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Preface 

The purpose of this book is twofold. First, it attempts to develop a 
thorough understanding of the fundamental concepts incorporated in 
stochastic processes, estimation, and control. Furthermore, it provides 
some experience and insights into applying the theory to realistic practical 
problems. 

The approach taken is oriented toward an engineer or an engineering 
student. We shall be interested not only in mathematical results, but also in a 
physical interpretation of what the mathematics means. In this regard, 
considerable effort will be expended to generate graphical representations 
and to exploit geometric insights where possible. Moreover, our attention 
will be concentrated upon eventual implementation of estimation and control 
algorithms, rather than solely upon rigorous derivation of mathematical 
results in their most general form. For example, all assumptions will be 
described thoroughly in order to yield precise results, but these assumptions 
will further bejustified and their practical implications pointed out explicitly. 
Topics where additional generality or rigor can be incorporated will also be 
delineated, so that such advanced disciplines as functional analysis can be 
exploited by, but are not required of, the reader. 

Because this book is written for engineers, we shall avoid measure theory, 
functional analysis, and other disciplines that may not be in an engineer's 
background. Although these fields can make the theoretical developments 
more rigorous and complete, they are not essential to the practicing engineer 
who wants to use optimal estimation theory results. Furthermore, the book 
can serve as a text for a first-year graduate course in estimation and stochas- 
tic control, and these advanced disciplines are not generally studied prior to 
such a course. However, the places where these disciplines do contribute 
will be pointed out for those interested in pursuing more rigorous develop- 
ments. The developments in the text will also be motivated in part by the 
concepts of analysis and functional analysis, but without requiring the reader 

X i  
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to be previously familiar with these fields. In this way, the reader will 
become aware of the kinds of questions that have to be answered in a 
completely rigorous derivation and will be introduced to the concepts re- 
quired to resolve them properly. 

This work is intended to be a text from which a reader can learn about 
estimation and stochastic control, and this intent has dictated a format of 
presentation. Rather than strive for the  mathematical precision of a 
theorem-proof structure, fundamentals are first motivated conceptually and 
physically, and then the mathematics developed to serve the purpose. Prac- 
tical aspects and eventual implementation of algorithms are kept at the 
forefront of concern. Finally, the progression of topics is selected to 
maximize learning: a firm foundation in linear system applications is laid 
before nonlinear applications are considered, conditional probability density 
functions are discussed before conditional expectations, and so forth. Al- 
though a reference book might be organized from the most general concepts 
progressively to simpler and simpler special cases, it has been our experi- 
ence that people grasp basic ideas and understand complexities of the 
general case better if they build up from the simpler problems. As generaliza- 
tions are made in the text, care is taken to point out all ramifications-what 
changes are made in the previous simpler case, what concepts generalize and 
how, what concepts no longer apply, and so forth. 

With an eye to practicality and eventual implementations, we shall em- 
phasize the case of continuous-time dynamic systems with discrete-rime 
data sampling. Most applications will in fact concern continuous-time sys- 
tems, while the actual estimator or controller implementations will be in the 
form of software algorithms for a digital computer, which inherently in- 
volves data samples. These algorithms will be developed in detail, with 
special emphasis on the various design tradeofis involved in achieving an 
efficient, practical configuration. 

The corresponding results for the case of continuously available mea- 
surements will be presented, and its range of applicability discussed. How- 
ever, only a formal derivation of the results will be provided; a rigorous 
derivation, though mathematically enriching, does not seem warranted be- 
cause of this limited applicability. Rather, we shall try to develop physical 
insights and an engineering appreciation for these results. 

Throughout the development, we shall regard the digital computer not 
only as the means for eventual implementation of on-line algorithms, but also 
as a design tool for generating the final “tuned” algorithms themselves. We 
shall develop means of synthesizing estimators or controllers, fully evaluat- 
ing their performance capabilities in a real-world environment, and iterating 
upon the design until performance is as desired, all facilitated by software 
tools. 

Because the orientation is toward engineering applications, examples will 
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be exploited whenever possible. Unfortunately, even under our early restric- 
tions of a linear system model driven by white Gaussian noises (these 
assumptions will be explained later), simple estimation or control examples 
are difficult to generate-either they are simple enough to work manually 
and are of little value, or are useful, enlightening, and virtually impossible to 
do by hand. At first, we shall try to gain insights into algorithm structure and 
behavior by solving relatively simple problems. Later, more complex and 
realistic problems will be considered in order to appreciate the practical 
aspects of estimator or controller implementation. 

This book is the outgrowth of the first course of a two-quarter sequence 
taught at the Air Force Institute of Technology. Students had previously 
taken a course in applied probability theory, taught from the excellent 
Chapters 1-7 of Davenport‘s “Probability and Random Processes.” Many 
had also been exposed to a first control theory course, linear algebra, linear 
system theory, deterministic optimal control, and random processes. How- 
ever, considerable attention is paid to those fundamentals in Chapters 2-4, 
before estimation and stochastic control are developed at all. This has been 
done out of the conviction that system modeling is a critical aspect, and 
typically the “weak link,“ in applying theory to practice. 

Thus the book has been designed to be self-contained. The reader is 
assumed to have been exposed to advanced calculus, differential equations, 
and some vector and matrix analysis on an engineering level. Any more 
advanced mathematical concepts will be developed within the text, requiring 
only a willingness on the part of the reader to deal with new means of 
conceiving a problem and its solution. Although the mathematics becomes 
relatively sophisticated at times, efforts are made to motivate the need for, 
and stress the underlying basis of, this sophistication. The objective is to 
investigate the theory and derive from it the tools required to reach the 
ultimate objective of generating practical designs for estimators and stochas- 
tic controllers. 

The author wishes to express his gratitude to the students who have 
contributed significantly to the writing of this book through their helpful 
suggestions and encouragement. The stimulation of technical discussions 
and association with Professors John Deyst, Wallace Vander Velde, and 
William Widnall of the Massachusetts Institute of Technology and Profes- 
sors Jurgen Gobien, James Negro, and J. B. Peterson of the Air Force 
Institute of Technology has also had a profound effect on this work. Ap- 
preciation is expressed to Dr. Robert Fontana, Head of the Department of 
Electrical Engineering, Air Force Institute of Technology, for his support 
throughout this endeavor, and to those who carefully and thoroughly re- 
viewed the manuscript. I am also deeply grateful to my wife, Beverly, whose 
understanding and constant supportiveness made the fruition of this effort 
possible. 
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Notation 

Vectors, Matrices 

Scalars are denoted by upper or lower case letters in italic type. 
Vectors are denoted by lower case letters in boldface type, as the vector x 

Matrices are denoted by upper case letters in boldface type, as the matrix A 
made up of components x i .  

made up of elements Aij  (ith row, jth column). 

Random Vectors (Stochastic Processes), Realizations (Samples), 
and Dummy Variables 

Random vectors are set in boldface sans serif type, as x made up of scalar 

Realizations of the random vector are set in boldface roman type, as x:  

Dummy variables (for arguments of density or distribution functions, integra- 
tions, etc.) are denoted by the equivalent Greek letter, such as s being associated 
with x:  e.g., f,({). The correspondences are (x, c), (y, p), (2, c), (2,229 

components xi. 

x(mi)= X. 

Subscripts 

a: augmented c: continuous-time 
d: discrete-time t: true, truth model 

Superscripts 
- 

T: transpose (matrix) : Fourier transform 

* : 
- : inverse (matrix) -: estimate 

complement (set) or complex conjugate 

Matrix and Vector Relationships 

A > 0: A is positive definite. 
A 2 0: A is positive semidefinite. 
x I a: componentwise, x1 5 a,,  x2 I a 2 , .  . . , and x, I a,,. 
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CHAPTER 1 
Introduction 

1.1 WHY STOCHASTIC MODELS, ESTIMATION, 
AND CONTROL? 

When considering system analysis or controller design, the engineer has at 
his disposal a wealth of knowledge derived from deterministic system and 
control theories. One would then naturally ask, why do we have to go beyond 
these results and propose stochastic system models, with ensuing concepts of 
estimation and control based upon these stochastic models? To answer this 
question, let us examine what the deterministic theories provide and determine 
where the shortcomings might be. 

Given a physical system, whether it be an aircraft, a chemical process, or 
the national economy, an engineer first attempts to develop a mathematical 
model that adequately represents some aspects of the behavior of that system. 
Through physical insights, fundamental ‘’laws,’’ and empirical testing, he tries 
to establish the interrelationships among certain variables of interest, inputs 
to the system, and outputs from the system. 

With such a mathematical model and the tools provided by system and 
control theories, he is able to investigate the system structure and modes of 
response. If desired, he can design compensators that alter these characteristics 
and controllers ’that provide appropriate inputs to generate desired system 
responses. 

In order to observe the actual system behavior, measurement devices are 
constructed to output data signals proportional to certain variables of interest. 
These output signals and the known inputs to the system are the only informa- 
tion that is directly discernible about the system behavior. Moreover, if a 
feedback controller is being designed, the measurement device outputs are the 
only signals directly available for inputs to the controller. 

There are three basic reasons why deterministic system and control theories 
do not provide a totally sufficient means of performing this analysis and 

1 



2 1 .  INTRODUCTION 

design. First of all, no mathematical system model is perfect. Any such model 
depicts only those characteristics of direct interest to the engineer’s purpose. 
For instance, although an endless number of bending modes would be re- 
quired to depict vehicle bending precisely, only a finite number of modes would 
be included in a useful model. The objective of the model is to represent the 
dominant or critical modes of system response, so many effects are knowingly 
left unmodeled. In fact, models used for generating online data processors or 
controllers must be pared to only the basic essentials in order to generate a 
computationally feasible algorithm. 

Even effects which are modeled are necessarily approximated by a mathe- 
matical model. The “laws” of Newtonian physics are adequate approximations 
to what is actually observed, partially due to our being unaccustomed to 
speeds near that of light. It is often the case that such “laws” provide adequate 
system structures, but various parameters within that structure are not deter- 
mined absolutely. Thus, there are many sources of uncertainity in any mathe- 
matical model of a system. 

A second shortcoming of deterministic models is that dynamic systems are 
driven not only by our own control inputs, but also by disturbances which we 
can neither control nor model deterministically. If a pilot tries to command a 
certain angular orientation of his aircraft, the actual response will differ from 
his expectation due to wind buffeting, imprecision of control surface actuator 
responses, and even his inability to generate exactly the desired response from 
his own arms and hands on the control stick. 

A final shortcoming is that sensors do not provide perfect and complete data 
about a system. First, they generally do not provide all the information we 
would like to know: either a device cannot be devised to generate a measure- 
ment of a desired variable or the cost (volume, weight, monetary, etc.) of 
including such a measurement is prohibitive. In other situations, a number of 
different devices yield functionally related signals, and one must then ask how 
to generate a best estimate of the variables of interest based on partially 
redundant data. Sensors do not provide exact readings of desired quantities, 
but introduce their own system dynamics and distortions as well. Furthermore, 
these devices are also always noise corrupted. 

As can be seen from the preceding discussion, to assume perfect knowledge 
of all quantities necessary to describe a system completely and/or to assume 
perfect control over the system is a naive, and often inadequate, approach. 
This motivates us to ask the following four questions: 

(1) How do you develop system models that account for these uncertain- 
ties in a direct and proper, yet practical, fashion? 

(2) Equipped with such models and incomplete, noise-corrupted data from 
available sensors, how do you optimally estimate the quantities of interest to 
you? 
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(3) In the face of uncertain system descriptions, incomplete and noise- 
corrupted data, and disturbances beyond your control, how do you optimally 
control a system to perform in a desirable manner? 

How do you evaluate the performance capabilities of such estimation 
and control systems, both before and after they are actually built? 

This book has been organized specifically to answer these questions in a 
meaningful and useful manner. 

(4) 

1.2 OVERVIEW O F  THE TEXT 

Chapters 2-4 are devoted to the stochastic modeling problem. First Chap- 
ter 2 reviews the pertinent aspects of deterministic system models, to be ex- 
ploited and generalized subsequently. Probability theory provides the basis of 
all of our stochastic models, and Chapter 3 develops both the general concepts 
and the natural result of static system models. In order to incorporate dy- 
namics into the model, Chapter 4 investigates stochastic processes, concluding 
with practical linear dynamic system models. The basic form is a linear system 
driven by white Gaussian noise, from which are available linear measurements 
which are similarly corrupted by white Gaussian noise. This structure is justi- 
fied extensively, and means of describing a large class of problems in this 
context are delineated. 

Linear estimation is the subject of the remaining chapters. Optimal filtering 
for cases in which a linear system model adequately describes the problem 
dynamics is studied in Chapter 5. With this background, Chapter 6 describes 
the design and performance analysis of practical online Kalman filters. Square 
root filters have emerged as a means of solving some numerical precision diffi- 
culties encountered when optimal filters are implemented on restricted word- 
length online computers, and these are detailed in Chapter 7. 

Volume 1 is a complete text in and of itself. Nevertheless, Volume 2 will 
extend the concepts of linear estimation to smoothing, compensation of model 
inadequacies, system identification, and adaptive filtering. Nonlinear stochastic 
system models and estimators based upon them will then be fully developed. 
Finally, the theory and practical design of stochastic controllers will be 
described. 

1.3 THE KALMAN FILTER: 
AN INTRODUCTION TO CONCEPTS 

Before we delve into the details of the text, it would be useful to see where 
we are going on a conceptual basis. Therefore, the rest of this chapter will 
provide an overview of the optimal linear estimator, the Kalman filter. This 
will be conducted at a very elementary level but will provide insights into the 
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underlying concepts. As we progress through this overview, contemplate the 
ideas being presented: try to conceive of graphic images to portray the con- 
cepts involved (such as time propagation of density functions), and to generate 
a logical structure for the component pieces that are brought together to solve 
the estimation problem. If this basic conceptual framework makes sense to 
you, then you will better understand the need for the details to be developed 
later in the text. Should the idea of where we are going ever become blurred 
by the development of detail, refer back to this overview to regain sight of the 
overall objectives. 

First one must ask, what is a Kalman filter? A Kalman filter is simply an 
optimal recursive data processing algorithm. There are many ways of defining 
optimal, dependent upon the criteria chosen to evaluate performance. It will be 
shown that, under the assumptions to be made in the next section, the Kalman 
filter is optimal with respect to virtually any criterion that makes sense. One 
aspect of this optimality is that the Kalman filter incorporates all information 
that can be provided to it. It processes all available measurements, regardless 
of their precision, to estimate the current value of the variables of interest, 
with use of (1) knowledge of the system and measurement device dynamics, 
(2) the statistical description of the system noises, measurement errors, and 
uncertainty in the dynamics models, and (3) any available information about 
initial conditions of the variables of interest. For example, to determine the 
velocity of an aircraft, one could use a Doppler radar, or the velocity indica- 
tions of an inertial navigation system, or the pitot and static pressure and 
relative wind information in the air data system. Rather than ignore any of 
these outputs, a Kalman filter could be built to combine all of this data and 
knowledge of the various systems’ dynamics to generate an overall best esti- 
mate of velocity. 

The word recursive in the previous description means that, unlike certain 
data processing concepts, the Kalman filter does not require all previous data 
to be kept in storage and reprocessed every time a new measurement is taken. 
This will be of vital importance to the practicality of filter implementation. 

The “filter” is actually a data processing algorithm. Despite the typical con- 
notation of a filter as a “black box” containing electrical networks, the fact is 
that in most practical applications, the “filter” is just a computer program in 
a central processor. As such, it inherently incorporates discrete-time measure- 
ment samples rather than continuous time inputs. 

Figure 1.1 depicts a typical situation in which a Kalman filter could be used 
advantageously. A system of some sort is driven by some known controls, and 
measuring devices provide the value of certain pertinent quantities. Knowledge 
of these system inputs and outputs is all that is explicitly available from the 
physical system for estimation purposes. 

The need for a filter now becomes apparent. Often the variables of interest, 
some finite number of quantities to describe the “state” of the system, cannot 
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FIG. 1.1 Typical Kalman filter application. 

be measured directly, and some means of inferring these values from the avail- 
able data must be generated. For instance, an air data system directly provides 
static and pitot pressures, from which velocity must be inferred. This inference 
is complicated by the facts that the system is typically driven by inputs other 
than our own known controls and that the relationships among the various 
“state” variables and measured outputs are known only with some degree of 
uncertainty. Furthermore, any measurement will be corrupted to some degree 
by noise, biases, and device inaccuracies, and so a means of extracting valuable 
information from a noisy signal must be provided as well. There may also be 
a number of different measuring devices, each with its own particular dynamics 
and error characteristics, that provide some information about a particular 
variable, and it would be desirable to combine their outputs in a systematic 
and optimal manner. A Kalman filter combines all avaiIable measurement data, 
plus prior knowledge about the system and measuring devices, to produce an 
estimate of the desired variables in such a manner that the error is minimized 
statistically. In other words, if we were to run a number of candidate filters 
many times for the same application, then the average results of the Kalman 
filter would be better than the average results of any other. 

Conceptually, what any type of filter tries to do is obtain an “optimal” 
estimate of desired quantities from data provided by a noisy environment, 
“optimal” meaning that it minimizes errors in some respect. There are many 
means of accomplishing this objective. If we adopt a Bayesian viewpoint, 
then we want the filter to propagate the conditional probability density of 
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X 

FIG. 1.2 Conditional probability density. 

the desired quantities, conditioned on knowledge of the actual data coming 
from the measuring devices. To understand this concept, consider Fig. 1.2, a 
portrayal of a conditional probability density of the value of a scalar quan- 
tity x at time instant i ( x ( i ) ) ,  conditioned on knowledge that the vector mea- 
surement z(1) at time instant l took on the value z, (z(1) = zl) and similarly 
for instants 2 through i, plotted as a function of possible x ( i )  values. This is 
denoted as fx(i)lz(l), z(2), , . , , z ( i ) (x  I zl, z2,  . . . , zi). For example, let x ( i )  be the one- 
dimensional position of a vehicle at time instant i, and let z ( j )  be a two- 
dimensional vector describing the measurements of position at time j by two 
separate radars. Such a conditional probability density contains all the avail- 
able information about x ( i ) :  it indicates, for the given value of all measurements 
taken up through time instant i, what the probability would be of x ( i )  assuming 
any particular value or range of values. 

It is termed a “conditional” probability density because its shape and loca- 
tion on the x axis is dependent upon the values of the measurements taken. 
Its shape conveys the amount of certainty you have in the knowledge of the 
value of x. If the density plot is a narrow peak, then most of the probability 
“weight” is concentrated in a narrow band of x values. On the other hand, if 
the plot has a gradual shape, the probability “weight” is spread over a wider 
range of x, indicating that you are less sure of its value. 
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Once such a conditional probability density function is propagated, the 
“optimal” estimate can be defined. Possible choices would include 

(1) the mean-the “center of probability mass” estimate; 
(2) the mode-the value of x that has the highest probability, locating the 

peak of the density; and 
(3) the median-the value of x such that half of the probability weight lies 

to the left and half to the right of it. 

A Kalman filter performs this conditional probability density propagation 
for problems in which the system can be described through a linear model and 
in which system and measurement noises are white and Gaussian (to be ex- 
plained shortly). Under these conditions, the mean, mode, median, and virtually 
any reasonable choice for an “optimal” estimate all coincide, so there is in 
fact a unique “best” estimate of the value of x. Under these three restrictions, 
the Kalman filter can be shown to be the best filter of any conceivable form. 
Some of the restrictions can be relaxed, yielding a qualified optimal filter. For 
instance, if the Gaussian assumption is removed, the Kalman filter can be 
shown to be the best (minimum error variance) filter out of the class of linear 
unbiased filters. However, these three assumptions can be justified for many 
potential applications, as seen in the following section. 

1.4 BASIC ASSUMPTIONS 

At this point it is useful to look at the three basic assumptions in the 
Kalman filter formulation. On first inspection, they may appear to be overly 
restrictive and unrealistic, To allay any misgivings of this sort, this section will 
briefly discuss the physical implications of these assumptions. 

A linear system model is justifiable for a number of reasons. Often such a 
model is adequate for the purpose at hand, and when nonlinearities do exist, 
the typical engineering approach is to linearize about some nominal point or 
trajectory, achieving a perturbation model or error model. Linear systems are 
desirable in that they are more easily manipulated with engineering tools, and 
linear system (or differential equation) theory is much more complete and 
practical than nonlinear. The fact is that there are means of extending the 
Kalman filter concept to some nonlinear applications or developing nonlinear 
filters directly, but these are considered only if linear models prove inadequate. 

“Whiteness” implies that the noise value is not correlated in time. Stated 
more simply, if you know what the value of the noise is now, this knowledge 
does you no good in predicting what its value will be at any other time. 
Whiteness also implies that the noise has equal power at a11 frequencies. Since 
this results in a noise with infinite power, a white noise obviously cannot really 
exist. One might then ask, why even consider such a concept if it does not 
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Power spectral density t 
I System bandpass 

Frequency 

FIG. 1.3 Power spectral density bandwidths. 

exist in real life? The answer is twofold. First, any physical systeni of interest 
has a certain frequency “bandpass”-a frequency range of inputs to which it 
can respond. Above this range, the input either has no effect, or the system so 
severely attentuates the effect that it essentially does not exist. In Fig. 1.3, a 
typical system bandpass curve is drawn on a plot of “power spectral density” 
(interpreted as the amount of power content at a certain frequency) versus 
frequency. Typically a system will be driven by wideband noise-one having 
power at frequencies abovc the system bandpass, and essentially constant 
power at all frequencies within the system bandpass-as shown in the figure. 
On this same plot, a white noise would merely extend this constant power level 
out across all frequencies. Now, within the bandpass of the system of interest, 
the fictitious white noise looks identical to the real wideband noise. So what 
has been gained? That is the second part of the answer to why a white noise 
model is used. It turns out that the mathematics involved in the,filter are 
vastly simplified (in fact, made tractable) by replacing the real wideband noise 
with a white noise which, from the system’s “point of view,” is identical. 
Therefore, the white noise model is used. 

One might argue that there are cases in which the noise power level is not 
constant over all frequencies within the system bandpass, or in which the noise 
is in fact time correlated. For such instances, a white noise put through a 
small linear system can duplicate virtually any form of time-correlated noise. 
This small system, called a “shaping filter,” is then added to the original sys- 
tem, to achieve an overall linear system driven by white noise once again. 

Whereas whiteness pertains to time or frequency relationships of a noise, 
Gaussianness has to do with its amplitude. Thus, at any single point in time, 
the probability density of a Gaussian noise amplitude takes on the shape of a 
normal bell-shaped curve. This assumption can be justified physically by the 
fact that a system or measurement noise is typically caused by a number of 
small sources. It can be shown mathematically that when a number of inde- 
pendent random variables are added together, the summed effect can be de- 
scribed very closely by a Gaussian probability density, regardless of the shape 
of the individual densities. 
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There is also a practical justification for using Gaussian densities. Similar 
to whiteness, it makes the mathematics tractable. But more than that, typically 
an engineer will know, at best, the first and second order statistics (mean and 
variance or standard deviation) of a noise process. In the absence of any higher 
order statistics, there is no better form to assume than the Gaussian density. 
The first and second order statistics completely determine a Gaussian density, 
unlike most densities which require an endless number of orders of statistics 
to specify their shape entirely. Thus, the Kalman filter, which propagates the 
first and second order statistics, includes all information contained in the con- 
ditional probability density, rather than only some of it, as would be the case 
with a different form of density. 

The particular assumptions that are made are dictated by the objectives of, 
and the underlying motivation for, the model being developed. If our objective 
were merely to build good descriptive models, we would not confine our atten- 
tion to linear system models driven by white Gaussian noise. Rather, we would 
seek the model, of whatever form, that best fits the data generated by the “real 
world.” It is our desire to build estimators and controllers based upon our 
system models that drives us to these assumptions : other assumptions generally 
do not yield tractable estimation or control problem formulations. Fortunately, 
the class of models that yields tractable mathematics also provides adequate 
representations for many applications of interest. Later, the model structure 
will be extended somewhat to enlarge the range of applicability, but the re- 
quirement of model usefulness in subsequent estimator or controller design will 
again be a dominant influence on the manner in which the extensions are made. 

1.5 A SIMPLE EXAMPLE 

To see how a Kalman filter works, a simple example will now be developed. 
Any example of a single measuring device providing data on a single variable 
would suffice, but the determination of a position is chosen because the prob- 
ability of one’s exact location is a familiar concept that easily allows dynamics 
to be incorporated into the problem. 

Suppose that you are lost at sea during the night and have no idea at all 
of your location: So you take a star sighting to establish your position (for the 
sake of simplicity, consider a one-dimensional location). At some time t l  you 
determine your location to be zl. However, because of inherent measuring 
device inaccuracies, human error, and the like, the result of your measurement 
is somewhat uncertain. Say you decide that the precision is such that the 
standard deviation (one-sigma value) involved is uzl (or equivalently, the vari- 
ance, or second order statistic, is uz,). Thus, you can establish the conditional 
probability of x(tl), your position at time t,, conditioned on the observed 
value of the measurement being zl, as depicted in Fig. 1.4. This is a plot of 
fx(t,)lz~tl)(xI~l) as a function of the location x: it tells you the probability of 
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FIG. 1.4 Conditional density of position based on measured value ‘I,. 

being in any one location, based upon the measurement you took. Note that ~ 

ozl is a direct measure of the uncertainty: the larger uzl is, the broader the 
probability peak is, spreading the probability “weight” over a larger range of 
x values. For a Gaussian density, 68.3% of the probability “weight” is con- 
tained within the band o units to each side of the mean, the shaded portion 
in Fig. 1.4. 

Based on this conditional probability density, the best estimate of your 
position is 

a@,) = z1 (1-1) 

ax2(t,) = d, (1-2) 

and the variance of the error in the estimate is 

Note that 2 is both the mode (peak) and the median (value with 9 of the prob- 
ability weight to each side), as well as the mean (center of mass). 

Now say a trained navigator friend takes an independent fix right after you 
do, at time t2  E t ,  (so that the true position has not changed at all), and ob- 
tains a measurement z2 with a variance oz,. Because he has a higher skill, 
assume the variance in his measurement to be somewhat smaller than in yours. 
Figure 1.5 presents the conditional density of your position at time f 2 ,  based 
only on the measured value z2. Note the narrower peak due to smaller vari- 
ance, indicating that you are rather certain of your position based on his 
measurement. 

At this point, you have two measurements available for estimating your 
position. The question is, how do you combine these data? It will be shown 
subsequently that, based on the assumptions made, the conditional density of 
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FIG. 1.5 Conditional density of position based on measurement z2 alone. 
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FIG. 1.6 Conditional density of position based on data z1 and z2. 
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your position at time tz r t , ,  x( tz ) ,  given both z1 and z , ,  is a Gaussian density 
with mean p and variance a2 as indicated in Fig. 1.6, with 

P = Cd2/(d, + d2,1z1 + [d,/(d, + d J I z 2  (1-3) 

(1-4) 

Note that, from (1-4), a is less than either a,, or az2, which is to say that the 
uncertainty in your estimate of position has been decreased by combining the 
two pieces of information. 

1/02 = ( l / d , )  + ( 1 / 4 * )  

Given this density, the best estimate is 

W 2 )  = P (1-5) 

with an associated error variance 02. It is the mode and the mean (or, since it 
is the mean of a conditional density, it is also termed the conditional mean). 
Furthermore, it is also the maximum likelihood estimate, the weighted least 
squares estimate, and the linear estimate whose variance is less than that of 
any other linear unbiased estimate. In other words, it is the “best” you can do 
according to just about any reasonable criterion. 

After some study, the form of ,u given in Eq. (1-3) makes good sense. If uZl 
were equal to cz2, which is to say you think the measurements are of equal 
precision, the equation says the optimal estimate of position is simply the 
average of the two measurements, as would be expected. On the other hand, 
if a,, were larger than az2, which is to say that the uncertainty involved in the 
measurement z1 is greater than that of z2 ,  then the equation dictates “weighting” 
zz more heavily than zl. Finally, the variance of the estimate is less than a,, 
even if azz is very large: even poor quality data provide some information, and 
should thus increase the precision of the filter output. 

The equation for 2(t2) can be rewritten as 

W 2 )  = [d2/(a,2, + d J I z 1  + [d,/(d, + d , , I z 2  

= z1 + [a:,/(az”, + a:z,][zz - z1] (1-6) 

or, in final form that is actually used in Kalman filter implementations [noting 
that 2(tl) = zJ, 

( 1-71 Xl(t2) = 2(tl) + K(tz)[z2 - 2(t,)] 

M t 2 )  = d,/(d, + dJ 

where 

(1-8) 

These equations say that the optimal estimate at time t,, 2( t2 ) ,  is equal to the 
best prediction of its value before z2 is taken, 2(t,), plus a correction term of 
an optimal weighting value times the difference between z2 and the best predic- 
tion of its value before it is actually taken, x^(tl). It is worthwhile to understand 
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this “predictor-corrector” structure of the filter. Based on all previous informa- 
tion, a prediction of the value that the desired variables and measurement will 
have at the next measurement time is made. Then, when the next measurement 
is taken, the difference between it and its predicted value is used to “correct” 
the prediction of the desired variables. 

Using the K(t2)  in Eq. (1-S), the variance equation given by Eq. (1-4) can be 
rewritten as 

(1-9) 

Note that the values of 2(t , )  and ox2(t2) embody all of the information in 
f ; ( t2) lz ( t l ) ,  Z ( t Z ) ( ~  I z i  , zz). Stated differently, by propagating these two variables, the 
conditional density of your position at time t 2 ,  given zl and z 2 ,  is completely 
specified. 

Thus we have solved the static estimation problem. Now consider incor- 
porating dynamics into the problem. 

Suppose that you travel for some time before taking another measurement. 
Further assume that the best model you have of your motion is of the simple 
form 

(1-10) 

where u is a nominal velocity and w is a noise term used to represent the un- 
certainty in your knowledge of the actual velocity due to disturbances, off- 
nominal conditions, effects not accounted for in the simple first order equation, 
and the like. The “noise” w will be modeled as a white Gaussian noise with a 
mean of zero and variance of ow2. 

Figure 1.7 shows graphically what happens to the conditional density of 
position, given z1 and z , .  At time f 2  it is as previously derived. As time pro- 
gresses, the density travels along the .Y axis at the nominal speed u, while 
simultaneously spreading out about its mean. Thus, the probability density 
starts at the best estimate, moves according to the nominal model of dynamics, 

aX2((t2) = ox2(rl) - ~ ( t ~ ) ~ ~ ( t ~ )  

dx/dt = u + U’ 

FIG. 1.7 Propagation of conditional probability density. 
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and spreads out in time because you become less sure of your exact position 
due to the constant addition of uncertainty over time. At the time t 3 - ,  just 
before the measurement is taken at time t , ,  the density .fx(t3)Jz(l , ) r Z ( t Z ) ( ~ j  zl, z 2 )  is 
as shown in Fig. 1.7, and can be expressed.mathematically as a Gaussian 
density with mean and variance given by 

a(t , - )  = 2( t , )  + u[r ,  - f 2 ]  

axZ(t3-) = ax2(t,) + aw2[t3 - t 2 ]  

(1-11) 

(1-12) 

Thus, 2 ( t 3 - )  is the optimal prediction of what the x value is at t 3 - ,  before the 
measurement is taken at t 3 ,  and ux2(t3-)  is the expected variance in that 
prediction. 

Now a measurement is taken, and its value turns out to be z,, and its vari- 
ance is assumed to be az3. As before, there are now two Gaussian densities 
available that contain information about position, one encompassing all the 
information available before the measurement, and the other being the informa- 
tion provided by the measurement itself. By the same process as before, the 
density with mean 2 ( t 3 - )  and variance oX2(t3-) is combined with the density 
with mean z3 and variance ut3, to yield a Gaussian density with mean 

' 

j z ( t 3 )  = ? ( t 3 - )  + ~ ( t ~ ) [ z ~  - ? ( t 3 - ) ]  (1-13) 

and variance 

d ( t 3 )  = Gx2(t3-) - K(t3)ax2(r3-) (1-14) 

where the gain K ( t 3 )  i s  given by 

K(t3)  = % 2 ( t 3 - l / [ a x 2 ( f 3 - )  + 4 (1-15) 

The optimal estimate, 2(t3), satisfies the same form of equation as seen pre- 
viously in (1-7). The best prediction of its value before z3 is taken is corrected 
by an optimal weighting value times the difference between z3  and the predic- 
tion of its value. Similarly, the variance and gain equations are of the same 
form as (1-8) and (1-9). 

Observe the form of the equation for K ( f 3 ) .  If u;,, the measurement noise 
variance, is large, then K ( t 3 )  is small; this simply says that you would tend to 
put little confidence in a very noisy measurement and so would weight it 
lightly. In the limit as ah -, a, K ( t 3 )  becomes zero, and 2( t3)  equals 2 ( t 3 - ) :  
an infinitely noisy measurement is totally ignored. If the dynamic system noise 
variance ow2 is large, then ax2(t3-) will be large [see Eq. (1-1211 and so will 
K(t3) ;  in this case, you are not very certain of the output of the system model 
within the filter structure and therefore would weight the measurement heavily. 
Note that in the limit as ow2 -+ cc, ox2( t3 - )  + m and K ( t 3 )  -+ 1, so Eq. (1-13) 
yields 

i ( t 3 )  = a([,-) + 1 ' [z, - a(t,-)] = 2 3  (1-16) 
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Thus in the limit of absolutely no confidence in the system model output, the 
optimal policy is to ignore the output and use the new measurement as the 
optimal estimate. Finally, if aX2(t,-) should ever become zero, then so does 
K(t,); this is sensible since if aXZ(t3-) = 0, you are absolutely sure of your esti- 
mate before 7, becomes available and therefore can disregard the measurement. 

Although we have not as yet derived these results mathematically, we have 
been able to demonstrate the reasonableness of the filter structure. 

1.6 A PREVIEW 

Extending Eqs. (1-11) and (1-12) to the vector case and allowing time varying 
parameters in the system and noise descriptions yields the general Kalman 
filter algorithm for propagating the conditional density and optimal estimate 
from one measurement sample time to the next. Similarly, the Kalman filter 
update at a measurement time is just the extension of Eqs. (1-13)-(1-15). 
Further logical extensions would include estimation with data beyond the time 
when variables are to be estimated, estimation with nonlinear system models 
rather than linear, control of systems described through stochastic models, and 
both estimation and control when the noise and system parameters are not 
known with absolute certainty. The sequel provides a thorough investigation 
of those topics, developing both the theoretical mathematical aspects and prac- 
tical engineering insights necessary to resolve the problem formulations and 
solutions fully. 
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APPENDIX AND PROBLEMS 

Matrix Analysis 

This appendix and its associated problems present certain results from 
elementary matrix analysis, as well as notation conventions, that will be of use 
throughout the text. If the reader desires more than this brief review, the list of 
references [ 1-1 11 at the end provides a partial list of good sources. 

A.1 Matrices 

An n-by-m matrix is a rectangular array of scalars consisting of n rows and m 
columns, denoted by a boldfaced capitalized letter, as 

Thus, A i j  is the scalar element in the ith row and jth column of A, and unless 
specified otherwise, will be assumed herein to be a real number (or a real-valued 
scalar function). 

