Embedded com - Firmware basics for the boss

(]!

» pod]

Thinking inside the box

eePRODUCTCENTER

EmbeddedSystems

Conference

Click here!

| Select Site Below |

Google Search

[|
PRODUCT NEWS

VME board sports high-
performance A/D and Virtex-
II Pro FPGAs

Designed for high-performance
DSP tasks such as radar and
high-frequency data acquisition,
the 6821 sports two of Xilinx's
new Virtex-1I Pro FPGAs
connected to the Analog Devices
AD9430 A/D converters.

CompactPCI SBC suitable for
high availability apps
Performance Technologies'

upgrade to the ZT 5550 SBC
supports up to 2GB of SDRAM.

More Product News »

DATELINE: EUROPE

Vast expands European

presence
Vast Systems Technology has
opened a sales and support
office in Munich, Germany, and
added Franz Maidl as director of
sales in Europe.

PIC experts expand to bigger
things

Bluebird Electronics, a developer
of Microchip PICmicro-based
products, is changing its name
and moving to bigger premises.

More News From Europe »

Register Now!

NETWORK

NEWSLETTER ABOUT US ADVERTISING FEEDBACK

Firmware basics for the boss

By Jack Ganssle
Embedded Systems Programming
(01/22/04, 13:00:00 PM EST)

FRINT THIS| [SEND AS
Ig STORY | | EMAIL

If your boss understands the beast that is firmware development, your
team can be more productive. Here's what the boss needs to know.

I hear from plenty of readers that their bosses just don't "get" software. Efforts to
institute even limited methods to produce better code are thwarted by well-
meaning but uninformed managers chanting the "can't you just write more code?"
mantra.

Yet when I talk to the bosses many admit they simply don't know the rules of the
game. Software engineering isn't like building widgets or designing circuit boards.
The disciplines are quite different, the techniques and tools vary, and the people
themselves all too often quirky and resistant to standard management ploys. Most
haven't the time or patience to study dry tomes or keep up with the standard
journals. So this month and next I'm doing a short intro to the subject. Here's the
first installment; give it to your boss.

Firmware costs

So, dear boss, assuming you're reading this, the first message is one you already
know. Firmware is the most expensive thing in the universe. Building embedded
code will burn through your engineering budget at a rate matched only by a young
gold-digger enjoying her barely sentient ancient billionaire's fortune.

Most commercial firmware costs around $15 to $30 per line, measured from the
start of a project till it's shipped. When developers tell you they can "code that
puppy over the weekend," be very afraid. When they estimate $5/line, they're on
drugs or not thinking clearly. Defense work with its attendant reams of
documentation might run upwards of $100 per line or more; the space shuttle code
is closer to $1,000 per line, but is without a doubt the best code ever written.

The rate of $15 to $30 per line translates into a six-figure budget for even a tiny 5k
line application. The moral: embarking on any development endeavor without a
clear strategy is a sure path to squandering vast sums.

Like the company that asked me to evaluate a project that was five years late and
looked more hopeless by the day. I recommended they trash the $40 million effort
and start over, which they did. Or the startup that, despite my best efforts to
convince them otherwise, believed the consultants' insanely optimistic schedule.
They're now out of business—the startup, that is. The consultants are thriving.

Version control

First, before even thinking about building any sort of software, install and have
your people use a version control system (VCS). Building even the smallest project
without a VCS is a waste of time and an exercise in futility.

http://www embedded com/showArticle jhtml?articleID=17500630 (1 of 6)1/22/2004 4:12:19 PM

Embedded com - Firmware basics for the boss

EMBEDDED.COM LINKS

P electronicaUSA with the
Embedded Systems
Conference

» Embedded Systems
Conference Boston

» Embedded Systems
Programming Magazine

» Embedded Systems
Europe

Downloadable Code
Product Demos
Internet Resources
Industry Events
Site Map
COMPANY STORE
» CD-ROM
» Embedded Books
» The Work Circuit

