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Landslide is a Simics module designed for finding concurrency bugs in 
operating system kernels, with a focus on Pebbles. Pebbles is a UNIX-like 
kernel specification used in course 15-410, the undergraduate operating 
systems class at Carnegie Mellon University, in which students implement 
such a kernel in six weeks from the ground up. Landslide’s mechanism, 
called systematic testing, involves deterministically executing every possible 
interleaving of thread transitions in a given test case and identifying which ones 
expose bugs. In this article we explain the testing environment (the course, 
15-410, and the kernel, Pebbles) and the testing technique; describe how 
Landslide takes advantage of certain features that Simics provides that other 
testing environments (such as virtualization) do not; outline Landslide’s design, 
implementation, and user interface; present some results from a preliminary 
evaluation of Landslide, and discuss potential directions for future work.

Introduction
Race conditions are notoriously difficult to debug. Because of their 
nondeterministic nature, they frequently do not manifest at all during testing, 
and when they do manifest, it can be difficult to reproduce them reliably 
enough to collect enough information to help debugging.

Many techniques exist for dynamic testing of concurrent systems for race 
conditions. Systematic exploration, the strategy we focus on in this work, 
involves making educated guesses as to what points during execution a 
preemption would be most likely to expose a bug, enumerating the different 
possibilities for interleaving threads around these points, and forcing the 
system to execute all such interleavings to check if any of them results in 
incorrect behavior.[1] Systematic exploration provides a better alternative to 
conventional long-running stress tests, because it is less likely to overlook 
buggy execution patterns, and it enables a testing framework to report more 
thorough debugging information. Compared to other dynamic analyses, such 
as data race detection[2], systematic exploration is able to find a wider range of 
types of concurrency errors because of its ability to manipulate the execution of 
the system under test.

In this article, we present Landslide, a Simics module that provides a 
framework for performing systematic testing on kernel-level code.[3] Landslide 
is designed with a focus on the testing environment used by students in 
course 15-410, the undergraduate operating systems class at Carnegie Mellon 
University (CMU). In 15-410, students implement a fully preemptible, UNIX-
like kernel from the ground up over the course of a six-week project.[4] They 
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use the Simics simulator as their primary testing and development platform, 
although they must rely on conventional stress-testing techniques to find and 
track down concurrency bugs in their code. Landslide is an effort to improve 
this situation by making the more sophisticated technique of systematic testing 
accessible to developers of kernel code.

This article is structured as follows. In the section “15-410 and Pebbles,” we 
discuss the course design, projects, and learning objectives for 15-410, with 
a detailed overview of the requirements of the kernel project. In the section 
“Systematic Testing,” we introduce the technique of systematic testing, explaining 
its requirements, advantages, and challenges. In the section “Design and 
Implementation,” we discuss the design of Landslide’s architecture, describing 
the overall sequence of events involved in a systematic testing run, and the 
various components of Landslide and how they fit together. In the section 
“Use of Simics Features,” we focus specifically on how Landslide and Simics 
fit together, highlighting the unique features that Simics offers that make 
Landslide’s job possible. In the “User Interface” section, we present Landslide’s 
user interface, describing the instrumentation process users must complete in 
order to use Landslide, and the interface Landslide offers for fine-tuning the 
search parameters and reasoning about uncovered bugs. In “Results” we discuss 
a user study we conducted with volunteer students from 15-410, in which 
Landslide was able to help the students uncover and fix previously-unknown race 
conditions in their own kernels, and finally, in “Future Work,” we conclude with 
a discussion of the most promising future work directions for this research.

15-410 and Pebbles
15-410, the Operating Systems Design and Implementation course at CMU, is 
a semester-long project course comprising five projects. The projects are a stack 
tracer, kernel device drivers (for timer, keyboard, and console), a 1:1 user-space 
threading library to run on a Pebbles kernel, the Pebbles kernel itself, and a 
small extension to the Pebbles kernel. Simics is used as the main development 
and debugging environment for the latter four projects.