If all of the elements Aij are zeros, A is called a zero matrix or null matrix, 
denoted as 0. 1 

If all of the elements of an n-by-n (square) matrix are zeros except for those 
along the principal diagonal, as 

A 

the A is called diagonal. Furthermore, if Aii = 1 for all i, the matrix is called the 
identity matrix and is denoted by 1. 
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A square matrix is symmetric if Aij = Aji for all values of i a n d j  from 1 to n. 
Thus, a diagonal matrix is always symmetric. Show that there are at most 
fn (n  + 1) nonredundant elements in an n-by-n symmetric matrix. 

A lower triangular matrix is a square matrix, all of whose elements above the 
principal diagonal are zero, as 

Similarly, an upper triangular matrix is a square matrix with all zeros below the 
principal diagonal. 

A matrix composed of a single column, i.e., an n-by-1 matrix, is called an 
n-dimensional vector or n-uector and will be denoted by a boldfaced lower case 
letter, as 

Thus, xi is the ith scalar element, or “component,” of the n-vector x. (The 
directed line segment from the origin to a point in Euclidean n-dimensional 
space can be represented, relative to a chosen basis or reference coordinate 
directions, by x, and then x i  is the component along the ith basis vector or 
reference direction.) Prqperties of general nonsquare matrices (as described in 
Sections A.2, A.3, and A.10 to follow) are true specifically for vectors. 

A matrix can be subdivided not only into its scalar elements, but aiso into 
arrays of elements called matrix partitions, such as 

A square matrix A is termed block diagonal if it can be subdivided into partitions 
such that A,, = 0 for all partitions for which i # j ,  and such that all partitions 
Aii are square. 

A .Z Equality, Addition, and Multiplication 

Two n-by-m matrices A and B are equal if and only if Ai j  = Bij for all i andj. 
If A and B are both n-by-rn matrices, their sum can be defined as C = A + B, 

where C is an n-by-m matrix whose elements satisfy Cij = A ,  + Bij for all i andj. 
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Their difference would be defined similarly. Show that 

(a) A + B = B + A .  
(b) 
(c) A + O = O + A = A .  

The product of an n-by-m matrix A by a scalar h is the n-by-m matrix C = 
bA = Ab composed of elements Cij = bAi j .  

If A is n-by-m and B is m-by-r, then the product C = AB can be defined as an 
n-by-r matrix with elements Cij = c;r=l AikBkj .  This product can be defined 
only if the number of columns of A equals the number of rows of B: only if A 
and B are "conformable" for the product AB. Thus, the ordering in the product 
is important, and AB can be described as "premultiplying" B by A or "post- 
multiplying" A by R. Show that for general conformable matrices 

A + (B + C) = (A + B) + C. 

A(BC) = (AB)C. 
IA = AI  = A. 
OA = A0 = 0. 
A(B + C) = AB + AC. 
in general, AB # BA, even for A and B both square. 
A B  = 0 in general does not imply that A or B is 0. 

A product of particular importance is that of an n-by-m matrix A with an 
m-vector x to yield an n-vector y = Ax, with components yi = 'f77= A i j x j .  Such 
a matrix multiplication can be used to represent a linear transformation of a 
vector. More general functions, not expressible through matrix multiplications, 
can be written as 

Matrix operations upon partitioned matrices obey the same rules of equality, 
addition, and multiplication, provided that the matrix partitions are con- 
formable. For instance, show that 
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A.3 Transposition 

The transpose of an n-by-m matrix A is the m-by-n matrix denoted as AT 
that satisfies ,A: = Aji for all i andj .  Thus, transposition can be interpreted as 
interchanging the roles of rows and columns of a matrix. For example, if x is an 
n-vector, xT is a 1-by-n matrix, or "row vector:" Show that 

(a) (AT)* = A .  
(b) (A + B)T = AT + BT. 
(c) (AB)T = BTAT. 
(d) if A is a symmetric matrix, AT = A. 
(e) if x and yare n-vectors, xTy is a scalar and xyT is a square n-by-n matrix; 

(f)  if A is a symmetric n-by-n matrix and B is a general m-by-n matrix, then 

(g) if A and Bare both symmetric n-by-n matrices, (A + B) is also symmetric 

xxT is symmetric as well. 

C = BABT is a symmetric m-by-m matrix. 

but (AB) generally is not. 
(h) 

A.4 Matrix Inversion, Singularity, and Determinants 

Given a square matrix A, if there exists a matrix such that both premultiplying 
and postmultiplying it by A yields the identity, then this matrix is called the 
inuerse of A, and is denoted by A - '  :AA-'  = A-  'A = I. A square matrix that 
does not possess such an inverse is said to be singular. If A has an inverse, the 
inverse is unique, and A is termed nonsingular. Show that 

(a) if A is nonsingular, then so is A -  ', and (A- ')- ' = A. 
(b) (AB)-'  = B- 'A- '  if all indicated inverses exist. 

(d) if a transformation of variables is represented by x* = Ax and if A-'  
exists, then x = A -  lx*. 

The determinant of a square n-by-n matrix A is a scalar-valued function of the 
matrix elements, denoted by IAl, the evaluation of which can be performed 
recursively through IAl = Cj"= AijCij  for any fixed i = 1,2, .  . . , or n; Ci j  is the 
"cofactor" of A,,, defined through Ci j  = ( -  l) i+jMij,  and M i j  is the "minor" 
of A i j ,  defined as the determinant of thc (n  - 1)-by-(n - 1) matrix formed by 
deleting the ith row andjth column of the n-by-n A. (Note that iterative applica- 
tion of these relationships ends with the evaluation of determinants of 1-by-1 
matrices or scalars as the scalar values themselves.) Show that 

(c) (A-')' = (AT)-'. 

(e) if A is 2-by-2, then /A1 = A , , A , ,  - A , , A , , .  
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(f) if A is 3-by-3, then 

I A /  = A 1 1 A 2 2 A 3 3  f A 1 2 A 2 3 A 3 1  + A 1 3 A 3 2 A 2 1  

- A l l A 3 2 A 2 3  - A 1 2 A 2 1 A 3 3  - A 1 3 A 2 2 A 3 1  

(8) (AT( = (A(. 
(h) if all the elements of any row or column of A are zero, (A1 = 0. 
(i) if any row (column) of A is a multiple of any other row (column), then 

JAl = 0. 
( j )  if a scalar multiple of any row (column) is added to any other row 

(column) of A, the value of the determinant is unchanged. 
(k) if A and B are n-by-n, IABI = /A/ JBI. 
(1) if A is diagonal, then JAl equals the product of its diagonal elements: 

IAl = nl= A i i .  
(m) if the n-by-n A is nonsingular, then (A1 # 0 and A- ' can be evaluated as 

A - '  = [adjA]//A(, where [adj A] is the adjoint of A, defined as the n-by-n 
matrix whose i j  element (i.e., in the ith row andjth column) is the cofactor C j i .  

(n) IA-'l = 1/1Al if IAl # 0. 
(0) IA( = 0 if and only if A is singular. 
(PI 

If A is such that its inverse equals its transpose, A-  = AT, then A is termed 
orthogonal. If A is orthogonal, AAT = ATA = I, and IAl = 1. 

A S  Linear Independence and Rank 

A set of k n-vectors x 1 , x 2 ,  . . . , xk is said to be linearlji dependent if there 
exists a set of k constants cl ,  c 2 ,  . . . , ck (at least one of which is not zero) such 
that xf= cixi = 0. If no such set of constants exists, x l ,  x 2 ,  . . . , xk are said to 
be linearly independent. 

The rank of an ,n-by-rn matrix is the order of the largest square nonsingular 
matrix that can be formed by deleting rows and columns. Show that 

(a) if the m-by-n A is partitioned into column vectors a, ,  a 2 , ,  . . , a, and x 
is an n-vector, then Ax = c:= , aixi. 

(b) the rank of A equals the number of linearly independent rows or 
columns of A, whichever is smaller. 

(c) if A is n-by-n, then it is of rank n (of "full rank") if and only if it is 
nonsingular. 

(d) the rank of xxT is one. 
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A.6 Eigenualues and Eigenvectors 

The equation Ax = 1.x for n-by-n A, or (A - 3.1)~ = 0, possesses a nontrivial 
solution if an only if ]A - A11 = 0. The nth order polynomial f ( A )  = [A - A11 is 
called the characteristic polynomial of A, and the equation f(i) = 0 is called its 
characteristic equation. The n eigenaalues of A are the (not necessarily distinct) 
roots of this equation, and the nonzero solutions to Axi = Aixi, corresponding 
to the roots Ai ,  are called eigenvectors. It can be shown that [A[ equals the product 
of the eigenvalues of A, and Aii = xr= Ai. 

Let the eigenvalues of the n-by-n A be the distinct values A,, I , , ,  . . . , A,, and 
let the associated eigenvectors be e l ,  e,, , . . , e,. Then, if E = [el le, 1. . . le,], E 
is nonsingular, and E-  AE is a diagonal matrix whose ith diagonal element is 
Ai, for i = 1, 2 , .  . . , n. Moreover, if A is also symmetric, then the eigenvalues 
are all real and E is orthogonal. 

(a) 

(b) 

(c) 

Obtain the eigenvalues and eigenvectors for a general 2-by-2 A; generate 

Repeat for a general symmetric 2-by-2 A;  show that A, and A, must be 

Show that IAl = 0 if and only if at least one eigenvalue is zero. 

E and E- 'AE. 

real, and that E is orthogonal. 

A.7 Quadratic Forms and Positive (Semi-) Definiteness 

If A is n-by-n and x is an n-vector, then the scalar quantity X'AX is called a 

(a) X'AX = CJe A i j x i x j .  
(b) without loss of generality, A can always be considered to be symmetric, 

quadratic form. Show that 

since if A is not symmetric, a symmetric matrix B can always be defined by 

for i and j equal to 1 ,2 , .  . . , n, and then xTAx = xTBx. 
(c) 

If x'Ax > 0 for all x # 0, the quadratic form is said to be positive definite, 
as is the matrix A itself, often written notationally as A > 0. If x'Ax 2 0 for all 
x # 0, the quadratic form and matrix A are termed positiue semidefinite, denoted 
as A 2 0. Furthermore, the notation A > B (A 2 B) is meant to say that (A - B) 
is positive definite (semidefinite). Show that 

if A is positive definite, it is nonsingular, and its inverse A - '  is also 
positive definite. 

if A is diagonal, X'AX = Cy= , AiixiZ. 

(d) 
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(e) the symmetric A is positive definite if and only if its eigenvalues are all 
positive; A is positive semidefinite if and only if its eigenvalues are all positive 
or zero. 

(f) if A is positive definite and B is positive semidefinite, (A + B) is positive 
definite. 

A.8 Trace 

The trace of an n-by-n matrix A, denoted as tr(A), is defined as the sum of the 
diagonal terms : 

n 

tr(A) Aii 
i =  1 

Using this basic definition, show that 

(a) tr(A) = tr(AT). 
(b) tr(A, + A2) = tr(A,) + tr(A2). 
(c) if B is n-by-m and C is m-by-n, so that BC is n-by-n and CB is m-by-m, 

then 

tr(BC) = tr(CB) = tr(BTCT) = tr(CTBT) 

(d) if x and y are n-vectors and A is n-by-n, then 

tr(xyT) = tr(xTy) = xTy 
tr(AxyT) = tr(yTAx) = yTAx = xTATy 

A.9 Similarity 

If A and B are n-by-n and T is a nonsingular n-by-n matrix, and A = T-'BT, 
then A and B are said to be related by a similarity transformation, or are simply 
termed similar. Show that 

(a) if A = T-'BT, then B = TAT-'. 
(b) if A and B are similar, their determinants, eigenvalues, eigenvectors, 

characteristic poIynomials, and traces are equal; also if A is positive definite, 
so is B and vice versa. 

A.10 Diferentiation and Integration 

Let A be an n-by-m matrix function of a scalar variable t, such as time. Then 
dAldt A(t) is defined as the n-by-m matrix with i j  element as dAij/dr for all i 
and , j ;  SA(z) d~ is defined similarly as a matrix composed of elements J A i j ( r )  d ~ .  
Derivatives and integrals of vectors are special cases of these definitions. Show 
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that 

(a) d[AT(t)]/dt = [dA(t)/dtIT and similarly for integration. 
(b) d[A(t)B(t)]/dt = A(t)B(t) + A(t)B(f). 

Let the scalar s and the n-vector x be functions of the rn-vector v. By con- 
vention, the following derivative definitions are made: 

ax 1 

durn 
. . .  __ ax, dx, 

By generating the appropriate forms for scalar components and recombining, 
show the validity of the following useful forms (for the vectors x and y assumed 
to be functions of v possibly, and the vector z and matrices A and B assumed 
constant) : 

(c) av/av = I. 
(d) d(Ax)/dv = A Sxjdv, and thus, i?(Av)/?v = A. 
(e) a(xTAy)/av = X ~ A  ay/av + y T ~ T  ax/av 

and so 

S(zTAv)/dv = zTA, d(vTAz)/dv = zTAT 

and 

?(vTAv)/8v = vTA + vTAT = 2vTA if A = AT 

and 

d{(z - B v ) ~ A ( z  - Bv)}/dv = -2(2 - B v ) ~ A B  if A = AT 
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C H A P T E R  2 
Deterministic system models 

2.1 INTRODUCTION 

This chapter reviews the basics of deterministic system modeling, emphasiz- 
ing time-domain methods. A strong foundation in deterministic models pro- 
vides invaluable insights into, and motivation for, stochastic models to be 
developed subsequently. Especially because the ability to generate adequate 
models for a given application will typically be the critical factor in designing 
a practical estimation or control .algorithm, considerably more detail will be 
developed herein than might be expected of a review. 

Section 2.2 develops continuous-time dynamic models, perhaps the most 
natural description of most problems of practical interest. Attention progresses 
from linear, time-invariant, single input-single output systems models through 
nonlinear state models, exploiting as many analytical tools as practical to 
gain insights. Solutions to the state differential equations in these models are 
then discussed in Section 2.3.  Because estimators and controllers will eventually 
be implemented digitally in most cases, discrete-time measurement outputs 
from continuous-time systems are investigated in Section 2.4. Finally, the 
properties of controllability and observability are discussed in Section 2.5. 

2.2 CONTINUOUS-TIME DYNAMIC MODELS 

Our basic models of dynamic systems will be in the form of state space 
representations [ 1-19]. These time-domain models will be emphasized because 
they can address a more general class of problems than frequency domain 
model formulations, but the useful interrelationships between the two forms 
will also be exploited for those problems in which both are valid. This section 
will begin with the simplest model forms and generalize to the most general 
model of a dynamic system. 

25 
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Let us first restrict our attention to linear, time-invariant, single input-single 
output system models, those which can be adequately described by means of a 
linear constant-coefficient ordinary nth order differential equation of the form 

d"z(t) d"- 'z(t) dPu(t) 
dt" dt"- dtP __ + afl-1___ + . . . + aoz(t) = cn ~ + . . . + c,u(t) (2-1) 

where u(t) is the system input at time t and z(t) is the corresponding system 
output. Because of the linear, time-invariant structure, we can take the Laplace 
transform of Eq. (2-l), and rearrange (letting initial conditions be zero, but 
this can be generalized) to generate the system transfer function G(s) to describe 
the output: 

Z(S)  = G(s)u(s) (2-2) 

c p s p  + cp-  1 s p -  + . . . + C I S  + c, 
S" + a,- ls"-l + . . . + a1s + a, 

G(s) = (2-3) 

The denominator of C(s) reveals that we have an nth order system model, i.e., 
the homogeneous differential equation is of order n. The dynamic behavior of 
the system can be described by the poles of G(s)-the roots of this denominator. 

A corresponding state space representation of the same system (for n > p) 
would be a first order vector differential equation with associated output 
relation: 

k(t) = Fx(t) + bu(t) (2-4) 

z(t) = hTx(t) (2-5) 

Here x is an n-dimensional state vector (the n dimensions corresponding to 
the fact that the system is described by nth order dynamics), the overdot denotes 
time derivative, F is a constant n-by-n matrix, b and h are constant n-dimensional 
vectors, and denotes transpose (hT is thus a 1-by-n matrix). 

The state vector is a set of n variables, the values of which are sufficient to 
describe the system behavior completely. To be more precise, the state of a 
system at any time t is a minimum set of values xl(t), . . . , x,(t), which, along 
with the input to the system for all time z, z 2 t, is sufficient to determine the 
behavior of the system for all z 2 t. In order to specify the solution to an nth 
order differential equation completely, we must prescribe n initial conditions 
at the initial time to and the forcing function for all t 2 to of interest: there 
are n quantities required to establish the system "state" at to. But to can be 
any time of interest, so we can see that n variables are required to establish the 
state at any given time. 

EXAMPLE 2.1 Consider the one-dimensional motion of a point mass on an ideal spring. If 
we specify the forcing function and the initial conditions on the position and velocity of the mass, we 
can completely describe the future behavior of the system through the solution of a second order 
differential equation. In this case, the state vector is two dimensional. W 
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It can be shown that the relation between the state space representation 
given by (2-4) and (2-5) and the transfer function given by (2-3) is 

C(S)  = hT[d - F]-’b (2-6) 

The matrix [sI - F]-’ is often given the symbol O(s) and called the resolvent 
matrix; it is the Laplace transform of the system state transition matrix, to be 
discussed in the next section. Equation (2-6) reveals the fact that the poles of 
the transfer function, the defining parameters of the homogeneous system, are 
equal to the eigenvalues of the matrix F. Given an nth order transfer function 
model with no pole-zero cancellations, it is possible to generate an n-dimensional 
state representation that duplicates its input-output characteristics. It is also 
possible to generate “nonminimal” state representations, of order greater 
than n, by adding extraneous or redundant variables to the state vector. How- 
ever, such representations cannot be both observable and controllable, concepts 
to be discussed in Section 2.4. Figure 2.1 depicts these equivalent system models. 

FIG. 2.1 Equivalent system representations. (6 denotes vector quantities in this figure.) 

However, the state space representation is not unique. A certain set of state 
variables uniquely determines the system behavior, but there is an infinite 
number of such sets. There are four major types of state space representations: 
physical, standard controllable, standard observable, and canonical variables 
[l-3, 6, 15-17, 191. Of these, the first two are the most readily generated: in 
the first, the states are physical quantities and Eqs. (2-4) and (2-5) result from 
combining the relationships (physical “laws,” etc.) among these physical 
quantities; the second is particularly simple to derive from a previously deter- 
mined transfer function model. The canonical form decouples the modes of 
the system dynamics and thereby facilitates both system analysis and numerical 
solutions to the state differential equation. 

The various equivalent state representations can be related through similarity 
transformations (geometrically defining new basis vectors in n-dimensional 
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state space). Given a system described by (2-4) and (2-5): 

X ( t )  = Fx(t) + bu(t); x(to) = x,; ~ ( t )  = hTX(t)  

we can define a new state vector x*(t) through an invertible n-by-n matrix T as 

x(t) = Tx*(t) 

x*(r) = T- 'x(t) 

(2-7a) 

(2-7b) 

Substituting (2-7) into (2-4) yields 

Tx*(t) = FTx*(t) + bu(t) 

Premultiplying this by T- 
result as 

and substituting (2-7a) into (2-5) generates the 

X*(tf = F*x*(t) + b*u(t); x*(t,) = xO* (2-8) 

z ( t )  = h*TX*(t) (2-9) 

where 

(2- 10a) 

(2-lob) 

(2- 10c) 

Under a similarity transformation such as (2-10a), the eigenvalues, determinant, 
trace, and characteristic polynomial are all invariant. Thus, since the eigen- 
values, i.e., system poles, remain unchanged, the transformation has not altered 
the dynamics of the system representation. 

Physical ttariables are desirable for applications where feedback is needed, 
since they are often directly measurable. However, there is no uniformity in 
the structures of F, b, and h, and little more can be said about this form without 
more knowledge of the specific dynamic system. 

The standard controllable form can be generated directly from a transfer 
function or differential equation. Given either (2-1) or (2-3), one can write 

0 0 1 
0 0 0  

0 0 o . . . o  1 

-u, - a ,  -a2 . . .  -4-  1, 

OIx(rf 

0 . . .  
1 . . .  
. .  X ( t )  = i . .  

0 . . .  
1 i . . i  

z ( r )  = [co c1 cp 

0- 
0 

0 
1 

u ( t ) ;  x(t0) = xg (2-11) 

(2-12) 
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u - 

FIG. 2.2 Standard controllable form. 

Figure 2.2 presents a block diagram of the standard controllable form state 
model. 

EXAMPLE 2.2 Let a system be described by the transfer function 

7s + 1 
G(s) = 

s2 + 2[w,s + O ” 2  

Here we identify a, = CO,~, a ,  = 2jwn, co = 1, c, = 7, to yield 

which can be portrayed by the block diagram in Fig. 2.3. Note that the state variables are the outputs 
of integrators, so that the corresponding inputs directly represent the differential equations. For 
instance, the output of the left integrator is xz ( t ) ,  so the input is 

Ic2(t) = - w n 2 x l ( t )  - 2<w,x2(t) + u ( t )  

The standard controllable form derives its name from the fact that if a non- 
minimal representation is put into a form of this type, it will be a controllable, 
but not observable, representation (see Section 2.4). 

L 

U 
L - 

FIG. 2.3 Standard controllable form for Example 2.2 
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The standard obserziable form derives its name analogously, and for minimal 
representations it is described by the same F matrix as in the standard con- 
trollable form, but has different forms for b and h:  

0 1 0 ' . .  0 
0 0 1 . . .  0 

0 0 0 . . '  1 
-ao -a,  -a2  . . .  -an-l-  

z( t )  = [ 1 0 0 . . . 0 ] X(t)  (2-14) 

Again F is derived by inspection from either the differential equation or transfer 
function, and the bj's are obtained by long division to generate the Laurent 
series for C(s): 

G(s) = b1s-l + + .  . . + b,C" + .  . . (2- 15) 

Figure 2.4 depicts the block diagram for this form. 

FIG. 2.4 Standard observable form. 

EXAMPLE 2.3 Consider the same transfer function as in Example 2.2: 

T S +  1 
G(s) = 

s2 + 2jW.S + 0.2 
Again a,  = wn2 and a ,  = 2jw,. The bi values are derived from 

T , S -  ' + (1  - 2COJ,,T).Y ~' + . . 
S' f 2 j 0 , S  f Ol,,z 1 T . 5 . 3 -  

T.S + ?<Ol,>T + (U,,'TS-I 

so that b,  = 7. b, = (1 - 2jwm7), and the desired result is 

z ( t )  = x , ( t )  

The associated block diagram is given in  Fig 2.5. 
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Canonical form provides decoupled system modes; the F matrix in this 
representation is a diagonal matrix whose entries are the eigenvalues of the 
system, if these eigenvalues are distinct: 

z(r) = [cl c2 . . .  c, Ix(0 (2-17) 

The block diagram is portrayed in Fig. 2.6, from which the separation of system 
modes is evident. 

To obtain this form from a transfer function, the n roots (eigenvalues) of 
the characteristic polynsmial are determined, and G ( s )  written in terms of the 

i f  

FIG. 2.6 Canonical form state model 
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partial fraction expansion 

where / z j  is the ith root (eigenvalue), and ri is the corresponding residue, given by 

(2-19) 

If we let ci = ri for i = 1, 2, . . . , n, then the canonical form in (2-16) and (2-17) 
is completely determined. 

EXAMPLE 2.4 Consider the transfer function 

s + 8  - 
s + S  

G(s)  = 
s2 + 8s + 12 - ( s  + 2)(s + 6 )  

This can be written as 

rl G(s)  = - + 2 
s + 2  s + 6  

where 

yielding a canonical form representation of 

If it is desired to transform any state space representation into canonical 
variables, first the eigenvalues of the original F matrix are determined as 
solutions to 

IAI - FI = 0 (2-20) 

where 1 . 1  denotes determinant. To evaluate the ci coefficients in (2-17), one 
can explicitly evaluate the transformation matrix T [explicit knowledge of T 
is also required to transform the initial conditions by x*(t,) = T-'x(to)]. The 
F, b, and h in the original representation are known; F* for the canonical form 
is the diagonal matrix of eigenvalues, and b* is an n-vector of ones. With such 
knowledge, the similarity transformation relations (2-10a) and (2-lob) can be 
written as 

TF* = FT 

Tb* = b 

(2-21 a) 

(2-21 b) 
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and solved simultaneously for T. (These are a set of n2 + n equations, of which 
n2 are independent.) Once the transformation matrix T is obtained, the desired 
h*T is found from 

h*= = hTT (2-22) 

Other means are possible, such as T being generated by arraying n eigenvectors 
in an n-by-n matrix, or by letting T be the Vandermonde matrix and not insist 
b be composed of all ones for the case of transforming from standard observable 
or standard controllable form [ 5 ] .  

standard controllable form 
EXAMPLE 2.5 Consider the system described in Example 2.4, equivalently modeled by the 

The eigenvalues of F are the solutions to 

[i.e., the poles of G(s). roots of the characteristic polynomial] from which we obtain 2 ,  = -2, 
i2 = - 6 .  Then (2-21) becomes: 

[::: ;;:]I-: -:]=I-:, -:I[;:: ;::I 
Solving these yields 

Thus, (2-22) gives h*T as 

Note that these results agree with those determined in Example 2.4. 

If there are repeated roots, then the canonical representation changes form 
somewhat. For instance, ifthe root 3L1 has a multiplicity of 3, then (2-16) becomes 

3q 1 0 
1 

X(t) = ---'. 0 0 0 0  

. . .  . . .  

u( t ) :  x ( t o )  = xo (2-23) 
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i.e., a Jordan canonical F with all ones along the superdiagonal of the block 
with I., as diagonal terms. Those superdiagonal terms must be ones in a mini- 
mally dimensioned single input-single output system model; they need not 
be all ones with multiple inputs or outputs. 

If some of the eigenvalues are complex conjugate pairs, then the canonical 
F matrix will have complex entries along its diagonal, and x(t) will have some 
complex components. The modijed canonical form [2 ,5]  maintains the desirable 
characteristic of mode separation, while regaining a totally real-valued system 
description. Given a canonical system model with ,j = J-1 and 

F =  

A similarity transformation described by 

(2-24) 

. .J 

yields an equivalent real-valued system description as in (2-8) to (2-lo), with 

(2-26) 

This idea can be generalized to the modified Jordan canonical form as well 
(see Brockett [ 2 ] ) .  

Note that the entire previous discussion assumed that n > p in the differential 
equation (2-1) or transfer function (2-3), ie., that the order of the denominator 
of G(s)  is greater than the order of the numerator. If n = p ,  then the equivalent 
state space model is of a generalized form: 

x ( t )  = Fx(t) + bu( t ) ;  x(to) = x0 (2-27) 

~ ( t )  = hTX(t)  + du(t)  (2-28) 

where now the output involves a direct feedthrough of the input u. The corre- 
sponding generalization of Eq. (2-6) is 

G ( s )  = hT[d - F]-'b + d (2-29) 



2.2 CONTINUOUS-TIME DYNAMIC MODELS 35 

EXAMPLE 2.6 Consider a system described by the “lead-lag” network, y(s) = C(s)u(s), with 

s + a  

s + h 
G(s)  = ~ 

This is equivalent to 

s + b + a - h a - h  
G ( s )  = = l + -  

s + h  s + h  

The term (a  - h)/(s + h) can be represented equivalently in standard controllable form 

i ( t )  = -bx(t)  + u(r )  

r’(r) = [ a  - h ] x ( t )  

and then 

: ( t )  = ? ( r )  + u ( t )  = [ a  - b ] x ( t )  + u(r) 

Figure 2.7 presents two equivalent block diagrams for this representation. It is obvious that (a) repre- 
sents the equations just written. Diagram (b) obeys the same state differential equation, and then 

z ( t )  = ax( t )  + n(r) = ax( t )  - hx(r) + u ( t )  = [ a  - b]x ( t )  + u ( t )  

State space representations are readily extended to multiple input-multiple 
output systems. Assume that there are r inputs into and m outputs from a 
system, described by r-dimensional u(t) and m-dimensional z( t) ,  respectively. 
Then the state space model of such a time-invariant system wouId be 

x(t) = Fx(t) + Bu(t); x(to) = xo (2-30) 

z ( t )  = Hx(t) (2-31) 
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where F is the unaltered n-by-n matrix describing the homogeneous system 
dynamics, B is an n-by-v input matrix, and H is an m-by-n output matrix. Note 
the convention on H: if the output is scalar, then H is a 1-by-n matrix, but this 
can be viewed as the transpose of an n-dimensional column vector, hence the 
previous notation hT. Analogous to the previous discussion, the output equation 
can be generalized to 

z ( t )  = Hx(t) + Du(t) (2-32) 

but this direct feedthrough structure is often not required. 
An equivalent time-invariant multiple input-multiple output model can 

be developed in the form of a matrix transfer function, whose entries would 
be the transfer functions of the individual components of the input and output 
vectors : 

Z(S) = G(s)u(s) (2-33) 

G(s) = [ f f ] - H [ S I - F ] - ~ B + D  (2-34) 
GII(S)  ' . G l r ( s )  

G m l ( S )  . . . G m r ( s )  

Again, D is often 0. However, this model is usually rather cumbersome, and 
the state space model is preferable. 

Time-tlavying system models are generated readily through state space 
methods-the matrices defining the system structure simply vary with time : 

k(t) = F(t)x(t) + B(t)u(t);  to) = XO (2-35) 

z ( t )  = H(t)x(t) (2-36) 

or, generalized to 

z ( t )  = H(t)x(t) + D(t)u(t) (2-37) 

Laplace transform methods are not readily extended to these cases. Such 
time-varying linear models arise most naturally from perturbations of a non- 
linear set of relations about a nominal solution to the original nonlinear 
equations. This will be discussed further once we establish conditions under 
which the existence'of such a nominal solution can be assumed. 

The relations just given serve to define the most general deterministic linear 
system model. In Chapter 4, these will be extended to the stochastic linear 
system model of 

X(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) 

~ ( t )  = H(t)x(t) + v(t) 

(2-38) 

(2-39) 

where w(t) is a dynamic driving noise and v(t) is a measurement corruption 
noise. 
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A nonlinear state model of a system can be described through a state differ- 
ential equation and output relation of 

x(t)  = f[x(t),u(t), t]; x(t,) = x0 (2-40) 

z ( t )  = h[x(t), 4 t h  t l  (2-41) 

where f [ . ; ; ]  is a mapping from R" x R' x R' into R" [given any x(t) E R", 
u(t) E R', and t E R' ( =  the real line), f can be evaluated to yield a vector 
x ( t )  E R"] and h[.;;] is a mapping from R" x R' x R' into R". For time- 
invariant nonlinear models, f and h are not explicit functions of time, and 
analogous to the previous discussion for linear models, h may not be an explicit 
function of u(t). 

EXAMPLE 2.7 A model of a satellite in planar orbit can be established through the approxi- 
mation of a unit point mass in an inverse square law force field. Let r be the range from the force 
field center [earth center) to fhe satellite and 8 be the angle between a reference coordinate axis 
through the field center and the line from the center to the satellite. Assume the satellite can thrust 
radially with thrust u, and tangentially with thrust u ~ .  The motion of the satellite is then governed by 
a pair of coupled second order equations: 

These relations can be put into the form of(2-40) by using the states x1 = r ,  x2 = i., xg = 8, and x4 = 6 
to write 

1 

Equations (2-40) and (2-41) are the form of a general deterministic nonlinear 
state-described system model, and Chapter 11 (Volume 2) will extend them 
to the stochastic model case. A more general class of system models called 
d-vvnamic system models can be defined (see Desoer "71, etc.), but this level of 
generality will be adequate for our purposes. 

2.3 SOLUTIONS TO STATE DIFFERENTIAL EQUATIONS 

In this section, the solution to the state differential equations just described 
will be presented, starting with the most general case and then considering the 
simplifications made possible by progressively more restrictive models [4, 131. 
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To describe some underlying assumptions simply, consider the homo- 
geneous nonlinear differential equation 

x ( t )  = f[x(t), t ] ;  ~ ( t , , )  = x0 (2-42) 

First, assume that f (  ., .) is piecewise continuous in its second argument. In 
other words, for each xi E R", the mapping f(xi, . )  is continuous except possibly 
at a finite number of points, where left and right limits are well defined. Next, 
assume that f(-;) is Lipschitz in its first argument, which is to say that there 
exists a piecewise continuous function k ( . )  such that, for all t E [0, co) and 
all x l ,  x2 E R", 

(2-43) 

where llvll = maxi lvil for v E R". These two assumptions together imply, for 
any function t,h(.) mapping [ to ,  00) into R", that the function that maps t into 
f[t,h(t),t] is a piecewise continuous function. Therefore, for any such t,h(.) we 
can integrate f[t,h(t), t] with respect to time, and then the function that maps 
t into fo f[t,h(z), z] dz is continuous. Moreover, by the fundamental theorem of 
calculus, its derivative is equal to f [t,h(t), t ]  for all t E [ to ,  00) except at the pos- 
sible points of discontinuity. 

With this introduction, it is possible to state one form of the fundamental 
theorem of dzferential equations: consider the differential equation and initial 
condition 

X ( t )  = f[x(t),u(t),t]; x(t0) = xo (2-44) 

where the function f(.;;) that maps R" x R' x [to. 00) into R" is assumed to 
be 

(1) Lipschitz in its first argument, 
(2) continuous in its second argument, and 
(3) piecewise continuous in its third argument. 

Then, for each xo E R" and each to E [0, m) and any piecewise continuous 
r-vector-valued function u ( .  ), there exists a unique continuous mapping d ( . )  
from [0, 00) into R" such that 

W o )  = xo (2-45) 

and 

for all t E {O, co) except at the possible points of discontinuity. The function 
#(.)is called the solution to the differential equation (2-44), and its value depends 
only on t ,  t o ,  xo7 and the values that u assumes in the interval [ t o ,  t]. 

The proof will not be presented here (see Desoer [7], for example), but is 
based upon establishing local existence, using successive approximations to 

m = f[WX u w ,  t l  (2-46) 



2.3 SOLUTIONS TO STATE DIFFERENTIAL EQUATIONS 39 

demonstrate constructively this existence globally, and then proving unique- 
ness. This procedure motivates the proof of existence of solutions to non- 
linear stochastic differential equations as well, to be discussed in Chapter 11 
(Volume 2). 

Once a nominal solution to a nonlinear differential equation can be found, 
perturbations about this nominal solution can be considered. For a given 
xo, t o ,  and input function uo(.), let (2-44) have a solution denoted as xo(.)  for 
t E [ to ,  a). What happens if the initial condition were perturbed to (xo + Axo) 
and/or the input were perturbed to [uo(.) + Au(.)]? If these are “small” per- 
turbations, we would expect the perturbed solution to be [xo(-) + Ax(.)] 
with Ax@) “small” for all t E [ t o ,  00). (More precise conditions can be stated; 
see Desoer and Wong [S]), so that Taylor series about the nominal could be 
exploited : 

X(t) = w t ) ,  u(t), ti 
= f[xo(t),uo(t),t] + F(r){x(t) - xo(t)j. + B(t)(u(t) - u&)} + . . . (2-47) 

where 

F(t) = 

. . .  

