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Wheels on Wheels on Wheels 
-Surprising Symmetry 

FRANK A. FARRIS 
Santa Clara University 
Santa Clara, CA 95053 

While designing a computer laboratory exercise for my calculus students, I happened 
to sketch the curve defined by this vector equation: 

(x, y) = (cos(t), sin(t)) + 2 (cos(7t), sin(7t)) + (sin(17t), cos(17t)). 

I was thinking of the curve traced by a particle on a wheel mounted on a wheel 
mounted on a wheel, each turning at a different rate. The first term represents the 
largest wheel, of radius 1, turning counter-clockwise at one radian per second. The 
second term represents a smaller wheel centered at the edge of the first, turning 7 
times as fast. The third term is for the smallest wheel centered at the edge of the 
second, turning 17 times as fast as the first, clockwise and out of phase. See FIGURE 1. 
As you can notice from FIGURE 2, this curve displays a 6-fold symmetry, a fact that one 
would probably not guess by looking at the formulas. 

FIGURE 1 

FIGURE 1 FIGURE 2 

The symmetry of this curve, and a condition for the symmetry of any continuous 
curve, is illuminated by introducing complex notation, in terms of which the formulas 
above represent a terminating Fourier series. This connection enables the statement 
and proof of a general theorem relating the symmetry of a parametric curve to the 
frequencies present in its Fourier series. 

1. Analysis of Examples In complex notation, the curve above is written 

f(t) = X(t) + iy(t) = elt + 2 e7it +l e- 17it 
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The source of the symmetry turns out to be this: 1, 7, and -17 are all congruent to 1 
modulo 6. When t is advanced by one-sixth of 2i7r, each wheel has completed some 
number of complete turns, plus one-sixth of an additional turn, resulting in symmetry. 
Examine what happens when time is advanced by one-sixth of a period for a 
representative wheel: 

e(6j+l)i(t+2,r/6) = e(6j+l)it e2ri/6 e ~~~-e(i)t e2~~6 

This wheel is back where it started, but rotated one-sixth of the way around. When 
each wheel in the superposition has this same behavior, symmetry will result. 

A similar result is obtained using any integer m instead of 6, and keeping track of 
all the wheels at once. 

If 

f(t) ae"ijt with nj = b;in + 1, 

then 

f(t+ E = ea1e lJi(t+2r/m)= Eaj elJite lJi2r/m=e2tri/mf(t) 

has rn-fold symmetry. Imagine the trigonometric identities we have avoided by using 
complex rather than real notation! Notice that an infinite sum would behave the same 
way as long as it converges for each value of t. 

That this is not the end of the story can be seen from another example: 

-2it+ e 5it e9it 
f(t) = e2U + + e-4 

The 7-fold symmetry apparent in FIGURE 3 arises because -2, 5, and 19 are all 
congruent to 5 modulo 7. Here there is an additional, perhaps less interesting, 
symmetry; since the coefficients are real, f( - t) is the complex conjugate of f(t). The 
analog of the computation above for a single wheel is now: 

e(7j+5)i(t+2r/7) =ej+F5)GitUe(5R 2ri/7) 

FIGURE 3 
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Here the wheel has rotated five-sevenths of a full rotation, after time has advanced 
one-seventh of the fundamental period 2i7r. If we superimpose several wheels with the 
same behavior, symmetry will result. 

Imagine the plane divided into sectors of size 27r/7, numbered 0, 1,. .. 6. After 
completing its first loop in sector 0, the curve moves on to trace the same pattern in 
sector 5, then in sector 10, which is more simply called sector 3, and so on. 
Proceeding by multiples of 5, reduced modulo 7, the curve fills in every sector. 

This motivates a definition. We say that a function f(t) exhibits rn-fold symmetry if, 
for some integer k we have 

f(t+ ?-) =ek2ri/mf(t). (1) 

It also makes sense to require that k be prime modulo in, for if k times j were 
congruent to zero mod in, applying (1) j times would give: 

f t +j 2,7 =f(t). 

This would be considered a periodicity of the function rather than symmetry. For 
instance, suppose we seek a 6-fold symmetry from a wheel with exponent (2it). 
Advancing time by a sixth of the fundamental period gives: 

e2i(t+2,ff/6) = e2it e2-2 2/6 e e2l e22'6 

Numbering six sectors from 0 to 5, we find that the wheel traces its pattern in sectors 
0, 2, and 4, returning to sector 0 without ever tracing in sectors 1, 3, and 5. This 
would be a 3-fold, rather than a 6-fold, symmetry. 

