocation errors (such as use-after-free and
double-free bugs), in a similar fashion to the Valgrind debugging tool.

Landslide also maintains a set of shared memory accesses made since the last
decision point, for use with the Partial Order Reduction state space technique
(which we describe in the next section). This set of accesses allows Landslide to
determine when certain actions of different threads may conflict with, or are
independent from, each other. Landslide ignores shared memory accesses from
the kernel’s dynamic allocator itself, and it also ignores shared memory accesses
from the components of the kernel’s scheduler that run every transition.

Execution Tree Explorer
The execution tree explorer maintains a representation of the current branch of the
decision tree. It is responsible for checkpointing the state of both Landslide and the
guest kernel at each decision point, deciding at the end of the test which branch of
the tree to execute next (that is, selecting which decision point should have been
decided differently), and backtracking to appropriate points in the test’s execution.

The explorer also identifies points during execution that should count as
decision points. The selection is mainly controlled by the user, during the
annotation and configuration process. However, the explorer also automatically
identifies voluntary reschedules—points at which the kernel explicitly invokes a
context switch of its own accord (for example, in yield())—which comprise the
“minimal necessary set” of decision points.

During the backtracking stage, the explorer applies a state-space reduction technique
called Dynamic Partial Order Reduction (DPOR). Briefly, DPOR analyzes the
memory accesses in a just-finished execution to identify a set of candidate branches to
explore next. These branches represent reorderings of state transitions that conflicted
with each other, with reorderings of independent transitions pruned out. For example,
Figure 3 depicts a subset of a possible execution tree in which the highlighted
transitions of threads 1 and 2 are independent from each other (that is, if they were
reordered, the resulting kernel state would be identical.)

Bug Detection Techniques
During the test case’s execution along each thread interleaving, Landslide
applies several bug-detection predicates to the kernel’s state, some accurate and
some heuristic-based.

“DPOR analyzes the memory accesses

to identify a set of candidate branches to

explore next.”

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 93

Intel® Technology Journal | Volume 17, Issue 2, 2013

Landslide’s “definite” bug-detection techniques include identifying kernel
panics, use-after-free bugs (making use of the heap access tracking), and
deadlocks (making use of mutex and scheduler instrumentation).

Additionally, Landslide can heuristically detect infinite loops by comparing the
current execution of the test case against previous executions under different
thread interleavings. If the current execution has lasted a certain proportion
longer than the average of all previous executions, as visualized in Figure 4,
Landslide assumes the deviation represents a nondeterministic infinite loop.

Use of Simics Features
This section discusses how Landslide and Simics fit together, and highlights some
Simics features that Landslide makes heavy use of to enable systematic testing.

Landslide is implemented as a “trace” module, which means that Simics
calls into it once per instruction and once per memory access, supplying
information about the instruction or access about to be performed.
Landslide uses this information to update its internal state machine to
track the kernel’s progress, by reading the values at memory locations,
comparing the current instruction against certain known execution points
in the kernel, and so on.

Landslide’s control over the system consists of two parts. Together, these parts
enable it to steer the kernel through the different branches of the execution
tree, testing for bugs in each branch until the tree is exhausted.

“Landslide can heuristically detect

infinite loops by comparing the current

execution of the test case against

previous executions.”

Figure 3: An example part of an execution tree that could be pruned using DPOR. The
highlighted transitions of threads 1 and 2 are independent, meaning that to achieve full
coverage, Landslide needs to explore only one of the two subtrees.
(Source: Landslide: Systematic dynamic race detection in kernel space, 2011.[3])

...

...

... ...

2

2 1

1 ...

...

...

......

x � 5 y � 5

x��;

y��;

x � 6 y � 4

Thread 1 Thread 2

x � 5 y � 5

x��;

y��;

x � 6 y � 4

Thread 1 Thread 2

Intel® Technology Journal | Volume 17, Issue 2, 2013

94 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

The first part is causing a timer interrupt to occur at a given point during
the kernel’s execution. Landslide achieves this by manipulating the CPU’s
pending interrupt vector. When Landslide wishes to cause a particular thread
to preempt another thread at a given decision point, it injects a timer interrupt
before the pending instruction. In response, the kernel triggers a context-switch
to the next thread on its scheduler run-queue. If that thread is not the desired
one, Landslide repeats the process, injecting more timer interrupts until the
desired thread begins running.