. . .  ;If, ‘I 
X ” ( 1 ) .  U d t ) .  1 

(2-48) 

. . .  

. . .  

(2-49) 

Since xo(t) = f[xQ(t), u0(t),  t ] ,  (2-47) yields 

d(x(t) - xdt))/dt = F(t)(x(r) - xo(t)> + B(t){u(t) - uo(t)} + . . . 
By neglecting the higher order terms, one obtains an approximation to the 
true differential equation satisfied by (x(t) - x,(t)}, called the linearized per- 
turbation equation or equation of the first variation [2,7], in the general form 
of a time-varying linear differential equation : 

6x(t) = F(t)Sx(t) + B(t)6u(t) (2-50) 

where 6x(t) z {x(t) - xo(t)) and 6u(t) = {u( t )  - uo(t)). 
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EXAMPLE 2.8 Return to the model of satellite motion discussed in Example 2.7. Perturba- 
tions about a nominal trajectory can be described approximately by the model 

$x(tj = F(tj6x(t) + B(r)Su(t) 

where 

0 1 0 0  

0 0 0 1  

One particular solution admitted by the original nonlinear equation is that of a circular orbit: 
r ( r )  = r o ,  f ( t )  = 0, s(t)  = wt, &t) = w, u,(t) = u,(t)  = 0, C = rO3wz for all time. For this nominal, 
F and B are in fact time invariant: 

The solution to linear differential equations can be written explicitly. If 
a proposed solution form satisfies the differential equation and the initial 
conditions, then it is the unique solution because the assumptions of the previous 
theorem will be met whenever [B(.)u(.)] is piecewise continuous. 

The solution to the linear time-varying differential equation and initial 
condition 

X(t)  = F(t)x(t) + B ( t ) ~ ( t ) ;   to) = XO (2-51) 

for F( . )  and [B( .)u( .)I piecewise continuous is given by 

x(t) = @(t, t,)xo + 6: @(t, z)B(z)u(z)dz (2-52) 

where @(.;) is the state transition matrix defined as the n-by-n matrix that 
satisfies the differential equation and initial condition 

d [ @ ( t ,  to)]/'dt = F(t)@(t, t o )  (2-53a) 

@ ( t o ,  t o )  = I (2-53b) 
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Significant properties of the state transition matrix include: 

(1) @(t ,  to)  is uniquely defined for all t and to in [0, a). 
(2) The state transition matrix to propagate from any t ,  to t3  equals the 

product of the separate transition matrices from t ,  to t 2  and t2  to t 3  (called the 
semigroup property): 

@ ( t 3 , t , )  = @ ( t 3 , t 2 ) @ ( t Z 3 f l )  (2-54) 

(3) @(t, to)  is nonsingular (invertible) and 

so that 

@ ( f ,  t,)@(t,, t )  = @(t, t )  = I 

t o )  = @ ( t o ,  t )  (2-55) 

Let us show that the proposed solution, (2-52), does in fact satisfy both the 
differential equation and initial condition in (2-51): 

X( t0 )  = @ ( t o ,  t0)xo + Jlb" @ ( t o ,  T ) B ( M T )  d T  

= Ix, + 0 = xo 

To demonstrate similar satisfaction of the differential equation will require 
use of Leibnitz' rule: 

B ( t )  df(t, T )  dB dA 
d T  + f [t ,  B( t ) ]  - - f [t ,  A( t ) ]  - 

d t  dt 
(2-56) 

Differentiating (2-52) thus yields 

d 
- x ( t )  = 6 ( t , t o ) X o  + @(t, t )B( t )u( t )  + 
dr 

d) ( t ,~ )B(z )u (~ )dz  

F(t)@(t,z)B(z)u(z)d~ = F( t )@( t ,  to)xo + B(t)u(t) + 

= F(t) @(t,to)xo + dt @(t,z)B(z)u(T)dz + B(t)u(t) [ 1 
But the terms in brackets are just the assumed form for x(t), so this is the desired 
solution. 

Equation (2-52) is the appropriate solution form for linear time-invariant 
differential equations as well, but the state transition matrix in this case can 
be characterized further. If F is a constant matrix, then the associated @ ( t ,  to )  

is not a function of the separate arguments t and to but is a function only of 
the single parameter ( t  - to). Thus, the general defining relationship for the 
state transition matrix reduces to 

d [ @ ( t  - t o ) ] / d t  = F@(t - t o ) ;  @(O) = I (2-57) 
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to which the solution can be expressed as the matrix exponential 

@(r, to) = @(t - toj = eF(t-fo) (2-58a) 

Another expression for @(t - to)  for time-invariant systems can be obtained 
by taking the Laplace transform of (2-57), letting to = 0: 

s@(s) - @(t - to  = 0)  = F@(s) 
s@(s)  - F@(s) = @(t - to  = 0) 

[SI - ~ ] a > ( ~ )  = r 
@(s) = [sI - F]-’ (2- 5 8 b) 

Thus @(t - to) is the inverse Laplace transform of [sI - FI-’,  the resolvent 
matrix mentioned previously. 

2.4 DISCRETE-TIME MEASUREMENTS 

In many applications of estimation or control theory to actual problems, 
a digital computer performs online computations using data samples from a 
continuous-time dynamic process, generally (but not necessarily) taken at a 
fixed sample rate. Consequently, a discrete-time measurement equation will 
often be more pertinent than the continuous-time output equations already 
described. If ti is a measurement sample time, then the measurement data can 
be represented as the sampled versions of (2-41) in the nonlinear case: 

z(ti) = h[x(ti), u(ti>, ti] 

or of (2-36) or (2-37) for the linear case 

(2-59) 

z(ti) = H(ti)x(ti) (2-60a) 

or 

z(tJ = H(ti)x(ti) + D(ti)u(ri) (2-60b) 

It will be seen later that the computer software for implementing an optimal 
estimator or controller will embody a discrete-time model that is “equivalent” 
to the continuous-time model, in the sense that the discrete-time model’s 
values of x(tl), x(t,), . . . , are identical to those of the continuous-time model 
at these particular times. From Eq. (2-52), we can write for the linear model 
case : 

x(ti+l) = @ ( t , + i , f J ~ ( t J  + P’’ @(ti+I,z)B(z)u(z)dz (2-61) 
t i  

Since a digital computer is assumed to apply the control, a very typical form 
of u( . )  would be a piecewise constant function: a measurement sample would 
be taken, the information processed, and a control input created and held 
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constant until the following sample time. If we assume 

u(t )  = u(ti) for all t E [ t i ,  ti+ 1 )  (2-62) 

then (2-61) can be written as 

This and (2-60) are then in the form of a discrete-time difference equation 
system model 

~ ( i  + 1) = @(i + 1, i ) x ( i )  + B(i)u(i)  (2-64a) 

~ ( i )  = H ( i ) x ( i )  + D ( i ) ~ ( i )  (2-64b) 

where i denotes instant, associated here with time t i .  System models of the form 
of (2-64) sometimes arise naturally from a basic problem application, as well 
as from “discretizing” a continuous-time model. However, in this case, one is 
not assured of such properties as nonsingularity of @(i + 1, i). We will usually 
be concerned with problems described most fundamentally through differential, 
as opposed to difference, equations. For these problems, (2-60) and (2-63) will 
represent the “equivalent discrete-time system model.” In the nonlinear case, 
the discrete-time dynamic model is 

x(i + 1) = f#[x(i),u(i), i] (2-65) 

but an explicit “equivalency” relationship as in (2-63) cannot be written in a 
general context. 

2.5 CONTROLLABILITY AND OBSERVABILITY 

Observability and controllability [2,9-12,14,16,18] are properties of a 
specific state space representation for a system, rather than of the system itself. 
Thus, certain state space models will be more suitable for estimation or control 
purposes than others, even though both might accurately portray the input- 
output characteristics of a system. 

Controllability is concerned with the effect of inputs upon states of a system 
model. A continuous-time system representation is said to be completely 
controllable if, for any vectors xo, x1 E R” and any time to ,  there exists a piece- 
wise continuous control function u( .) such that the solution of the describing 
differential equation with x(t,) = xo satisfies x(tl) = x1 for some finite t , .  In 
other words, a system model is completely controllable if any and all initial 
state variables xi(to) = xOi  can be transferred to any final state x l i  in finite time by 
applying a control u(t), to I t 5 t,. Consequently, in order to be completely 
controllable, the system model structure must at least be such that u can affect 
all of the state variables. It is possible to talk of a system being “controllable 



44 2. DETERMINISTIC SYSTEM MODELS 

at a given to" (rather than any to), "controllable from (xo, to )  to (x,, t l  )" (further 
specifying particular initial and final conditions), and the like, but complete 
controllability will be a more significant concept for our purposes. 

Consider the linear time-varying model given by Eqs. (2-35)-(2-37). Since 
the solution of the differential equation (2-35) is 

x1 = x(tl)  = @(tl,to)xo + I: @(t, ,~)B(z)u(~)t iz  (2-66) 

we can premultiply both sides by @(to ,  t l )  to obtain 

@ ( t ~ , t l ) X ,  = XO + Ly @(to,T)B(z)u(T)dT (2-67) 

But @(to ,  t , ) x ,  is the result of propagating x, backwards in time to time to if no 
controls are applied. Therefore, complete controllability, being able to reach 
any x1 at t: from xo, is equivalent to saying [@(ro,t,)xl - xo] can be u n j ~  
vector in R". This is equivalent to saying the range space of J:; @(to ,  T)B(T) . d~ 
(the space of possible mapping of piecewise continuous u by this operator) is all 
of R". It can be shown that this range space is equivalent to the range space of the 
n-by-n matrix (called the controllability Gramian) : 

w(to, t ,  6" @(to, z ) ~ ( z ) ~ ~ ( z ) a ~ ( t , ,  dz (2-68) 

where the form of W(to, t , )  is motivated by a study of adjoints of linear operators. 
Thus, the system model (2-35)-(2-37) can be shown to be completely con- 
trollable if and only if any of the equivalent criteria are met for some t ,  : (1) the 
range of W(to,  t , )  is R", (2) the rank of W(to, t l )  is n, ( 3 )  Wft,, t l )  is nonsingular 
and thus invertible, (4) W(to , t , )  is positive definite (it is always positive semi- 
definite), (5) the determinant of W(t,, t , )  is nonzero. If the model is completely 
controllable, then one control which actually transfers x ( to )  = xo to x(t,) = x, 
is given by: 

~ ( t )  = -BT(t)@'(tO, t)W(to, t l  )-'[xo - @(to ,  t,)x,] for all t E [ to ,  t,] 
(2-69) 

If W(to, t l )  is singular and of rank k < n, then there are (n  - k )  "uncon- 
trollable states"' in the representation. N o  matter what control is applied, no 
influence can be exerted on the system response in those directions of n-space. 
If it is possible to derive an equivalent model with no uncontrollable states, 
this would be a preferable basis for controller design. When noise is introduced 
into the dynamics model, it will be appropriate to investigate controllability 
with respect to both control inputs and noises, and this will be discussed 
subsequently. 

Although the preceding criteria are precise mathematically, they are difficult 
to apply in practice because they need only be satisfied for some t , .  This is 
alleviated somewhat by the fact that the rank of W(to,r,) is a monotonically 
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increasing function of t , ,  for fixed to .  However, in the case of a time-invariant 
linear model, as (2-30)-(2-311 a more practical criterion can be achieved. Here, 
the range space of the n-by-nr matrix 

w,, 4 [B FB I I . .  F"- 'B] (2-70) 

can be shown equivalent to the range space of W(to, t l) .  Thus, the system model 
(2-30)-(2-31) is completely controllable if and only if the range space of WTI is 
R", or its rank is n, or equivalently, if there are n linearly independent columns 
in W,,. Each column of W,, represents a vector in state space along which 
control is possible. If it is possible to control along n linearly independent 
directions in R", i.e., a basis of R", it is possible to control in all R". 

For single input system models, W,, becomes an n-by-n matrix, so in that 
case the system model is completely controllable if and only if W,, is non- 
singular, i.e., its determinant is nonzero. This can also be shown equivalent to 
the condition that [sI - F] 'b has no pole-zero cancellations. 

Analogously, a discrete-time system model is cornpleteljj controllable, if, for 
any vectors xo, xN E R", there exists a sequence u(O), . . . , u(N - 1) such that 
the solution of the describing difference equation with x(0) = xo satisfies 
x(N) = xN for some finite N .  The linear system representation of (2-64) is 
completely controllable if and only if the range space of the n-by-n matrix 

N 

W,(O, N )  4 @(O, i)B(i - l)BT(i - 1)BT(O, i )  (2-71) 
1 = 1  

is all of R", or any equivalent statements as after (2-68). The corresponding time- 
invariant linear system model is completely controllable if and only if the rank 
of the n-by-nr matrix WD,,.is n, where 

WDTI 4 [B @B . . .  @"-'B] (2-72) 

On the other hand, observability is concerned with the effect of states of a 
model upon the outputs. A continuous-time system representation is cornpletelji 
obsermble if, given z ( t )  and u(t) for all t E [ t o ,  tl], it is possible to deduce x(t) 
for t E [ t o ,  t , ] .  Thus, a system model is completely observable if any state x,(t) 
can be determined exactly for I E [ to ,  t , ]  from knowledge of only the input and 
output over the interval [ t o ,  tl]. To be completely observable, the representa- 
tion structure must be such that the output z ( t )  is affected in some manner by 
the change of any single state variable. Moreover, the effect of any one state 
variable on the output must be distinguishable from the effect of any other state 
variable. 

EXAMPLE 2.9 Consider a homogeneous system model as in Fig. 2.8a. Here, both x1 and .x2 
affect the output 2, but there would be no way to obtain separate information about xi and x 2  just 
by observing the output z.  From observations of z this model would appear identical to that depicted 
in Fig. 2.8b. 
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FIG. 2.8 Observability of system models. (a) Original model. (b) Equivalent mode!. 

When a complete system model is generated by combining separate com- 
ponent models, it is not uncommon for the result to involve unobservable states. 
For instance, in a redundant system, a state to model a bias in one instrument 
might be indistinguishable from a similar bias state in a redundant instrument, 
considering only the effects on the output. If an estimator were based upon such 
a system model, the estimation errors along certain directions of state space 
would not decrease, regardless of how long measurements were taken. In such 
cases, it would be appropriate to combine such different physical quantities into 
a single state variable, such as to let a state be the sum of the biases in the re- 
dundant system example, to achieve an observable system model. 

Now let us ask whether or not the linear time-varying system model described 
by (2-35) and (2-37) is completely observable. By the form of the solution to the 
differential equation, it is necessary and sufficient to be able to deduce x(to) 
from knowledge of u( t )  and z ( t )  for all r E [to,tl]. Using the solution we can 
write 

z ( t )  = H(t)x(t) + D(t)u(t) 

@(t, to)x0 + 6' @(t,  z)B(r)u(t)dz + D(t)u(t) 1 
so that 

H(t)@(t,to)xo = z ( t )  - D(t)u(t) - s' H(t)@(t,r)B(r)u(t)dr (2-73) 
to 
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Thus we are asking, under what conditions can this equation be solved for xo 
uniquely? This is equivalent to asking, is the null space of H(t)@(t, to) -, the set 
of all vectors x E R" that are mapped into the zero function over the interval 
[to,  tl], restricted to 0 E R"? This is a difficult question to answer, but it can be 
shown that the null space of H(r)@(t, to) * is the-same as the null space of the 
ti-by-n matrix (the observability Gramian) 

(2-74) 

As in the case of controllability, the form of M(t,, t l )  is motivated by adjoints 
of linear operators. Consequently, the model (2-35)-(2-37) is completely ob- 
servable if and only if any of the following criteria are met for some t : (1) the null 
space of M(to, t l )  is 0 E R", (2) M(to, t , )  is nonsingular, i.e., invertible, (3) M(to, t , )  
is positive definite, (4) the determinant of M(to, t l )  is nonzero. If M(to, t , )  is of 
rank k < n, then it is said that there are (n - k )  "unobservable states" in the 
model. If the model is completely observable, then xo can be determined 
uniquely from u(t )  and z( t ) ,  to I t I t , ,  by 

M(to, t l )  4 J" @'(z, to)HT(z)H(z)@(z, to)& 
fo 

xo = ~ ( t , ,  r l ) - l  J ~ w ( ~ ,  t , ) ~ ~ ( ~ ) v ( s ) d z  (2-75) 

where 

v(z) = Z(Z) - D(z)u(z) - JI H(z)@(z, o)B(o)u(o) do (2-76) 

Using that value of xo, the entire state history over [to,t l]  can be determined 
from 

(2-77) 

As before, a more practical test is possible for time-invariant linear models. 
The system representation given by (2-30)-(2-31) is completely observable if 
and only if the range space of MT, is R", where MTI is the n-by-nrn matrix 

or equivalently, if its rank is n or if there are n linearly independent columns in 
M,, (again, if we can observe along a basis of R", then we can observe any 
vector in R"). 

For single output systems, the preceding criterion becomes the condition 
that the n-by-n MTI is nonsingular, with nonzero determinant. This is equivalent 
to the condition that hT[sI - F]-' has no pole-zero cancellations. 

The corresponding discrete-time result is that the model described by (2-64) 
is completely observable if and only if the null space of the n-by-n matrix 

N 

MD(O, N )  2 2 QT(i, O)HT(i)H(i)@(i, 0) (2-79) 
i =  1 
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is 0 E R” for some finite N ,  or any equivalent statements as after (2-74). Note 
that the rank of each term in the sum is at most m, so there is in general some 
minimal number N 2 n/m of measurements that must be taken before the 
model can be completely observable. A corresponding time-invariant linear 
model is completely observable if and only if the rank of the n-by-nm matrix 
MDT, is n, where 

MDTl &[HT ~ @‘HT . . .  (@‘)nu ‘HT] (2-80) 

There is a noteworthy resemblance between the observability and con- 
trollability results just discussed. The interrelationship is a dualitj, relationship 
that can be exploited substantially in linear system theory, but we will not 
pursue this matter further at this point. 

2.6 SUMMARY 

The state differential equation (2-35) and discrete-time output equation 
(2-60) will provide the basic linear deterministic system model, the structure of 
which will be extended in ensuing chapters by adding uncertainty to both the 
dynamics and measurement relations. The dynamic system response can be‘ 
characterized by solving the state differential equation, facilitated by means 
of the concept of the state transition matrix. For such analysis, the interrelation- 
ships among inputs, states, and outputs are properly specified through the 
concepts of controllability and observability. Given a particular system model, 
an infinite variety of related time-domain models can represent the same 
input-output characteristics. Some particular forms are especially useful, in 
that they separate system modes or yield minimum required computations to 
depict the system behavior, and these can be exploited in practical applications. 

In a similar manner, Eqs. (2-40) and (2-59) define a general nonlinear deter- 
ministic system model. The existence of solutions to nonlinear differential 
equations can be established under rather nonrestrictive assumptions, but their 
form cannot be characterized as fully as in the linear case. This model structure 
will be extended in Chapter 11 (Volume 2) to the stochastic case, motivated by 
the insights gained from the simpler models discussed in this chapter. 
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PROBLEMS 

2.1 
function: 

Suppose we have a single input-single output system described by the following transfer 

G(s) = (s3 + 3s’ + 5 s  + 8)/(s4 + 7s3 + 14s’ + 8s) 

(a) Derive the standard observable and standard controllable phase variable forms. Note that 
the F matrix of x ( t )  = F x ( t )  + bu(t)  is singular-how is this interpreted physically? Draw the 
block diagrams for both and note the pattern of the feedback and feedforward loops. 

(b) 
(c) 
2.2 

Represent the system in terms of canonical variables; draw the block diagram. 
Are the system representations just obtained observable and controllable? 

For a system modeled by transfer function of 

G(s) = [lO(s + 4)]/(s3 + 3s’ + 2s) 

(a) evaluate the standard controllable form of state variable representation, 
(b) obtain the canonical form state variable representation from the phase variables, with and 

(c) obtain the canonical representation directly from the transfer function. 
2.3 For a system modeled by G(s) = I/[(? + 6s + 25Ks + I)] generate the canonical form 

state variable model involving complex F and x ( t ) .  Transform the result appropriately to make 
F and x ( t )  be composed of only real-valued terms. From the transfer function, write the standard 
controllable form, and then obtain the same form as just stated without going through the inter- 
mediate step of complex F and x ( t ) .  

without the Vandermonde matrix, and 
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- 
1 i 

2.4 A system can be represented by the block diagram of Fig. 2.P1. 
(a) Determine the state equations in terms of x,(t) and x,(t). 
(b) Determine the transfer function {x,(s)/u(s)]. 
(c) As a designer, you can control the gain K in the block diagram ( K  > 0). Describe how 

the system dynamics are affected by letting K be changed. 
(d) Determine the canonical form state space description of the system. If and where appro- 

priate, express in modified canonical form. Describe appropriate F, b, and bT without excessive 
algebra. 

2.5 For a state equation of the form 

U 

determine the resolvent matrix cP(s). Now let the output be expressed as 

Y = [CI c2 .31x 

Determine the transfer function relating y to I I .  What is the differential equation that corresponds 
to this transfer function or state space description? 

What is the steady state value of y to a unit impulse? To a unit step? Under what conditions 
are these evaluations valid? Show that if c1 = 1 and c2 = c3 = 0, then the preceding system model 
is both observable and controllable for all values of u l ,  a,, and u 3 .  

2.6 A state space model of the system given in Fig. 2.P2 can be expressed in the form of the 
minimal realization 

where V = velocity ofthe mass andf  = force through an equivalent spring of stiffness 2K. Suppose 
you want to generate another minimal realization in terms of the variables ,f and df / d t .  How would 

+I: 
--t Spring 

*’V 

K 

FIG. 2.P2 Diagram for system of Problem 2.6. 
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you do it? Write this form explicitly. Generate the similarity transformation matrix that relates 
these two realizations explicitly. Write the solution to these equations for dfldt, in both the time 
domain and the frequency domain. 

Figure 2.P3 depicts a “stable platform,” a system that is composed of a motor-driven 
gimbal, and which attempts to keep the platform rotating at a commanded angular velocity with 
respect to inertial space (often zero) despite interfering torques due to base motions or forces 
applied to the platform. Sensed angular velocity from a gyro on the platform is used by the con- 
troller to generate appropriate commands to the gimbal motor to achieve this purpose. Consider 
a single axis stable platform with direct drive and no tachometer feedback. Assume that its com- 
ponents can be described by the following relationships. where D indicates the time differentiation 
operation. 

2.7 

Controlled member: 
Gyro equation: Dqi, = S,,[w,,, - mi, + (41. 
Control equation: M ,  = [S,!S,,]F,(D)e,i,. 
The variables are defined as I,,, moment of inertia of controlled member; I O ~ , ,  angular velocity 

of controlled member with respect to the inertial frame of reference: M,, servo motor torque; 
Mintf. interfering torque; esie, signal voltage (gyro output); w,,,, commanded angular velocity; 
wd, drift rate of gyro; S,,, signal generator gain; S,, control gain; and F,(D),  transfer function of 
control system. 

IcmDcoim = M, + Mlntr. 

(a) Show that the general performance equation for the stable platform is 

(b) Draw a system block diagram corresponding to the three component equations, and 
thereby to the general performance equation. 

(c) Using the outputs of the integrators in this diagram as state variables, write out a state 
space description of the system for the case of F,(D)  = 1. 

(d) To attain a controlled member “stable” with respect to inertial space, wCmd is set equal 
to zero. Using the result of part (c), evaluate the effect of a constant drift rate on the angular rate 
o,, of the controlled member. Also evaluate the effect of a constant interfering torque on o,,. 

Platform or “controlled member” 

Motor-driven gimbal 

+ Base 

FIG. 2.P3 One-axis stable platform configuration 

2.8 This problem deals with a pitch attitude control system (PACS) for a rigid rocket vehicle 
employing a gimbaled rocket motor to obtain pitching torques. A pitching moment is obtained 
by tilting the rocket motor to give a transverse component of thrust, applied behind the center of 
gravity. The rocket motor is tilted in its gimbals by means of a hydraulic positioning system 
described by a transfer function of 

Two gyroscopes are used to produce measurements for feedback. One is an attitude gyro which 
produces an electrical signal proportional to pitch angle (with proportionality constant K, ,  V/deg), 
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and the other is a rate gyro which develops an electrical signal proportional to pitch rate (pro- 
portionality constant K, ,  V-sec/deg). Attenuation controls enable you to vary the pitch rate signal 
level relative to the pitch angle signal level. The objective of a control system design would be to 
find the best ratio of these signals. These two signals are added, and their sum is then subtracted 
from a pitch angle command voltage, all by means of a summing amplifier. The pitch angle com- 
mand voltage is produced by a guidance computei. The output of the summing amplifier is used 
as the actuating signal for the rocket motor positioning system. 

(a) Prepare a block diagram for the PACS. 
(b) Generate a time-domain model for this system in the form of a state differential equation 

(c) Generate a frequency-domain model in the form of a Laplace transform transfer function. 
2.9 Consider the following system model (note that it is not in standard observable or stan- 

and output relation. 

dard controllable form): 

2 ( t )  = [l 0 l]x(t) 

(a) Draw a block diagram of this state space model, explicitly labeling the states, input, and 

(b) Is the system model completely controllable? 
(c) Is the system model completely observable? 
(d) Find the transfer function of the system, C(s), that relates the output. : ( I ) .  to the input, 

(e) One system pole is located at  s = -1. Plot the poles and zeros of G(s). Is this a “non- 

( f )  Develop the canonical form state equations to describe this system (using the transfer 

(g) Can you determine a transformation matrix, T, that will transform the given state equa- 

(h) Assuming the system to be initially at rest (all appropriate initial conditions zero), find 

( i )  Under the same assumptions of initial rest, compute I(?) for a unit step input, u( r ) .  
There are a number of valid methods of attaining the answers to these questions. One matrix 

form that can be useful in some parts (though not necessarily required in any part) would be 
adj(f1 - F), where f is some appropriate quantity and F is the given F matrix in the problem; 
the evaluation of this form is 

output. 

u(r),  through the observable and controllable portion of the system model. 

minimum phase” and stable system-i.e., are there singularities in the right half plane? 

function directly is probably the most straightforward means). 

tions into the canonical’form equations? 

the system response, :@I, to a unit impulse input, u ( t ) .  

f 2  + 6f .f’ *I f 2 + 6 f + 1 1  / ’ + 6  

-6f - 11.1’ - 6 ,/” 

2.10 Explain why the following system realizations are or are not both observable and 
con trollable. 

(a) 

0 1 0  

- 2  - 5  - 4  

:(I) = [l 1 O]x(t) 

1 0 u ( t )  

O 0 1  O l  
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X(J) = [ - 3  0Ix( t )  + [: ;j",f) 
0 - 5  

2.11 Calculate the controllability Gramian W(0, T )  for the driven oscillator: 

Is this system model completely controllable? Compare this to the answer achieved using WTl. 
2.12 Consider the single-axis error model for an inertial navigation system (INS) shown in 

Fig. 2.P4. In this simplified model, gyro drift rate errors are ignored. It is desired to estimate the 
vertical deflection process, e,. Consider the system state vector consisting of the four states: 

xT = [e,, 6,  6 ,  eib] 

(a) For position measurements only (r, not available), set up the observability matrix and 

(b) Now assume we have both position and velocity measurements. Is this system model 

(c) Now assume eph = 0 and can be eliminated from the state error model. Is this system 

determine whether this system model is observable. 

observable? 

model observable with position measurements only? 

eP 

FIG. 2.P4 Single-axis error model for INS. eCr =unbiased random vertical deflection, eCh = 

vertical deflection bias, e, = uncorrelated velocity measurement error, eph = bias position measure- 
ment error, ep = uncorrelated position measurement error. From dppl ied  Optima/ Estimation by 
A. Gelb (ed.). 0 1974. Used with permission of the M.I.T. Press. 
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2.13 Show that the state transition matrix corresponding to the F in Example 2.8 for a cir- 
cular nominal trajectory with yo = 1 is given by: 

4 - 3 c o s w t  (sincot)/cu o 2(1 - coscot)/w 1 
3w sin wt cos ox 0 2 sin wt 

@ ( r ,  0 )  = 
6( - or + sin or) - 2(1 - cos wr)/w 1 ( - 3wt + 4 sin w t ) / o  

L6w(-1 f c o s w t )  - 2 s i n o t  0 - 3 + 4 c o s w t  1 
2.14 Given that F is a 2 x 2 constant matrix and given that 

x ( r )  = Fx(t) 

Suppose that if 

and if 

x(0) = [ :] then ~ ( t )  = 

Determine the transition matrix for the system and the matrix F. 

permission of John Wiley & Sons, Inc. 
Problem 2.14 is from Finite Dimensional Linear Sysrems by R. Brockett. 1-1 1970. Used with 

2.15 (a)  Show that, for all t o ,  t , ,  and t ,  

@(t.ro) = @ ( r , f I ) @ ( t I , r o j  

by showing that both quantities satisfy the same linear differential equation and “initial condition” 
at time t , .  Thus, the solution to x ( t )  = F(r)x(i) with x(t,) = x,, (i.e., @ ( I ,  t,)x,) at any time rZ can be 
obtained by forming x(t,) = @ ( r l ,  to)xo and using it to generate x(r,) = @ ( t z ,  t , ) x ( t , ) .  

Since it can be shown that @ ( t , t o )  is nonsingular, show that the above “semigroup 
property” implies that 

(b) 

@-‘(t ,ro) = @(to . t )  

2.16 Let @(f, t o )  be the state transition matrix associated with x ( t )  = F(t)x(t) + B(t)u(tj. 
Considcr a change of variables, 

x*(t) = T(t)x(t) 

where T(.) is differentiable and T-’(tj exists for all time t. Show that the state transition matrix 
associated with the transformed state variables, Q * ( t ,  to), is the solution to 

6*(t , to)  = [T(t)F(t)T-’(t) + T(t)T-’(t)]@*(t,to) 

@*(f*. to )  = I 

and that 

Q ( r , t , )  = T-’(t)@*(r,t,)T(t,) 

Note that if T is constant, this yields a similarity transformation useful for evaluation of the state 
transition matrix. 
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2.17 
(a) 

Let F be constant. Then the evaluation of @(r,  t o )  = @(t - t o )  can be obtained by 
approximation through truncation of series definition of matrix exponential. eFf'-'o': 

I 
eF('--In) = I + F(t - to)  + ?1 F2(i - to)' + . . 

(b) Laplace methods of solving & ( r  - t ,) = F @ ( t  - to), @(O) = 1: 

A. 

@(t - to)  = LT1{[ . s1  - F]-lI((l-Iol 

where U - l i .  )l(t-Iol denotes inverse Laplace transform evaluated with time argument equal to 
( t  - to). 

(c) Cayley-Hamilton theorem (for F with nonrepeated eigenvalues) 

@ ( r  - r , ) = c r , l + a , F + a 2 F 2 + . . ~ f a , _ I F " - '  

To solve for the n functions of ( t  - to), an, xI, . . . , cq- ,, the 17 eigenvalues of F are determined as 
I , ,  . . , , Then 

eA(t-tol = cIo + cc,l + a2i' + ' ' ' + cI"_ ' i n - ]  

must be satisfied by each of the eigenvalues, yielding n equations for the n unknowr. ui's 
(d) Sylvester expansion theorem (for F with nonrepeated eigenvalues) 

@(t - t o )  = F , ~ J . I ( ~ - ~ I  + F ~ ~ & I ~ - [ O I  + .  . . + ~ , ~ ~ A d - i d  

where %i is the ith eigenvalue of F and Fi is given as the following product of ( n  - 1) factors: 

Use the four methods to evaluate @(t - to)  if F is given by 

Let ( t  - to)  = 0.1 sec; if the series method of part (a) is truncated at the first order term, what is 
the greatest percentage error (i.e., [(calculated value - true)/true value] lOO",) committed in 
approximating the four elements of @(0.1)? What if it were truncated at the second order term? 

2.18 Given a homogeneous linear differential equation x ( t )  = F(t)x(t), the associated "adjoint" 
differential equation is the differential equation for the n-vector p(r) such that the inner product 
of p(r) with x(t) is constant for all time: 

x(t)Tp(t) = const 

(a) Take the derivative of this expression to show that the adjoint equation associated with 
S ( t )  = F(t)x(r) is 

P(t) = - F?t)p(t) 

(b) If a,(!, t o )  is the state transition matrix associated with F(I) and cP,,(t, tu) is the state transi- 
tion matrix associated with [ - F'(t)], then show that 

@,(t, t o )  = @,T(to,t) = [mxT(t, rO) ] - '  

To do this, show that [@,T(t.to)@,,(t. t o ) ]  and I satisfy the same difl'erential equation and initial 
condition. 
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(c) Show that, as  a function of its second argument, @,(t,r) must satisfy 

?[mX(f, T)]/& = - QX(l, .r)F(7) 

or, in other words, 

d[(DXT(t, r)],'?~ = [ - F(t)T]@xT(t, T) 

2.19 The Euler equations for the angular velocities of a rigid body are 

I I b i  = (1, - I3)Wzw3 + u1 

I , c , ~ ~  = ( I 3  - I ~ ) w ~ w ~  + U, 
13fh3 =(I, - f , )W,W2 + uj  

Here w is the angular velocity in a body-fixed coordinate system coinciding with the principal 
axes, u is the applied torque, and I,. I,, and I, are the principal moments of inertia. I f  I, = 12, 
we call the body symmetrical. In this case, linearize these equations about the solution u = 0, 

Problem 2.19 is from Finite Dimensional Linear Sysrems by R. Brockett. c 1970. Used with 

2.20 Consider a system with input r(t)  and output c(r) modeled by the nonlinear differential 

permission of John Wiley & Sons, Inc. 

equation 

?(t)  + c 3 ( t ) P ( r )  + sin[c(t)] - t 2c ( t )  = r ( t )  

Determine the linear perturbation equations describing the system's behavior near nominal trajec- 
tories of 

(1) c(t) = r ( t )  = 0. 
(2) c( t )  = t, r ( r )  = sin 1. 
Describe how you would obtain the equivalent discrete-time model for the perturbation equa- 

tions in the two preceding cases, to  describe the perturbed output Ac at discrete time points: 

Ac(kT),  k = 0, 1, 2, .  . . . for given T 

2.21 Consider the system configuration of Fig. 2.P5. The sampler has a period of T seconds 
and generates the sequence (ei(0) ,e , (T) ,e , (2T),  . . .). The algorithm implemented in the digital 
computer is a first-order difference approximation to differentiation: 

e2(r , )  = [ e l ( r i )  - el([,- ,)I/T 

Finally. the zero-order hold (ZOH) generates a piecewise constant output by holding the value of 
its input over the ensuing sample period: 

u ( t )  = e2(ti) for all t E [ t i , t i + , )  

(a)  
(b) 

(c) 

Generate the equivalent discrete-time model for the "plant." 
Develop the discrete-time state equation and output relation model of the entire system 

Determine the eigenvalues of the overall system state transition matrix; if the magnitude 
configuration, and thus describe c( t i )  = c ( i T )  for i = 0, 1, 2 , .  . . . 

of any of these is greater than one, the system is unstable. 
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- 1 

T 
e Z 3 ( t , ) . =  - [ e , ( t J  - ~ A L  

- 

FIG. 2.P5 Block diagram for Problem 2.21. 