NetSeminar

Services
CLICK FOR WEBCASTS

vy ¥V v . v ¥

NetSeminar

Services
A list of upcoming NetSeminars,
plus a link to the archive.

e EE Times' Future of
Semiconductors
NetSeminar Series

e Combining Simulation and
Test to Shorten RF Systems
Design Development Cycles

e Improve your storage
systems with IBM's Newest
PowerPC Processor

e Pulsed VNA Measurements:
The Need to Null!

e Signal integrity Series:
Analyzing Digital Jitter and its
Components

e Oscilloscope Measurements
eSeminar
1/28/04 8:30 AM (PST)

e EGPRS Test: Meeting the
challenge of 8PSK
Measurements

Archive

The NEAR spacecraft dumped a great deal of its fuel and was nearly lost when an
accelerometer transient caused the on-board firmware to execute abort
code—incorrect abort code, software that had never really been tested. Two
versions of the 1.11 flight software existed; unhappily, the wrong set flew. The
code was maintained on uncontrolled servers. Anyone could, and did, change the
software. Without adequate version control, it wasn't clear what made up correct
shipping software.

A properly deployed VCS ensures these sorts of dumb mistakes just don't happen.
The VCS is a sort of database for software, releasing the code to users but tracking
who changed what when. Why did the latest set of changes break working code?
The VCS will report what changed, who did it, and when, giving the team a chance
to efficiently troubleshoot things.

Maybe you're shipping release 2.34, but one user desperately requires the old 2.1
software. Perhaps a bug snuck in sometime in the last 10 versions and you need to
know which code is safe. A VCS reconstructs any version at any time.

Have you ever misplaced code? In October 1999 the FAA announced they had lost
the source code to all of the software that controlled air traffic between Chicago
and the regional airports. The code all lived on one developer's machine, one angry
person who quit and deleted it all. He did, however, install it on his home
computer, encrypted. The FBI spent six months reverse engineering the encryption
key to get their code back. Sound like disciplined software development? Maybe
not.

Without a VCS, a failure of any engineer's computer will mean you lose code, since
it's all inevitably scattered around amongst the development team. Theft or a
fire—unhappily everyday occurrences in the real world—might bankrupt you. The
computers have little value, but that source code is worth millions.

The version control database—the central repository of all of your valuable
software—lives on a single server. Daily backups of that machine, stored offsite,
ensures your business's survival despite almost any calamity.

Some developers complain that the VCS won't protect them from lazy programmers
who cheat the system. You or your team lead should audit the VCS's logs
occasionally to be sure developers aren't checking out modules and leaving them
on their own computers. A report that takes just seconds to produce will tell you
who hasn't checked in code, and how long it has been out on their own computers.

http://www embedded com/showArticle jhtml?articleID=17500630 (2 of 6)1/22/2004 4:12:19 PM

Embedded com - Firmware basics for the boss

Version control systems range in price from free (like the GNU products) to
expensive, but even the expensive ones are cheap. For a comprehensive list of
products, see www.codeorganizer.com/version control/tools.htm.

Firmware standards

Although English is spoken throughout America, try talking to random strangers on
a street corner in Baltimore today. The dialects range from educated middle-
American to incomprehensible dialects. It's all English, of a sort, but it sounds more
like the fallout from the Tower of Babel.