The second part of Landslide’s control is backtracking. At the end of each
branch of the decision tree, if Landslide wishes to explore a different interleaving
at a particular decision point, it must reset the system state to the past state at
that point. Fortunately, Simics provides a facility for reverse-execution in the
form of the set-bookmark BOOKMARK-NAME and skip-to BOOKMARK-
NAME commands. At each decision point during execution, Landslide uses set-
bookmark to ask Simics to set a bookmark. Then, when the current execution of
the test case completes, Landslide uses skip-to to reverse-execute to the bookmark
associated with the desired decision point, at which point exploration resumes.
Because Landslide places itself outside the scope of Simics’ reverse execution
system, although the entire simulated machine state is reset to the earlier point,
Landslide’s memory of the entire state space tree is persistent.

“If that thread is not the desired one,

Landslide repeats the process, injecting

more timer interrupts until the desired

thread begins running.”

Figure 4: An example decision tree containing a
nondeterministic infinite loop. If Landslide explores
the highlighted branch after testing sufficiently many
of the terminating branches, it assumes the kernel is
stuck in an infinite loop and will report a bug.
(Source: Landslide: Systematic dynamic race
detection in kernel space, 2011.[3])

[...]

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 95

Intel® Technology Journal | Volume 17, Issue 2, 2013

User Interface
Instrumenting and testing a kernel with Landslide involves three stages of
effort. These are required annotations, configuring decision points for a more
efficient search, and interpreting the resulting traces Landslide emits when it
finds a bug. This section gives a brief overview of each.

Required Annotations
Users annotate their kernels to inform Landslide of certain important concurrency
events during execution. We provide a set of annotation functions, named with the
prefix tell_landslide, for this purpose. The annotations denote when a thread runs
fork(), sleep(), or vanish(), when a thread is added to or removed from the run-
queue, and when a thread becomes blocked on a mutex. The annotation is placed
just before the actual action being annotated. Code 2 shows an annotated sample
of the code from the example in the “Systematic Testing” section.

1 void add_to_runqueue(thread_t *child) {
2 tell_landslide_thread_runnable(child->tid);
3 // ... more implementation follows ...
4 }
5 int thread_fork() {
6 thread_t *child = construct_new_thread();
7 tell_landslide_forking(child->tid);
8 add_to_runqueue(child);
9 return child->tid;
10 }
Code 2. The same example thread_fork() implementation, now with
annotations for use with Landslide.
Source: Landslide: Systematic dynamic race detection in kernel space.[3]

There is also a configuration file, config.landslide, in which the student must
specify constant information such as the function names of the timer handler
and context switcher, which threads exist when the kernel boots, and which
user-space test program Landslide should invoke.

Finally, there are two short (nominally two-line) functions used within Landslide
itself that the user must implement. These are predicates on the kernel’s scheduler
state and express potentially nontrivial conditions: whether the current thread is
runnable but not on the run-queue, and whether preemption is disabled while
interrupts are on. This logic executes within Landslide, inside of Simics, rather
than as part of the simulated kernel’s execution.

Configuring Decision Points
If Landslide uses only decision points that it automatically identifies on
voluntary reschedules, the resulting interleavings will be coarse-grained and
likely to overlook bugs. We provide an extra annotation for students to add
more decision points for a finer-grained search, called tell_landslide_decide().
We recommend inserting it into concurrency primitives, such as at the start of
mutex_lock() and at the end of mutex_unlock().

Intel® Technology Journal | Volume 17, Issue 2, 2013

96 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

However, this strategy may cause Landslide to identify decision points in
unrelated parts of the kernel, such as when accessing mutexes in unrelated and/
or already-trusted system calls. We provide interface options in config.landslide
for the student to view currently identified decision points and to selectively
eliminate them. For example, if a student were testing thread death and
reaping, they might want decision points to appear in wait() and vanish() but
not if unrelated virtual memory operations are also in progress. Accordingly,
they could write within_function wait vanish and without_function destroy_
address_space. The within_function directive requires that at least one of the
specified functions shall be on the call stack when decision points are identified,
and without_function requires the opposite.