I I U 

2.22 A PID (proportional plus integral plus derivative) controller is a device which accepts 
a signal el(t)  as input and generates an output as 

where the coefficients K,, K i ,  and K, are adjusted to obtain desirable behavior from the closed 
loop system generated by using a PID controller for feedback. 

A simple digital PID controller for use with an iteration period of T seconds is shown in 
Fig. 2.P6. Show that the difference equation approximation to the integration operation is the 
result of Euler integration, and that this channel can be described by the discrete-time state and 
output model: 

xi(tL+ = xi(ti) + cl(fi), e,,(ti) = Txi(r,) + Tel(ti)  

Similarly show that the “derivative” first order difference approximation can be represented as 

-yd(ti+ I )  = eZ3( t i )  = -[u,(r,)/T] +el(ri) /T 
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Generate the state vector difference equation and output relation model for this digital PID 
controller. In general, the relationships among scalar difference equations, discrete-time state equa- 
tions and output relations, and 2-transform transfer functions (not discussed in this book) are 
analogous to the relationships among scalar differential equations, differential state models, and 
Laplace transform transfer functions (where applicable), and methods analogous to those of this 
chapter yield means of generating one form from the -other. 

2.23 Consider the application of the P I D  controller of the previous problem applied to the 
system configuration depicted in Fig. 2.P7. Note that the samplers are synchronized and have 
sample period T. The zero-order hold (ZOH) generates 

u ( t )  = e,(ti) for all t E [ t i , t i + , )  

(a) 
(b) 

Develop the equivalent discrete-time model for the “plant.” 
Develop the discrete-time state model of the entire control system configuration, and 

thereby means of generating 

c( iT)  for i = 0, 1, 2,. . . 

(c) To evaluate adequacy of controller performance, one desires knowledge of c( t )  for all time 
between sample times as well. Generate the relations necessary to evaluate c ( t )  for all t E [iT, 
(i + ] ) T I .  



C H A P T E R  3 
Probability theory 
and static models 

3.1 INTRODUCTION 

This chapter lays the foundation for a model of stochastic events and pro- 
cesses, events and processes which deterministic models cannot adequately 
describe. We want such a model to account explicitly for the sources of un- 
certainty described in Chapter 1. To do so, we will first describe random events 
probabilistically, and then in the next chapter we will add dynamics to the 
model through a study of random processes. 

Probability theory [3-5, 8-10] is basically addressed to assigning prob- 
abilities to events of interest associated with the outcomes of some experiment. 
The fundamental context of’this theory is then a general space of outcomes, 
called a sample space. However, it is more convenient to work in a Euclidean 
space, so we consider a function, or mapping, from the sample space to Euclidean 
space, called a random variable. The basic entity for describing probabilities 
and random variables becomes the probability distribution function, or its 
derivative, the probability density function, which will exist for the problems 
of interest to us. These concepts are discussed in Sections 3.2 and 3.3. Since 
we will eventually .want to generate probability information about certain 
variables of interest, based upon measurements of related quantities, condi- 
tional probability densities and functions of random variables will be of primary 
importance and are described in Sections 3.4 and 3.5. 

Having a mathematical model of probability of events, one can consider 
the concept of expected values of a random variable, the average value of that 
variable one would obtain over the entire set of possible outcomes of an experi- 
ment. Again looking ahead to estimation of variables based on measurement 
data, the idea of conditional expectation arises naturally. Expectations of 
certain functions yield moments of random variables, a set of parameters 

59 
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which describe the shape of the distribution or density function; these moments 
are most easily generated by characteristic functions. These topics are the 
subjects of Sections 3.6-3.8. 

Because Gaussian random variables will form a basis of our system model, 
they are described in detail in Section 3.9. The initial model will involve linear 
operations on Gaussian inputs, so the results of such operations are discussed 
in Section 3.10. Finally, Section 3.11 solves the optimal estimation problem 
for cases in which a static linear Gaussian system model is an adequate 
description. 

3.2 PROBABILITY AND RANDOM VARIABLES 

Probability theory can be developed in an intuitive manner by describing 
probabilities of events of interest in terms of the relative fiequencj, of occurrence. 
Using this concept, the probability of some event A ,  denoted as P(A) ,  can be 
generated as follows: if the event A is observed to occur N ( A )  times in a total 
of N trials, then P ( A )  is defined by 

provided that this limit in fact exists. In other words, we conduct a number of 
experimental trials and observe the ratio of the number of times the event of 
interest occurs to the total number of trials. As we make more and more trials, 
if this ratio converges to some value, we call that value the probability of the 
event of interest. 

Although this is a conceptually appealing basis for probability theory, it 
does not allow precise treatment of many problems and issues of direct im- 
portance to us. Modern probability theory is more rigorously based on an 
axiomatic definition of probability. This axiomatic definition must still be a 
valid mathematical model of empirically observed frequencies of occurrence, 
but it is meant to extract the essence of the ideas involved and to deal with them 
in a precise, rather than heuristic, manner. 

To describe an experiment in precise terms, let R be the fundamental sample 
space containing all possible outcomes of the experiment conducted. Each 
single elementary outcome of the experiment is denoted as an o; these o’s  then 
are the elements of i2:o E R. In other words, the sample space is just the collec- 
tion of possible outcomes of the experiment, each of which being thought of 
as a point in that space 0. Now let A be defined as a specific event of interest, 
a specific set of outcomes of the experiment. Thus, each such event A is a subset 
of R: A c R. An event A is said to occur if the observed outcome w is an element 
of A,  if w E A .  

EXAMPLE 3.1 Consider two consecutive tosses of a fair coin. The sample space R is com- 
posed of four elements o: if HT represents heads on the first throw and tails on the second, and 
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so forth, then the four possible elementary outcomes are HH, HT, TH, and TT. This is depicted 
schematically in Fig. 3.1. !2 is just the collection of those four outcomes. 

Let us say we are interested in three events: 

A ,  = at least one tail was thrown 

A ,  = exactly one tail was thrown 

A ,  = exactly two tails were thrown 

Then A , ,  A * ,  and A ,  are subsets of 0; each is a collection of points w.  These are also depicted in 
Fig. 3.1. 

Now suppose we conduct one trial of the experiment, and we observe HT = w z .  Then, since 
this point is an element of sets A ,  and A * ,  but not of A , ,  we say that the events A ,  and A ,  occurred 
on that trial, but event A 3  did not occur. W 

FIG. 3.1 Two tosses of a coin 

The sample space R can be discrete, with a finite or countably infinite num- 
ber of elements, such as the space for the coin toss experiment described in the 
previous example. On the other hand, it could also be continuous, with an 
uncountable number of elements, such as the space appropriate to describe 
the continuous range of possible voltage values across a certain capacitor in 
a circuit. 

So far, we have the structure of a sample space R, composed of elements 
mi, whose subsets are denoted as Ai. This is represented in Fig. 3.2. 

Now we are going to restrict our attention to a certain class of sets Ai, a 
broad class called a o-algebra, denoted as 9. In other words, the sets A , ,  A 2 ,  
A 3 ,  . . . , which will be admissible for consideration will be elements of the 
class 9 : Ai E 9. 

A a-algebra 9 is a class of sets Ai, each of which is a subset of i2 (Ai c a), 
such that if Ai is an element of 9 (i.e., if Ai E 9), then: 

(1) Ai* E 9, where Ai* is the complement of Ai, Ai* = R - A .  1 9  

(2) E 9 [and then the empty set E 9 also, due to the preceding (l)], 
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FIG. 3.2 Sample space R. 

(3) if A , ,  A 2 ,  . . . E F, then their union and intersection are also in F: 

u A ~ E F  and 0 A ~ G . F  
i i 

where all possible finite and countably infinite unions and intersections are 
included. 

Whereas R is a collection of points (elementary outcomes, w), F is a collection 
of sets (events Ai), one of which is R itself. 

For the purposes of our applications, we can let the sample space R be the 
set of points in n-dimensional Euclidean space R" and let 9 be the class of 
sets generated by sets of the form (each of which is a subset of R): 

(3-2)  

and their complements, unions, and intersections. The notation in Eq. (3-2) 
requires some explanation. In other words, A is the set of co's that are elements 
of R (vectors in the n-dimensional Euclidean space, and thus, the boldfacing 
of w to denote vector quantity; in the general case, o will not be boldfaced); 
such that (:) o 5 a, where o and a are n-dimensional vectors and a is specified. 
Furthermore, o I a is to be interpreted componentwise: o I a means col I a l ,  
w2 I a2 ,  . . . , w, I a, for the n components wi and a, of o and a, respectively. 
This particular o-algebra is of sufficient interest to have acquired its own name, 
and it is called a Bore1 Jield, denoted as FB. Taking complements, unions, 
and intersections of sets described by (3-2) leads to finite intervals (open, closed, 
half open) and point values along each of the n directions. Thus, a Bore1 field 
is composed of virtually all subsets of Euclidean n-space (R") that might be 
of interest in describing a probability problem associated with R = R". 

a ,  and a ,  be points on the real line, with u ,  < a,. Then let 

A = {o:o 5 a , o E R j  

EXAMPLE 3.2 Consider generation of such sets of interest for R = R' ,  the real line. Let 

A ,  = ( o : w < U , , w E R 1 ;  =(-m,Cr,] 

A , =  j c o : w I a , . o E R 1 )  =(-'x.u,] 
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The complement of A , ,  which is also a member of 9, by the definition of a a-algebra, is 

A , *  = ( -  E , o ~ ] *  = (01, m) 

Then the intersection of A , *  and A ,  is 

A,*  n A ,  = ( a , , % ]  

Thus, we are able to generate any half-open interval, open on the left. 

form 
To generate points. we can look at a countably infinite intersection of half-open sets of the 

BE= ( w : ( h -  ( ~ / K ) ) < c I > <  h )  = ( h -  ( l j K ) . h ]  

to generate 

f i  BK = [the point, OJ = hi 

Note that we needed an infinite, not just finite, intersection to generate the point, and thus we 
needed to assure that such countable intersections yield sets in the u-algebra when we first de- 
fined a-algebra. 

With a point h and a set (h ,c ] ,  we can generate the closed set [b,c] by a simple union. Com- 
plementing and intersecting then yields open and half-open (open on the right) sets. 

Thus, as claimed, the Bore1 field on the real line includes’essentially all sets of possible 
interest. 

K =  I 

Now define the probability function (or probability measure) P ( . )  to be a 
real scalar-valued function defined on 9 that assigns a value, P(A),  to each A 
which is a member of 9 ( A  E 9) such that: 

(1) P ( A )  2 0 for all A E 9, 
(2) P(Q)  = 1, 
(3) if A A, ,  . . . are elements of 9 and are disjoint, or mutually exclusive: 

i.e., if 

A;  n A j  = 0 for all i # j  

then 
N 

P (J Ai  = c P(A,) 
( i I 1  ) i = l  

for all finite and countably infinite N .  

Such a definition for the function to determine the probability of the events 
A E 9 does correspond to one’s intuition of probability gained through the 
concept of relative frequency of occurrence. Each set of interest (i.e., each 
A E 9) is assigned a probability value between 0 and 1 ( P  is a mapping from 9 
into [0, l]), and the probability of the sure event is one. Moreover, if A ,  is a 
subset of A , ,  then the probability of set A ,  is at least as great as the probability 
of A , ,  as expected. That this is a direct consequence of the axiomatic approach 
can be seen from Fig. 3.3. The set A ,  can be decomposed into two disjoint sets, 
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FIG. 3.3 A ,  c A ,  implies P ( A , )  < P ( A , ) .  

A ,  and A , *  n A 2 .  Then according to part (3) of the definition of a probability 
function, P ( A , )  = P ( A , )  +- P ( A , *  n A 2 ) .  From part (l), P ( A , *  n A , )  2 0, and 
so P ( A , )  2 P ( A , )  as desired. 

Now we have what is called a probubilitjs space, defined by the triplet (R, 4, 
P )  of the sample space, the underlying o-algebra, and the probability function, all 
defined axiomatically as in the preceding. This entity serves as the basis of 
rigorously developed probability theory. Besides yielding results consistent with 
our intuitions about probability, this approach allows us to probe the essence 
ofa problem and to determine whether or not it is posed properly. Subsequently, 
this rigor will also allow us to ensure that our definition of a random variable 
for a particular problem is in fact an appropriate choice for that application. 

EXAMPLE 3.3 Let us consider the toss of a die to investigate a probability problem in the 
context of a rigorously defined probability space. Suppose that, for some reason, you are interested 
only in the occurrence of one of two events, 

A ,  = {a 1 or a 2 was thrown: = { l  or 2) and A ,  = {a 3 was thrown) = { 3 )  

First ofall, the sample space Q is made up of the six possible outcomes: { l ) ,  j2j. (31, (43, f S ] ,  and 
j 6 j .  
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One possible means of generating a a-algebra would be to let 9, be composed of 0, R = 

{1,2.3,4,5, or 6j, the six elementary outcomes (w‘s), all possible unions of the outcomes two at 
a time, all possible unions three at a time, and so forth. A probability function would then have to 
assign a probability value to all such sets in 9,. However, if one is only interested in A ,  and A ,  
just defined, there is no need to be able to assign probabilities to  such sets as ( 3  or 4 or 5).  

Another means of generating an appropriate o-algebra, a “minimal” a-algebra for this par- 
ticular example, would be to let 9, be composed of 0, R, A , ,  A 2 ,  and all possible complements, 
unions, and intersections thereof. Thus, 9, is made up of 0, R, ( 1  or 2 } ,  131, { 1  or 2;. = ( 3  or 
4 or 5 or 61, (3}* = ( I  or 2 or 4 or 5 or 6 ) ,  ( 1  or 2j LJ ( 3 )  = (1 or 2 or 3}, ( 1  or 2 or 3)* = (4 or 
5 or 6 ) .  Conceptually, these are the only sets for which a probability must be defined in order 
to determine solutions to any probability questions posed in terms of events A ,  and A , .  Experi- 
ments could be conducted to assign probabilities to onlj. these sets through the idea of relative 
frequency of occurrence, and the data generated would be complete. 

Now let P ( A , )  = P({l or 2 j )  = P ,  and P ( A , )  = P ( ( 3 ) )  = P,. Then the probability function 
P ( . )  would assign probabilities to all of the elements of S as follows: 

P ( 0 )  = 0 

P(Q)  = 1 

P(A1) = Pl 

P ( A , )  = P 2  

P ( A , * )  = P ( l 3  o r 4 o r  5 or 61)= 1 - P I  

P ( A 2 * )  = P( ( 1  or 2 or 4 or 5 or 6 ; )  = 1 - P ,  

P ( A ,  u A 2 ) = P ( { l o r 2 o r 3 ) ) = P 1  + P ,  

P({A1 u A , } * )  = P(  (4 or 5 or 6j.) = 1 - P ,  - P ,  

P(A,*)isestablished bythefactthat A ,  and A,*aredisjointsetswhoseunionisQ,soP(A, LJ A , * ) =  
1 = P ( A J  + P ( A , * )  = P ,  + P ( A , * ) ;  similarly for P ( A , * )  and P ( ( A ,  u A z ) * ) .  Since A ,  and A ,  are 
disjoint, P ( A l  u A, )  = P ( A , )  + P ( A , )  = P ,  + P,. These are established by the axiomatic defini- 
tions, and would be verifiable by experimental observation (the theory is just abstractly modeling 
empirical results). 

Once a probability space is properly defined for a given problem, the proba- 
bility of all events of interest can be established, and theoretically we could be 
finished. The sample space R defines the possible outcomes of the experiment, 
9 is the collection of events (sets) of interest, and P assigns a probability to 
every one of these events. However, we can deal with numerical representations 
of sets in a space more readily than with the abstract subsets themselves. 
Consequently, for quantitative analysis, we need a mapping from the sample 
space !2 to the real numbers. It is for this reason that we introduce the concept 
of a random variable. 

A scalar random variable x( - )  is a real-valued point ,function which assigns a 
real scalar value to each point o in R, denoted as X(Q) = .Y, such that every set 
A c f2 of the form 

(3-3) 

for 5 any value on the real line ( 4  E R’), is an element of the o-algebra .S (i.e., 
A E 9). The name “random variable” is perhaps unfortunate in that it does not 
seem to imply the fact that we are talking about a function, as opposed to values 
the function can assume. In fact, x( .) is a function, or mapping, from R into R1. 

The notation used warrants discussion. Random variables will be set in 
sans serif type, x ( . )  or simply x, to emphasize the fact that they are functions of 
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point values o from the sample space R. The value that this function assumes for 
a particular LO, a realizution of the random variable, will be the corresponding 
italicized letter. The corresponding Greek symbol will be used to denote a given 
vector or dummy variable (as, for integration), in the space of realizations. Thus, 
the notation { w : x ( o )  L (1 is meant to read, “theset of o in R such that the 
values assumed by the random variable function x( .), for those w as its argument, 
x(m) = x, are less than or equal to the given number ( on the real line.” 

A oector random rariable or random ziector x(  .) is just the generalization of the 
random variable concept to the vector case: a real-valued point function which 
assigns a real vector value to each point w in R, denoted as x(w),  such that every 
set A of the form 

A = { w : x ( w )  I t )  (3-4) 

for any g E R“, is an element of 9. Although these definitions might at first 
seem contorted, there is good reason for their form. Scalar random variables 
are specifically mappings from R into R’ such that inverse images of half-open 
intervals of the form ( -  m, c]  in R’ are events in Q that belong to 9. That is to 
say, they are events in R for which probabilities have been defined through 
the probability function P. Vcctor random variables are simply extensions of the 
same idea-mappings from R into R” such that inverse images of sets of the 
form (x(o)  E R”:  - GO < xi(w) I ti; i = 1,2, . . . , nI\ are events in !2 to which 
probabilities have been ascribed. (From a measure theoretic point of view, this 
just says that random variables are measurable functions.) 

EXAMPLE 3.4 Perhaps the best way to understand the concept of a random variable is to 
consider a function that is not a random variable for a given problem. Let R be the interval (0, lo] on 
the real line, and suppose we are interested in distinguishing whether w takes on a value in the 
interval I ,  = (0,5] or in I ,  = (5,  lo]. The minimal CT-algebra f is made up of all possible comple- 
ments, unions, and intersections of these two intervals, so that 

F = (0, R = (0,101, I ,  = (0,5], I ,  = (5, lo]) 

Y 

I t  

10 - 

5 10 

FIG. 3.4 Function that is not a random variable 
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The value of w can be anywhere along the line segment (0, lo], and we just want to tell in which 
half of the segment it lies. 

Now we want to establish an appropriate form for the function x to assume. Try defining x ( . )  
such that x(w) = w, as in Fig. 3.4. This is not a suitable choice. Choose, for example, [ = 3, as  shown. 
Then the set A defined by 

A = {w:x(u) 5 3) = (0,3] 

is not an element of the class 3, By definition, a random variable x must be defined such that all 
sets of the form 

A = {w:x(w) I [] 

are in F, for any choice of ( E R' .  
For this example, we must define x as assuming a constant value over (0,5] and a (different) 

constant over (5, lo]. One such random variable is shown in Fig. 3.5. Note for instance, that for this 
definition of x, 

A ,  = {o:x(w) 5 3 )  = 0; A ,  = {o:x(w) 5 6) = (0 ,5];  A ,  = {w:x (w)  5 2 0 )  = (0,101 

are all elements of ,F. 

Y 

0 1,)  

5 10 

FIG. 3.5 Random variable definition. x(w)  = 5 if w E I ,  and x(w) = 10 if  (I) E I, 

The sets I ,  and I, in the preceding example were irreducible elements of the 
o-algebra 9, and a proper definition of a random variable required the function 
x to assume constant values over these sets. To generalize this concept, we call 
the set (event) A c Q an "atom" of the a-algebra 4 if A E F and no subset of A 
is an element of 9 other than A itself and the null set 0. A random variable 
can only assume a single value on an atom of the underlying a-algebra 9. 

Thus, we have the relationships depicted in Fig. 3.6. '4 random variable is a 
mapping from the fundamental sample space R into Euclidean n-space R". Each 
atom in R is mapped into a single vector in R". Conversely, the inverse image of 
sets in R" of the form 

Ai = (x(w) E R": - oj < XJW) I ii; i = 1,2, . . . , n >  

are events in R ( A ,  c R) for which probabiIities have been defined ( A i  E F). 
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R 

FIG. 3.6 The random variable mapping. 

For the problems we will address in the sequel, the sample space Q is R" 
itself and the underlying o-algebra is the Bore1 field FB generated by sets of 
the form Ai = { o : w  I a , o  E Q ) .  An appropriate random variable definition 
for this case is simply the identity mapping suggested in Example 3.4: 

x(o) = 0 (3-5) 

Note that an atom in R = R" is just a single point in the space (a single vector), 
and that the random variable just mentioned does map each such atom into a 
single vector in R". Thus, each realization x(w)  is an n-dimensional vector whose 
components can take on any value in ( -  co, m). 

By the definition of a random variable x, all sets of the form 

A = { w : x ( w )  I <) = {w:x,(w) I 5 1 , X 2 ( 0 )  5 4 2 , .  . . ,x,(o) I t,l) 
have probabilities: probabilities are defined for them because A c Q and 
A E 9, and P( .) assigns probabilities to all such sets A.  Therefore, the proba- 
bility distribution ,function F,( .  ), a real scalar-valued function defined by 

(3-6a) F J T )  = P ( ( w : x ( o )  I T ) )  
= " P ( x  I <)" (3-6b) 

= c'Po(, I tl, x2 I 5 2 ,  . . . , X" I t")" (3-6~) 

always exists. We have defined the various sets and functions to this point so as 
to assure that such a function exists. The quotation marks in (3-6) are meant to 
emphasize that such notation, very typical in probability theory literature, 
should be interpreted in terms of the probability of a set of 0 ' s  in the original 
sample space R. Sometimes the notation F(<) is used rather than F,(<), if the 
random variable concerned is obvious from context. Moreover, since 

FA<) = F , , . X 2  . _ _ . .  X , , ( 5 1 7 t 2 ? .  ' ' > 5, )  (3-7) 

this is sometimes called the joint probability distribution function ofx,, x2, . . . , 
and x,. 
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FIG. 3.7 Probability distribution function. 

EXAMPLE 3.5 Consider the die-toss experiment introduced in Example 3.3, in which we were 
interested only in the sets A ,  = { 1 or 2) and A ,  = i3) .  Define a random variable x through 

0 if w $ A l  or A ,  

2 if ~ E A ,  

As in Example 3.3, let P ( A , )  = P ,  and P ( A , )  = P ,  (4 and i, respectively. for a fair die). 
Now we will establish the probability distribution function 

F (5) = P ( { w : x ( w )  I t )  
For < 0, P ( { o : x ( w )  I 5 )  = P ( 0 )  = 0. 
For 0 5 5 < 1. P ( { u ) : x ( w )  5 ( j )  = P ( { A ,  u A , ) * )  = 1 - P ,  - P2 = 4. 
For 1 I 5 < 2, P ( ( w : x ( w )  I (j) = P ( A , * )  = 1 - P ,  = 5. 
For 2 I t < co, P ( { w : x ( w )  I t}) = P(Q)  = 1. 
Plotting F , ( t )  versus ( yields the graphical depiction of the probability distribution function 

in Fig. 3.7. W 

Figure 3.8 summarizes the concepts that have been discussed. We started 
with an abstract sample space R, composed of elements (points) co that were the 
elementary outcomes of an experiment. There were also certain subsets A of R 
( A  c R) of interest, called events, and specifically these sets were from a class 
9 ( A  E 9) called a a-algebra. For any A E 9, we could evaluate the set function 
P ( . ) ,  a mapping from 9 into [0,1], to generate probabilities as P(A) .  The 
triplet (R, F, P )  then defined what was termed a probability space. 

We also defined a point ,jhnction x ( . )  called a random variable, a mapping 
from R into R", which could be evaluated for each 0) E R to yield realizations 
x(w). The probabilities established as P ( A )  and the realizations x(w) of the 
random variable x are then related by the probability distribution function 
F,(.), a mapping from R" into [0,1], that yields F,(r) as the probability of the 
set of w E R such that x(co) I g. 
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Probabilities 
in [0,1] 

Evaluations 
(realizations) of 

random variables 
in R" 

Sample space 0 
11) E n 

A c and A E .P 

FIG. 3.8 Probability and random variables. 

3.3 PROBABILITY DISTRIBUTIONS AND DENSITIES 

As discussed in the previous section, the probability distribution function 
is a basic entity associated with any random variable that allows us to generate 
probabilities of sets of interest. We are assured of its existence. On the other 
hand, we are not assured of the existence of its derivative everywhere, but if 
it does exist, it is often easier to use and more revealing in terms of graphical 
interpretations. 

Given a vector random variable x, 
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the probability distribution function F, can be evaluated as a scalar function 
ofthedummyvector{= [t1,(2,...,5,]T: 

(3-9a) r r  
F x ( < ) p  F ~ l . ~ 2  . . . . .  x , , ( i i r 4 2 , . . . . t n )  

(3-9b) a 
= fY(w:x,(w) I t I , X , ( W )  I tz,.:. .x,(w) I tnj) 

Note again that we specifically avoid the notation F,(x), as is often used, to 
prevent giving the impression that F, is in any way a function of particular 
realizations x ofx. As can be seen from Eq. (3-9), F, is a monotonic nondecreas- 
ing function of any component t i  of the vector 5: for instance, the probability 
of the set of w such that xi(w) I 2 must be at least as large as the probability 
of the set of w such that xi(o) < 1. 

Other properties of this function that become apparent from its definition 
include : 

F x ( a 0 ,  m,. . . , m) = P ( ( o : x ~ ( w )  I w,. . . , x ~ ( w )  I ~ j )  = 1 (3-10) 

F, ( [ , , .  . . , - m,. . . , tn) = P { w : .  . . ,!$(a) I - co,. . .), = 0 (3-11) 

If all of its arguments are co, the value F ,  assumes is one; if any single argument 
is - co, it takes on the value zero (these statements are more properly expressed 
in the limit as certain arguments tend to + m or - m). If we are interested only 
in probabilities concerning the first k of the n random variables, and x k +  . . . , x ,  
can take on any values, then : 

FXi.....X,(gl?.'., t k ) =  P ( { w : x , ( w ) <  5 1 9 . .  . , x k ( c o ) <  c k ) )  

.= P({o:x1(w)  51, .  . . ,xk(w) I (k. 

x k + l ( o j )  5 w,.  . . , X n ( Q )  5 a;) 
- -Fx,,...,x, (51....,tk,'^X,...,^X) (3-12) 

Equation (3-12) embodies the concept of a "marginal" probability distribution 
of  x I , x 2 ,  . . . , x k .  Note that the first k components were chosen only so Eq. 
(3-12) could be written readily; any argument of co in F,(<) yields the corre- 
sponding result [the variables can be reordered so there is no loss of generality 
in (3-12)]. 

The probability distribution function can be used to generate probabilities 
of other sets of interest as well. For instance, in the scalar case, the probability 
of sets of w such that x assumes a value in a given half-open interval (tl, t,] 
can be readily established. The set (w:x (w)  i t2) can be decomposed into the 
union of two disjoint sets: 

{w:x (w)  I i",} = {w:x (w)  I tl] u {w:X(w)E ( t I , t 2 1 ]  

P({w:x(w)  5 5 2 1 )  = P ( { w : x ( o )  I 5 1 ) )  + P({w:x(w)  E ( t l 3 C 2 1 ) )  

Because the sets on the right are disjoint, we have 
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so we can write 

To generate probabilities of open or closed sets, we need to evaluate proba- 
bilities that x assumes a single value. Ifthe distribution function is discontinuous 
at some to, then there is a finite probability that x ( - )  assumes that value. In 
(3-131, let C 2  = <,, and = to - E, and take the limit as E + 0 to yield 

P ( ( w : x ( w )  = t o ] )  = F X ( 5 , )  - F x ( t o - )  (3-14) 

i.e., the probability is equal to the magnitude of the jump discontinuity. We 
have observed such discontinuities in Example 3.5. Thus, for instance, since 
we have disjoint sets, 

P ( { w : x ( w k  [ t l , t 2 1 ) )  = P ( { w : x ( w )  = C l ) )  + P ( ( w : X ( w ) E  ( t 1 ? < 2 ] ) )  

= [ F X ( 5 1 )  - F X ( 5 1 - 1 1  + [ F x ( t 2 )  - F X ( C J 1  
= F x ( t 2 )  - F X ( 5 1 - 1  (3-15) 

We will discuss the generation of probabilities for general sets of interest after 
we introduce the concept of a probability density function. 

If a scalar-valued function .f,( . )  exists such that 

or, in a simpler notation to represent the same expression, 

holds for all values of < = [t,, t 2 , .  . . , ("IT, then this functionfx is the probability 
density function of x. Unlike the probability distribution function, we are not 
always assured of the existence of f,. If F, is absolutely continuous, then the 
density function does exist (absolute continuity can be defined rigorously 
through measure theory, but basically F, is absolutely continuous if the number 
of points where it is not differentiable is countable). If such a density function 
exists, then x is termed a continuous random variable. 

By the fundamental theorem of calculus, we can use (3-16) to deduce 

(3-17) 

This relationship and (3-16), combined with properties of F,, yield some 
properties of f x .  Since F, is monotonic nondecreasing, 

. f , ( S )  2 0 for all C (3-18) 
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In view of (3-lo), it is a property of a density function that 

(3-19) 

If we are interested only in the first k of the n components of x, and x k +  1, . . . , x, 
can take on any values, then we can establish the marginal density function by 
integrating out the dependence upon the last ( k  - n )  components: 

.fx ,,.. ,.xk(tl, * .  . r t k )  = J:m . . . JTx I,,,. . x , j t l q .  . . . .  . ? t n ) d t k + l  ' '  dtn 

(3-20) 

as can be seen from (3-12). With F ,  continuous, (3-14) yields 

P({w:x(o>)  = to}) = 0 (3-21) 

so that, using (3-13) and (3-15), 

with extensions to the vector case. 

EXAMPLE 3.6 Two forms of random variables useful for modeling empirically observed 
phenomena are the uniformly and Gaussian (or normally) distributed random variables. In the 
scalar case, their probability distribution and density functions can be plotted as in Fig. 3.9. 

The uniformly distributed random variable models a situation in which a quantity of interest 
can take on any value in a specified range (limited by physical considerations as gimbal stops on a 
servo motor, by definition of units as angular orientation being described in the range [0,2n), etc.) 
and in which there is no reason to believe certain ranges of values to be more probable than others. 
The Gaussian, or normal, random variable serves as a good model for many observed phenomena 
and will be discussed at length in Section 3.9. 

Note that, analogous to a mass density function, the probability density function indicates where 
the probability (mass) is concentrated. It is partly this graphic portrayal of probable ranges of values 
that makes the density function more attractive to use than the distribution function. 

Now we want to obtain the probability of general sets of interest associated 
with vector random variables. In the scalar case, we can see from (3-22) that 
the probability of the set of w such that x(o)  lies in the infinitesimal interval 
from t1 to (tl + d t , )  is just 

P({ , :x (w) ,  [51,51 +&,I ; )  =f,Cs',)dt1 (3-23a) 

W 

This generalizes to the n-dimensional case as 

P ( ( w : ~ ~ ( o ) ~ [ t ~ , t ~ + d 4 ~ ] :  i =  1,2 ,..., n ) )  =.f;(tl , . . . ,  t,,)dtl . . . d t ,  (3-23b) 

Thus, the Probability that the random variable takes on a value within an 
infinitesimal hypercube is just the probability (mass) density evaluated at the 
location of the hypercube (it is constant over the infinitesimal volume) multiplied 
by the volume of the hypercube, [ d t , .  . . d 5 J .  Then any set A in Rn can be gen- 
erated from such hypercubes, and so the probability that x(w)  = x lies in 
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FIG. 3.9 (a)  Uniform and (b)  Gaus- 
sian (normal) distributions and densities. 
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the set A is 

(3-24a) 
n R 

In this manner, the probability associated with sets of interest can be generated 
through ordinary (Riemann) integration with the probability density function. 

To think of this geometrically, consider Fig. 3.10. In case (a), x is scalar and 
f,(t) is a simple curve plotted against 5. Sets A of interest are intervals along the 
abscissa (possibly disjoint), and P((w:x(w)  E A ) )  can be determined as the 
area under the curve delimited by A. If x is two dimensional, as in case (b), 
fX(t1,t2) is a surface over the t1-t2 plane; sets A are areas in the t1-5, plane, 
and P ( ( w : x ( o )  E A ) )  can be calculated as the volume under the surfacefx(tl, t2) 
with A as a cross section. 

If we want to calculate the probability of genera1 sets without use of the 
density function (as, for cases in which F, has discontinuities so .fx cannot be 

FIG. 3.10 Probability of sets. (a) Scalar-valued x. (b) Two-dimensional vector-valued x. 
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defined everywhere), the preceding ideas can be extended through 
n 

P ( { u : x ( w )  E A ) )  = J,~F,(c) (3-25) 

Meaning is given to this expression through measure theory : we need to define 
this Lebesgue-Stieltjes integral of F, over A .  Iff, exists, then (3-24) and (3-25) 
yield the same result, with (3-24) being more attractive because it is in terms 
of ordinary Riemann integration. For our applications, we will be able to 
assume the existence of fx. We will therefore be able to avoid measure theory 
considerations, but such an extension can be made. 

Let us reflect on what has been accomplished through the random variable 
mapping x. Recall Fig. 3.6: x maps C2 into R" such that each atom (each ir- 
reducible set) in C2 maps into a single vector in R". Thus, the sets of interest in 
R" will be elements of the Borel field FB associated with R". For all sets A c R" 
and A E F,, we can define probabilities through 

(3-26) 

where P,( .) is the probability function (Borel measure) associated with R", 
or, if the probability density function exists, as 

P,'(A) = JA fx(<)d5 = PA4 (3-27) 

Equation (3-24) relates that P, (A  c R") defined in (3-26) is equal to P ( { o : x ( o )  E 

A ]  c R) for all sets A of interest. We now have a new probability space, (R", 
F,, P,), generated by the mapping x from the original probability space: 

(a, 9, P )  %'(R", FE, P,) (3-28) 

Quite often, one can describe a problem conveniently in terms of the prob- 
ability space (R" ,FB,  P,), neglecting the original probability space. For our 
applications, x(.)  is the identity mapping, so the issue is rather academic. 
However, there are many problem areas in which recollection of the funda- 
mental probability space and associated sets of interest yields clear insights 
into subtle and troublesome considerations. 