The equations above show that rn-fold symmetry occurs in a sum of this type when 
all the frequencies are congruent modulo in to the same number k, which must be a 
prime modulo in. 

Knowing this, it is amusing to experiment by assembling terms to produce a curve 
of given symmetry.' For FIGURE 4, I chose frequencies 2,- 16,- 7,29 (all congruent 
to 2 mod 9) to produce a curve with 9-fold symmetry; I then adjusted the coefficients 
to make the pattern more pleasing. They are 1, i/2, 1/5, and i/5. 

2. Symmetry and Fourier Series The discussion of examples virtually proves one 
direction of the following theorem. We choose C0[0,27r] as a simple setting for 
proving the following theorem. 

THEOREM. If a continuous function f is not identically zero then f has m-fold 
symnmnetry, in the sense of satisfying (1), if, and only if, the nonzero coefficients in the 
Fourier series forf, 

00 

f(t) E a,,ent", 
n = -oo 

correspond to frequencies, n, tvhich are all congruent to the saine prine mnodulo in. 

'Dr. Erich Neuwirth, of the University of Vienna, has kindly prepared a spreadsheet (Microsoft Excel 
5.0) for experimenting with curves of this type. It can be downloaded from 
http://www.smc.univie.ac.at/- neuwirth/wheels. 
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FIGURE 4 

Proof: Since the Fourier series for f converges pointwise everywhere [1], the 
discussion above shows that the sum of a series whose frequencies are all congruent to 
the same prime modulo in does exhibit in-fold symmetry. It remains to prove that 
functions with the given symmetry do indeed have Fourier series of the type discussed 
above, with the frequencies all congruent modulo in to a prime modulo in. 

Assume that a continuous function f has the symmetry defined in equation (1), 
with k a prime modulo in. In the integral formula for the Fourier coefficients for f, 
we will break up the integral into a sum of in integrals: 

2,T8, =a | f(t) eIilt dt = fEi (j+el)/ t dt 
0 2n/j=0 J2r/ 

We make the change of variables, u = t -j2 7r/in to make all the limits of integration 
range from 0 to 2Ir/in. In term j of the resulting sum of integrals, we use (1) j times, 
obtaining: 

f|27' f(tt +j- m) ehliIi ei11J2n/r du f 1r/rnf( t) e""' eJi(k-i)2n'r d 

The in integrals are now identical and may be factored out. We find: 

m-1 
2-7ra, = 1j/f(ul) e-ihils dtu E efi(k-n)2n-/m. 

0 j=0 

The sum can be rewritten as 
in-I 

E ( W(k-n))i 

j=0 

where wo is a primitive in-th root of unity. Such a sum is zero unless all the terms are 
one, in which case in divides k - n and n is congruent to k modulo in. Thus the only 
frequencies with nonzero coefficients are those congruent to k modulo in. 

3. Pedagogical Directions My intent in constructing the original example was to 
interest students in some pleasing curves that would be too difficult to sketch by hand. 
Showing students a few examples and assigning them the problem of discovering 
criteria for symmetry would make an interesting calculus project, serving as an 
effective advertisement for the power of complex notation. 
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Other questions present themselves. For any prime m, call 

Fk,m = (fieL2(O, 27r)Iat, = O unless n-k mod ml. 

For each in, these spaces give an orthogonal decomposition of L that generalizes the 
writing of a function as the sum of even and odd parts. Operators projecting onto such 
subspaces are similar to the Hardy projector. These would provide interesting 
examples for students first encountering Hilbert spaces. 
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Proof Without Words: 
Parametric Representation of Primitive Pythagorean Triples 

a ,b, c cZ+, (a, b) =1 

b ceZ 

b 

c+b n c-b rn 
a in 'a n- 

c n2+m2 b n2 in2 
a 2nm 'a 2nm 
n m rn(mod2) 

.(a,b,c) = (2nn,n2 - in2,n2+in2) 

-RAYMOND A. BEAUREGARD 
E. R. SURYANARAYAN 

UNIVERSITYOF RHODE ISLAND 
KINGSTON, RI 02881 

Note: For details and related results, see the authors' article "Pythagorean Triples: 
The Hyperbolic View," College Math. J., May 1996. 
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