The course has many learning objectives, ranging from acquiring detailed factual 
knowledge about hardware features through practicing advanced cognitive 
processes such as open-ended design. Students study high-level concepts such 
as protection (least privilege, access control lists vs. capabilities), file-system 
internals, and log-based storage. We place emphasis on acquiring information 
from primary sources, including both manufacturer-provided hardware 
documentation and a non-textbook technical-literature reading assignment. 
Students begin with a blank slate rather than a kernel-source template or an 
existing operating system, so they must synthesize design requirements from 
multiple sources and must choose their own module boundaries and inter-
module conventions. Due to the foundational nature of kernel code, the 
assignment design and grading encourage students to think about corner cases, 
including resource exhaustion, instead of being satisfied by “the right basic idea” 
implementations that handle only auspicious situations. Finally, most relevant to 
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this work, students gain substantial experience in analyzing and writing lock-
based multi-threaded code and thread-synchronization objects. They practice 
detecting and documenting deadlock and race conditions, including both thread/
thread concurrency and thread/interrupt concurrency.

Project Overview
In the course of a semester, students work on five programming assignments; the 
first two are individual, and the remaining three, including the kernel project itself, 
are the products of two-person teams. Here we are primarily concerned with the 
kernel project, though we will also briefly describe the others.

Introductory Projects
The first project is a stack crawler: when invoked by a client program, it 
displays the program’s stack symbolically, rendering saved program-counter 
values as function names and printing function parameters in accordance 
with their types. This project enables students to review key process-model 
and language-runtime concepts from the prerequisite course[5]; it introduces 
students to our expectations about design, analysis, and making choices; finally, 
because C pointers are unsafe, it requires students to consider robustness.

The second project is a simple game, such as Hangman, which runs without an 
underlying operating system. The project requires students to implement a device 
driver library consisting of console output, keyboard input, and a hardware timer 
handler. This project and the remaining ones are written in C with some x86-32 
assembly code, which is then compiled and linked into an ELF executable, stored 
into a 1.44-megabyte 3.5-inch floppy-disk image, and booted via GRUB. If 
the image is copied to a real floppy or embedded into an “El Torito” bootable 
compact disc image, it can be booted on standard PC hardware; however, 
students most often use Simics, to take advantage of its debugging facilities.

The third project is a 1:1 thread library for user-space programs, essentially a 
stripped-down version of POSIX Pthreads. Students begin by designing mutexes 
using any x86-32 atomic instructions they choose. They then write other thread-
synchronization primitives (condition variables, semaphores, and reader/writer 
locks), infrastructure components (stack allocation/recycling and a thread registry), 
and low-level code to launch and shut down threads. Student library code is linked 
with small test programs provided by the course staff. The test programs run on 
a reference kernel written by the course staff and provided in binary form, the 
behavior of which is specified in a twelve-page document. In addition to providing 
a reliable execution substrate, the reference kernel schedules the execution of user-
space threads created by student code according to a variety of interleaving policies.

The Pebbles Kernel Project
For the fourth project, two-student teams produce a kernel which implements 
the same specification as the reference kernel they previously relied on. They 
design and implement some approach to synchronizing and blocking threads 
while they are in kernel space, a simple round-robin scheduler, basic virtual 
memory, a program loader, code to handle various x86 exceptions, and code 
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for setting up and tearing down threads and processes (they reuse their game-
project device drivers). We briefly describe each of the 25 system calls in the 
Pebbles specification in Table 1.

Name System Call Description

Lifecycle Management
fork Duplicates the invoking task, including all memory 

regions.
thread_fork Creates a new thread in the current task.
exec Replaces the program currently running in the 

invoking task with a new one.
set_status Records the exit status of the current task.
vanish Terminates execution of the calling thread.
wait Blocks execution until another task terminates, and 

collects its exit status.
task_vanish* Causes all threads of a task to vanish.

Thread management
gettid Returns the ID of the invoking thread.
yield Defers execution to a specified thread.
deschedule Blocks execution of the invoking thread.
make_runnable Wakes up another descheduled thread.
get_ticks Gets the number of timer ticks since bootup.
sleep Blocks a thread for a given number of ticks.
swexn Registers a user-space function as a software 

execption handler.
Memory Management

new_pages Allocates a specified region of memory.
remove_pages Deallocates same.

Console I/O
getchar* Reads one character from keyboard input.
readline Reads the next line from keyboard input.
print Prints a given memory buffer to the console.
set_term_color Sets the color for future console output.
set_cursor_pos Sets the console cursor location.
get_cursor_pos Retrieves the console cursor location

Miscellaneous
readfile Loads a given buffer with the names of files stored 

in the RAM disk “file system.”
halt Ceases execution of the operating system.
misbehave* Selects among several thread-scheduling policies.