3.4 CONDITIONAL PROBABILITY AND DENSITIES 

Suppose we have two random variables x and y mapping from a sample 
space R into R" and R", respectively. Further suppose that x can assume only 
discrete values xi and similarly y can take only discrete values yj, with i a n d j  
integers (a finite or countably infinite number). If we knew that y has assumed 
a particular realization yj, that knowledge would, in general, affect the deter- 
mination of the probability that x ( w )  = xi for a given value xi. Figure 3.11 
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FIG. 3.11 Conditional probability via sets in a. The crosshatching is ( w : x ( ( o )  = x i  and 
Y(W) = Yjl. 

depicts the various sets of interest in the sample space R, namely {w:x (w)  = xi> 
and {w:y(w) = y j> .  If we did not know the value y assumes, then we would 
simply evaluate P ( { u : x ( w )  = xi}) using the probability measure defined for 
sets A, A c R and A E 9. However, if we know that y(w) = y j ,  we can restrict 
our attention to {w:y(w) = yj> c R instead of considering all R. Within that 
set of w, we want to know the probability of the set of w such that x(w) = xi 
as well: the probability of { w : x ( w )  = x j  and y(o) = y j } ,  the cross hatched set 
in Fig. 3.11, relative to the set {o:y(w) = y j ) .  Thus, the conditional probability 
that x(o) = xi, conditioned on the fact that y(w) = yj, can be defined as 

(3-29a) 
P(x(w) = xi and y(w) = y j )  

P(x(w) = xi ly(w) = y j )  = 
P ( Y ( ~ )  = Y j )  

(3-29b) 
- P({w:x(w)  = xi and y(w) = y j } )  
- 

P({ 0 : Y (w) = y j }  ) 
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Note that this conditional probability need only be defined for sets A c 
{w:y(w) = yj} c R, A E 9' c 9 (9' can be a "coarser" a-algebra than 9, 
consisting of fewer elements). 

To evaluate such a conditional probability numerically, first one could 
calculate the numerator in (3-29) as the ratio of the number of trials in which 
both events occur to the total number of trials. Then the denominator could 
be generated as the ratio of trials in which y(w) = yj to the total number of 
trials. Note also that if we summed over all xi's, we would obtain a probability 
of one for any given yj. 

However, this definition of conditional probability is valid only if P(y(w) = 
yj) > 0. In our applications, we will be considering continuous random vari- 
ables y, for which P ( y ( o )  = yj) = 0, so the previous definition breaks down. 
Measure theory can be used to develop the concept of conditional probabilities 
rigorously and in more generality than we will require (we will assume the 
existence of appropriate densities). More will be said about this measure 
theoretic approach in Section 3.7, once the idea of expectation has been intro- 
duced. For now, we will develop the concept of a conditional density function, 
which will be of basic importance for estimation problems addressed in the 
sequel. 

Let us first provide an interpretation of fxIy(g I yo), the conditional density 
of x as a function of g, conditioned on knowledge that the random variable y 
has assumed the realization yo:y(w) = yo. Let x map R into R" and y map R 
into R", and let A c R" and B c R" be point sets of interest in the corre- 
sponding spaces, as in Fig. 3.12a. The conditional probability that x (a) lies in 
A, conditioned on the fact that y(o) E B, is 

(3-30) 
P(x(w) E A and y(w) E B) 

P(Y(4 E B)  
P(x(o) E A I Y(O) E B) = 

provided that P(y(w) E B) is nonzero. The probabilities on the right hand side 
of (3-30) can be evaluated using the probability function P associated with 
(Q, 8, P), or with the functions P;, and P,' associated with (R"", FBB, PLY) and 
(R", FB, P,') as described in (3-27). Thus, lettingf,,,(., .) denote the joint prob- 
ability density of x and y, 

(3-3 1 b) 

From (3-31b) it can be seen that the conditional density for x, conditioned on 
the fact that y(o) E B, would be 

(3-32) 
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FIG. 3.12 (a)Sets 

I 

I 
I 

I 
I Center of box 

- Y2 

!'I 

of interest in R" and R". (b) A particular set B c R'". yo is center 

21 

!'I 

of interest in R" and R". (b) A particular set B c R'". yo is center of box. 

Now consider a particular set B c R", namely a hypercube centered at yo 
of dimension 21 on each side, as shown in Fig. 3.12b: 

B = {Y E.Rm: ly l  - Yo11 I 1, I Y ,  -  YO,^ 5 1, * * * , l ~ m  - Yoml 5 r }  (3-33) 

We can write the density functions ,fr,y(<,y) and &(p) in terms of their evalua- 
tions at the given value of yo as 

f X , y ( C . Y )  =fX,y (&Yo)  + % , Y ( L Y  - Yo) (3-34a) 

&(PI =&(Yo) + 6&(P - Yo) (3-34b) 

Thus, (3-32) can be written as 
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Now let V, be the “volume” of the hypercube in m dimensions, (21)“, to write 

- - . f , ,y (c -yO)  + ( l / v B ) J B a ! , y ( < * y  - Y O ) &  (3-3q 
.&(Yo) + ( l / v B ) J B q J P  - Yo)dP 

We assume that A.y and fy are continuous, so that the mean value theorem can 
be used to write 

sB sf, dp = vB 6f,(b,) 

for b, and b, vectors somewhere in the hypercube B. Thus, 

(3-37b) 

(3-38) 

Now consider reducing the hypercube down to the point yo by letting 1 + 0. 
This causes bl -+ yo, b2 -+ yo, S f , ,  (<, b,) + 0, and (Sfy(b,) + 0, so that 

defines what is meant by f,,,(<ly0), sometimes denoted as f,(<Iy = yo) .  This 
development is not the most general possible, but is sufficient for the con- 
tinuous random variable problems to be considered later. 

A fundamental result, which some use as the basic definition of a con- 
ditional probability density, is: 

(3-40) 

The denominator in (3-40) can be interpreted as a term to normalize the ex- 
pression, so that the total “area under the density” is unity: 

(3-41) 

A graphical representation of (3-40) is useful for insight. Figure 3.13 portrays 
the joint density function f x , y  (5, p )  as a surface above the 5-p plane. To generate 
fxlv(( [yo)  from this surface, a plane is passed through the surface at p = y o ,  
orthogonal to the p axis, resulting in the shaded region being .fx,y (5, yo). If that 
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FIG. 3.13 Generation of conditional density. 

function is divided by the number fy( yo), the resulting function is normalized : 
its height is adjusted so that the shaded region is of area one. Note that jY( y o )  
can be obtained from integrating .fx.y((,p) over all t, and evaluating the re- 
sulting function at p = 310. 

Eventually, we will want to consider the problem of estimating the value of a 
state vector x based upon a set of measurements z1 = zl, z2 = z2, . . . , zN = zN. 
To accomplish this objective, we will propagate the conditional density 
, f x l z l .  z 2 . .  . . ,zN(tlz1,z2, . . . ,zN) of the state x (modeled as a random variable), 
conditioned on knowledge of the entire set of measurements. This density 
embodies all of the information needed for estimation purposes. 

Equation (3-40) is one form of Bajles’ rule. Another useful form of this 
rule is 

(3-42) 

Through this expression, one can readily generate the conditional density 
fxly(g I p )  if it is possible to write Alx(p I g) and the unconditional densities for 
x and y. This will be exploited to derive f , , , , ,  z 2 . .  . . JClz1, z2, . . . , zN)  for the 
estimation problem as just described. The denominator in Eq. (3-42) can be 
expanded to yield yet another useful form of Bayes’ rule: 

Note that the integrand in the denominator is of the same form as the numerator. 
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EXAMPLE 3.7 Consider two scalar random variables x and y, described through the joint 
density function 

, L . ~ ( C ~  P I =  ( ~ e x p { - 2 [ t  - I]' - 2[p - 21' + 2J5[t - ~ I [ P  - 211 

The conditional probability density fx lV ( (Jp)  can be generated from (3-40) once fy(p) is established 
through the concept of marginal densities: 

1 
. f ; (p)  = J:x , ~ , ~ ( t .  p ) d t  = -expi - + [ p  - 21') 

& 
Then, (3-40) yields, after some algebraic reduction, 

f,, (5JP)  = (l/x)exp{-2[5 - (Jj/2)P + Jr - 112) 
This is the density function for x as a function of c, given that y has assumed some given realization p :  
given a particular p ,  the density is completely specified. 

Through conditional probabilities and densities, we are specifying inter- 
relationships among random variables. The two extremes of such relationships 
are independence and functional dependence, to be discussed next. 

Consider two random variables, x mapping Q into R" and y mapping Q 
into R", and two admissible events A c R" and B c R". Then x and y are 
independent if 

P({w:x (o )  E A and y(o) E B))  = P ( { o : x ( o )  E A ) ) P ( ( o : y ( w )  E B})  (3-44) 

for all A and B. This is a fundamental definition, in terms of sets in the sample 
space R. To relate it to distribution functions, let A and B be chosen as sets 
of a particular form: 

x2 I t 2 , .  . . , x, I tn} (3-45a) A = {x:x = x(o) I gj = {x:x, s 

B = (y:y = y(0) 5 p )  (3-45b) 

Then, by the definition of the appropriate distribution functions, 

P ( { o : x ( w )  E A and Y(W) E B } )  = Fx.y(t ,~)  (3-46a) 

P ( ( o : x ( w )  E A } )  = F x ( t )  

P ( { w : y ( 0 )  E B)) = F y ( d  

(3-46b) 

(3-46~) 

for this particular choice of A and B. Thus, if x and y are independent, then 

F X , , ( t ,  P )  = FX(t)F,(P) (3-47) 

for all 4 and p. If the distribution functions in (3-47) all have well-defined 
derivatives, one can conclude that, if x and y are independent, then 

(3-48) 
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Another, more restrictive, approach is to define random vectors x and y to 
be independent if their joint density . f , , , (< ,p )  can be equated to the product 
of the separate marginal densities fx(c) and fy(p), as in (3-48). However, such 
a “definition” is valid only if the densities involved exist, whereas the concept 
of independence does not inherently require such .existence. 

When using the fundamental sample space and its subsets to think of inde- 
pendence, confusion sometimes arises between independent events and mutually 
exclusive events. If the occurrence of event A implies that B did not occur 
and vice versa, i.e., if A n B = a, then A and B are mutually exclusive. Said 
another way, if P ( A )  = 1 implies P(B)  = 0 and P(B) = 1 implies P ( A )  = 0, then 
A and B are mutually exclusive. However, if knowledge of P ( A )  gives you no 
information about P(B) and vice versa, i.e., if P ( A  and B) = P(A)P(B),  then 
A and B are independent events. 

If x and y are independent, then (3-48) and Bayes’ rule together yield 
. f x , y ( T  I P )  as 

i.e., the conditional density for x, conditioned on knowledge that y has as- 
sumed a realization p, is equal to the unconditional density for x. This makes 
sense conceptually: if x and y are to be independent, then knowledge of the 
value of y(o) should give no information about the value of x(o). 

In practice, physical arguments are often presented to establish the inde- 
pendence of two random variables. The validity of such arguments can be 
established through empirical testing as well. For example, if x describes 
the outcome of one toss of a coin, and y models the outcome of another toss of a 
coin, intuition dictates that there is no causal relationship between x and y- 
that the outcome of one toss does not affect the other toss. Experimental testing 
can substantiate (or contradict) such intuition. In other cases, uncertainty in the 
value of two quantities can be ascribed to physically unrelated sources. For 
instance, consider a sampled signal from an aircraft inertial system, modeled as a 
true position indication corrupted by a noise random variable nINs, and a 
sample of ground-based radar data, modeled similarly as a true position indica- 
tion corrupted by noise nradar. The sources of uncertainty modeled through 
nlNS (accelerometer bias, gyro drift, aircraft bending, etc.) are physically un- 
related to the effects modeled by nradar (electronic noise, atmospheric effects, 
etc.), and so these random variables are assumed to be independent. 

The other extreme case of random variable interrelationship is functional 
dependence. If x is a deterministic function of y, x = q5(y), then the conditional 
probability density function f x I y ( g  I p)  is an impulse: 

L , y ( c I P )  = 43 - q5(P)I = b[q5(P) - el (3-50) 
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where the delta function 6( . )  is defined as the function which satisfies the 
conditions: 

j:m . . . J:m 6(C)dt1 . . . d t ,  = 1 ; S({) = 0 for all C # 0 (3-51) 

It assumes a value of zero everywhere in R" except where its argument is 0, and 
its integrated value over all R" is unity. Equation (3-50) asserts that the con- 
ditional density function collapses down to an impulse function along the graph 
{ = +(p) .  If x = 4(y) and y(w) = p, then x(o) = 4[y(w)] = + ( p )  with no un- 
certainty: all of the probability is concentrated at C = 4 ( p ) ,  rather than being 
spread over a range of { values. In general, we will want to avoid impulse density 
functions, employing discontinuous distribution functions in such cases instead. 
However, the geometric insight of a density function collapsing down along 
certain loci of { values will be of practical use in certain applications, such as a 
system model outputting a number of "perfect" measurements. 

3.5 FUNCTIONS OF RANDOM VARIABLES 

The preceding section introduced the concept of functions of random vari- 
ables, and this warrants some further attention. Let x be a vector random 
variable that maps the sample space S2 into n-dimensional Euclidean space R". 
Now consider a continuous mapping O ( . )  from R" into R", thus generating a 
vector y E R" from a vector x E R", as depicted in Fig. 3.14. Actually, O( .) can 
be out of a larger class of functions than the continuous functions, called Baire 
functions (Bore1 measurable functions), composed of continuous functions and 
limits of continuous functions, but this generality will not be needed in our 
applications. 

Now define the rn-vector-valued function y as the composite mapping O[x( .)I. 
Then y is itself a random variable, denoted as y:  

y ( . ) =  e[xc.)i 

FIG. 3.14 Function of a random variable. 



3.5 FUNCTIONS OF RANDOM VARIABLES 85 

or 

~ l ( ' )  = @ 1 [ ~ 1 ( . ) > ~ 2 ( ' ) > .  . . , x n ( . ) ]  

(3-52b) 

Yrn( . )  = O r n [ x I ( . ) , x 2 ( . ) , .  . . ,xn(.)] 

Stated simply, every Baire function of a random variable is a random variable. 
Recall Eq. (3-28): x( - )  generates a new probability space (R",FB,Px) from 

the original probability space ( Q , F , P ) ,  with P, defined in (3-26) or (3-27). If 
O ( . )  is a Baire function (Borel measurable) on R", then for every set of interest B 
in the range space R", the inverse image in R", {x E R":O(x) E B} ,  is an event for 
which probability has been defined through P,. If we were to view (R", FB, P,) 
as the underlying probability space, then this just defines O ( . )  itself as a random 
variablc mapping from the samplc space R" into the space R". 

Analogous to the discussion concerning (3-28), we would then expect to 
generate a new probability space, (R",FB,Py).  The sets of interest in R" will 
be the elements of the Borel field FB associated with R", and for all sets B c R" 
and B E %B, we can define probabilities through an appropriate probability 
function (measure), P y ( .  ), to be described shortly. Thus, 

(3-53) 

Then y(.) = O[x(.)] is a random variable that directly maps into this new 
probability space: 

(a, 9, P )  %' (R", FB , P,) 3' (R", FB , P y )  

(3-54) w I = e[x( 11 
(Q, 9, P )  A (R", 9~ 7 P p )  

The random variable y has a distribution induced by the distribution of x: 

F,(P) = P ( { o : y ( d  P } )  = P({,:O[x(4] 5 P } )  
= P,({x:O(x) I p i )  (3-55) 

The induced probability density function, if it exists, is given by 

(3-56) 

EXAMPLE 3.8 Consider the die-toss experiment discussed previously in Examples 3.3 and 
3.5. in which we were interested only in the sets A ,  = {l or 2)  and A ,  = ( 3 ) .  We defined a random 
variable x ( . )  through 

0 if w # A , o r A ,  

x(w)=  1 if ~ E A ,  i 2 if w e A 2  

and derived its Probability distribution function. 

function 6 ( . )  be defined as 
Now let us say that you will receive a payoff according to what you roll on the die. Let the payoff 

B(x) = xz + 1 
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1 -  

1 
2 
_ _  

so that @(x) is a random variable y defined as 

y = @(x) = x2 + 1 

Now we want to establish the induced distribution of y, F,(p), to describe our potential payoff. 
This can be generated using 

Fy(p)=P({W:y(W)S P) )=P( {W:O[X(oJ) ]  < p i ) =  P ( { O > : X ’ ( & ) f  1 I p ) )  

For p < 1, P ( ( w : x 2 ( w )  + 1 I p ) )  = Pi@) = 0. 
For 1 I p < 2, P({w:x2(w)  + 1 I p } )  = P ( { A ,  u A 2 ) * )  = 4. 
For 2 I p < 5, P({w:x2(w)  + 1 I p i )  = P ( A 2 * )  = *. 
For 5 I p < to, P({w:x2(w)  + 1 I p } )  = P(f2) = 1. 
Thus we obtain the distribution function for y induced by the distribution of x as plotted in 

Fig. 3.15. W 

,, FAp) * - 
H 

Y I I I I 

EXAMPLE 3.9 The scalar Gaussian random variable x is defined on R = R’ and is described 
through the density function 

j ; ( t )  = ( l / J G ) e x p { - ( 1 / 2 ~ ) ( t  - ml2i 

Let the random variable y be defined through’ 

y = e(x) = ~3 

Now we want to generate the density function to describe y. 
First, the distribution function is 

F&) = P({o:y(w) I p } )  = P({w:x3(w) 5 p } ,  

= P , ( { x : x 3  I p ) )  = P,({x:x I P ” ~ } )  = F , ( p l i 3 )  = J!a f ,(()dt 

Then the desired density function i s  the derivative of F,(p)  with respect to p. Using Leibnitz’ rule, 
this yields 

Thus, given a random variable x and its distribution (or density if it exists) 
and the functional relationship y = O(x), the induced distribution (density) 
for y can be determined. If densities do exist, then a useful result can be sum- 
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marized in the following manner. Let x and y be n-dimensional vector random 
variables, with y = 8(x). Suppose 8-'  exists and both 8 and 8- '  are continuously 
differentiable. Then 

f y ( P )  = fx[e-'(P)l(lae- '(p)l&ll (3-57) 

where 1188- (p)/dpll> 0 is the absolute value of the Jacobian determinant 
arising naturally from integrations with change of variables. A proof of this 
theorem is outlined in Problem 3.8 at the end of this chapter. 

EXAMPLE 3.10 Let us apply (3-57) to Example 3.9. Since y = O(x) = x3, the inverse function 
0 - '  exists and can be expressed as (the real root) 

& ' ( p )  z p"3 

dB - '( p)/dp = fp - 2'3 

and thus its derivative is 

From (3-57), 

jY(p) = f x ( p ' / 3 ) .  fp -213  

- - 1 3p - 2 1 3  (1 / , hP)exp(  - ( 1 / 2 ~ ) ( ~ ' / ~  - m)Z) 

as found previously. W 

Now consider the set function P ,  introduced earlier. As in (3-26), for all 
sets B c R" and B E 9,, we can define probabilities as 

PAB) = JBdF,(P)  (3-58) 

where meaning is given to the right hand side through measure theory. If 
density functions exist, . 

P,'(B) = JB f , ( P ) d P  = (3-59) 

The idea of induced densities and distributions is then embodied in the following 
result. If x is a random variable mapping Q into R", and y = O(x), where 8 
maps R" into R", then 

q,p) = p,({x:e(x) E B ) )  = P ( { ~ : B [ X ( ~ ) ]  E B ) )  (3-60) 

The discussion in this section can help prevent the confusion that often arises 
in estimation. Consider having measurements available with which you want 
to estimate some quantities of interest, denoted as the n-dimensional vector 
8. Suppose that the measurements are modeled through an m-dimensional 
vector of random variables z(. ), so that the numbers coming from the measuring 
devices are the realizations of the random variables for a particular outcome 
w : z ( w )  = z. Now you want to generate a mapping 8(.) from R" into R", called 
an estimator, that will map the given realizations into a "best" estimate of the 
value of 8. The composite mapping 8[z(.)] can then be considered a random 
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variable, often denoted as 6, called a randomized estimate or estimator, or 
just an estimate. Finally, estimation algorithms generate vectors of numbers, 
8(z) E R”, which are also called estimates. Whether one is concerned with a 
functional mapping, a random variable, or a vector of numbers is a funda- 
mental distinction to be made, but one that can be misinterpreted unless 
one takes care to be aware of this aspect. The notation adopted herein speci- 
fically attempts to clarify this issue. 

3.6 EXPECTATION A,ND MOMENTS 
OF RANDOM VARIABLES 

The distribution or density function for a random variable is the entity of 
fundamental interest in Bayesian estimation, embodying all information known 
about the variable. Once it is generated, an “optimal” estimate can be defined 
using some chosen criterion. Similarly, it can be used to compute the expected 
value of some function of the random variable, where this “expected value” 
is just the average value one would obtain over the ensemble of outcomes of an 
“experiment.” The expected value of particular functions will generate moments 
of a random variable, which are parameters (statistics) that characterize the 
distribution or density function. Although one would like to portray these 
functions completely through estimation, it is generally more feasible to 
evaluate expressions for a finite number of moments instead, thereby generating 
a partial description of the functions. In the case of Gaussian random variables, 
it will turn out that specification of only the first two moments will completely 
describe the distribution or density function. 

Let x be an n-dimensional random variable vector described through a 
density function f,(<), and let y be an rn-dimensional vector function of x: 

Y(.) = fqx(.)] (3-61) 

where O ( . )  is continuous. Thus y is also a random variable with induced density 
fy(p). Then the expectation of y is 

(3-62) 

If the density function . f , ( p )  does not exist, then E[y] can still be defined as 

“I = J*elx(w,l d P ( d  = JR. s(C)dFx(C) = JRrn P dFy(P) (3-63) 

using measure theory to give meaning to the indicated integrals [12,13,15]. 
Note that the succeeding integrals in (3-63) are carried out over LR, R“, and R”, 
respectively, using the appropriate probability functions. The integration 
performed over the original sample space R naturally provides the most basic 
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definition of expectation. However, for our applications, we will assume f x (C)  
exists, so (3-62) will suffice as a definition. 

Let us calculate the expected payoff for the die-toss experiment described in 
Example 3.8. A distribution function as in Fig. 3.15 indicates that the random variable assumes only 
discrete point values, with probability equal to the magnitude of each associated discontinuity [see 
Eq. (3-14)]. In such a case, the integrals indicated in (3-63) become summations, as 

EXAMPLE 3.1 1 

E [ Y ]  = S p d F , ( p )  = 1 piAFy(pi) = 1 . ( I  - PI - P , )  + 2 .  PI + 5 .  P ,  

= 1 . ) + 2 . f + 5 . i = 2  

A distribution function that varies continuously except for a finite number of jump discon- 
tinuities can be decomposed into the sum of a continuous function and a function composed only 
of thejump discontinuities as in Fig. 3.15. This allows expectations to be evaluated through addition 
of results obtained from the separate functions. 

Since expectation is by definition an integration, it is a linear operation. In 

E k Y I  = m y 1  (3-64a) 

other words, for c equal to a scalar constant, 

E C Y I  + Y21  = E C Y l l  + E [ Y 2 l  (3-64b) 

Combining (3-64a) and (3-64b) yields the useful result that, for A a known 
matrix, 

E [ A Y l  = A q Y l  (3-65) 

Now let us consider some specific functions O ( .  ). First let 6(x) = x to generate 
the first moment of x or the mean of x. Define an n-dimensional vector m, 
whose components are the mean values mi E[xi]: 

This vector is the mean or first moment of x, and notationally (3-66) can be 
written equivalently as 

m 4 E b l  = JTrn T f x c r , &  

Next consider Eq. (3-62), letting O(x) = xxT: 

x12 XlX2 . "  X l X n  

y = e(x) = X X ~  = 
2 

xfl 
X"X1 x,x2 ' . '  

(3-67) 

(3-68) 
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Define a matrix, denoted as Y, as the n-by-n matrix whose i-j component is 
the correlation of x i  and x j  (and thus the diagonal terms are autocorrelations, 
or mean squared values, the square roots of which are termed root mean 
squared, or RMS,  values): 

m 

vij s E[XiXj] = J- . . . 
-a, 

A t ,  (3-69) 

This matrix is the second (noncentral) moment of x or the autocorrelation matrix 
of x, and can be written as 

(3-70) 

where again this simply is a compact notation to be interpreted in the light of 

Let us consider yet another function, O(x) = [(x - m)(x - m)']. This allows 
us to define an n-by-n matrix P whose i-j component is the covariance of x i  
and x j :  

Eq. (3-69). 

A Pij = E[(xi - mi)(xj - mj)]  

= JTm . . . J:m (ti - mi)(tj - m j ) L ( t ) d t l .  . dtn (3-71) 

Note specifically that the mean values mi = E[xi]  and mj = E[xj ]  in (3-70) are 
not random variables, but are statistics : deterministic numbers. The matrix P 
is the second central moment of x or the covariance matrix of x, and can be 
written as 

P 4 E [ ( x  - m)(x - m)'] = JT W (C - m)(< - m)Tf,(c)dT (3-72) 

In cases where there might be ambiguity as to what correlation or covariance 
matrix is being discussed, subscripts will be employed in the notation, such as 

Because the covariance will be significant in our work, it will be characterized 
further. The matrix P is a symmetric, positive semidefinite matrix (its eigen- 
values are nonnegative). The variances of the separate components of x are 
along the diagonal : 

P X X  or yyy .  

pi i  Li ~ [ ( x ~  - mi)'] (3-73) 

The square root of a variance Pi, is termed the standard deviation of x i ,  denoted 
as c i .  Thus, the diagonal terms can be expressed as 

p.. I 1  (1.2 1 (3-74) 
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The correlation coefficient of x i  and x j ,  denoted as r i j ,  is defined as the ratio 

Using (3-74) and (3-75), the covariance matrix P can be written as 

0 1 2  r120102 . . . 
P = [  ~ ~ ~ 0 ~ 0 ~  : 022 ' .  . 

Y l n O l 0 n  

r2n020n (3-76) 

. . .  On2 1 rln010n r2n020n ' ' ' 

If the correlation coefficient ri j  is zero, then the components xi and x j  are said 
to be uncorrelated. Consequently, if P is diagonal, i.e., if rij = 0 for all i and j 
with i # j ,  then x is said to, be composed of uncorrelated components. 

Another expression for the covariance matrix can be derived in the following 
manner, using the facts that E [ . ]  is linear and the mean vector m is not 
random : 

P = E [ ( x  - m ) ( x  - ~ n ) ~ ]  = E[xxT - xmT - mxT + mm'] 
= E [ x x T ]  - E [ x m T ]  - E [ m x T ]  + E [ m m T ]  

= E [ x x T ]  - E [ x ] m T  - m E [ x T ]  + mmT 
= E [ x x T ]  - mmT - mmT + mmT 

P = E[xx'] - mmT (3-77) 

This equation then directly relates the central and noncentral second moments. 
In the scalar case, it reduces to 

P = E[x'] - ( E [ x ] ) 2  (3-78) 

The special cases of expectation that have been considered are just the first 
two moments of a random variable. (See Problems 3.24-3.27 for means of 
establishing best estimates of these moments from a finite set of empirical data.) 
Of course, there are higher ordered moments that can be used to characterize 
a probability density (or distribution) function. The mean relates where the 
density is centered, and the covariance gives an indication of the spread of the 
density about that mean value. In general, an endless number of moments 
would be required to specify a density function completely. In the particular 
case of a Gaussian random variable, the mean and covariance completely specify 
the density. By knowing the mean and covariance of a Gaussian random vari- 
able, you know all of the probability information contained in the associated 
density function, not just two parameters that partially describe its shape. This 
will be exploited to a great extent in linear estimation problems. 
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FIG. 3.16 Different random variables with equivalent first two moments. (a) Uniform. 
(b) Triangular. u = (T/4)(3 - 5J1/3) 2 0.03 T, b = (T/4)(3 + 5m3) r 1.47 T, h = (2/b)  r 1.36 T. 
(c) Gaussian. o = T / 6 2  2 0.29 T. 

EXAMPLE 3.12 Consider the random variable x with uniform density between 0 and T, 
f,(t) = (1/T for t E [O,T] ,  0 elsewhere), as depicted in Fig. 3.16a. The mean of x is 

and the variance of x is 

If y is defined as sin x, then E [ y ]  is 

T .  1 1 

T T  
E[y] = E[sinx] = so s in t  --cry = -(1 - cos T) 



3.6 EXPECTATION AND MOMENTS OF RANDOM VARIABLES 93 

Note that specification ofjust the first two moments of a random variable does not completely 
describe the associated distribution or density function. The triangular-shaped density function in 
Fig. 3.16b yields the same first two moments, despite its significantly different shape. Figure 3.16~ 
depicts a Gaussian density yielding the same first two moments as in (a) and (b), 

Furthermore, note that if one knew j ; ( t )  were uniform or Gaussian, then knowledge of the 
first two moments would specify f,(r) completely. However, if f,(t) were triangular, these two 
parameters would not specify the density shape totally. An infinite number of moments is required 
to specify the shape of a general density function. 

It will be useful to generalize the concept of the second moment of a single 
random variable x to the second moment relationship between two random 
variables x and y. Such a concept is inherently involved in Eqs. (3-70) and 
(3-72), since the i-j component of Y or P is the cross-correlation or covariance, 
respectively, of the scalar random variables xi and xj; now we will generalize 
from the scalar to vector case. Let x be an n-dimensional random vector and 
y an m-dimensional random vector. Then the cross-correlation matrix of x and 
y is the n-by-m matrix whose i-j component is 

This matrix is then expressed notationally as 

(3-80) 

Similarly, the second central moment generalizes to the cross-covariance matrix 
x and y: 

p,, A E[(x - mx)(Y - my)=] = J-mm s-”m (C - m,)(p - mJTf, .y(5?P)dW 

(3-81) 

Two random vectors x and y are termed uncorrelated if their correlation 

(3-82a) 

matrix is equal to the outer product of their first order moments, i.e., if 

~ [ x y ~ ]  = E[x]E[~~]  = m,myT 

or 

E[xiyj] = E[xi]E[yj] for all i and j (3-82b) 

which is equivalent to the condition that E{[x, - mXr][yj - m,v,]) = 0 for all 
i and j .  

EXAMPLE 3.13 We want to show by a simple example that the preceding definition of un- 
correlatedness corresponds to the previous definition of uncorrelated scalar random variables 
which involved the correlation coefficient described by Eq. (3-75). Consider two scalar random 
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variables, z1 and zz. By (3-82), they are uncorrelated if E [ z 1 z 2 ]  = E [ z l ] E [ z 2 ] .  Now let z be the 
vector random variable made up of components z1 and z2. The covariance of z is then 

1 p1 - E [ Z , I 2  E [ z 1 z 2 ]  - E [ Z I I E [ Z Z I  
’‘‘ = E [ z 1 z 2 ]  - E [ z 1 ] E [ z 2 ]  E [ z 2 ’ ]  - E [ z 2 1 2  

But, if z, and z2 are uncorrelated, then E [ z l z 2 ]  - E [ z 1 ] E [ z 2 ]  = 0, and the off-diagonal terms are 
zero. This is just the condition of the correlation coefficient of z1 ar,d z2 being zero, as described 
earlier. 

Whereas uncorrelatedness is a condition under which generalized second 
moments can be expressed as products of first order moments, independence is 
a condition under which the entire joint distribution or density function can be 
expressed as a product of marginal functions. As might be expected then, if 
x and y are independent, then they are uncorrelated, but not necessarily vice 
versa. This implication can be expressed simply as 

x and y independent -+ x and y uncorrelated (3-83) 

This can be demonstrated readily: by definition, we can write 

If x and y are independent, then this becomes: 

Separating the integration yields the desired result : 

If x and y are uncorrelated, they are not necessarily independent. A counter- 
example to such an implication is given in the following example. 

EXAMPLE 3.14 (modified from 131) Let z be uniformly distributed between 0 and 1 : 

Now define x and y as x = sin(2nz) and y = cos(2xz). It will now be shown that x and y are un- 
correlated, but not independent. They are uncorrelated since 

E [ x ]  = E [ y ]  = E [ x y ]  = E [ x ] E [ y ]  = 0 

However, consider higher order moments, as the fourth generalized moment: 

E [ x 2 y 2 ]  = 8 
But, 

E [ x 2 ]  = E [ y 2 ]  = f 

E[x2]E[y2] = a 
so that 

which is not equal to E [ x 2 y 2 ] .  If x and y were independent, these would be equal. 
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Another related concept is that of orthogonality. Two random vectors x and y 
are termed orthogonal if their correlation matrix is the zero matrix: if E[xyT] = 

0. Obviously, this concept is interrelated with x and y being uncorrelated, and 
this relation is as follows. If either x or y (or both) is zero-mean, then ortho- 
gonality and uncorrelatedness of x and y imply each other. However, if neither is 
zero-mean, then x and y may be uncorrelated or orthogonal or neither, but they 
cannot be both orthogonal and uncorrelated. Orthogonality provides one means 
of defining an optimal estimate: if we generate an estimate ii of x based on 
measurement data z, then that estimate can be termed optimal if the error 
(x - 2) is orthogonal to the data. This geometrical concept is instrumental in 
deriving optimal estimators by means of "orthogonal projections," the original 
means of derivation of the Kalman filter. We, however, will employ a Bayesian 
approach to estimation in the sequel. 

3.7 CONDITIONAL EXPECTATIONS 

The concept of expectation of some function of random variables answers 
the question, if we were to conduct a large (endless) number of experiments, what 
average value (over the entire ensemble of experimental outcomes, w E R) of 
that function would we achieve? Conditional expectations provide the same 
information, but incorporate insights into occurrence of events in i2 gained 
through observations of realizations of related random variables. In this section, 
we will first define conditional expectation under the assumption that the 
appropriate conditional density function exists. After investigating its properties 
and applications, the definition will be generalized to allow consideration of 
this concept without such an assumption. 

Let x and y be random variables mapping R into R" and R", respectively, 
and let z be a continuous (Baire) function of x, 

z(.) = e"9l (3-84) 

so that L is itself a random variable mapping R into R'. Then the conditional 
expected value, or conditional mean, of 2, conditioned on the fact that y has 
assumed the realization y E R", i.e., y(w) = y ,  is 

The subscript x on E,[z 1 y = y ]  denotes that the expectation operation (integra- 
tion) is performed over the possible values of x, and sometimes this subscript 
is not included in the notation. For a given value y E R", E,[zly = y] is a 
vector in R'. Thus, E,[z(y = . ]  is a mapping from R" into R', a function of 
the values y E R". Recall Section 3.5, Functions of Random Variables. If 
these y values are realizations of the random variable y, then the conditional 



96 3. PROBABILITY THEORY AND STATIC MODELS 

FIG. 3.17 Conditional expectation functional relationships. 

expectation can be viewed as a random variable, i.e., the composite mapping 
Ex[z [y = y(.)] mapping Q into R". These interrelationships are depicted in 
Fig. 3.17. 