Decision Traces
When Landslide identifies a bug, it outputs a decision trace. This trace reports
what kind of bug was detected, and also reports each decision point in the
current interleaving: which thread was running, a trace of its stack when it
was switched away from, and the thread that Landslide caused to preempt it.
With this trace, the user can better understand the concurrent execution that
exposed the bug. In Code 3 we show an example decision trace, which depicts
a sequence of thread interleavings that can expose the bug in the example from
the Systematic Testing section.

USE AFTER FREE: read from 0x15a8f0 at IP 0x104209

Block 0x15a8f0 was allocated by thread 3 at (...)

and freed by thread 4 at (...)

Decision trace follows:

1: switched from thread 3 -> thread 4 at:

0x105a10 in context_switch,

0x1041f4 in thread_fork,

0x10362b in thread_fork_wrapper

2: switched from thread 4 -> thread 3 at:

0x105a10 in context_switch,

0x104681 in yield,

0x104570 in exit,

0x103708 in exit_wrapper

Current thread 3 at:

0x104209 in thread_fork,

0x10362b in thread_fork_wrapper
Total decision points 24, total backtracks 5
Code 3. An example decision trace that Landslide would emit when it finds a
bug. This particular decision trace represents the example use-after-free bug in
thread_fork() presented earlier.
Source: Landslide: Systematic dynamic race detection in kernel space.[3]

Results
We evaluated Landslide in two ways: first, by instrumenting two prior-semester
student kernels to measure the exploration time needed to find different races,

“With this trace, the user can better

understand the concurrent execution

that exposed the bug.”

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 97

Intel® Technology Journal | Volume 17, Issue 2, 2013

and second, by meeting with current-semester student volunteers, before they
submitted their kernel for grading, to see if they could find bugs on their own
with Landslide. (The volunteers were chosen from students with free time, and
were therefore not chosen at random.)

In the first phase, we instrumented one kernel written by a teaching assistant
in a previous year and also one student kernel later graded by that TA.
We configured Landslide to search for five complicated well-known race
conditions. In addition to finding all five races, Landslide also found a sixth
previously unknown race in the TA’s own kernel. Using additional decision
points only on calls to mutex_lock(), Landslide found each of the six bugs in 11
to 57 seconds on a 2.6 GHz Intel® Xeon® server, executing between 1 and 377
distinct interleavings per bug.

In the user-study phase, we found that students spent on average 119 minutes
(60 to 158) on the required instrumentation, and a further 36 minutes (10 to
60) refining Landslide’s search. Of the four groups who finished the required
instrumentation, all four found previously unknown bugs in their kernels: two
races and two deterministic errors. These bugs manifested as infinite loops,
a kernel panic, and a use-after-free. Despite wishing the instrumentation
were easier, the students reported that they found working with Landslide
rewarding.

Future Work
There are several promising future work directions for Landslide that we
would like to explore. These include incorporating new testing techniques,
such as parallelized search, state space estimation, and new state space
reduction techniques. They also include extending Landslide to support more
complicated kernel features, such as symmetric multiprocessing and device
driver nondeterminism.

Other Testing Techniques
The most notable bug-detection predicate that Landslide does not yet
incorporate is data race detection.[2][7] A data race is defined as a pair of
memory accesses done by two distinct threads on the same address, at least one
of which is a write, where there is no synchronization or dependency between
the two threads at the time of either access. Many tools already exist for
identifying data races, but we anticipate that searching for them with Landslide
could additionally help guide Landslide’s search towards thread interleavings
more likely to have bugs based on such data races.

Ongoing research exists in several other techniques for coping with the exponential
nature of the state spaces associated with systematic testing. Among these are
parallelized dynamic partial order reduction[8] and dynamic interface reduction[9].

Extending Landslide’s Concurrency Model
Landslide’s present incarnation makes several limiting assumptions about

“In addition to finding all five

races, Landslide also found a sixth

previously-unknown race in the TA’s

own kernel.”

“All four groups found previously

unknown bugs in their kernels: two

races and two deterministic errors.”

Intel® Technology Journal | Volume 17, Issue 2, 2013

98 | Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors

the concurrency model of the kernel under test. Chief among these are
the assumptions that the kernel schedules threads only on one processor
at a time, and that the timer interrupt is the kernel’s only source of
nondeterminism.