I Editions
EE TIMES In the firmware world we speak a common language: C, C++, or assembly,
EE TIMES ASIA usually. Yet there's no common dialect; developers exploit different aspects of the
= lingoes or create their programs using legal but confusing constructs.
EE TIMES FRANCE])
s e The purpose of software is to work, of course, but also to clearly communicate the
e — programmer's intentions to maintenance people. Clear communication means we
must all use similar dialects. Someone—that's you, boss—must specify the dialect.
EE TIMES TAIWAN
EE TIMES UK .
The C and C++ languages are so conducive to abuse that there's a yearly
. obfuscated C contest whose goal is to produce utterly obscure but working code.
Web Sites

Normally I don't publish the URL as these people are code terrorists who should be

* CommsDesign hunted down and shot like the animals they are, but the examples are compellingly

e illustrative. To see how bad things can get, see www0.us.ioccc.org/2001/williams.c.
L And then vow that your group will produce world-class software that's cheap to
* EEdesign maintain.
* Deepchip.com
* Design & Reuse The code won't be readable unless we use constructs that don't cause our eyes to
* Embedded.com trip and stumble over unusual indentation, brace placement, and the like. That
* Embedded Edge means setting rules, a standard, used to guide the creation of all new code.
Magazine
* Elektronik i Norden The standard defines far more than stylistic issues. Deeply nested conditionals, for
* Planet Analog instance, lead to far more testing permutations than any normal person can
» Silicon Strategies manage. So the standard limits nesting. It specifies naming conventions for
* The Work Gircuit variables, promoting identifiers that have real meaning. Tired of seeing i, ii, and

(my personal favorite) iii for loop variable names? The standard outlaws such lazy
practices. Rules define how to construct useful comments. Comments are an

* Wireless Solutions

Magazine
B INNICTC RIS IIES integral and essential part of the source code, every bit as important as for and
* eeProductCenter while loops. Replace or retrain any team member who claims to write "self

= n
* Conferences and Events commenting code.

* Custom Magazines . . .
« EBN Some developers use the excuse that it's too time consuming to produce a

standard. Plenty exist on the net; mine is in Word doc format at www.ganssle.com/
misc/fsm.doc. It contains the brace placement rule that infuriates the most
people—you'll change it and make it your own.

* EBN China
* Electronics Express
* NetSeminar Services

*® QuestLink
So write or get a firmware standard. And boss, please work with your folks to make

sure all new code follows the standard.

Code inspections
What's the cheapest way to get rid of bugs? The answer's simple: just don't put
any in!

Trite, perhaps, yet there's more than a grain of wisdom there. Too many
developers crank lots of code fast and then spend ages fixing their mistakes. The
average project eats 50% of the schedule in debugging and test. Reduce debugging
by inserting fewer bugs, and you'll accelerate the schedule.

http://www embedded com/showArticle jhtml?articleID=17500630 (3 of 6)1/22/2004 4:12:19 PM

Embedded com - Firmware basics for the boss

EETIMES
DesignLibrary

Search more than
2000 design articles

from around the
EE Times Metwork
indexed by category.

NETWORK RESOURCES
& JOB SEARCH

| |®

@ library

SIGN UP
FOR

NEWSLETTERS
CLICK HERE

Copyright © 2004 CMP Media LLC

Privacy Statement

Inspect all new code. That is, use a formal process that puts every function in front
of a group of developers before they spend any time debugging. The best
inspections use a team of about four people who examine every line of C in detail.
They'll find most of the bugs before testing.

Study after study shows inspections are 20 times cheaper at eliminating bugs than
debugging. Maybe you're suspicious of the numbers—fine, divide by an order of
magnitude. Inspections still shine, cutting debugging in half.

More compellingly it turns out that most debugging strategies never check half the
code. Things like deeply-nested IF statements and exception handlers are tough to
test. My collection of embedded disasters shows a similar disturbing pattern: most
stem from poorly executed, pretty much untested error handlers.

Inspections and firmware standards go hand in hand. Neither works without the
other. The inspections ensure programmers code to the standard, and the standard
eliminates inspection-time arguments over stylistic issues. If the code meets the
standard, then no debates about software styles are permitted.

Most developers hate inspections. Tough. You'll hear complaints that they take too
long. Wrong. Well-paced inspection meetings examine 150 lines of code per hour, a
rate that's hardly difficult to maintain (that's 2.5 lines of C per minute), yet that
costs the company only a buck or so per line. Assuming, of course, that the
inspection has no value at all, which we know is simply not true.