Table 1: The 25 system calls described in the Pebbles specification. 
Students are not required to implement the three system calls marked with 
an asterisk (*). 
(Source: Pebbles kernel specification, 2013.[4])
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For most students in the class, this is the largest and most complicated software 
artifact they have produced. Because the test suite and the grading criteria 
emphasize robustness and preemptibility of kernel code, there are many 
cross-cutting concerns. As students are responsible for ensuring the runtime 
invariants underlying all compiler-generated code in the system (kernel and 
user-space), they gain experience with debugging at both the algorithm level 
and the register/bit-field level.

Widely regarded as the most difficult concurrency problem in the project is 
that of coordinating a parent and a child task that “simultaneously” exit: when 
a task completes, live children and exited zombies must be handed off to the 
task’s parent or to the system’s “init” process, at a time when the task’s parent 
may itself be exiting; meanwhile, threads in tasks that receive new children may 
need to be awakened from the wait() system call. Due to design constraints 
imposed by other parts of the kernel specification, solutions that are not 
carefully designed are prone to data races or deadlocks.

Students who complete the kernel project on time then work on a kernel-
extension project, with varying content depending on the semester. Past 
projects have included writing a sound card driver, a file system, hibernation 
(suspend to disk), kernel profiling, and an in-kernel debugger. Two recent, 
more aggressive, projects have been adding paravirtualization so that their 
kernels can host guest kernels and adding multiprocessor support to their 
single-processor kernels.

Use of Simics
Simics serves as the main execution and debugging platform in 15-410. Unlike 
some emulators, which focus on fast execution of correct code, Simics provides 
very faithful bit-level support not only for code that behaves correctly but also 
for kernels that accidentally “abuse” hardware. Unlike hardware virtualization 
environments, Simics contains substantial debugger support: single-stepping, 
printing of source-level symbolic expressions, stack tracing, display of TLB 
entries, and even summaries of x86 hardware-defined descriptor tables. All of 
these features make Simics a helpful platform for students to test their code. 
A major advantage of using Simics over the QEMU emulator in particular 
is that QEMU issues timer interrupts only at basic-block boundaries, which 
would dramatically undermine our goal of teaching students that threads can 
interleave with each other at any time.[6]

Systematic Testing
The underlying idea of systematic testing is to view the set of all possible execution 
sequences, which can change due to concurrency nondeterminism, as an execution 
tree. The root of this tree denotes the start of the test case, each branch represents 
one execution sequence, and nodes in the tree are decision points: time points 
during the execution where Landslide should attempt to force a different thread  
to run, thereby making progress through the state space.
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Example
Consider the example code in Code 1, which demonstrates how the thread_fork() 
system call might be implemented. If a timer interrupt occurs at line 4, the 
child thread can run, exit, and free its state, causing the access on line 5 to be 
a use-after-free. Here, the necessary decision point for finding the bug is at 
line 4. Landslide will know that there should be a decision point here because 
it automatically interprets new threads becoming runnable as important 
concurrency events. Other decision points may also exist, for example, during 
the construction of the new thread_t struct, or during the new thread’s execution. 
Together, the set of decision points defines an execution tree that contains this 
bug, depicted in Figure 1.

1  int thread_fork() {
2          thread_t *child = construct_new_thread();
3          add_to_runqueue(child);
4          // note: at this point child may run and exit
5          return child->tid;
6  }
Code 1.  Example implementation of the thread_fork() system call. This 
example contains a race condition, described in the comment on line 4.
Source: Landslide: Systematic dynamic race detection in kernel space, 2011.[3]

Figure 1: The set of possible execution sequences can 
be viewed as a tree of thread interleavings, in which a 
concurrency bug is only exposed in some branches. This 
particular tree is derived from the example code in Code 1.
(Source: Landslide: Systematic dynamic race detection in 
kernel space, 2011.[3])
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Challenges
In any systematic testing tool, there is an inherent tradeoff when defining the 
set of decision points: searching with few decision points results in coarser-
grained interleavings, faster test completion, but less likelihood of finding 
unexpected bugs; whereas searching with more decision points results in the 
opposite. Accordingly, Landslide provides an interface for adjusting the set of 
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considered decision points, which we discuss further in the section, “Use of 
Simics Features.”