We anticipate revising the concurrency model to incorporate SMP scheduling
would be a relatively minor change, as the overall structure of the state space
tree remains the same, though some context switches would instead be cross-
CPU switches. Unlike all context switches in the current uniprocessor model,
such context switches would not necessarily involve executing any scheduler
code. Incorporating device driver nondeterminism, however, will be more of
a challenge, as in addition to context-switching to an arbitrary thread at any
decision point, nondeterminism can also arise from either taking interrupts
to receive input from a device or from context switching to a device driver’s
dedicated handler thread.

Lifting these limitations would be a significant step towards making Landslide
applicable to real-world kernels such as Linux. Overall, we are optimistic for
the future of systematic testing for concurrency bugs, and we hope to see
sophisticated bug-finding tools along these lines in due time.

References
[1] Patrice Godefroid. VeriSoft: A Tool for the Automatic Analysis of

Concurrent Reactive Software. In Proceedings of the 9th
International Conference on Computer Aided Verification,
CAV ’97, pages 476–479, London, UK, 1997. Springer-Verlag.

[2] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer:
data race detection in practice. In Proceedings of the Workshop on
Binary Instrumentation and Applications, WBIA ’09, pages 62–71,
New York, NY, USA, 2009. ACM.

[3] Ben Blum. Landslide: Systematic dynamic race detection in kernel
space. Master’s thesis, Carnegie Mellon University, Pittsburgh, PA,
USA, May 2012. CMU-CS-12-118.

[4] David A. Eckhardt, “Pebbles kernel specification,” 2012. [Online].
Available: http://www.cs.cmu.edu/~410/p2/kspec.pdf.

[5] Randy Bryant and David O’Hallaron, “Introducing computer
systems from a programmer’s perspective,” in Proceedings of the
32nd Technical Symposium on Computer Science Education
(SIGCSE). Charlotte, NC: ACM, Feb. 2001.

[6] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic
translator. In Proceedings of the annual conference on USENIX
Annual Technical Conference (ATEC ‘05). USENIX Association,
Berkeley, CA, USA, 41-41.

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 99

Intel® Technology Journal | Volume 17, Issue 2, 2013

Landslide: A Simics* Extension for Dynamic Testing of Kernel Concurrency Errors | 99

[7] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. 1997. Eraser: a dynamic data race detector
for multithreaded programs. ACM Transactions on Computer
Systems 15, 4 (November 1997), 391–411.

[8] Jiri Simsa, Randy Bryant, Garth Gibson, Jason Hickey. Scalable
dynamic partial order reduction. Third International Conference
on Runtime Verification (RV2012), 25–28 September 2012,
Istanbul, Turkey.

[9] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang,
and Lintao Zhang. 2011. Practical software model checking via
dynamic interface reduction. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (SOSP ‘11).
ACM, New York, NY, USA, 265–278.

Author Biographies
Ben Blum is a PhD candidate in the Computer Science Department at
Carnegie Mellon University. He first implemented Landslide as the research
topic for his Master’s degree at CMU and is continuing the work during his
PhD studies. Ben has additionally served as a teaching assistant for 15-410 for
three semesters. His web site is at http://www.cs.cmu.edu/~bblum.

David A. Eckhardt is an associate teaching professor of computer science at
Carnegie Mellon University. He joined the faculty after completing his MS
and PhD at Carnegie Mellon and BS in Computer Science at The Pennsylvania
State University. Dave received an Intel Foundation Graduate Fellowship
and was co-inventor of a patent with Intel Senior Fellow Kevin Kahn. He
has taught Operating Systems at CMU continuously since 2003 and has
supervised student projects based on the Linux, FreeBSD, Haiku, OS X, and
Plan 9 operating systems. Dave’s research interests include operating systems,
wireless networks, and high-performance networking. His web site is at http://
www.cs.cmu.edu/~davide/.

Garth Gibson is a professor of computer science at Carnegie Mellon
University, the cofounder and chief scientist at Panasas Inc., and a Fellow of
the ACM. He has an M.S. and Ph.D. from the University of California at
Berkeley and a BMath from the University of Waterloo in Canada. Garth’s
research is centered on reliable scalable storage systems for parallel and cloud
computing and he has had his hands in the creation of the RAID taxonomy
and the IETF NFS v4.1 parallel NFS extensions. Garth is also an investigator
in the Intel Science and Technology Center for Cloud Computing. His web
site is http://www.cs.cmu.edu/~garth/.