Your role, boss, is to grease the skids so the team efficiently cranks out fabulous
software. Inspections are a vital part of that process. They won't replace
debugging, but will find most of the bugs very cheaply.

Have your people look into inspections closely. The classic reference is Software
Inspection by Gilb and Graham, but Karl Wiegers' newer and much more readable
book Peer Reviews in Software: A Practical Guide targets teams of all sizes
(including solo programmers).1, 2

Toss out bad code

A little bit of the software is responsible for most of the debugging headaches.
When your developers are afraid to make the smallest change to a module, that's a
sure sign it's time to rewrite the offending code.

Developers tend to accept their mistakes, to attempt to beat lousy code into
submission. It's a waste of time and energy. Barry Boehm showed in Software
Engineering Economics that the crummy modules consume four times the
development effort of any other module.3

Identify bad sections early, before wasting too much time on them, and then
recode. Count bug rates using bug tracking software. Histogram the numbers
occasionally to find those functions whose error rates scream "fix me!" and have
the team recode.

Figure on tossing out about 5% of the system. Remember that Boehm showed this
is much cheaper than trying to fix it.

Don't beat your folks up for the occasional function that's a bloody mess. They may
have screwed up, but have learned a lot about what should have been done. Use
the experience as a chance to create a killer implementation of the function, now
that the issues are clearly understood. Healthy teams use mistakes as learning
experiences.

Use bug tracking software, such as the free bugzilla (www.bugzilla.org/) or any of

http://www embedded com/showArticle jhtml?articleID=17500630 (4 of 6)1/22/2004 4:12:19 PM

Embedded com - Firmware basics for the boss

dozens of commercial products (nice list at www.aptest.com/resources.html).

Even the most disciplined developers sometimes do horrible things in the last few
weeks to get the device out the door. Though no one condones these actions, fact
is that quick hacks happen in the mad rush to ship. That's life. It's also death for
software.

Quick hacks tend to accumulate. Version 1.0 is pretty clean, but the evil inflicted in
the last few weeks of the project add to problems induced in 1.1, multiplied by an
ever-increasing series of hacks added to every release. Pretty soon the
programming team says things like "we can't maintain this junk anymore." Then
it's too late to take corrective action.

Acknowledge that some horrible things happened in the shipping mania. But before
adding features or fixing bugs in the next release, give the developers time to clean
up the mess. Pay back the technical debt they incurred in the previous version's
end game. Otherwise these hacks will haunt the system forever, reduce overall
productivity as the team struggles with the lousy code in each maintenance cycle,
and eventually cause the code to rot to the point of uselessness.

Stay tuned for more next month.

Jack G. Ganssle is a lecturer and consultant on embedded development issues. He
conducts seminars on embedded systems and helps companies with their
embedded challenges. Contact him at jack@ganssle.com.

Further reading

1. Gilb, Tom and Dorothy Graham. Software Inspection. Addison-Wesley: NY
NY, 1993.

2. Wiegers, Karl. Peer Reviews in Software: A Practical Guide. Addison-Wesley:
NY Boehm, Barry. Software Engineering Economics. Prentice Hall PTR: Upper
Saddle River, NJ, 1981.

Read more about Jack Ganssle

Free Subscription to Embedded Systems Programming

FrstName] Lastiame |___]
compayrame || we []
ouscss aress || o [

[]

State | Select State/Province | Zip
eraiaggess ||

Respond to this article:

Name: (required) I I

Title:
Email: (required) I |

http://www embedded com/showArticle jhtml?articleID=17500630 (5 of 6)1/22/2004 4:12:19 PM

Embedded com - Firmware basics for the boss, part 2

ib

CMP

e TPy SO

Thinking inside the box

eePRODUCTCENTER

Register by March 2

& save up to 30%
use priority code: EBO1

Click here!

| Select Site Below |

Google Search

[|
PRODUCT NEWS

TimeSys introduces tools for
Linux 2.6

A suite of Eclipse-compliant
embedded development tools
supports version 2.6 of the
Linux kernel.