Combining the technique of systematic testing with a kernel-space execution 
environment presents some additional challenges. First, a testing tool must 
control all sources of nondeterministic input to the system, and account for all 
the scheduling options by each such source of input at each decision point. In the 
Pebbles environment, the only sources of nondeterminism are timer interrupts 
and keyboard input. With Landslide, we focus exclusively on timer interrupts, as 
they can be used to directly control the kernel’s context switching.

A second challenge of systematic testing in kernel-space is that of the scheduler. 
Because kernels contain their own concurrency implementation, it can 
be difficult to find bugs in the scheduler itself while also being able to use 
assumptions about the scheduler’s behavior to optimize our search for bugs in 
other parts of the kernel.

A third challenge is the issue of multiprocessor kernels: when multiple CPUs 
can be running different threads simultaneously, additional nondeterminism 
can arise from the order in which their instructions are executed. Some race 
conditions may even require multiple active CPUs in order to manifest. 
However, as 15-410 does not require student kernels to be capable of SMP 
execution, Landslide assumes kernels will only ever use one processor. Lifting 
this limitation is left to future research.

Design and Implementation
This section describes the important components of Landslide’s architecture. 
Conceptually, Landslide is designed as follows. Students annotate their 
code so that Landslide knows which kernel thread is currently running. 
After one kernel thread has run for some time, Landslide triggers artificial 
clock interrupts to force the scheduler to run a different thread. When a 
test program finishes execution according to one pattern of thread switches, 
Landslide rewinds the kernel’s state and resumes the test according to a 
different thread interleaving. After each instruction, Landslide applies several 
bug-detection predicates to the kernel’s state to detect illegal heap accesses, 
deadlock, infinite loops, and panics. In theory, by forcing a thread switch 
after every non-scheduler instruction, Landslide could apply its bug-detection 
predicates to every reachable execution state. Because this would require a 
prohibitively large amount of time to complete, in practice Landslide uses a 
variety of techniques to thread-switch less often and to avoid repeating bug-
equivalent execution paths.

In order to achieve this exploration of the state space, Landslide comprises 
several components, which are depicted visually in Figure 2 and described in 
the following sections.
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Figure 2: Visual representation of landslide’s architecture and its interface with the 
kernel under test.
(Source: Landslide: Systematic dynamic race detection in kernel space, 2011.[3])

Thread Scheduler
The Landslide scheduler is responsible for keeping track of which threads exist in 
the guest kernel: which are runnable at any given time, and when they are created 
and destroyed. It maintains a “mirror image” of the guest kernel’s scheduler state 
in the form of three queues, a pointer to the currently-running thread, and a 
pointer to the previously-running thread. The queues are the runqueue, containing 
the runnable threads, the sleep queue, containing threads which become runnable 
after a certain number of timer ticks, and the deschedule queue, which might not 
correspond to a data structure in the guest kernel, but contains all other threads 
that exist on the system that are not runnable for whatever reason.

Though we define timer interrupts as the only source of nondeterminism in 
our environment, it is more useful to view the concurrent behavior with a 
higher-level abstraction, in terms of the set of runnable threads and the ability to 
preempt the currently running thread with any different runnable one. Hence, 
the scheduler also contains the mechanism for translating the tree explorer’s high-
level decisions about which thread should run next into a lower-level sequence of 
timer interrupts (which trigger context switches). Note that multiple interrupts 
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may sometimes be necessary to force the desired thread to run; for example, if the 
kernel scheduler uses a round-robin policy and has a runqueue of thread IDs 1, 
2, and 3 (with thread ID 1 currently running), if the Landslide scheduler desires 
to run thread 3, it will take 2 interrupts before thread 3 begins running.

Memory Access Tracking
Landslide maintains a mirror image of the guest kernel’s dynamic allocation 
heap, so it can know at any point which memory ranges are allocated and 
which ranges used to be allocated but now are freed. This set is updated each 
time the guest kernel calls malloc() or free(). This heap tracking provides 
the ability to check for dynamic allocation errors (such as use-after-free and 
double-free bugs), in a similar fashion to the Valgrind debugging tool.