Moreover, the random variable Ex[zly = y(.)] is unique and has the prop- 
erty that 

E,{ExCz[y = Y(913 = E X t - 2 1  (3-86) 

Conceptually, this is reasonable. If we take the conditional expectation of z, 
conditioned on a realized value of y, and look at its expected value over all 
possible realizations of y, then the result is the unconditional expectation of z. 
Let us demonstrate the validity of(3-86) mathematically as well. By the definition 
of expectation, we can write 

E x  Czl = Jumm Q(51L (5 )  d5 

Now f,(c) can be written as the marginal density derived from fx,y(5, p )  to yield 
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Bayes' rule can be applied to derive an equivalent expression as 

E x r 4  = J:m [J* -oo LI, lS!p)&(P)dP]d5 

EXCZ1 = J:m [JTm e(r).f,l,(Tlp) dT].&(P)& 

Now we assume convergence in the definition of the integrals taken in different 
orders, so that we can interchange the order of integration (to be more precise, 
we invoke the Fubini theorem [7,12,13] from functional analysis) to yield 

The bracketed term is a function of p alone, where p is a dummy variable 
corresponding to realized values of y ( p  is used as the dummy variable to dis- 
tinguish it from a single realization y of y). Thus, the preceding expression is just 
the expected value (over all possible y realizations, p )  of the bracketed term, 
which is itself the conditioned expectation of L : this directly yields 

Ex[zl = E,{Ex[zly = Y(.)ll 
as desired. 

The conditional expectation can also be viewed as a function E,[.ly = y] 
that maps a random variable z into a vector Ex[zly = y] E R'. As in the case 
of unconditional expectations, such an operation is defined through an integra- 
tion and is linear. Thus, if A is a known matrix, 

EX[AX(Y = Y1 = AEX[X(Y = Yl (3-87) 

(3-88) E,,[x + Y ~ Z  = Z] = EX[xlt = Z] + E,[Y~z = Z] 

Two special cases of the conditional mean of z defined in (3-85) are of par- 
ticular interest to our applications: the conditional mean and covariance of x. 
The conditional mean of x, given that y has assumed the value y, is generated 
by letting O(x) = x: 

EXblY = Y1 = JTm Tf,,y(TIY)dT (3-89) 

The conditional cooarianee of x, given that y(w) = y, is then defined as 

= JTm ( 5  - Ex[xl~ = ~1)(5 - EX[xly = (3-90b) 

If we want to generate an estimate of x using measurement data y(o) = y, 
one possible estimator that is optimal with respect to many criteria is the 
random variable Ex[x(y = y(.)]. Then (x - Ex[x/y = y(-)]) can be interpreted 
as the random variable to model the error in the estimate: the difference be- 
tween x and our estimate of x. The conditional mean of this error vector would 
be zero. Consequently, PXI, would be not only the conditional covariance of x, 
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but also the conditional covariance of the error in our estimate of the value 
of x .  

EXAMPLE 3.15 Let f,,,,(51y) = ( l / f i )exp{  -+(t - y)’}. Then the conditional mean and 
variance of x are 

Thus, for different realizations y of y. the conditional mean is altered but the conditional variance is 
unchanged for this particular density. 

To this point, we have assumed the existence of conditional probability den- 
sity functions. Although this is not a restrictive assumption for our applications, 
conditional expectations and probabilities can be defined without assuming 
such existence. Consider a probability space composed of a sample space 0, 
o-algebra 9, and probability function P ;  let x be a proper random variable 
(the set { w : x ( w )  I c )  is in 9). Now let 9’ be a o-algebra that is a subset of 
9 (9‘ is a “coarser” o-algebra, with fewer or the same number of elements 
as 9). The conditional expectation of x relative to F’, E [ x  19’1, is any o func- 
tion that is a proper random variable relative to 9‘ (the set { w : E [ x l F ’ ]  5 <> 
is in F‘; i.e., measurable relative to 9’) satisfying 

W 

(3-91) 

for any A c !2 and A E 9’. Integration over sets in R is defined through mea- 
sure theory. Letting A be R itself yields the fact that (3-86) is satisfied by the 
basic dejnition of a conditional expectation. The existence and uniqueness of 
such a random variable is guaranteed by the Radon-Nikodym theorem [7,12, 
13, 151, whether or not a density function exists at all. 

Now let y be a vector-valued random variable and let F‘ be the minimal 
o-algebra with respect to which y is a proper random variable (F’ is generated 
by complementation and countable intersection and union of sets of the form 
{ w : y ( w )  5 p ] ) .  Let B E $’be the set { w : y ( w )  = y ) .  Then E { x \ y  = yj is defined 
[7, 151 to be 

(3-92) 

i.e., it is the random variable function of w, E { x l B ’ } ,  evaluated with a par- 
ticular o chosen from the set B. 

Let us return to the die-toss experiment described in Examples 3.3, 3.5, 3.8, EXAMPLE 3.16 
and 3.11. The payoff random variable y ( ’ )  can be defined through 

if w $ A ,  or A ,  

y(c.) = [ if ~ E A ,  

if W E  A ,  

with distribution function defined in Fig. 3-15. 
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Now let z be an indicator of the outcome of the die toss being one of the lower three or upper 
three numbers: 

0 

1 
if w E (1 or 2 or 3 thrown) = A ,  u A ,  

if w E {4 or 5 or 6 thrown) = ( A ,  u A,)* 
z(w) = 

The smallest a-algebra F associated with z would be 

.9'= jgI ,Q,A,  u A , , ( A ,  u A 2 ) * )  

which is composed of fewer elements than 9 (see Example 3.3). Now let us use (3-91) and (3-63) to 
generate the conditional expectation, E{ylF'} : 

Let A = ( A ,  u A , )  E 5' to obtain 

But ( A ,  u A 2 )  is an atom of F, so to be a proper random variable on F', E { y  / 9') must be constant 
over ( A ,  u A,),  so this becomes 

so E { y I F ' J l o e ( A , u A 2 )  = 3. But z(w) = 0 if w E ( A ,  u A2) ,  so (3-92) yields 

= 3. 
" E ( A 1 U A I l  

E { y l z  = 0 )  = E { y / F ;  1 
Similar reasoning then yields 

If conditional density functions exist, the definitions in (3-92) and (3-89) 
are equivalent. We will assume such existence for our applications and will 
exploit the conditional density function conceptualization. 

3.8 CHARACTERISTIC FUNCTIONS 

is defined as a scalar function of the dummy vector p as 
If x is an n-vector-valued random variable, its characteristic function q5,(.) 

4 x ( p ~  a (3-93a) 

(3-93b) 

where j = J-1. Fourier transform theory can be used to describe the charac- 
teristics of 4x in terms of the corresponding f,. 

One fundamental reason for considering characteristic functions is that 
moments of a random variable can be generated readily through them. Consider 
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taking the partial derivative of 4 x ( p )  with respect to the kth component of p, 
pk:  

Now divide by j and evaluate the result at p = 0 

(3-94) 

Thus, to obtain the mean of the kth component of x, for k = 1,2, . . . , n, one 
can evaluate the partial derivative of +x(p )  with respect to the corresponding 
component of p, divide byj, and evaluate the result at p = 0. 

The second moments can be generated through the second partial derivatives. 
Since 

the second noncentral moment E[xkxl] can be evaluated as 

In general, an Nth noncentral moment of x can be computed through 

(3-95) 

(3-96) 

Another application of cliaracteristic functions is the description of the sum 
of two independent random variables. Let x and y be two independent n-vector 
valued random variables, and define z as their sum, 

z = x + y  (3-97) 

If we know A(<) and f , ( p ) ,  how can we explicitly generate . f , (C)? Such a question 
will arise naturally in estimation when we describe the measurements available 
to us as true variable values corrupted by additive independent noise. To 
answer this question, first consider the conditional probability of lying in the 
infinitesimal hypercube in R" with one corner at 5 and of dimension d t i  = E,  

i = 1, 2, .  . . , n, on each side. Starting with the definition of the conditional 
density f,,,(C/ t), we can write [see Eq. (3-23)]: 

f;,,(C/g)dC = P({o:C  < z(wj I5 + dc), given that x(w) = 5)  
= P({w:C < x(w) + y(w) I 5  + dC)(x(w) = 5 )  

= P({o:C - 4 < y(w) 5 5 - 5 + d5) Ix (0 )  = 5)  
= P ( { w : [  - C < X(W) + Y(O) - 5 I C + dC - 5 )  Ix(o) = C) 
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But, since x and y are independent, this equals the unconditional probability 
that y assumes values between the same limits: 

. f z , x ( 5 1 5 ) 4  = P ( ( o : 5  - 5 < Y(0) 5 5  - r + 4)) =fy(S - a4 
Thus, we have shown that 

fz,x(5)5) = f,(C - <) (3-98) 

By combining the concepts of marginal densities and Bayes’ rule, this 
result can be used to write fJ5) as 

.f,cr, = ,T-”-i .LX(5.5)d< = J:m &x(5 1 tlL(5) d r  

= S_nu f,(S - 5 ) f x ( 5 ) @  (3-99) 

This is a convolution integral, which is, in general, difficult to evaluate. The 
corresponding characteristic function is a simple product, as expected from the 
Fourier transform of a convolution. 

~ ( p )  =  el?^ = JTm e’”riL(Od5 

Now substitute (3-99) into this result, letting 5 = 5 + p in the exponential (since 
z = x + y), and assuming we can interchange the order of integration, 

3.9 GAUSSIAN RANDOM VECTORS 

A particular random variable of significance to our work is the Gaussian, 
or normal, vector-valued random variable. First, it provides an adequate model 
of the random behavior exhibited by many phenomena observed in nature. 
Second, Gaussian random variables yield tractable mathematical models upon 
which to base estimators and controllers. 
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The random n-dimensional vector x is said to be a Gaussian (normal) random 
vector, or a normally distributed vector-valued random variable, if it can be 
described through a probability density function of the form 

exp{ -+[< - mlTP-'[5 - m]] 
1 

L(t) =(2n)"'2)P)l'2 (3-101) 

where P is a positive definite (n  x n) matrix, 1 . 1  denotes the determinant of a 
matrix, and exp{.) denotes exponential. The matrix P must be assumed posi- 
tive definite to be assured of the existence of P-'. Actually, a more general 
definition of a Gaussian random vector, allowing positive semidefinite P, can 
be achieved through the characteristic function. We emphasize the somewhat 
more restrictive characterization in (3-101) because the density function will 
provide more physical insight in estimation and control. 

Note that the density function in (3-101) is completely defined by the two 
parameters m and P. We now claim, and will show later, that these parameters 
are in fact the mean vector and covariance matrix, respectively. Thus, unlike 
most other density functions, higher order moments are not required to generate 
a complete description of the density function. 

Figure 3.18 depicts the density function for a scalar Gaussian random 
variable : 

(3- 102) 

Because the density is symmetric and unimodal (having one peak), m is both 
the mean and the mode, the value where the density assumes its peak value. 
The variance P determines the spread of the density about m as in the figure. 
If a is the standard deviation, a = p, then 68.37; of the area under the curve 
lies in the interval between (m - a) and (m + a). Stated another way, the proba- 
bility that x assumes a value in the interval [m - 0, m + a] is 0.683. Similarly, 
95.4% of the probability weight lies between (m - 20) and (m + 2a), and 99.7% 
lies between (rn - 30) and (m + 3 4 .  For this reason, peak error specifications 
are often converted to 30 values in practice if Gaussian models are employed. 

FIG. 3.18 Density function of a scalar Gaussian random variable. 
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(b) 

A two-dimensional Gaussian random vector would be characterized by the 
density function 

= 5 2  
I 

f i l l - - - - - - -  @ - 

i r  

(3-103) 11 ((2 - - 2r12151 - m1M2 - mz) + 
022 QlC2 

This is presented graphically in Fig. 3.19. The mean vector m in the 
plane locates the peak of the density function. Loci of constant density function 
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values, called surfaces of constant likelihood, are generated by passing planes 
parallel to the t1-C2 plane through the density function surface, and are 
ellipses parallel to the t1-C2 plane as shown in the diagram. This can also be 
seen by setting (3-103) equal to some constant, or equivalently, 

which is the general equation of an ellipse in the t1-t2 plane. Thus the covariance 
matrix determines the size and angular orientation of ellipses of constant 
likelihood. If the correlation coefficient y l 2  is zero and thus P is diagonal, 
then the principal axes of the ellipses are parallel to the c1 and c2 axes, and 
o1 = 6 and c2 = f i  are the magnitudes of the semimajor and semiminor 
axes dimensions for the one-sigma ellipse. [This is readily apparent from 
(3-104).] In general, the eigenvalues of P provide these magnitudes. If P is 
singular and of rank one, then the density function surface collapses down to 
zero except over a single line (the limit of the ellipses) in the t1-l2 plane: there 
is no uncertainty in the direction orthogonal to the line since you know x 
assumes a value somewhere on the line. 

These ideas generalize to higher-dimensioned cases, with surfaces of constant 
likelihood becoming n-dimensional ellipsoids. For example, a probabilistic 
description of position in three dimensions would be expressible in terms of 
the size, shape, and orientation of the three-dimensional ellipsoid corresponding 
to a given probability that the true position lies within the ellipsoid (see 
Problem 3.1 1). 

The characteristic finnction for a Gaussian random variable x with density 
function as in (3-101) is 

$,(A = exp(hTm - +PTPPl\ (3- 105) 

To show this, we will look at a density function in the general form of (3-lOl),  
translate our coordinate system origin to the mean location, and then rotate 
the coordinates to align them with the principal axes of the ellipsoids of con- 
stant likelihood. After working with this simpler description of the density, 
we will rotate and t'ranslate back to the original coordinate system to express 
the result. The geometric insights gained and linear algebra involved warrant 
presentation of the details of the proof. 

functions, we can write 
DERIVATION OF CHARACTERISTIC FUNCTION By the definition of characteristic 

A(P)  = J?m ' .  . J-mx ~ x P ~ w ~ C )  fx(C)d51 . . d t n  

m)TP-'(< - m)) dtl . . dr ,  
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Now translate the coordinate system by making a change of variable y = ( - m. Note that d;ti = dCi 
for i = 1,2,. . . , n. For convenience, define the scalar a as 

Thus, q5,(p) becomes 

Having translated the origin of the coordinates to m, rotate the axes into the principal direc- 
tions. Since P is symmetric, P-’  is also symmetric. Therefore, there exists an orthogonal trans- 
formation matrix A which diagonalizes P-’: there exists a matrix such that AT = A-’ and 

Thus, 

Define a new set of variables through a coordinate rotation as 

p = ATp*p = Ap, 5 = A T y u y  = A5 

When we change from integrating over dy, . . dy, to di, . . . d e n ,  the Jacobian determinant is 
equal to one because of the orthogo~lality of A:  



106 3. PROBABILITY THEORY AND STATIC MODELS 

This is now in the form of a product of n separate one-dimensional integrals. To evaluate each 
integral, complete the square in the exponential to form 

But now the integral term can be recognized as the integral of a scaled Gaussian density of mean 
zero and variance ui2, so by putting in the proper coefficient, we know the integral equals one: 

= f i u i e x p {  -+pi2ui2}[1] 

The characteristic function is now the product of n such integrals as just shown. Writing a 
explicitly in the expression yields 

The (27~)”” in the denominator cancels n:=, J%. Moreover, since uI2, 022, . . . , un2 are the eigen- 
values of P, [PI = u12u22 . . . unz and so lPlliZ = u102 . . u,, and this then cancels nl=I ui.  Thus, 

Since P - ’  = A[o;’]AT, 

P = (A[C~;~]A’)-’ = (A’)-’[u,-~]-’A-’ = A[or2]AT 

Substituting this intq the quadratic form in + , ( p )  yields 

(P.(p) = exp(jp’m! exp( -+pT~p]  

= exp{jpTm - +pTPp) 

as claimed in (3-105). 

Note that the characteristic function does not involve P-‘, and therefore 
it does not inherently require P to be positive definite. In fact, (3-105) is valid 
for positive semidefinite P. 

The characteristic function can now be used to generate the moments of the 
Gaussian random vector x. It will be shown now that the parameters m and 
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P in the density and characteristic functions are the mean and covariance of 
x, respectively : 

E [ x ]  = m (3- 106) 

(3-107) 

(3- 108) 

E [ x x T ]  = P + mmT 

E[(x - m ) ( x  - mlT] = P 

DERIVATION OF MEAN AND COVARIANCE The characteristic function for Gaussian 
x is 

d~.(c) = expijpTm - frTP4 

1 ”  ” 
= exp{j i =  i: 1 pimi - ~ 2 i = l  1 q = l  1 pipapiq] 

To generate the mean of the kth component of x, we take the partial of +,(p) with respect to pk. 

so we can write 

Since this is true for all k,  k = 1, 2,  . . . , n, E [ x ]  = m. 
Using the first partial expression just given, the second partials are 

so the second moment E[xkx , ]  is 

This is true for all k and 1, so we obtain E[xxT]  = P + mmT. 

EXAMPLE 3.17 Consider a zero-mean Gaussian random vector, with 

j i (<)  = [ (2n)” ’ZI~11’2 ] -1  exp{ -+tTP-ltj ,  +.(p) = exp{ - f p T P p J  

For such a random variable, the characteristic function can be used to generate the first four 
moments as 

E[Xk] = 0 E[XkX,X,] = 0 

E[xkxl] = pk, E[xkxlxmxn] = pk lprnn  + p k m p l n  + p k n p l m  

Generalizing the results of the previous example, all odd central moments 
of a Gaussian random vector are zero (due to symmetry). Moreover, all even 
central moments can be expressed in terms of the covariance. This is just 
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another way of saying that the mean and covariance completely define the 
Gaussian density function. 

Previously it was shown that independence implies uncorrelatedness but 
not necessarily vice versa. It will now be shown that twojointly Gaussian (normal) 
random vectors which are uncorrelated are also independent. We must assume 
jointly Gaussian (defined in the following) random vectors for this to be true-x 
and y can be Gaussian vectors that are not jointly Gaussian, and the implication 
is then not true. 

DEMONSTRATION THAT UNCORRELATED --t INDEPENDENT IF JOINTLY 
GAUSSIAN Suppose x and y are random vectors, of dimensions n and m, respectively, that are 
jointly Gaussian and uncorrelated. Define z to be a random vector of dimension ( n  + m) composed 
of components x and y: 

z = 

To say x and y are jointly Gaussian is equivalent to saying that z is Gaussian. The first two mo- 
ments of z would be 

P,, = E[zzT] - mrmzT 

Now, since x and y are uncorrelated, 

E[xyT] = m,myT; ~ [ y x ~ ]  = mymxT 

Thus, the covariance Pz, becomes block diagonal : 

Letting [ be composed of partitions c (x values) and p (y values): 
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It was mentioned previously that Gaussian random variables are of engi- 
neering importance because they provide adequate models of many random 
phenomena observed empirically. The basic justification for this statement is 
embodied in the central limit theorem; one of its numerous precise statements 
(differing in specific assumptions and details, but all essentially the same) is 
now stated. 

CENTRAL LIMIT THEOREM Let xi. i = 1 . 2 , .  . . , N ,  be a set of independent random n- 
vectors which are identically distributed with means and covariance matrices mi and Pi, respec- 
tively. Define the random vector yN as their sum: 

N 

YN = C xi 
i =  1 

and also define zN as the (zero-mean) normalized sum random variable: 

where 

N N 

where PliZ is defined as the n-by-n matrix such that P”zP1i2 = P. Then, in the limit as N -+ a. 
zN becomes a zero-mean Gaussian random a-vector with a covariance matrix equal to the identity 
matrix: 

lim j z N ( < )  = [(21r)”’~]-’exp(-+<’<) 
N - o D  

Actually, more general statements can be made, such as not requiring identical 
distributions for the random variables being summed and then adding some 
additional, though not very restrictive, assumptions [I -5, 7-1 1, 141. 

Essentially, the theorem states that if the random phenomenon we observe 
is generated as the sum of effects of many independent random phenomena, 
then the distribution of the observed phenomenon approaches a Gaussian 
distribution as more random effects are summed, regardless of the distribution 
of each individual phenomenon. In practice, the assumptions in the theorem 
are seldom verifiable. Rather, if there are a large number of additive con- 
tributing effects to a random phenomenon (as is usually the case when one 
probes beyond a macroscopic view of a phenomenon), then one suspects that a 
Gaussian distribution is a reasonable approximation to the actual distribution. 

The theorem claims only that a Gaussian distribution is approached as N 
grows without bound. One would then logically ask, how large does N have 
to be before the Gaussian approximation is reasonable? The following example 
due to Papoulis [9] demonstrates a surprisingly good approximation for N = 3 
and scalar xi’s uniformly distributed (each thus having a distribution very 
different from Gaussian). 
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EXAMPLE 3.18 Let xlr x,. and x3 each be uniformly distributed on the interval [0, T I ,  as 
in Fig. 3.20a. If y, = x,  + x,, then y, has a triangular density function (verifiable by convolution) 
as in Fig. 3.20b, with mean T and variance T Z / 6 ;  also plotted is the Gaussian density function 
with the same first two moments. If y3 = x 1  + x2 + x3,  its density function consists of three para- 
bolic pieces as in Fig. 3.20c, with mean 3T/2 and variance T2/4. The normal density with these 
same statistics is a very good approximation to  the true-density. 

(a) (b) (c) 
FIG. 3.20 Central limit theorem exemplified. (a) f;,(<). (b) x = xI + x,. Solid line indicates 

.jJ[); dashed, (1/T)m exp[-3(x - T) ' /T*].  (c) x = x1 + x2 + x3.  Solid line indicates f,((); 
dashed, (l/T)J2/rr exp[ - 2(x - 1.5 T ) 2 / T 2 ] .  From Probability, Random Variables, and Stochastic 
Processes by A. Papoulis. @ 1965. Used with permission of McGraw-Hill Book Co. 

Later when estimation is discussed, the conditional Guussian density will be 
of primary interest. Therefore, it will be characterized more fully at this point. 
Let x and y be jointly Gaussian vectors mapping R into R" and R", respectively, 
so that fx ,y (c ,p)  can be written as 

where we assume that the covariance matrix in (3-109) is positive definite. 
We claim here, and will prove in the next section, that x is thus a Gaussian 
n-vector of mean m, and covariance P,,, and y is a Gaussian m-vector of 
mean my and Covariance P,,. To obtain the conditional density f, , ,(T)p), Bayes' 
rule can be used to write 

f,,y(C I P )  = f,,y(C P)lfy(P) (3-110) 

where .f;,,(&p) is given by (3-109) and ,fy(p) is Gaussian, with moments my 
and P,, . Performing algebraic reduction yields the result as 

where 
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(3-112b) 

Thus, if x and y are jointly Gaussian, with joint density given by (3-109), then 
f,ly(5 I p)  is Gaussian with moments mxly and PXI, as just given. The conditional 
mean of x, given that y(w) = y, is then 

~ , [ x l y  = y] = a mxlY = rn, + P,,P;'(y - my) (3-113) 

From this expression, E,[xly = .I can be seen to be an explicit function of 
the realizations y ofy, as stated previously in Section 3.7 for conditional expecta- 
tions in general. Furthermore, the conditional covariance is : 

Finally, since fxlv(c/p) is Gaussian with mean and covariance as described, 
the conditional characteristic function is : 

+ x ~ y ( ~ I ~ )  = exp{jPTmxl, - +P'P,~,P) (3-115) 

As mentioned before, this function is properly defined for P,,, positive semi- 
definite, whereas the density function (3-1 11) requires PXI, to be positive definite 
to ensure the existence of Pi:. 

If x represents variables of interest and y models the measurements available 
to us, then ~$,,(5Ip) represents the conditional density for the variables of 
interest, conditioned on knowledge that y has assumed a particular realization, 
i.e., conditioned on knowledge of the numerical output of the measuring devices. 
Should this density be Gaussian, the conditional mean is obviously a valid 
choice as an estimator for x. (In fact, it will be shown to be an excellent choice 
under more general conditions as well.) Under such circumstances, the estimator 
E,[xly = y(.)] is itself a Gaussian random variable which is a linear combina- 
tion of the components of y( .): 

EX[X lY  = Y(.) l  = m, + P,,P,"Y(.) - my] (3-116) 

Moreover, the error in this estimate, {x - E,[x I y = y(. )] 1, can be shown to be 
a Gaussian random variable that is independent of any random vector obtained 
by a linear transformation on y: there is no information left in the measurements 
y that would yield better insights into the value assumed by x. 

3.10 LINEAR OPERATIONS 
ON GAUSSIAN RANDOM VARIABLES 

In developing models for random phenomena and processes, we will want 
to perform various operations on random variables. If we allow general non- 
linear operations on random variables with arbitrary distributions, little can 
be said in general about the distribution of the transformed variables. However, 
if we consider linear operations on Gaussian random variables, we can claim 
that the Gaussian nature is preserved. 
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First of all, linear transformations of Gaussian random variables are also 
Gaussian random variables. If x is a Gaussian random n-vector with mean m, 
and covariance P,,, and A is a known ( m  x n)  matrix (not random), then the 
random in-vector y defined by 

y = AX (3-117) 

is Gaussian with mean and covariance given by 

my = Am, (3- 1 1 8a) 

P,, = AP,,AT (3- 1 18 b) 

Proof By definition, the characteristic function for y is 

+,(p) = E[e'p'Y] = E[e@'"x] = E[e""'flJ1'] = 4,(ATp) 

where the last step is by the definition of +,(.). Since x is Gaussian, we can write q5,(ATp) explicitly 
as 

+.(ATp) = exp (.j(ATr)Tm, - t(ATp)TP,,(ATp)) = exp{j(pTAm,) - fpTAPxxATp) 

+,(A = exp(.jpT(Am,) - ~pT(AP, JT) r I  

Thus, 

which is recognized as the characteristic function of a Gaussian random variable with mean Am, 
and covariance AP,,AT. 

Linear combinations of jointly Gaussian random variables are also Gaussian 
random variables. Note specifically that we are assuming jointly Gaussian 
variables here. If x and y are jointly Gaussian n- and m-vectors, respectively, 
and A and B are known ( p  x n)  and ( p  x m)  matrices, respectively, then the 
random p-vector z defined by 

L = AX + By (3-119) 

is Gaussian, characterized by mean and covariance 

m, = Am, + Bm, (3- 120a) 

P,, = AP,,AT + APx,BT + BP,,AT + BP,BT (3-120b) 

Proqf Form the ( n  + m)-dimensional Gaussian random variable w 

w = [;j 
which is characterized by mean and covariance 

Also form the matrix C = [A IB]. Then L = Cw, and the result of (3-117) and (3-118) can be 
invoked. W 

A useful extension of this result is that linear combinations ofjointly Gaussian 
random variables and nonrandom vectors are also Gaussian random variables. 
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If we modify (3-1 19) to write 

z = A X  + By + c (3- 121) 

where c is a known nonrandom p-vector, then z is a Gaussian random p-vector, 
with mean and covariance 

(3-122a) m, = Am, + Bm, + c 

P,, = AP,,AT + AP,,BT + BP,,AT + BP,,B" (3- 122b) 

Proqf This is easily proven by following the same steps as in the proof following (3-1 IS), but 
writing 

1 d z ( p )  = E[<!P 'z ]  = ~ [ e ~ r ' l A ~ + 8 ~ ~ i ~ ' c ]  = ew'cE e ~ ~ ' I * i + W l  t 
The proof is then as  before, but with the additional contributing to the mean in d z ( p ) .  

Note that only the mean is affected by the addition of c :  this makes sense since 
no uncertainty is contributed by the addition of a known vector. This result 
will be useful for adding deterministic control inputs to the dynamics model 
to be developed in the next chapter. 

As a final point of interest, the results of (3-117)-(3-118) can be used to 
show that any portion of a Gaussian random vector is itself Gaussian, or equiva- 
lently, if x and y are jointly normal, then their individual marginal densities are 
also Gaussian. Let z be defined as the Gaussian random variable 

(3-123) 

where x and y are n- and m-dimensional partitions, respectively. Assume its 
mean and covariance are mi and P,,, partitioned as 

(3-124) 

Then x is Gaussian, with mean m, and covariance P,,, and y is Gaussian 
with first moments my and P,,. This was stated previously [after Eq. (3-109)], 
but not proven. 

Proqf The result iS obviously true if x and y are independent, so that P,, = 0 and P,, = 0. 
However, i t  is also true in general, which may not be so obvious. To  prove validity in the general 
case, let A = [ I l O ]  so that 

x = Az = IX + Oy 
Then invoke (3-117) through (3-118) to  claim x is a Gaussian random variable with mean and 
covariance 

Etx] = Am, = Im, + Om, = m, 

E[(x - m,)(x - n ~ , ) ~ ]  = AP,,AT = IP,,IT + 0 = p,, 

and similarly for y. 
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3.1 1 ESTIMATION WITH STATIC LINEAR GAUSSIAN 
SYSTEM MODELS 

A general estimation problem can be posed in the following manner. Suppose 
there are some quantities of interest whose value you do not know exactly. 
Measuring devices can provide you with data that is functionally related to 
these variables, but which is also generally noise corrupted. What you would 
like to do is use this data, and whatever knowledge you have about its relation- 
ship to the variables of interest and about its noise corruption, to generate 
an estimate of the variables under consideration. Furthermore, you would 
like this estimate to be “optimal” in some sense, where you define the criteria 
for optimality. 

Thus, there are five fundamental components of an estimation problem : 

(1) the variables to be estimated, 
(2 )  the measurements or observations available, 
( 3 )  the mathematical model describing how the measurements are related 

(4) the mathematical model of the uncertainties present, and 
(5 )  the performance evaluation criterion to judge which estimation algo- 

We are now able to consider the problem of estimation with static linear 
Gaussian system models. In other words, we are addressing ourselves to a 
problem which does not involve dynamics and for which linear system models 
and Gaussian noise models provide an adequate description. For this case, 
let us explicitly describe the five problem components just listed. 

(1) The variables to be estimated will be put into the form of the com- 
ponents of the n-dimensional vector x. The true values of these quantities will 
remain constant, but we do not know exactly what the values are. 

(2) There will be m measurements available to us, and these will be made the 
components of an m-dimensional vector, z. 

( 3 )  The set of measurement data z will be assumed to be a linear combina- 
tion of the variables of interest, corrupted by an uncertain measurement dis- 
turbance v of dimension m :  

to the variables of interest, 

rithms are “best.” 

Z=HX+V (3- 125) 

where H is a known ( m  x n)  matrix. 
(4) Probabilistic models will be proposed in the form of random variables 

to describe the uncertainties (there are other approaches, such as unknown 
but bounded set descriptions of uncertainties, or “completely unknown” descrip- 
tions of disturbances). Thus, our a priori knowledge of the variables of interest 
can be used in describing the possible values x as the realizations of a random 
variable x, assumed to be a Gaussian random variable with mean % -  and 
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covariance P-. (The superscript - denotes a value at a time before incorpora- 
tion of a measurement; + will denote the corresponding value after such 
incorporation. 

Similarly, a random variable model is used to describe the noise corruption. 
We let v be a Gaussian random variable, characterized by mean 0 and covariance 
R, and assume that v and x are independent. Equation (3-125) can then be 
viewed as an equation relating the realizations of random variables: for a 
particular outcome o, the realization v of the random variable v is added to 
the linear combination H x  of the realization x of x (the particular realization 
being the “true” value of the variables of interest) to generate the measurement 
data z. This data z can itself then be interpreted as the realization of a random 
variable, denoted as z. Consequently, a random variable model would be 

Z = H X + V  (3- 126) 

where x and v are as previously described. 
(5) With respect to performance criteria, we will adopt the Bayesian view- 

point that the true objective of our efforts is to generate a complete description 
of the probability distribution for values of the variables of interest. Since we 
are interested in estimating the value assumed by a continuous random variable 
x, knowing the value of the measurement z (w)  = z, we are thus really interested 
in explicitly generating the conditional density function f,,,(TI 2). Once such a 
density function were established, it would provide all the information necessary 
to define an “optimal” estimate, regardless of the optimality criterion. Consider 
the general asymmetrical, multipeaked density j&(t 1 z) in Fig. 3.21. Reasonable 
definitions of an optimal estimate might include the median (having equal 
probability “weight” on either side), the mode (the peak or maximum likelihood 
value; hard to distinguish computationally from local peaks), or the mean 

Local 
mode 

FIG. 3.21 Choice of estimator. 
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(the “center of probability mass” estimate). By generating the density function, 
some judgment can be made as to which criterion defines the most reasonable 
estimate for our purposes, an insight lost by first defining the criterion. 

To obtain an explicit evaluation of fX , . ( ( )z ) ,  we want to show that it is a 
Gaussian density. In view of the development of (3-109)-(3-113), this entails 
demonstrating that x and z are jointly Gaussian random variables. First, since 
x and v are independent Gaussian random variables, they are jointly Gaussian 
and uncorrelated. This can be shown by reversing the steps taken in Section 
3.10 to prove that uncorrelatedness implies independence for jointly Gaussian 
random variables, writing ,L,v((, zf) as 

If we define u and y as 

(3-127) 

(3-128) 

then .fXv({, q)  can be written equivalently as f.(y), a Gaussian density described 
by mean mu and covariance P,, given by 

(3- 129) 

So far we have shown u to be Gaussian. But linear transformations of 
Gaussian random variables are themselves Gaussian, so w defined by 

(3-130) 

is a Gaussian random variable with mean and covariance given by (3-118) as 

(3- 1 3 1 a) 

(3- 13 1 b) 

Thus, x and z are jointly Gaussian random variables, of dimensions n and m, 
respectively, with their joint density .fx,, ((, {) a Gaussian density characterized 
by m, and P,, . 

At this point, we can say that fxl,((({) is a Gaussian conditional density 
function and define it completely through its mean and covariance. Recall the 
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result of Eqs. (3-109)-(3-113), and make the following replacements: 

Random variable: y -+ z 

Realization : y -+ z 
Dummy variable: p + 5 

Mean of joint density: --- -+ ----- [:;I [&I 
P -  1 

Covariance of joint density : 

Then the conditional mean, denoted as W', is given by (3-113) as 

2' = E , [ x ~ z  = Z] = 2-  + [P-HT][HP-HT + R]-'[z - Hji-] (3-132) 

Similarly (3-1 14) yields the conditional covariance, denoted by P', as 

P+ = P-  - [P-HT][HP-HT + R]-'[HP-] (3- 1 33) 

Note that if we define the gain matrix K as 

K = P-HT[HP-HT + R]-' (3-134) 

then (3-132) and (3-133) can be written as 

W' = W- + K[z - HW-] 

P' = P -  - KHP- 

(3- 135) 

( 3- 1 36) 

Since W' is the mean of the symmetric Gaussian conditional density fxl,(< lz), 
it is also the mode. Consequently, we choose it as an optimal estimate of the 
variables of interest. As discussed at the end of Section 3.5, (3-135) is an equation 
for a vector W'(z) in R"; the mapping a + ( . )  from R"' into R" 

?if(.) = W- + K[. - H2-1 (3- 137) 

is an estimator, and the composite mapping W'[L(.)] is a random variable 

i i+ = 5i'[~(.)] = W- + K[z(.) - HW-] (3-1 38) 

By choosing i i+ as an estimate of x ,  the vector [x - 2'1 is a Gaussian 
random variable that describes the error in the estimate, denoted as 

e = x - i i +  (3-139) 

The conditional mean of e is zero, and the conditional covariance (see Prob- 
lem 3.20) is 

E , [ e e T l z  = 21 = E,[ (x  - W')(X - W')lz = 21 = P+ (3- 140) 
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Thus, if we choose 2’ as an estimate of x, the P +  calculated through (3-136) 
assumes additional significance : it is the covariance to describe the Gaussian 
error committed by the estimate. Note that this covariance matrix can be 
computed without knowledge of the actual measurement realization, z (w)  = z. 
Consequently, both P+ and the gain matrix K can be precomputed. 