Dual gigabit Ethernet rides a
rugged CompactPCI SBC
Designed for military use, the
PPC G4C is CompactPCI single
board computer with
simultaneous uninterrupted dual
channel gigabit Ethernet.

More Product News »

DATELINE: EUROPE

Motorola design program
adds Crossware
Embedded software tools
developer, Crossware, has
joined Motorola's Design
Alliance Program.

Start-up attacks SoC HW/SW
bottlenecks

A new company has been set up
to provide tools for the
functional verification of both
hardware and software.

More News From Europe »

NEWSLETTER ABOUT US ADVERTISING FEEDBACK

Firmware basics for the boss, part 2

By Jack Ganssle
Embedded Systems Programming

FRINT THI=S =7 SEND AS
]
STORY EMAIL

(02/05/04, 14:00:00 PM EST)

As the boss, you can get the best out of your engineers by helping them
hone their craft—the key to your mutual success.

Firmware engineers often tell me they want to do the right things, such as
employing careful design practices but are defeated by their bosses' ignorance of
software issues. Sound familiar? If so, cut out last month's and this month's column
and slip them under your boss's door. It will give the boss the tools he or she needs
to be more successful.

Tools
A poll on Embedded.com suggests 85% of companies won't spend more than

$1,000 on any but the most essential tools. Considering the $100k+ loaded cost of
a single engineer, it's nuts to not spend a few grand on a tool that offers even a
small productivity boost.

Like what? Lint, for one. Lint is a program that examines the source code and
identifies suspicious areas. It's like a compiler's syntax checker on steroids. Only
Lint is smart enough to watch variable and function usage across multiple files.
Compilers can't do that. For a fraction of the cost, aggressive Lint usage picks out
many problems before debugging starts. Lint all source files before doing code
inspections.

Gimpel (www.gimpel.com) sells one for $239. It's up to you to buy it and to ensure
your engineers use it on all new code. Lint is annoying at first, often initially zeroing
in on constructs that are indeed fine. Don't let that quirk turn your people off. Tame
it, and then reap great reductions in debugging times.

Debugging eats 50% of most projects' schedules. The average developer has a 5 to
10% error rate. Anything that trims that rate even a smidgen saves big bucks.

Make sure the developers aren't cheating their tools. Warning levels on compilers,
for instance, should be set to the lowest possible level so all warnings are
displayed. And then insist the team write warning-free code. It's astonishing how
we ship firmware that spews warnings when compiled. The compiler, which
understands the language's syntax far better than any of your people, is in effect
shouting "Look here. Here! This is scary!" How can anyone ignore such a
compelling danger sign?

Write warning-free code so that maintenance people in months or decades won't be
baffled by the messages. "Is it supposed to do this? Or did I reinstall the compiler
incorrectly? Which of these is important?" This means changing the way they write
C. Use explicit casting. Parentheses when there's any doubt. These are all good
programming practices anyway, with zero cost in engineering, execution speed, or

http://www embedded com/showArticle jhtml?articleID=17602061 (1 of 6)02/05/2004 5:25:39 PM

Embedded com - Firmware basics for the boss, part 2

EMBEDDED.COM LINKS

P electronicaUSA with the
Embedded Systems
Conference

» Embedded Systems
Conference Boston

» Embedded Systems
Programming Magazine

» Embedded Systems
Europe

Downloadable Code
Product Demos
Internet Resources
Industry Events
Site Map
COMPANY STORE
» CD-ROM
» Embedded Books
» The Work Circuit

NetSeminar

Services
CLICK FOR WEBCASTS

vy ¥V v v v

NetSeminar

Services
A list of upcoming NetSeminars,
plus a link to the archive.

e EE Times' Future of
Semiconductors
NetSeminar Series

e RapidIO and QNX Neutrino
RTOS - A Seamless Fit

e WirelessUSB(tm) L R - The
2.4GHz Way to Bring
Affordability, Flexibility, and
Range Into Your Commercial
or Industrial Design

e Put Some Positive Spin On
Your Motor Drive Application

Archive

EE TIMES NETWORK

code size. What's the downside?