Landslide also maintains a set of shared memory accesses made since the last 
decision point, for use with the Partial Order Reduction state space technique 
(which we describe in the next section). This set of accesses allows Landslide to 
determine when certain actions of different threads may conflict with, or are 
independent from, each other. Landslide ignores shared memory accesses from 
the kernel’s dynamic allocator itself, and it also ignores shared memory accesses 
from the components of the kernel’s scheduler that run every transition.

Execution Tree Explorer
The execution tree explorer maintains a representation of the current branch of the 
decision tree. It is responsible for checkpointing the state of both Landslide and the 
guest kernel at each decision point, deciding at the end of the test which branch of 
the tree to execute next (that is, selecting which decision point should have been 
decided differently), and backtracking to appropriate points in the test’s execution.

The explorer also identifies points during execution that should count as 
decision points. The selection is mainly controlled by the user, during the 
annotation and configuration process. However, the explorer also automatically 
identifies voluntary reschedules—points at which the kernel explicitly invokes a 
context switch of its own accord (for example, in yield())—which comprise the 
“minimal necessary set” of decision points.

During the backtracking stage, the explorer applies a state-space reduction technique 
called Dynamic Partial Order Reduction (DPOR). Briefly, DPOR analyzes the 
memory accesses in a just-finished execution to identify a set of candidate branches to 
explore next. These branches represent reorderings of state transitions that conflicted 
with each other, with reorderings of independent transitions pruned out. For example, 
Figure 3 depicts a subset of a possible execution tree in which the highlighted 
transitions of threads 1 and 2 are independent from each other (that is, if they were 
reordered, the resulting kernel state would be identical.)

Bug Detection Techniques
During the test case’s execution along each thread interleaving, Landslide 
applies several bug-detection predicates to the kernel’s state, some accurate and 
some heuristic-based.

“DPOR analyzes the memory accesses 
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Landslide’s “definite” bug-detection techniques include identifying kernel 
panics, use-after-free bugs (making use of the heap access tracking), and 
deadlocks (making use of mutex and scheduler instrumentation).

Additionally, Landslide can heuristically detect infinite loops by comparing the 
current execution of the test case against previous executions under different 
thread interleavings. If the current execution has lasted a certain proportion 
longer than the average of all previous executions, as visualized in Figure 4, 
Landslide assumes the deviation represents a nondeterministic infinite loop.

Use of Simics Features
This section discusses how Landslide and Simics fit together, and highlights some 
Simics features that Landslide makes heavy use of to enable systematic testing.

Landslide is implemented as a “trace” module, which means that Simics 
calls into it once per instruction and once per memory access, supplying 
information about the instruction or access about to be performed. 
Landslide uses this information to update its internal state machine to 
track the kernel’s progress, by reading the values at memory locations, 
comparing the current instruction against certain known execution points 
in the kernel, and so on.

Landslide’s control over the system consists of two parts. Together, these parts 
enable it to steer the kernel through the different branches of the execution 
tree, testing for bugs in each branch until the tree is exhausted.

“Landslide can heuristically detect 

infinite loops by comparing the current 

execution of the test case against 

previous executions.”

Figure 3: An example part of an execution tree that could be pruned using DPOR. The 
highlighted transitions of threads 1 and 2 are independent, meaning that to achieve full 
coverage, Landslide needs to explore only one of the two subtrees.
(Source: Landslide: Systematic dynamic race detection in kernel space, 2011.[3])
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The first part is causing a timer interrupt to occur at a given point during 
the kernel’s execution. Landslide achieves this by manipulating the CPU’s 
pending interrupt vector. When Landslide wishes to cause a particular thread 
to preempt another thread at a given decision point, it injects a timer interrupt 
before the pending instruction. In response, the kernel triggers a context-switch 
to the next thread on its scheduler run-queue. If that thread is not the desired 
one, Landslide repeats the process, injecting more timer interrupts until the 
desired thread begins running.

The second part of Landslide’s control is backtracking. At the end of each 
branch of the decision tree, if Landslide wishes to explore a different interleaving 
at a particular decision point, it must reset the system state to the past state at 
that point. Fortunately, Simics provides a facility for reverse-execution in the 
form of the set-bookmark BOOKMARK-NAME and skip-to BOOKMARK-
NAME commands. At each decision point during execution, Landslide uses set-
bookmark to ask Simics to set a bookmark. Then, when the current execution of 
the test case completes, Landslide uses skip-to to reverse-execute to the bookmark 
associated with the desired decision point, at which point exploration resumes. 
Because Landslide places itself outside the scope of Simics’ reverse execution 
system, although the entire simulated machine state is reset to the earlier point, 
Landslide’s memory of the entire state space tree is persistent.