Equations (3-134)-(3-136) can be written in the algebraically equivalent 
form of 

2’ = [P+(P-)-’]2- + [P+H’R-’]z 
P+ = [(P-)-’ + HTR-’H]-’ 

(3-141) 
(3-142) 

These expressions involve (n x n)  matrix inversions rather than (m  x m) inver- 
sions as in the previous equations, so are attractive computationally only if 
m > n ;  this will be developed further in Sections 5.7 and 7.8. However, this 
equivalent set of expressions will be more readily manipulated for the case of 
little or no a priori state information, as will be seen in examples to follow. 

EXAMPLE 3.19 Recall the scalar example of the two simultaneous star sightings discussed 
in Section 1.5. There, x was the one-dimensional position, and z was the location measured by 
means of the star sightings, modeled as 

z1 = x + Vl, 2, = x + v2 

We assumed that we had no a priori information about x, that v1 and v2 could be modeled as 
zero-mean Gaussian random variables with variances o:, and oz2, respectively, and that x, vl, and 
v2 were independent random variables. 

One means of solving for the best estimate of position would be to consider zl(w) = z1 and 
the variance ofl to provide the “a priori” information about x before the second measurement is 
taken. This was the approach taken in Chapter 1 : a sequential, or recursive, estimation procedure. 
Thus, we use this a priori knowledge to describe the random variable x as a Gaussian random 
variable with mean z1 and variance u:, (“2-” = zlr “P-” = of,). Consequently, we consider 
z2 (w)  = 2, as the “available measurement” to be incorporated into the estimate of position. Since 
we model z, as (x + v,) with v2 zero-mean, Gaussian, and with variance of,, we have “ R  = d2. 

The optimal estimate is then the mean (and mode) of the conditional density / ~ l z , , z 2 ( < ~ z , . : 2 ) :  

4’ = R- + P - H T [ H P - H T  + R ] - ’ ( z 2  - H F )  

= z1 + ut,[o,z, + o:J-1(z2 - z , )  

which is, in fact, the result obtained in Eq. (1-6). 

algorithm itself, is then P +  : 
The error variance associated with using 4+ as an estimate. as generated by the estimation 

P+ = P -  - P - H T [ H P - H T  + R I - I H P -  

= o:, - fJ:,[o:, + o:,] - ’of, 

which was also the result obtained previously, Eq. (1-9). 

EXAMPLE 3.20 Another means of solving for the best estimate of position in the previous 
example would be to assume no a priori information about x, and to incorporate the two mea- 
surements simultaneously, i.e., in a batch. If there is no a priori information, we could model this 
through a Gaussian random variable with infinite variance, P -  = cn, or equivalently, ( P - ) -  = 0. 
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The measurement is 

where v is modeled as  a zero-mean Gaussian noise of covariance R: 

where the off-diagonal zeros are due to vI  and v2  being independent and thus uncorrelated. 
Now, using (3-142), we can write P+ as 

P+ = [ (p - ) - I  + HTR-IH]-l = [HTR-'H]-' 

which is identical to the result of the previous example, and equivalent to the result of Eq. (1-4). 
The state estimate can be written using (3-141): 

.?+ = [ P + ( P - ) - ' ] . Y  + [P+H"R-']z 
= P+HTR-'z = [HTR-'H]-'HTR-'z 

Again this is identical to both the previous result and that of Chapter 1 .  

The previous examples demonstrated two methods of processing measure- 
ments. In batch processing, z is the vector of all measurements that are avail- 
able, and thus all measurements are simultaneously incorporated into the 
estimate. For recursive processing, z is partitioned into components : 

(3- 143) 

First, the estimate i' and covariance Pf based upon zl(w) = z1 alone are 
computed. Then the Gaussian random variable so obtained, with mean 2' and 
covariance P', is considered to be the information available about x prior to 
the next measurement, q ( w )  = z2. The update process is then repeated until all 
partitions of z(w) = z are incorporated. 

As illustrated by the previous simple examples, if R is an (m x m) diagonal 
matrix, the batch processing of the m-dimensional measurement realization z 
and the recursive processing of the m scalar measurements zl, z2, . . . , z, yield 
equivalent results. To generalize this statement, let R be block diagonal and 
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let z be partitioned corresponding to the diagonal blocks of R :  

Then batch processing of z and recursive processing of zl, z2,  . . . , zK will yield 
identical results (see Maybeck [6] and Problem 3.17 for proof). Chapter 7 will 
extend these results by explicitly generating a transformation of variables to 
convert any system model into an equivalent form, but with a diagonal R so 
that m scalar updates can always be used. 

This equivalence can be exploited in the design of online estimators. First 
of all, the recursive form entails the inversion of smaller dimensioned matrices, 
yielding simpler algorithms. In addition, online estimators are often imple- 
mented in general purpose computers, so that only a certain time is allotted 
to the algorithm, determined in part by the number of high priority interrupts 
received by the computer to perform other functions. Thus, there may not be 
sufficient time to perform a single batch processing of z in a given period if 
the computer is heavily loaded. However, there would be time to process at 
least some of the partitions z1 to zK. Since a partially updated estimate would 
be preferable to one not updated at all, the recursive form might be a sub- 
stantially better implementation. 

The estimation result of Eqs. (3-134)-(3-136) or (3-141)-(3-142) can be 
directly related to weighted least squares estimation. Least squares estimation 
is a classical technique used extensively, especially in curve fitting applications 
in which it is desired to obtain the polynomial of given order (or some other 
chosen functional form) that “best” fits a set of data points. “Best” is defined 
in terms of minimizing the sum of squares of the differences between the actual 
measurement data and the proposed, or estimated, function or curve. If one 
wants to match certain data points more closely than others, a weighting 
coefficient can be assigned to each term in the sum to be minimized, more 
heavily weighting the ‘,‘cost” of differing from the more critical points, yielding 
what is termed weighted least squares estimation. 

Suppose that the measurement model is 

Z = H X + V  (3-145) 

where v is an m-vector of measurement noise, whose statistical characteristics 
are not defined. We then want to use our knowledge of the measured value z 
to generate an estimate S of the unknown x. Thus, we want to find the value 
of R that minimizes the weighted sum of squares of the rn components of the 
vector [z - HS]. If we let W be a general (m x m) weighting matrix, then we 
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want to find the vector P that minimizes the scalar cost J: 

J = +[z - HPITW[z - HP] 

Note that if W = I, this is standard least squares, with 
i m  

If W is a diagonal matrix with diagonal terms wl, w2,  . . . , w,, then 
i m  

121 

(3- 146) 

(3- 147) 

(3- 148) 

This minimization is accomplished by the value PwLs, where the subscript 
denotes weighted least squares, if 

(3-149a) 
aJ aJ 

and 

(3-1 49b) 

i.e., the second derivative matrix is positive semidefinite. Performing the indi- 
cated differentiation on (3-146) yields 

- [Z - HP]TWHIir=twLs = OT 

or, R,,, is the vector that satisfies 

HTWHPWLs = HTWz (3- 150) 

if [HTWH] is positive semidefinite. If [HTWH] is in fact positive definite, and 
thus has a unique inverse, then 

P,,, = [HTWH]-'HTWz (3-151) 

This can be compared to the result obtained in Example 3.20 for the case of 
no a priori information about x, i.e., letting (P-)-'  = 0: 

j z +  = [ H ~ R - ~ H ] - ' H ~ R - ~ ~  (3- 152) 

The two results are identical if we choose W to be R-'  (positive definite). 
However, least squares theory gives no insights into such a choice of weighting 
matrix, since no statistical characterization (as v being Gaussian, zero-mean, 
of covariance R)  was assumed to be known. Analogous to the previous dis- 
cussion, if W is block diagonal, then an equivalent result can be achieved by 
recursive least squares estimation, the form of which is developed in Problem 
3.18. 
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3.12 SUMMARY 

This chapter has presented basic concepts of probability theory in a pro- 
gression that is logical for addressing the problem of estimating some quanti- 
ties of interest based upon noise-corrupted measurements of related variables. 
From a Bayesian point of view, this problem is solved by establishing a com- 
plete description of the conditional density function of the random vector x 
modeling the quantities of interest, conditioned on knowledge of the measured 
values z (q )  = z available: fxlz(e 12). Thus, it was necessary to develop the con- 
cepts of random variable models as real-valued functions or mappings, and 
descriptions of random variables through associated probability distribution 
and density functions (assuming the existence of the latter). Both unconditioned 
and conditioned probability functions were discussed, and conditioning allowed 
the observed realizations of one random variable to provide information about 
the possible realizations of another, related variable. 

The expected value of some function of a random variable is simply the 
ensemble average value of that function, as the random variable assumes all 
of its possible realizations. Expectations of particular functions, called moments 
of a random variable, provided in general a partial description of that random 
variable. Conditional expectations and moments are of special significance to 
estimation since it is considerably more feasible to generate and implement 
algorithms to compute conditional moments than those intended to construct 
the entire description explicitly as Fxl,(c 1 z) or fxl,(c 12). 

In the special case in which fxlz(c I z) is Gaussian, numerical computation of 
the first two moments, the mean and covariance, provides a complete depiction 
of the density function rather than just a partial description. Thus, a com- 
putationally feasible estimation algorithm can be developed that satisfies the 
Bayesian objective of portraying this conditional density. Because linear opera- 
tions on Gaussian random vectors again yield Gaussian random vectors, the 
class of problems to which such an algorithm is directly applicable is rather 
large. This chapter concluded with the detailed development of such an algo- 
rithm for estimation with static linear Gaussian system models. 

The following chapter will extend these concepts to the case in which quan- 
tities of interest can undergo dynamic changes in time. The fundamental ideas 
of probability theory will be instrumental in developing not only such sto- 
chastic process models, but also the estimation and control algorithms that 
will later exploit these system models. 
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PROBLEMS 

3.1 

3.2 
Prove that for any set A c Q, A E 9, the probability P ( A )  is bounded as 0 I P(A)  2 1. 

Consider two tosses of a fair coin. Completely define the appropriate probability space 
{Q, 3? P i .  Let us say that we are interested only in the number of heads in the two tosses: can a 
different probability space {Q, F1, P’} be defined with 9’ a smaller collection of sets? Define 
an appropriate random variable x( . )  to consider the number of heads appearing in two tosses. 
Obtain the probability distribution function for this x(.) .  

3.3 If the joint probability density of x1 and x2 is 

what is the characteristic function for a random variable y, where 

y = x ,  + x , ?  

Determine the mean of y. 

3.4 By definition, the ith component of the n-dimensional mean vector is 

Is this the same as 

m, = J-xa 5, f x>( t , )dC ? 

Show why. 

3.5 
the interval [0,1]. Define the random variable z( ’ )  as 

Let x ( . )  and y ( ’ )  be independent random variables that are each uniformly distributed on 

(a) 
(b) 

What are the mean, mean squared value, and variance of x( . )  or y ( . ) ?  For z(.)? 
What is the probability that z ( . )  assumes a value less than O S ?  Less than or equal to O S ?  
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3.6 Prove that the random vector {x - E,[xly = y(.)]} is orthogonal to the random vector y: 
that 

E,,{Y(x - E,[x~Y = Y(.)])') = 0 

Show that this can be generalized-that {x - E,[xly = y(.)]} is orthogonal to any function of y. 
This concept is instrumental in deriving the Kalman filter by means of "orthogonal projections," 
which was the original means of derivation. 

At the end of Section 3.6, it was stated that if either x or y (or both) is zero-mean, then 
orthogonality and uncorrelatedness of x and y imply each other. Prove this. Also prove that, if 
neither x nor y is zero-mean, then they cannot be both uncorrelated and orthogonal. 

3.8 Let x and y be random n-vectors with y = O(x). Suppose 8-'  exists and that both 0 and 
0-  ' are continuously differentiable. Then 

3.7 

where IlW ' (p)/apll  > 0 is the absolute value of the Jacobian determinant. Prove this theorem 
using the conditional density relationship 

f V , J P l & )  = ,L,y(c.P)/L(c) 

as a beginning. Write ,f,(p) in terms off,,,(<,p) and continue the proof. 

the real line). The statistics of x( . )  are 
3.9 The scalar Gaussian random variable x( . )  is defined on C2 = R' (is., the sample space is 

E { x )  = m, E { [ x  - m]*} = P 

The scalar random variables y(.) and z( . )  are defined by 

y(.) = XS(,), z(.) = x2(.) 

(a) Find the probability density for y ( . )  by using fundamental set definitions to establish 

(b) Find , f , (p) by a method analogous to the proof of the preceding problem. 
(c) Find &(p)  by direct application of the result of the last problem. 
(d) Find the probability density for z ( . )  by the method used in part (a). Why would the 

3.10 Let x, y, and z be pairwise independent. Show that they need not be triplewise inde- 

3.1 1 Consider a three-dimensional Gaussian random vector, x(. ), one whose probability 

F,(p) and then find its derivative. 

methods of (b) and (c) not be directly applicable? 

pendent. What if [x, y, 21' is a Gaussian random vector? 

density is described by 

,h(c) = [ ( 2 ~ ) ~ ' ~ 1 p 1 ' ' ~ ] - ' e x p {  -+[< - m]'P-'[< - m]) 

where the mean m and covariance P are 

m = [!I, P = [i i.5 L] 
Surfaces of constant probability density are called surfaces of constant likelihood. They are 
ellipsoids with principal axes not generally aligned with the coordinate axes. 

0 0.5 2.5 
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(a) Determine a transformation of variables x’ = Tx so that it is possible to use the principal 
axes of the ellipsoid as the coordinate axes. When this is done, P becomes diagonal, i.e., 

Obtain this form for the given matrix P. 
(b) Show that now the surface of constant likelihood is an ellipsoid of the form 

G Z / d l 2 1 )  + (t;2/u;22) + (g;2/u;23) = c2 

Write an expression for the probability that xl ,  x2, and x3 take values within the ellipsoid. 
(c) Show that our ellipsoid becomes a sphere by defining new variables 

x; = x,r /u \ , ,  x‘; = x21/u;2. x; = x31/u;3 

and that the probability can be written as a volume integral over the ellipsoid: 

Prob{(x,,x,, x 3 )  lies within ellipsoid) = j”JJ $dtY 4; dr‘; 

where rz = t;’ + t;’ + ti2, or in another form as 

s(r)e-‘’/’ 
Prob{(xl,x2,x3) lies within ellipsoid] = Jo ~ ( 2 4 3 ’ 2  dr 

where s(i-) is the surface area of a sphere of radius r.  
(d) 
3.12 Prove that for a zero-mean Gaussian random vector x, with covariance P, 

Calculate the probability for c = 1 and c = 2. 

E[xkxLxmxnl = pk,pmn + P k m P h  + p k n p h  

3.13 At theend of Section 3.9, it wasclaimed that theerror {x - E,[x/y = y(.)]) is a Gaussian 
random vector that is independent of any random vector obtained as a linear transformation on y. 
under the assumptions made in that section. Prove this. 

A parameter x is to be estimated on the basis of a priori information and a single noisy 
measurement. The quality of the a priori information is expressed by the probability density func- 
tion in Fig. 3.P1. The measurement is assumed to be of the form 

3.14 

z = x + n  

where n is a noise, independent of x, which has a probability density of the form given in Fig. 3.P2. 
The actual measurement taken had the value of f. Find the conditional probability density 
jxlr(<l[) for [ = 4, i.e., j & ( t l ~ ) .  Plot this density as a function of g. 

One reasonable estimate of x would be the value of [ that maximizes the density fxl,(tlf). 
This is a “maximum likelihood estimate,” and we will denote it here as TML. (It is also called the 
maximum a posteriori, or MAP, estimate; see Section 5.5.) Find its value. 

Another reasonable estimate of x would be the conditional mean, Ex[x I z = f]. which we will 
denote as 2. Find its value. 

Now determine some statistical information about the error committed by these two esti- 
mates. Define the error in the maximum likelihood estimate as 

eML = iML - x 
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I I  
0 1 2 

FIG. 3.P1 
lem 3.14. 

A priori information for Prob- 

FIG. 3.P2 Measurement noise descrip- 
tion for Problem 3.14. 

Obtain the conditional mean and conditional variance of this error, conditioned on the fact that 
z = i = f. Similarly define the error in the conditional mean estimate of x, and obtain the con- 
ditional mean and variance of this error. The conditional mean can be shown to be the estimator, 
out of the class of linear estimators with zero-mean error, that has minimum error variance: this 
does not mean that other estimators cannot duplicate this error variance (as in this problem), or 
that estimators outside of the class under consideration cannot outperform the conditional mean. 

FIG. 3.P3 Density functions for Problem 3.15 
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3.15 This problem demonstrates the differences among mean, mode, and median estimates. 

(a) 

Find these three estimates for the four density functions depicted in Fig. 3.P3. 
3.16 Generate the matrix inverse indicated in Eq. (3-109) by letting 

and solving P-'P = I for A , , ,  A , , ,  and A,, as 

AI 1 (Pxx - PxyP&lPyx)-l~ A22 = (Pyy - PJ';,'Pxy)-l 
A,,  = -A,,P,,P,' = -P,'P,,A,Z 

(b) Show that equivalent expressions for A l l  and A,, are 

A l l  = P,' + P~JPxyA22PyxP~~l AZ2 = P,' + P~lPyxAI,P,yP~l 
Why might this be of use? 

(c) 
3.17 

Use these results and (3-1 10) to develop (3-1 11)-(3-113). 

tions (an inductive proof for the general case is a simple extension). Let 
Prove the claim associated with (3-144) for the case of two measurement vector parti- 

Show that two recursions of (3-141) and (3-142) for z, and z,, respectively, yields equivalent results 
to one application of these equations to incorporate z. 

The end of Section 3.11 generated a weighted least squares estimate of x as given by 3.18 
(3-151): 

f,,, = [HTWH]-'HTWz 

Now convert this into a recursive technique. Let R be m-dimensional and write the result of the 
above equation as 2,. Now assume an additional scalar measurement value z , ,  , becomes avail- 
able; 2,+, could be generated in tkie same manner for an (m + 1)-dimensional measurement. 
However, if the "new" values of the (rn + 1)-by-n H,,, and the (m + 1)-by+ + 1) W,,, are 

then show the result can be written equivalently as 

P, = [HTWH] 

% + I  = 2, + Pmhm+i[hL+1Pmhm+1 + (1/~nt+l)]-~[zrn+1 -hL+IfrnI - -  
P,+i =P, - P,h,+i[h:+iP,h,+i +(l,'~,+i)]-~h:+iF, 

3.19 Consider the estimation of a vector, x, composed of n constant parameters, based upon 
m measurements. Let the relationship between the measurements and parameters be given as 

Z = H X + V  

Let x and v be modeled as jointly Gaussian, zero-mean vectors with 

E[xxT] = X, E[vv~] = R, E[xv~] = S 

What is the conditional mean E,[xlz = z]? If this were used as an estimate of x, what is the corre- 
sponding conditional error covariance? 
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Problem 3.19 is modified from Uncertain Dynamic Systems by F. C .  Schweppe. @ 1973. Used 
with permission of Prentice-Hall, Inc. 

3.20 In Section 3.9 an expression was developed for the conditional covariance of a Gaussian 
random variable x, conditioned on the fact that a random variable z, jointly Gaussian with x, 
assumed some value, z. We called this conditional covariance P+. 

Later, in Section 3.11, this P,,, was called the covariance of the error associated with using 
E[x Iz = z] as an estimare of the value of x. Explain this new interpretation of P,,, explicitly. Show 
that it is a valid interpretation by showing that if y is a continuous (Baire) function of z, y = O(z), 
then 

E { X Y ~ ~ Z ( U ~ )  = Z)  = E { x ~ z ( ~ ~ )  = Z; [eT(z)] 

and use this result to prove (3-140). 
Is PXli a function of the value z t,hat z assumes? So what? 

3.21 Assume you are responsible for increasing the position-tracking precision of a flight test 
range. Presently, you have a radar tracking systcm capablc of mcasuring position & 10 ft (peak 
expected errors due to very wideband noise). You desire to double the precision to k 5 ft approx- 
imately. For equal cost you could either 

(a) optimally combine the present radar data with a new radar system’s data, where the new 
system alone provides position k6 ft (peak errors due to very wide band noise) or 

(b) triplicate the original system and combine data optimally. 
Which would you propose to do and why? State all modeling assumptions explicitly. 

3.22 It is desired to estimate the value assumed by some zero-mean scalar random variable x 
using the conditional mean of x, given the values of three other zero-mean scalar random variables, 
zI, z 2 ,  and z3. Prove by counterexample that the following two “reasonable” statements are 
actually false. 

(a) If E[xzl] # 0, then the value of zlr i.e., zl. is always a part of the best estimate of x(wx) = x. 
(b) If E[xzl] = 0, then the value of zl(z,) is never of use in estimating x. 
Note what this implies about the common practice in economics and other fields of judging 

whether a variable should be included in an analysis based on its correlation to the variable of 
interest. 

Problems 3.22 and 3.23 are modified from Uncertain Dynamic Systems by F. C .  Schweppe. 
0 1973. Used with permission of Prentice-Hall, Inc. 

3.23 The conditional error covariance matrix P+ derived in Section 3.1 1 is independent of 
the values z assumed by the measurements z. Thus, an error analysis can be performed before the 
measurements are taken, to decide how accurate the estimate will be when ( i f )  i t  is actually cal- 
culated. 

Assume that two meters are to provide measurements of a parameter. x. that you want to 
determine. Let the a priori knowledge of x indicate that it is well modeled as Gaussian, zero-mean. 
and having a variance of 8. Let the measurements be of the form 

21 = x + V I ,  2 2  = x + v2 
One meter has been built and is assumed to be such that v 1  is Gaussian, zero-mean with variance 
of unity. The other meter has not yet been built. and v2 can be assumed to be Gaussian, zero-mean, 
and of variance R, where R is a design parameter. 

Assume system specifications require that the final estimate must have an error with variance 
less than or equal to+. Since accurate meters cost money, it is reasonable to try to find the maximum 
value of R that is acceptable. Find this R .  With that R, determine the equations for the estimator 
that incorporates both z1 and z2  simultaneously. Now find the equations used to incorporate z1 
to obtain an estimate, and then recursively incorporate z2 into the estimate. Show that these are 
the same estimates with the same error variances. 
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3.24 This and subsequent problems are concerned with estimation of the moments [l, 2, 8, 
11, 141 of a random variable x ( , ) ,  based only upon N realized vafues, x , .  x 2 , .  . . , xN, that can be 
considered to be empirical data. The distribution and/or density function are unknown, and 
assume that the true (unknown) mean and variance of x (  .) are p x  and ux2, respectively. 

A logical choice of estimate of the mean would be 

l N  

N 
M,=-  c xi 

To consider the error committed by using this estimate, let x l ( - ) ,  x 2 ( . ) ,  , . . , x N ( . )  be N random 
variables, each with distribution identical to that of x ( . ) .  Thus, we can generate the estimator 

and conceive of conducting an experiment of generating the N data points repeatedly, the j th such 
experiment yielding a single realization of M,, Mx(coj). We want to characterize the distribution of 
these estimate values. 

(a) Show that E{M,l = p x :  that M, is an unbiased estimator of the mean of x ( . ) .  
(b) Show that the variance of M,, denoted as usz, is 

2 N - 1  N 1 

N N 2  i = l  j = i + l  
uk2 = - E { x 2 }  + - 1 1 E { x i x j )  - prz 

so that, if the observations are independent of each other (i.e., x l ,  x 2 , .  . . , xN are a set of inde- 
pendent random variables), then 

uk2 = ( l / N ) u x 2  

Why is uk2 also the variance of the error committed by using hi, to estimate the mean of x? 
{c) As N is increased, not only does the estimate become more precise, M, becomes more and 

more Gaussian, regardless of the distribution of x.  (Why?) If M.y is assumed to be Gaussian, how 
many observations should be made (ix., at least how large should N be) so that the probability 
that the error in the estimate is less than lo:(, of 0, is 0.954? (Answer = 400.) 

3.25 Since the variance of x ( . )  is defined as 

u,2P E ( [ x  - E { x ) ] Z )  = E { x Z )  - [ E ( x ) ] Z  

a reasonable estimator of the variance of x( . )  would be 

with f ix defined in the previous problem. 
(a) Demonstrate the equality of the two forms of V’’. 
(b) Although this is a reasonable estimate (and the maximum likelihood estimate), show that 

it is a biased estimate, that 

E {Ox,) = u x 2  - u:,2 # u,2 

with uA2 defined in the previous problem. For independent observations, show that this becomes 

E ( q , ’ )  = [(N - l ) / N ] u x 2  
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(c) Thus, for independent observations. a variance estimate of [ N / ( N  - l)]Vi, or 

will yield an unbiased estimate of the variance of x ( . ) ,  oxz. If observations are not independent, 
show that 

and that the mean error is less than that committed by c’,’. This estimator is defined only for 
N > 1; would an estimate of variance for N = 1 be meaningful? Why would the second form of 
px be preferable computationally? 

(d) Show that the variance of o,, for independent observations and N > 1, is 

0;’ = ( l / N ) [ E ( ( x  - pJ4j - ( ( N  - 3 ) / ( N  - l))vx4] 

If x (  .) were assumed Gaussian, show that the fourth central moment is equal to 3uX4, and thus 

o ~ ’  = [ 2 / ( N  ~ l ) ] ~ , ~  [if x ( . )  is Gaussian] 

If x ( . )  were instead assumed to be uniform, show that the fourth central moment is equal to pax4, 
and so 

aC2 = [(4N + 6 ) / { 5 N ( N  - l ) ) ] ~ , ~  [if x ( . )  is uniform] 

Thus, under very different assumptions about x ( . ) ,  the quality of the estimate provided by px is 
very similar: 

uF ( x  Gaussian) Z 1.40~ ( x  uniform) 

3.26 Analogous to the variance estimator of the previous problem, a good estimate of the 
covariance between x ( . )  and y( . )  is 

where hx = (l/N) xf=l x i  and M y  = ( l /N) I;”= y i ,  and the second form of ex, is more con- 
venient computationally. 

(a) Show that, for independent observations, ex, is an unbiased estimate: 

E{&) = 4 = true covariance of x ( . )  and y(.) 

(b) For independent measurements, the variance of c,, is 

OF2 = ( 1 / N ) [ E { [ x  - P,]’[Y ~ p,]’)  + [1/W - 1)]{0,’a,2 - ( N  - 2 ) d y } ]  

Show that this measure of the quality of the c,, estimate becomes, if x ( . )  and y(.) are assumed 
jointly Gaussian, 

vcz = [I/” - l)]a,za,z[l + r$] 

where rSy is the correlation coefficient between x ( . )  and y(.). 

relation coefficient can be produced as 
(c) From the definition of correlation coefficient, (3-75), a good estimator of the (linear) cor- 
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30.- 

20 

10 

A “scatter diagram”is a two-dimensional plot ofthe N realizations [x (w , ) ,  y ( w l ) ] ,  [x(o,)y(u),)],  . . . , 
[x(w,) ,y(wN)] ,  as shown in Fig. 3.P4. Plot (a) shows perfect correlation between the two variables, 
(b) portrays smaller positive correlation, (c) depicts no correlation, and (d) shows negative correla- 
tion. From plots (a)  and (b) i t  can be seen that the magnitude of the correlation coefficient depicts 
the dispersion of the points from the least squares (regression) line fit to the data, and not the 
slope of the line itself. Verify these claims by calculating F X y  for the four plots of Fig. 3.P4. 

The least squares regression line ofy on Y (least squares fit o f a  line to the data, with “residuals” 
being the distance between data points and the line measured in the J’ direction) is given by 
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Thus, each line passes through the “centroid ( f i x ,  By), and the product of their slopes is i&. 
The linear correlation coefficient is a measure of the departure of the two regression lines, with 
colinearity indicated by FX, = _+ 1 (perfect linear correlation) and orthogonality by ixy = 0 (no 
linear correlation). Verify these interpretations for the four cases depicted in Fig. 3.P4. 

3.27 The previous three problems assumed perfect measurements of realized values. Now 
assume noise corruption of the measuring device, so that what are available are realizations of 

Y i . )  = x ( . )  + w ( . )  

where w ( - )  is zero mean. ofvariance 11,’. and independent of xi.). Assume independent observations. 
(a) Show that Ms = (l/iV) y z  is still an unbiased mean estimator, but with increased 

variance: 0,’ = (l/N)(u,’ + u,,,’). 
(b) Show that 0, = [l/(N - l)] I:==, yi2 - “/(A’ - 1)]M,2, however, is a biased estimator: 

E { v , )  = o , ~  + 6,’; thus, the best estimator would be [ox - uw’]. How would uw2 be estimated? 
If x and w are assumed Gaussian, show that 

uF (with meas. noise) = [l + (uw2/ux2)]u8 (without meas. noise). 



C H A P T E R  4 
Stochastic processes 

and linear dynamic 
system models 

4.1 INTRODUCTION 

This chapter adds dynamics to the system model developed in Chapter 3, 
thereby allowing consideration of a much larger class of problems of interest. 
First, Sections 4.2 and 4.3 characterize stochastic processes in general. Section 
4.4 presents the motivation and conceptual framework for developing stochastic 
linear dynamic system models. State equations in the form of linear stochastic 
differential or difference equations are developed in Sections 4.5-4.9, and 4.10 
adds the description of measured outputs to complete the overall system model. 
Finally, Sections 4.1 1-4.13 develop practical system models designed to dupli- 
cate (to the extent possible) the characteristics of processes observed empirically. 

4.2 STOCHASTIC PROCESSES 

Let R be a fundamental sample space and T be a subset of the real line 
denoting a time set of interest. Then a stochastic process [l-141 can be defined 
as a real-valued function x(.;) defined on the product space T x R (i.e., a 
function of two arguments, the first of which is an element of T and the second 
an element of Q), such that for any fixed t E T, ~ ( t ; )  is a random variable. A 
scalar random process assumes values x ( t ,  w )  E R', whereas a vector random 
process assumes values x ( t ,  o) E R". In other words, x(. ,  .) is a stochastic process 
if all sets of the form 

133 
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for any t E T and < E R" (R' for a scalar random process) are in the underlying 
o-algebra 9. If we fix the second argument instead of the first, we can say 
that to each point oi E SZ there can be associated a time function x ( - . w i )  = 
x( .), each of which is a sample from the stochastic process. 

Although the definition of a stochastic process can-be generalized to T being 
a subset of R" (as for a process as a function of spatial coordinates), we will be 
interested in T c R' with elements of T being time instants. Two particular 
forms of T will be important. If T is a sequence { t , ,  t z ,  t 3 , .  . .}, not necessarily 
equally spaced, then x ( f , ,  .), x( t 2 ,  .), x ( t 3 ,  . ), . . . becomes a sequence of random 
variables. This x(. ,  .) is then called a discrete-parameter stochastic process, or a 
discrete-time stochastic process. A sample from such a process is depicted in 
Fig. 4.1 ; different o values then generate different samples from the process. 
If T is instead an interval of R', then x(.;) becomes a continuous-parameter 
family of random variables, or a continuous-time stochastic process. For each o, 
the sample is a function defined on the interval T, as portrayed in Fig. 4.2. 

If T is of the discrete form of a finite sequence of N points along the real line, 
the set of random variables x ( t , ,  .), x(t,, .), . . . , x(t, ,  .)  can be characterized by 

I I : Time 
t l  t 2  I 3  t4 

FIG. 4.1 Sample from a discrete-time stochastic process. 

= Time 
t 0  t /  

Samples from a continuous-time stochastic process. FIG. 4.2 
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the joint probability distribution function 

Fx(t l ) .  ... ,x (rN)(Ci7 .  . . 3 5 ~ )  2 P((w:x ( t i ,w)  I 51,. . . , x ( t N , m )  I L}) (4-2) 

or the joint density function (if it exists): 

That is to say, knowledge of such a joint distribution function or the associated 
joint density function completely describes the set of random variables. 

If we want to characterize a continuous-time stochastic process completely, 
we would require knowledge of the joint probability distribution function 
Fx(rl), . . . ,x(tN)(51,. . . , C N )  for all possible sequences i t l ,  t,, . . .}. Again, if it exists, 
the associated set of joint density functions for all possible time sequences 
would provide the same complete description. Consider Fig. 4.3. The distribu- 
tion function F'x(r,)(El) establishes the probability of the set of w E R that gives 
rise to random process samples that assume values less than or equal to ct at 
time t,. Similarly, f x c r , , ( ~ t )  reveals the probability of the set of samples, out of 
the entire ensemble of process samples, that assume values between ct and 
cl + dCt at time r l .  The joint distribution F x , t , ) , x ( , 2 ) ( 5 1 , t 2 )  indicates the prob- 
ability of the set of samples that not only take on values less than or equal to 

Samples from the I I 

Samples from the 
stochastic process 

0)) 

5 2  - Time 

FIG. 4.3 Characterization of stochastic processes. (a) Joint distribution functions. (b) Joint 
density functions. 
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cl at t , ,  but also take on values less than or equal to c, at tZ, and similarly for 
.fxct , ) , X ( t 2 )  (tl, c2). These functions more fully characterize the manner in which 
process samples can change values over time, but even a specification of such 
functions for all possible tl and tz would not provide a complete description. 
That would require an evaluation of all first and second order functions as 
described, plus all higher order functions for all choices of t , ,  t,, . . . , etc.: 
conceptually satisfying but infeasible practically. 

As can be seen from the definition of a stochastic process and the preceding 
discussion, the concepts and tools of probability theory from the previous 
chapter will readily apply to an investigation of stochastic processes. This is 
particularly true with respect to gaining at least a partial description of a sto- 
chastic process through a finite number of moments. Rather than trying to 
generate explicit relations for joint distributions (or densities if they exist), it is 
often convenient, especially computationally, to describe these functions to 
some degree by the associated first two moments. In the case of Gaussian 
processes, such information will completely characterize the joint distribution 
or density functions, and thus completely characterize the process itself. Note 
that in the following descriptions the CL) argument will be deleted as in the 
previous chapter, but the boldface sans serif typeface will be maintained to 
demark stochastic processes: x(.;) will be written as x( .), x ( t ; )  becomes the 
random variable x(t), and x(t,  wi)  = x(t) will be written as x(t ) .  