Editors, compilers, linkers, and debuggers are essential and non-negotiable tools as
it's impossible to do any development without these. Consider others. Complexity
analyzers can yield tremendous insight into functions, identifying "bad code" early
before the team wastes their time and spirits trying to beat the cruddy code into
submission. See www.chris-lott.org/resources/cmetrics for a list of freebies. Bug
tracking software helps identify problem areas—see a list of resources at www.
aptest.com/resources.html.

Most firmware developers are desperate for better debugging tools. Unhappily, the
grand old days of in-circuit emulators are over. These tools provided deep insight
into the intrinsically hard-to-probe embedded system. Their replacement, the
background debug mode (BDM), offers far less capability. Have mercy on your folks
and insist the hardware team dedicate a couple of spare parallel output bits just to
the software people. They'll use these along with instrumented code for a myriad of
debugging tasks, especially for hard-to-measure performance issues.

Peopleware
Your developers—not tools, not widgets, not components—are your prime resource.
As one wag noted, "my inventory walks out the door each night."

I've recommended several books in these two articles. Please, though, read
Peopleware by DeMarco and Lister.1 It's a slender volume that you'll plow through
in just a couple of enjoyable hours. Pursuing the elusive underpinnings of software
productivity, for 10 years the authors conducted a "coding war" between
volunteering companies.

The results? Well, at first the data was a scrambled mess. Nothing correlated.
Teams that excelled on the projects (by any measure: speed, bug count, matching
specs) were neither more highly paid nor more experienced than the losers.
Crunching every parameter revealed the answer—developers imprisoned in noisy
cubicles, those who had no defense against frequent interruptions, did poorly.

How poorly? The numbers are breathtaking. The best quartile was 300% more
productive than the lowest 25%. Yet privacy was the only difference between the
groups.

Think about it—would you like three times faster development?

http://www embedded com/showArticle jhtml?articleID=17602061 (2 of 6)02/05/2004 5:25:39 PM

Embedded com - Firmware basics for the boss, part 2

Online Editions
EE TIMES

EE TIMES ASIA

EE TIMES CHINA

EE TIMES FRANCE
EE TIMES GERMANY
EE TIMES KOREA
EE TIMES TAIWAN
EE TIMES UK

Web Sites

* CommsDesign

* iApplianceWeb.com

* Microwave Engineering

* EEdesign

* Deepchip.com

* Design & Reuse

* Embedded.com

* Embedded Edge
Magazine

* Elektronik i Norden

* Planet Analog

* Silicon Strategies

* The Work Circuit

* Wireless Solutions

Magazine
ELECTRONICS GROUP SITES
* eeProductCenter

* Conferences and Events
* Custom Magazines

* EBN

* EBN China

* Electronics Express

* NetSeminar Services

* QuestLink

EETIMES
DesignLibrary

Search more than

gn articles
und the
s N ork
indexed by category,

NETWORK RESOURCES

) JOB SEARCH

| |®

@library

It takes your developers 15 minutes, on average, to move from active perception of
the office busyness to being totally and productively engaged in the cyberworld of
coding. Yet a mere 11 minutes passes between interruptions for the average
developer. Ever wonder why firmware costs so much? E-mail, the phone, people
looking for coffee filters, and sometimes you, boss, all clamor for attention.