“If that thread is not the desired one, 

Landslide repeats the process, injecting 

more timer interrupts until the desired 

thread begins running.”

Figure 4: An example decision tree containing a 
nondeterministic infinite loop. If Landslide explores 
the highlighted branch after testing sufficiently many 
of the terminating branches, it assumes the kernel is 
stuck in an infinite loop and will report a bug.
(Source: Landslide: Systematic dynamic race 
detection in kernel space, 2011.[3])
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User Interface
Instrumenting and testing a kernel with Landslide involves three stages of 
effort. These are required annotations, configuring decision points for a more 
efficient search, and interpreting the resulting traces Landslide emits when it 
finds a bug. This section gives a brief overview of each.

Required Annotations
Users annotate their kernels to inform Landslide of certain important concurrency 
events during execution. We provide a set of annotation functions, named with the 
prefix tell_landslide, for this purpose. The annotations denote when a thread runs 
fork(), sleep(), or vanish(), when a thread is added to or removed from the run-
queue, and when a thread becomes blocked on a mutex. The annotation is placed 
just before the actual action being annotated. Code 2 shows an annotated sample 
of the code from the example in the “Systematic Testing” section.

1  void add_to_runqueue(thread_t *child) {
2          tell_landslide_thread_runnable(child->tid);
3          // ... more implementation follows ...
4  }
5  int thread_fork() {
6          thread_t *child = construct_new_thread();
7          tell_landslide_forking(child->tid);
8          add_to_runqueue(child);
9          return child->tid;
10  }
Code 2.  The same example thread_fork() implementation, now with 
annotations for use with Landslide.
Source: Landslide: Systematic dynamic race detection in kernel space.[3]

There is also a configuration file, config.landslide, in which the student must 
specify constant information such as the function names of the timer handler 
and context switcher, which threads exist when the kernel boots, and which 
user-space test program Landslide should invoke.

Finally, there are two short (nominally two-line) functions used within Landslide 
itself that the user must implement. These are predicates on the kernel’s scheduler 
state and express potentially nontrivial conditions: whether the current thread is 
runnable but not on the run-queue, and whether preemption is disabled while 
interrupts are on. This logic executes within Landslide, inside of Simics, rather 
than as part of the simulated kernel’s execution.

Configuring Decision Points
If Landslide uses only decision points that it automatically identifies on 
voluntary reschedules, the resulting interleavings will be coarse-grained and 
likely to overlook bugs. We provide an extra annotation for students to add 
more decision points for a finer-grained search, called tell_landslide_decide(). 
We recommend inserting it into concurrency primitives, such as at the start of 
mutex_lock() and at the end of mutex_unlock().
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However, this strategy may cause Landslide to identify decision points in 
unrelated parts of the kernel, such as when accessing mutexes in unrelated and/
or already-trusted system calls. We provide interface options in config.landslide 
for the student to view currently identified decision points and to selectively 
eliminate them. For example, if a student were testing thread death and 
reaping, they might want decision points to appear in wait() and vanish() but 
not if unrelated virtual memory operations are also in progress. Accordingly, 
they could write within_function wait vanish and without_function destroy_
address_space. The within_function directive requires that at least one of the 
specified functions shall be on the call stack when decision points are identified, 
and without_function requires the opposite.

Decision Traces
When Landslide identifies a bug, it outputs a decision trace. This trace reports 
what kind of bug was detected, and also reports each decision point in the 
current interleaving: which thread was running, a trace of its stack when it 
was switched away from, and the thread that Landslide caused to preempt it. 
With this trace, the user can better understand the concurrent execution that 
exposed the bug. In Code 3 we show an example decision trace, which depicts 
a sequence of thread interleavings that can expose the bug in the example from 
the Systematic Testing section.

USE AFTER FREE: read from 0x15a8f0 at IP 0x104209

Block 0x15a8f0 was allocated by thread 3 at (...)

and freed by thread 4 at (...)