Sadly, most developers live in cubicles today, which are, as Dilbert so astutely
noted, "anti-productivity pods." Next time you hire someone, peer into his cube
occasionally. At first he's anxious to work hard, focus, and crank out a great
product. He'll try to tune out the poor bloke in the next cube who's jabbering on the
phone with his lawyer about the divorce. But we're all human; after a week or so
he's leaning back from the keyboard, ears raised to get the latest developments. A
productive environment? Nope.

I advise you to put your developers in private offices, with doors and off-switches
on the phones. You probably won't do that. Every time I've fought this battle with
management I've lost, usually because the interior designers promise cubes offer
more "flexibility." But even cubicles have options.

Encourage your people to identify their most productive hours—that time of day
when their brains are engaged and working at max efficiency. Me, I'm a morning
person. Others have different habits. But find those productive hours and help them
shield themselves from interruptions for about three hours a day. In that short
time, with the three-times productivity boost, they'll get an entire day's work done.
The other five hours can be used for meetings, e-mail, phone contacts, supporting
other projects, and so on.

Give your folks a curtain to pull across the cube's opening. Obviously a curtain rod
would decapitate employees, generally a bad idea despite the legions of
unemployed engineers clamoring for work. Instead, use a Velcro strip to secure the
curtain in place. Put a sign on the curtain labeled "enter and die"; the sign and
curtain go up during the employee's three superprogramming hours per day. Train
the team to respect their colleagues' privacy during these quiet hours. At first
they'll be frantic: "but I've GOT to know the input parameters to this function or
I'm stuck!" With time they'll learn when Joe, Mary, or Bob will be busy and plan
ahead. Similarly, if you really need a project update and Shirley has her curtain up,
back slowly and quietly away. Wait till their hours of silence are over.

Have them turn off their phone during this time. If Mary's spouse needs her to pick
up milk on the way home, well, that's perfect voicemail fodder. If the kids are in
the hospital, then the phone attendant can break in on her quiet time.

The study took place before e-mail was common. You know, that cute little bleep
that alerts you to the same tired old joke that's been circulating around the 'net for
the last three months, while diverting attention from the problem at hand. Every
few seconds, it seems. Tell your people to disable e-mail while cloistered.

When I talk to developers about the interruption curse they complain that the boss
is the worst offender. Resist the temptation to interrupt. Remember just how
productive that person is at the moment and wait till the curtain comes down.

(If you're afraid the employee is hiding behind the curtain surfing the net or playing
Doom, well, there are far more severe problems than just productivity issues.
Without trust—mutual trust—any engineering department is in trouble).

Remember the Titanic
Where should you use your best people? It's natural to put the superprogrammers
on the biggest and most complex projects. Resist that urge—it's wrong.

http://www embedded com/showArticle jhtml?articleID=17602061 (3 of 6)02/05/2004 5:25:39 PM

Embedded com - Firmware basics for the boss, part 2

SIGN UP
FOR

NEWSLETTERS
CLICK HERE

Copyright © 2004 CMP Media LLC

Privacy Statement

Capers Jones, in a private study produced for IBM, showed that the best people
excel on small (one man-month) projects, typically being six times more productive
than the worst members of the team.2 That advantage diminishes as the system
grows. On an eight man-month effort the ratio shrinks to under 3 to 1. At 64 man-
months it's about 1.5 to 1, and much beyond that the best do as badly as the
worst. Or the worst as well as the best. Whatever.

That observation tells us something important about how we partition big projects.
Find ways to break big systems down into many small, mostly independent parts.
Or at least strip out as much as possible from the huge carcass of code you're
planning to generate, putting the removed sections into their own tasks or even
separate processors. Give these smaller sections to the superprogrammers. They'll
crank out solutions fast.

For example, suppose an I/O device, say an optical encoder, is tied to your system.
Remove it. Add a CPU, a cheap PIC, Atmel, Z8, or similar sub-one-dollar part, just
to manage that one device. Have it return its data in engineering units: "the shaft
angle is 27 degrees." Even a slowly rotating encoder would generate thousands of
interrupts a second, a burden to even the fastest CPU that's also tasked with many
other activities. Yet even a tiny microcontroller can easily handle the data if there's
nothing else going on. One smart developer can crank out perfect I/O code in little
time.