Decision trace follows:

1:  switched from thread 3 -> thread 4 at:

0x105a10 in context_switch,

0x1041f4 in thread_fork,

0x10362b in thread_fork_wrapper

2:  switched from thread 4 -> thread 3 at:

0x105a10 in context_switch,

0x104681 in yield,

0x104570 in exit,

0x103708 in exit_wrapper

Current thread 3 at:

0x104209 in thread_fork,

0x10362b in thread_fork_wrapper
Total decision points 24, total backtracks 5
Code 3.  An example decision trace that Landslide would emit when it finds a 
bug. This particular decision trace represents the example use-after-free bug in 
thread_fork() presented earlier.
Source: Landslide: Systematic dynamic race detection in kernel space.[3]

Results
We evaluated Landslide in two ways: first, by instrumenting two prior-semester 
student kernels to measure the exploration time needed to find different races, 

“With this trace, the user can better 

understand the concurrent execution 

that exposed the bug.”
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and second, by meeting with current-semester student volunteers, before they 
submitted their kernel for grading, to see if they could find bugs on their own 
with Landslide. (The volunteers were chosen from students with free time, and 
were therefore not chosen at random.)

In the first phase, we instrumented one kernel written by a teaching assistant 
in a previous year and also one student kernel later graded by that TA. 
We configured Landslide to search for five complicated well-known race 
conditions. In addition to finding all five races, Landslide also found a sixth 
previously unknown race in the TA’s own kernel. Using additional decision 
points only on calls to mutex_lock(), Landslide found each of the six bugs in 11 
to 57 seconds on a 2.6 GHz Intel® Xeon® server, executing between 1 and 377 
distinct interleavings per bug.

In the user-study phase, we found that students spent on average 119 minutes 
(60 to 158) on the required instrumentation, and a further 36 minutes (10 to 
60) refining Landslide’s search. Of the four groups who finished the required 
instrumentation, all four found previously unknown bugs in their kernels: two 
races and two deterministic errors. These bugs manifested as infinite loops, 
a kernel panic, and a use-after-free. Despite wishing the instrumentation 
were easier, the students reported that they found working with Landslide 
rewarding.

Future Work
There are several promising future work directions for Landslide that we 
would like to explore. These include incorporating new testing techniques, 
such as parallelized search, state space estimation, and new state space 
reduction techniques. They also include extending Landslide to support more 
complicated kernel features, such as symmetric multiprocessing and device 
driver nondeterminism.

Other Testing Techniques
The most notable bug-detection predicate that Landslide does not yet 
incorporate is data race detection.[2][7] A data race is defined as a pair of 
memory accesses done by two distinct threads on the same address, at least one 
of which is a write, where there is no synchronization or dependency between 
the two threads at the time of either access. Many tools already exist for 
identifying data races, but we anticipate that searching for them with Landslide 
could additionally help guide Landslide’s search towards thread interleavings 
more likely to have bugs based on such data races.

Ongoing research exists in several other techniques for coping with the exponential 
nature of the state spaces associated with systematic testing. Among these are 
parallelized dynamic partial order reduction[8] and dynamic interface reduction[9].

Extending Landslide’s Concurrency Model
Landslide’s present incarnation makes several limiting assumptions about 

“In addition to finding all five 

races, Landslide also found a sixth 

previously-unknown race in the TA’s 

own kernel.”

“All four groups found previously 

unknown bugs in their kernels: two 

races and two deterministic errors.”
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the concurrency model of the kernel under test. Chief among these are 
the assumptions that the kernel schedules threads only on one processor 
at a time, and that the timer interrupt is the kernel’s only source of 
nondeterminism.

We anticipate revising the concurrency model to incorporate SMP scheduling 
would be a relatively minor change, as the overall structure of the state space 
tree remains the same, though some context switches would instead be cross-
CPU switches. Unlike all context switches in the current uniprocessor model, 
such context switches would not necessarily involve executing any scheduler 
code. Incorporating device driver nondeterminism, however, will be more of 
a challenge, as in addition to context-switching to an arbitrary thread at any 
decision point, nondeterminism can also arise from either taking interrupts 
to receive input from a device or from context switching to a device driver’s 
dedicated handler thread.

Lifting these limitations would be a significant step towards making Landslide 
applicable to real-world kernels such as Linux. Overall, we are optimistic for 
the future of systematic testing for concurrency bugs, and we hope to see 
sophisticated bug-finding tools along these lines in due time.
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