(An important rule of thumb states that 90% loaded systems double development
time, compared to one of 70% or less; 95% loading triples development time.)

While cleverly partitioning the project for the sake of accelerating the development
schedule, think like the customer does, not as the firmware folks do. The customer
only sees features; never objects, ISRs, or functions. Features are what sell the
product.

That means break the development effort down into feature-chunks. The first
feature of all, of course, is a simple skeleton that sets up the peripherals and gets
to main(). That and a few critical ISRs, perhaps an RTOS, and the like form the
backbone upon which everything else is built.

Beyond the backbone are the things the customer will see. In a digital camera
there's a handler for the charged-couple device, a liquid crystal display subsystem,
some sort of flash filesystem. Cool tricks like image enhancement, digital zoom,
and much more will be the sizzle that excites marketing. None of those, of course,
has much to do with the basic camera functionality.

Create a list of the features and prioritize. What's most important? Least?
Then—and this is the trick—implement the most important features first.

Does that sound trite? It is, yet every time I look at a product in trouble no one has
taken this step. Developers have virtually every feature half-implemented. The ship
date arrives and nothing works. Worse, there's no clear recovery strategy since so
much effort has been expended on things that are not terribly important.

So in a panic, management starts tossing out features. One 2002 study showed
that 74% of projects wind up with 30% or more of the features being eliminated.
Not only is that a terrible waste—these are partially implemented features —but the
product goes to market late, with a subset of its functionality. If the system were
built as I'm recommending, even schedule slippages would, at worst, result in
scrubbing a few requirements that had as yet not consumed engineering time.
Failure, sure, but failure in a rather successful way.

Dollars and sense

http://www embedded com/showArticle jhtml?articleID=17602061 (4 of 6)02/05/2004 5:25:39 PM

Embedded com - Firmware basics for the boss, part 2

Finally, did you know great code—the really good stuff, that which has the highest
reliability—costs the same as cruddy software to develop? This goes against
common sense. Of course, all things being equal, highly safety-critical code is
always much more expensive than consumer-quality code.

But what if we don't hold all things equal? A study by Oddur Benediktsson showed
that using higher and higher levels of disciplined software process lets one build
higher-rel software at a constant cost.3 If your projects march from low reliability
along an upwards line to truly safety-critical code, and if your outfit follows, in his
study, increasing levels of the Capability Maturity Model, the cost remains constant.

Makes one think. And hopefully, it makes one rein in the hackers who are more
focused on cranking code than specifying, designing, and carefully implementing a
world-class product.

Jack G. Ganssle is a lecturer and consultant on embedded development issues. He
conducts seminars on embedded systems and helps companies with their
embedded challenges. Contact him at jack@ganssle.com.

References

1. DeMarco, Tom and Timothy Lister. Peopleware—Productive Projects and
Teams, 2nd Edition. New York, NY: Dorset House Publishing, 1999.

2. Jones, Capers. Assessment and Control of Software Risks. Englewood Cliffs,
NJ: Yourdon Press, 1993.

3. Benediktsson, Oddur. Safety Critical Software and Development Productivity,
conference proceedings, Second World Conference on Software Quality,
September 2000.

Read more about Jack Ganssle

Related Stories:

See part one of this article: Firmware basics for the boss

Free Subscription to Embedded Systems Programming

First Name [] prv
companyame [me [|
ousines pgoess || o [

[|

State I Select State/Province Zip

maisress |]

Respond to this article:

Name: (required) I |
Company: I |

Email: (required) I I

http://www embedded com/showArticle jhtml?articleID=17602061 (5 of 6)02/05/2004 5:25:39 PM