The mean value function or mean m,(.) of the process x(.) is defined for a11 
t E T b y  

i.e., the average value x( .) assumes at time t, where the average is taken over the 
entire ensemble of samples from the process. An indication of the spread of 
values about the mean at time t, m,(t), is provided by the second central moment, 
or covariance matrix, Pxx(.), defined by 

A useful generalization of this, containing additional information about how 
fast x ( t )  sample values can change in time, is the covariance kernel P,,(.;), 
defined for all t l ,  t ,  E T as 

The nature of the information embodied in (4-6) that is not available in (4-5) 
will be made more explicit in the example to follow. From (4-5) and (4-6), the 
covariance matrix can be defined as 
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is., Px,.(., .)with both arguments the same time. The second noncentral moment 
concept generalizes to the correlation kernel YXx(.;) defined for all t , ,  t2  E T as 

Y X X ( t 1 5  t 2 )  E{X(t,)x(t2)T) (4-8) 

The correlation matrix would then be Yxx(t, t), composed of individual correla- 
tions of components of x(t): its i-j component would be E{x , ( t )x , ( t ) ) ,  and the 
diagonal is made up of mean squared values of individual random variables 
x , ( t ) .  From (4-6) and (4-8), it can be seen that 

wXx(t1, t z )  = P X X ( t l 9  t 2 )  + mx(tl)mx(t2)T (4-9) 
and thus if x(.) is a zero-mean process, Yxx(t,, t 2 )  = Px,(tl, fJ. 

EXAMPLE 4.1 Consider two scalar zero-mean processes x ( . )  and y ( . )  with 

Yx,(tl, t2) = ~ ~ ~ ( t ~ , t ~ )  = 0 2 e - ~ r ~ - r ~ ~ ~ ' ,  Y)yy(t , , tZ)  = P,, ,( t , , t , )  = 02e-~ '~- 'z l /107 

where these two correlations are plotted as a function of the time difference ( t l  - t 2 )  in Fig. 4.4. 
For a given value of (tl - t 2 )  # 0, there is a higher correlation between the values of y(tl) and 
y ( t z )  than between x ( t J  and x ( t 2 ) .  Physically one would then expect a typical sample x(.,wi) to 
exhibit more rapid variations in magnitude than y( . ,w,) ,  as also depicted in Fig. 4.4. Note that 
such information is not contained in P,,(t) and Pyy(t), or Yxx(t)  and YYy(t), all of which are the 
same value for this example, 02, as seen by evaluating the preceding expressions for t ,  = r,. 

x(t.tu,) 

4 
Y l L W i )  

4 

FIG. 4.4 Second moment information about stochastic processes. (a) Correlation or variance 
kernels. (b) Typical samples from the stochastic processes. 

For characterizing the interrelationship between two stochastic processes 
x( * )  and y(.), the preceding second moment concepts generalize to the cross- 
covariance kernel of x( * )  and y(.), PXy(.;) defined for all t,, t2  E T as 

P x y ( t l , t 2 )  4 E{[x(tl) - m,(tl)I[~(t2) - m,(t,)]') (4-10) 
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the cross-covariance matrix: 

and the cross-correlation kernel and associated matrix : 

Other concepts also readily translate from probability theory, but care must 
be taken to avoid such ambiguities as the meaning of “independent processes” 
and “uncorrelated processes.” A process x( ., .) is independent (in time) or white 
if, for any choice of t , ,  . . . , t, E T,  x(tl), . . . , X(tN) are a set of independent 
random vectors; i.e., 

N 

P ( { ~ : x ( t i , o )  I Cl,. . . ,x(t,,m) I (,I) = JJ P({m:X(ti,W) 5 ti>) (4-14) 
i =  1 

or equivalently, 

(4-15) 

or, if the densities exist, 
N 

.Lcr ,), . . . . x ( t N ) ( C l ?  . . . ,  C N )  = n . L ( t , ) ( t i )  (4- 16) 
i =  1 

On the other hand, two processes x( ., .) and y( ., .) are said to be independent 
(of each other) if, for any t , ,  . . . , t N  E T, 

P({o:x(tl ,m) < . . >x(t,,m) 5 ( N > Y ( t l , W )  5 P I ? .  . . ,y(fN?(fj) 5 PN;) 
= P((m:x(t , ,w) I 5 1 , .  . . ,x(tN,w) I { N ) )  

‘ P((m:y(t , ,w) < . . ,y(fN,to) 5 PN)) (4-17) 

Thus, “two independent processes” could mean two processes, each of which 
were independent in time, or two processes independent of each other, or some 
combination of these. We will use the term “white” to clarify this issue. 

In a similar manner, a process x( .  , . )  is uncorveluted (in time) if, for all t , , t2 E T 
except for t ,  = t2 ,  

(4-18a) T X X ( t l , t 2 )  2 E[X(t,)XT(t2)] = E[x(t,)]E[xT(t2)] 

or 

P X X ( t 1 ,  t2)  = 0 (4-18b) 

By comparison, two processes x ( . ,  .) and y(.;) are uncorrelated with each other 
if, for all t ,  , t2 E T (including t ,  = t z ) ,  

Yxy(t13 t2)  2 E[X(tl)YT(t2)] = E“t, )]E[YT(t2)l (4-19a) 
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or 

As shown previously, independence implies uncorrelatedness (which restricts 
attention to only the second moments), but the opposite implication is not true, 
except in such special cases as Gaussian processes, to be discussed. Note that 
“white” is often accepted to mean uncorrelated in time rather than independent 
in time; the distinction between these definitions disappears for the important 
case of white Gaussian processes. 

In the previous chapter, much attention was devoted to Gaussian random 
variables, motivated by both practical justification (central limit theorem) and 
mathematical considerations (such as the first two moments completely de- 
scribing the distribution and Gaussianness being preserved through linear 
operations). Similarly, Gaussian processes will be of primary interest here. A 
process x( .;) is a Gaussian process if all finite joint distribution functions for 
x(t1;), x(t,;), . . . , ~ ( t , ; )  are Gaussian for any choice of t , ,  t , ,  . . . , t,. For 
instance, if x( .;) is Gaussian and the appropriate densities exist, then for any 
choice of t , ,  t ,  E T ,  

where 

(4-2 1 a) 

(4-21b) 

Analogous statements could then be made about density functions of any order, 
corresponding to any choice of N time points instead of just two. 

4.3 STATIONARY STOCHASTIC PROCESSES 
AND POWER SPECTRAL DENSITY 

One particularly pertinent characterization of a stochastic process is whether 
or not it is stationary. In this regard, there is a strict sense of stationarity, con- 
cerned with all moments, and a wide sense of stationarity, concerned only with 
the first two moments. A process x(.;) is strictly stationary if, for all sets 
t,, . . . , t N  E T and any z E T [supposing that (ti + z) E T also], the joint distri- 
bution of x(tl + z), . . . ~ x(tN + z) does not depend on the time shift z: i.e., 

P({w:x(t, + z,o) I c1,. . . ,x(t, + z,Q) I {N]) 

= P((w:x(t, ,w) I 5 1 , .  . . +x(tN,w) I CN]) (4-22) 
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A process x (  ., .) is wide-sense stationary if, for all t, z E T, the following three 
criteria are met: 

(i) E { x ( t ) x ( t ) T )  is finite. 
(ii) E { x ( t ) }  is a constant. 

(iii) E { [ x ( t )  - m , ] [ x ( t  + z) - m,IT) depends only on the time difference z 
[and thus Yxx(t) = Yxx(f, t )  and P,,(t) = P,,(t, t )  are constant]. 

Thus, in general, a strictly stationary process is wide-sense stationary if and only 
if it has finite second moments, and wide-sense stationarity does not imply 
strict-sense stationarity. However, in the special case of Gaussian processes, 
a wide-sense stationary process is strict-sense stationary as well. 

By definition, the correlation and covariance kernels Yxx(t, t + 5) and 
P,,(r, t + z) for wide-sense stationary x ( . ; )  are functions only of the time 
difference z; this is often made explicit notationally by writing these as functions 
of a single argument, the time difference 2 :  

~ X X ( 4  t + z) ---* Y x x ( 4  (4-23a) 

Px,(t, t + r )  + P,*(z) (4-23b) 

To avoid confusion between these relations and Yxx(r) and Pxx( t )  as defined in 
(4-7), a single argument z will be reserved to denote a time diflerence when 
discussing functions Yxx(.) or Pxx( .). A further characterization of these func- 
tions can be made as well : not only are the diagonal terms of Yxx functions only 
of z, but they are euen functions of z that assume their maximum value at z = 0. 

In the case of wide-sense stationary processes, Fourier transform theory can 
be exploited to generate a frequency-domain characterization of processes in 
the form of power spectral densities. If a scalar time function y ( . )  is Fourier 
transformable, the relation between it and its Fourier transform ?(. ), as a func- 
tion of frequency o, is given by 

~ ( o )  = a S_a_ y(t)e-jo"clt (4-24a) 

(4-24b) 

where a and b are scalars such that their product is 1/(27~): 

ah = 1/(2n) (4-24~) 

Power spectral density of a scalar wide-sense stationary process x( ', - )  is defined 
as the Fourier transform of the correlation function Yxx(z). Since samples from 
a wide-sense stationary process must be visualized as existing for all negative 
and positive time if z is to be allowed to assume any value in R', the two-sided 
Fourier transform, i.e., integrating from t = - 00 to t = 00, does make sense 
conceptually in the definition. 
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Some useful properties of Fourier transforms of real-valued functions in- 
clude the following: 

(1) F(o) is complex in general, with p( - w )  = ~ * ( w ) ,  where * denotes com- 
plex conjugate. 

(2) Thus, Y ( w ) ~ (  -0) = T ( W ) ~ * ( W )  = (Ji(o)I2. 
(3) The real part of r(.) is an even function of w, and the imaginary part 

(4) Although 6 ( t )  is not Fourier transformable, its transform can be defined 
is odd in 0 .  

formally through (4-24a) as 

- 
6 ( o )  = a J-mx 6( t )e- j " ' l i t  = n (4-25a) 

so that (4-24b) yields, formally, 

Unfortunately, there are a number of conventions on the choice of a and b 
in (4-24) for defining power spectral density. The most common convention is 

Yxx(o) = JTx ~ , , ( z ) e - j ~ ~ T ~ z  (4-26a) 

Note that if frequency is expressed in hertz rather than rad/sec, using f = 

w/(2n), then there is a unity coefficient for both defining equations: 

Using this convention, power spectral density is typically specified in units of 
(quantity)'/hertz. Since Y,,(O) is just the mean squared value of x ( t ) ,  it can be 
obtained by integrating the power spectral density function: 

Furthermore, we can use Euler's identity to write (4-26a) as 

Yxs(o) = J:, ~',,(z)[coswz - j s inoz]  ~ l z  
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and, since Yx,(z) and cos o z  are even functions of z and sin wz is odd in z, 
this becomes 

Yxx(o) = JT, Yxx(z)cos wz dz (4-29a) 

= 2 JOm YXx(r)cosozd~ [if Yxx(0) is finite] (4-29b) 

Thus, the power spectral density function is a real, even function of w. It can 
be shown to be a pointwise positive function of w as well. Analogously to 
(4-29), the correlation function becomes 

(4-30a) 

1 
= - JOm Txx(o) cos o z  dw [if Txx(0) is finite] (4-30b) 

7L 

Another common convention for power spectral density is 

(4-31a) 

(4-3 1 b) 

with units as (quantity)2/(rad/sec), motivated by the property that the mean 
squared value becomes 

(4-32) 

i.e., without the 1/(271) factor. A third convention encountered commonly is 

1 ,  T" xx (a) = - J- Yxx(z)e-j" 'd.r  
7 1 "  

also with units as (quantity)'/(rad/sec), such that 

E{X(t)Z} = Jom Y;x(w)dw 

(4-33a) 

(4-33b) 

(4-34) 

using only positive values of o to correspond to a physical interpretation of 
frequencies being nonnegative. 

The name power spectral density can be motivated by interpreting "power" 
in the generalized sense of expected squared values of the members of an 
ensemble. Yx,(o>) is a spectral density for the power in a process x( . )  in that 
integration of Txx over the frequency band from w1 to co2 yields the mean 
squared value of the process which consists only of those harmonic com- 
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t 

FIG. 4.5 Power spectral density. 

ponents of ~ ( t )  that lie between col and co2, as shown by the shaded region in 
Fig. 4.5. (This is in fact another means of defining power spectral density.) 
In particular, the mean squared value of x ( t )  itself is given by an integration of 
Y x x ( w )  over the full range of possible frequencies co. 

Figure 4.6 depicts the autocorrelation functions and power spectral density 
functions (using the most common convention of definition) of a white process, an exponentially 
time-correlated process, and a random bias. Note that a white noise is uncorrelated in time, 
yielding an impulse at t = 0 in Fig. 4.6a; the corresponding power spectral density is flat over 
all w-equal power content over all frequencies. Figure 4.6b corresponds to an exponentially 
time-correlated process with correlation time T, as discussed in Example 4.1. Heuristically, these 

EXAMPLE 4.2 

(c) -~ - lTxx 
yxx(T) = P Y,,(u) = 2nP6(o)  

( 1 )  

FIG. 4.6 Typical autocorrelations and power spectral densities. (a) White process. (b) Ex- 
ponentially time-correlated process. (c) Random bias. 



144 4. STOCHASTIC PROCESSES AND LINEAR DYNAMIC SYSTEM MODELS 

plots converge to those of (a) as T + 0. and to those of (c) as  T + a. Figure 4 . 6 ~  corresponds to 
a random bias process, the samples of which are constant in time-thus. there is constant correla- 
tion over all time differences T, and all of the process power is concentrated at the zero frequency. 
Another process with nonzero power at a discrrtc frequency would be the process composed of 
sinusoids at a known frequency ( I J ~ )  and of uniformly distributed phase. with power spectral density 
composed of two impulses, at (u0 and - o J ~ .  and a cosinusoidal autocorrelation. 

The cross-power spectral density of two wide-seme stationary scalar processes 
x ( . ,  .) and y(., . )  is the Fourier transform of the associated cross-correlation 
function : 

Y.&) = J:; Y&)e- j" 'dz (4-35) 

This is, in general, a complex function of w, and, since Y,,(z) = Y J  - t), the 
following relations are valid. 

One subclass of real strictly stationary processes of particular interest is the 
set of ergodic processes. A process is ergoclic if any statistic calculated by 
averaging over all members of the ensemble of samples at a fixed time can be 
calculated equivalently by time-averaging over any single representive member 
of the ensemble, except possibly a single member out of a set of probability 
zero. Not all stationary processes are ergodic: the ensemble of constant func- 
tions is an obvious counterexample, in that a time average of each sample will 
yield that particular constant value rather than the mean value for the entire 
ensemble. 

There is no readily applied condition to ensure ergodicity in general. For a 
scalar stationary Gaussian process x (  ., .) defined on T = ( - (CG, lm), a sufficient 
condition does exist: x( . ,  .) is ergodic if 1: IP,.(z)l d z  is finite [however, P,,(t) 
itself requires an ensemble average]. In practice, empirical results for stationary 
processes are often obtained by time-averaging of a single process sample, 
under the assumption of ergodicity, such as 

( 4 - 3 8 a )  

(4-3 8 b) 

(4-3 8 ~ )  
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Moreover, these are only approximately evaluated due to the use of finite 
length, rather than infinite, samples. 

4.4 SYSTEM MODELING: OBJECTIVES 
AND DIRECTIONS 

Suppose we are given a physical system that can be subjected to known 
controls and to inputs beyond our own direct control, typically wideband 
noises (noises with instantaneous power over a wide range of frequencies), 
although narrow band noises and other forms are also possible. Further assume 
that we want to characterize certain outputs of the system, for instance, by 
depicting their mean and covariance kernel for all time values. Such a charac- 
terization would be necessary to initiate designs of estimators or controllers 
for the system, and a prerequisite to a means of analyzing the performance 
capabilities of such devices as well. 

The objective of a mathematical model would be to generate an adequate, 
tractable representation of the behavior of all outputs of interest from the real 
physical system. Here “adequate” is subjective and is a function of the intended 
use of this representation. For example, if a gyro were being tested in a labora- 
tory, one would like to develop a mathematical model that would generate 
outputs whose characteristics were identical to those actually observed em- 
pirically. Since no model is perfect, one really attempts to generate models that 
closely approximate the behavior of observed quantities. 

From deterministic modeling, we gain the insight that a potentially useful 
model form would be a linear state equation and sampled data output relation 
formally written as 

x ( r )  = F ( t ) x ( t )  + B(t)u(t) + G(r)n,(t) (4-39a) 

z(tj) = Wf,)x(tJ + n,(tJ (4-39b) 

These are direct extensions of Eqs. (2-35) and (2-60) obtained by adding a noise 
process nl(.,‘) to the dynamics equation and n,( ., . )  to the output equation, 
with n,(t,o,) E Rs and n,(t,,coj) E R”. [G(t)  is n-by-s to be compatible with the 
state dimension n, and n,(t,, m j )  is of dimension m, the number of measurements 
available.] Note that (4-39b) could be extended to allow direct feedthrough of 
u and n,, but this will not be pursued here. Again it is emphasized that (4-39) 
is just a formal extension; for instance, how would x ( t )  be interpreted funda- 
mentally? 

Unfortunately, a model of this generality is not directly exploitable. We 
would like to evaluate the joint probability distribution or density function 
for x ( t l ; ) ,  . . . , x ( t N ; ) ,  and, through this evaluation, to obtain the correspond- 
ing joint functions for z ( t , ; ) ,  . . . , z(t , ; ) .  This is generally infeasible. For 
example, if n,(t) were uniformly distributed for all t E T ,  one can say very little 
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about these joint probability functions. However, if n,( -, .) and n,( ., .) were 
assumed Gaussian, then all distribution or density functions of interest might be 
shown to be Gaussian as well, completely characterized by the corresponding 
first two moments. If observed quantities are not Gaussian, one can still seek 
to construct a model that provides a Gaussian output whose first two moments 
duplicate the first two moments of the empirically observed data. 

Complete depiction of a joint distribution or density is still generally in- 
tractable however. In order to achieve this objective, we will restrict attention 
to system inputs describable as Markov processes. Let x ( . ; )  be a random 
process and consider 

‘ x ( t i ) ~ X ( t  ,- , ) , X ( t i  - 2  ) . . . . . X ( t J ) ( 5 i ~ ~ i - 1 ~ ~ i - ~ ~ .  . . , x j )  

i.e., the probability distribution function of x ( t i )  as a function of the n-vector 
t i ,  given that x ( t i -  ,, wk)  = x i -  x ( r i - , ,  ok) = x i - , ,  . . . , x ( t j ,  wk) = x j .  If 

F x ( t ~ ) l x ( t i - l ) . x ( t i - 2 ) ,  . . . , x ( t 1 ) ( 5 i I x i - 1 , x i - 2 r .  . . 3 x j )  

= ‘ x ( t , ) l x ( t i - l ) ( 5 i I x i -  1) (4-40) 

for any countable choice of values i and ,j and for all values of xi-  1, . . . , x j ,  
then x ( . ; )  is a Markov process. Thus, the Markov property for stochastic 
processes is conceptually analogous to the ability to define a system state for 
deterministic processes. The value that the process x(.;) assumes at time ti- , 
provides as much information about x ( t i ; )  as do the values of x ( . ; )  at time 
t i - ,  and all previous time instants: the value assumed by x ( t i -  ,;) embodies 
all information needed for propagation to time t i ,  and the past history leading 
to x i -  is of no consequence. In the context of linear system models, the Markov 
assumption will be shown equivalent to the fact that the continuous-time 
process n1(.;) and the discrete-time process n,(.;) in (4-39) are expressible as 
the outputs of linear state-described models, called “shaping filters,” driven 
only by deterministic inputs and white noises. A Gauss-Markov process is then 
a process which is both Gaussian and Markov. 

Thus, the form of the system model depicted in Fig. 4.7 is motivated. A 
linear model of the physical system is driven by deterministic inputs, white 
Gaussian noises, and Gauss-Markov processes. As discussed in Section 1.4, 
the white noises are chosen as adequate representations of wideband noises 
with essentially constant power density over the system bandpass. The other 
Markov processes are time-correlated processes for which a white model 
would be inadequate. However, these can be generated by passing white noise 
through linear shaping filters. Consequently, one can consider the original 
system model and the shaping filters as a single “augmented” linear system, 
driven only by deterministic inputs and white Gaussian noises. This can be 
described through a restricted form of (4-39) : 

x ( t )  = F ( t ) x ( t )  + B(t)u(r) + G(t)w(t) (4-4 1 a) 

t ( t i )  = H(ti)x( t i )  + v(ti) (4-41b) 
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FIG. 4.7 Linear system mode!. 

where ~ ( t )  is now the augmented system state, and w(t) and v(ti)  are white 
Gaussian noises, assumed independent of each other and of the initial condition 
x( to )  = xo, where xo is a Gaussian random variable. These noises model not 
only the disturbances and noise corruption that affect the system, but also the 
uncertainty inherent in the mathematical models themselves. 

Using the insights from deterministic system theory, one seeks a solution 
to (4-41a): formally, one could write 

X(t)  = @(t, to)X(t,) -t- J: @ ( t , T ) B ( T ) U ( T ) d T  f 66 @ ( t , T ) G ( T ) W ( z ) d T  (4-42) 

If this were a valid result, then it would be possible to describe the first two 
moments of x( ., .) and thus totally characterize this Gaussian stochastic 
process. However, the last term in (4-42) cannot be evaluated properly, and 
thus (4-42) has no real meaning at all. The remainder of this chapter is devoted 
to (1) a proper development of the mathematics as motivated by this section 
and (2) the practical application of the results to useful model formulations. 

4.5 FOUNDATIONS: WHITE GAUSSIAN NOISE 
AND BROWNIAN MOTION 

The previous section motivated the use of white Gaussian noise models as 
the only stochastic inputs to a linear system model, and this warrants further 
attention. First, a process x(.;) is a white GUKSS~UH process if, for any choice of 
t l ,  . . . , tN E T ,  the N random vectors x ( t , ; ) ,  . . . , x(t,;) are independent 
Gaussian random vectors. If the time set of interest, T, is a set of discrete time 
points, this is conceptually straightforward and implies that 

P x x ( t i ,  t j )  = 0 if i # j  (4-43) 



148 4. STOCHASTIC PROCESSES AND LINEAR DYNAMIC SYSTEM MODELS 

Such a discrete-time process can in fact be used to drive a difference equation 
model of a system with no theoretical difficulties. 

However, if T is a time interval, then the definition of a white Gaussian 
process implies that there is no correlation between x( t i ,  . )  and x ( t j ; ) ,  even for 
ti and r j  separated by only an infinitesimal amount: . 

(4-44) 

This is contrary to the behavior exhibited by any processes observed empirically. 
If we consider stationary white Gaussian noise [not wide sense to be precise, 
since E{x(ti)xT(ti))  is not finite], then the power spectral density of such a 
process would be constant over all frequencies, and thus it would be an infinite 
power process: thus it cannot exist. Moreover, if we were to construct a 
continuous-time system model in the form of a linear differential equation 
driven by such a process, then a solution to the differential equation could nor 
be obtained rigorously, as pointed out in the last section. 

Brownian motion (or the “Wiener process”) [8,13] will serve as a basic 
process for continuous-time modeling. Through it, system models can be 
properly developed in the form of stochastic differential equations whose 
solutions can be obtained. Scalar constant-diffusion Brownian motion will be 
discussed first, and then extensions made to the general case of a vector time- 
varying-diffusion Brownian motion process. 

To discuss Brownian motion, we first need a definition of a process with 
independent increments. Let to < t l  < . . . < tN be a partition of the time interval 
T.  If the “increments” of the process x ( - ; ) ,  i.e., the set of N random variables 

(4-45) 

M.)= [X(tN,.)  - x(r,-,, .)] 

are mutually independent for any such partition of T ,  then x ( . ; )  is said to be a 
process with independent increments. 

The process p( ., .). is defined to be a scalar constant-difusion Brownian 
motion process if 

(i) it is a process with independent increments, 
(ii) the increments are Gaussian random variables such that, for t ,  and t z  

any time instants in T, 

E”P(t2) - P ( t l ) l )  = 0 (4-46a) 

Eu“,) - P(t1)I2) = 41b - Ill (4-46b) 

(iii) P(to,wi) = 0 for all wi E 0, except possibly a set of mi of probability 
zero (this is by contiention). 
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Such a definition provides a mathematical abstraction of empirically 
observed Brownian motion processes, such as the motion of gas molecules. 
Figure 4.8 depicts some samples from a Brownian motion process P(.;). Note 
that for all samples shown, P(to, mi) = 0. Specific realizations of increments are 
also shown, for instance, 

(4-47) A, = 6,(wz) = C P ( t Z d 3 2 )  - P ( t l , 4  

A2 = Mu2) = [PO3 w 2 )  = P(t2, w2)]  

The random variables 6,(.) and 6,(.)  are independent. 

A P  

FIG. 4.8 Samples from a Brownian motion process. 

The parameter q in (4-46b) is called the difuusion of the process. Note that 
the variance of the change in value of P(., .) between any time t ,  and any later 
time t ,  is a linear function of the time difference ( t z  - rl). For that reason, 
constant-diffusion Brownian motion is sometimes termed (misleadingly) 
“stationary” Brownian motion, but such terminology will be avoided here. 

Since P(tl;) for given t ,  E T is a random variable composed of a sum of 
independent Gaussian increments, it is also Gaussian, with statistics 

ma(ti) = E [  P(ti)] = 0 (4-48a) 

Ppp(ti) = E [  P(ti)’] = q[t i  - t o ]  (4-48b) 
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Thus q indicates how fast the mean square value of P(.;) diverges from its 
initial value of zero at time t o .  

To characterize the scalar constant-diffusion Brownian motion completely, 
we can explicitly generate the joint density functions for any finite set of random 
variables P ( t 0 ; ) ,  . . . , P ( t N ; )  as a Gaussian density function, with zero mean 
and covariance composed of diagonal terms as P,,(t , ,  t i)  = PPp(t i )  as in (4-48b). 
The off-diagonal terms can be specified by considering t j  > ti and writing 

so that the off-diagonal elements become 

E(P(ti)P(tj)) = E{P(ti)’) + E {  B ( r i ) [ P ( t , j )  - P ( t i ) ] )  

= E(P(tiJ2$ + E { p ( t i ) j E ( [ P ( r j )  - P(t i ) ] i  

= E ( P ( t i ) , )  = q(ti - t o )  (4-49) 

where the second equality follows from independence of P(ti) and [P( t j )  - p ( t i ) ]  
for r j  > ti, and then both separate expectations are zero. 

Although scalar constant-diffusion Brownian motion was just described 
completely in a probabilistic sense, a further characterization in terms of such 
concepts as continuity and differentiability is desirable, since these will directly 
influence the development and meaning of stochastic differential equations. For 
a deterministic function f ,  such concepts are straightforwardly approached by 
asking if the number f ( t 2 )  converges to the number f ( t l )  in the limit as t ,  
approaches t or similarly if an appropriate difference quotient converges to 
some limit. For stochastic processes, one needs to conceive of what 
‘konvergence” itself means. There are three concepts of convergence [4,9,13] 
of use to us: (1) mean square convergence, (2) convergence in probability, and 
( 3 )  convergence almost surely (with probability one). 

A sequence of random variables, x l ,  x , ,  . . . , is said to conzlerge in mean 
square (or sometimes, to converge “in the mean”) to the random variable x 
if E [ X k 2 ]  is finite for all k ,  and E [ x z ]  is finite, and 

lim ~ [ ( x ,  - x ) ~ ]  = O 
k +  x, 

(4-50) 

Thus, we are again concerned with the convergence of a sequence of real 
numbers E [ ( x ,  - x)’] in order to establish convergence in mean square. If 
(4-50) holds, then one often writes 

1.i.m. xk = x 
k +  x 

(4-51) 

where 1.i.m. denotes limit in the mean. This conception of convergence will 
provide the basis for defining stochastic integrals subsequently. 
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A sequence of random variables x,  , x 2 ,  . . . is said to conz>erge in probability 
to x if, for all E > 0, 

(4-52) 

Here the sequence of real numbers is a sequence of individual probabilities, 
which is to converge to zero no matter how small E might be chosen. 

A sequence of random variables x l ,  x 2 ,  . . . is said to conuerge almost surelj, 
(as.) or to converge with probability one (w.p.1) to x if 

(4-53) 

for “almost all” realizations: if (4-53) holds for all w except possibly a set A 
of w whose probability is zero, P ( A )  = 0. Unlike the two previous concepts, 
this idea of convergence directly considers the convergence of every sequence 
of realizations of the random variables involved, rather than ensemble averages 
or probabilities. 

Convergence in probability is the weakest of the three concepts, and it can 
be shown to be implied by the others: 

[Convergence in mean square] --f [Convergence in probability] (4-54a) 

[Convergence almost surely] + [Convergence in probability] (4-54b) 

Relation (4-54a) follows directly from the Chebychez: inequality: 

P({w:Ixk(w) - x(w)( 2 E ) )  E([xk(’) - X ( ’ ) l 2 ) / E 2  (all 8 > 0) (4-55) 

since, if the mean square limit exists, then limk+m E{[Xk - XI’} = 0, and so 
limk*m ~ ( ( w :  Ixk(w) - x(0)l 2 E ) )  = o for all E > 0. Convergence in mean square 
does not imply, and is not implied by, convergence almost surely. 

The continuity ofBrownian motion can now be described. (For proof, see [4].) 
Let f i t . , - )  be a Brownian motion process defined on T x fl with T = [0, a). 
Then to each point t E T there corresponds two random variables P - ( t ; )  and 
f i+(t;)  such that 

1.i.m. P(t ’ ; )  = f i - ( t ; )  (4-56a) 
t’  T t 

1.i.m. P(t’ ;)  = P+(t, . )  
t ’  1 1 

(4- 56 b) 

where t‘ t r means in the limit as t’ approaches t from below and f‘ 1 t means 
as t’ approaches t from above. Furthermore, for each t E T,  

P-(t;) = P(t;) = P+( t ; )  (4-56~) 

almost surely. Equation (4-56b) states that as we let time t‘ approach time t 

from above, the value of E {  [P(t ’ ; )  - P’(t;)I2} converges to zero: the variance 
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describing the spread of values of realizations of P(t ’ ,  .) from realizations of 
P’(t;) goes to zero in the limit. Moreover, (4-56c) dictates that all realizations 
P’(t, w i )  equal P(t, oi), except possibly for a set of mi’s whose total probability 
is zero. Similar results are obtained by letting t‘ approach t from below as well. 

This result implies that P( ., .) is also continuous in- probability through 
the Chebychev inequality: 

P((w:IP(t’;)  - P(t;)I 2 6 ) )  I E{[P(t’;)  - p(t ,-)]2;/&2 = qlr’ - t l / 2  (4-57) 

for all E > 0. Consequently, the limit of the probability in (4-57) is zero as t’ 
approaches t from above or below. 

Moreover, Brownian motion can be shown to be continuous almost surely. 
In other words, almost all samples from the process (except possibly a set of 
samples of probability zero) are themselves continuous. 

Brownian motion is nondiferentiable in the mean square and almost sure 
senses. A process x( ., .) is mean square differentiable if the limit 

x(t  + At;) - X(t;) 
1.i.m. 
A t - 0  At 

exists, and then this limit defines the mean square derivative, x( t ; ) ,  at t E T. 
However, for Brownian motion P(. , .), 

(4-58a) 

(4-58 b) 

Thus, as At + 0, the variance of the difference quotient used to define the mean 
square derivative becomes infinite. This can be used to show that 

(4-59) 

for any finite choice ofabound B. Thus, the difference quotient for defining the 
derivative of each sample function has no finite limit for any t E T and almost 
all co E R (except possibly for a set of probability zero): Brownian motion is 
nondifferentiable almost surely. 

Thus, almost all sample functions from a Brownian motion process are 
continuous but nondifferentiable. Heuristically they are continuous, but have 
“corners” everywhere. Moreover, it can be shown that these sample functions 
are also of unbounded variation with probability one. It is this property espe- 
cially that precludes a fruitful development of stochastic integrals in an almost 
sure sense. Instead, we will pursue a mean square approach to stochastic 
integral and differential equations. 
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Having described scalar constant-diffusion Brownian motion, it is now possi- 
ble to investigate continuous-time scalar stationary white Gaussian noise. Let 
us assume (incorrectly) that the Brownian motion process p( ., .) is differentiabk, 
and that there is an integrable process w(. ; )  such that, for t, z E T, 

p(t..) = J: w(7;)d.r (4-60) 

where the integral is to be understood in some as yet unspecified sense. In 
other words, we assume that w ( . ,  .) is the derivative of Brownian motion, 

w(t;)  = dp(t,-)/dt (4-61) 

a derivative that does not really exist. Formal procedures based on this incorrect 
assumption will reveal that w( ., .) is, in fact, white Gaussian noise. 

Let us calculate the mean and variance kernel for this fictitious process. 
First consider two disjoint time intervals, ( t l ,  t , ]  and ( t 3 ,  t4], so that, formally, 

Use the properties of Brownian motion and (4-62a) to write 

If the preceding formal integral has the properties of regular integrals, then the 
expectation operation can be brought inside the time integrals, to yield 

ltz k { w ( t ) J  d t  = 0 

Since t ,  and t z  can be arbitrary, this could only be true if 

E { w ( t ) ]  = 0 for all r E T (4-63) 

To establish the variance kernel, consider the two disjoint intervals, and use 
the property of independent increments of Brownian motion to write: 

E m 4 )  - P ( ~ ~ ) I C P ( ~ ~ )  - P ( ~ , ) I ;  = 0 

Using (4-62), this yields, formally 
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Since ( t l ,  t 2 ]  and ( t 3 , t 4 ]  are arbitrary disjoint intervals, this implies 

E{w(t)w(t’)}  = 0 for t # t‘ (4-64) 

To establish E(w(t )2} ,  perform the same steps, but using a single interval. 
By the fact that p( t )  is Brownian motion, . 

E(EP(t2) - B ( t l ) 1 2 )  = q P 2  - t l l  = 6:‘ qdt  

Combining this and (4-62a) yields 

or, rewriting, 

Jt’: [i: E(w(t)w(t’)} dt‘ - q dt = 0 1 
Since this is true for an arbitrary interval ( t l ,  t z ] ,  this implies 

6; E{w(t)w(t’)} dt’ = q (4-65) 

for t E ( t l ,  t z ] .  

we can write (4-63)-(4-65) as 
Now (4-64) and (4-65) together yield the definition of a delta function, so that 

E{w(t))  = 0 (4-66a) 

Furthermore, w ( . ,  .) can be shown to be Gaussian, and thus, is a zero-mean, 
white Gaussian noise process of strength q. Heuristically, one can generate 
Brownian motion of diffusion q by passing white Gaussian noise of strength q 
through an integrator, as depicted in Fig. 4.9. 

The preceding discussion can be generalized to the case of scalar time- 
varying-diffusion, Brownian motion by redefining 

E{w(t)w(t’)} = q d(t - t’) (4-66b) 

E{[B(t2) - P ( t 1 ) I 2 }  = J 1 : ‘ d t ) d t  (4-67) 

Brownian motion 
of diffusion y noise of strength q 

FIG. 4.9 White Gaussian noise and Brownian motion 
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for t ,  2 r l  and q ( t )  2 0 for all t E T, instead of q [ t 2  - tl] as in (4-46b). If we 
assume q ( . )  to be at least piecewise continuous, which is very nonrestrictive, 
then no problems are encountered in making the extension. The corresponding 
scalar nonstationary white Gaussian noise W (  ., . )  would be described by the 
statistics 

E ( w ( t ) )  = 0 (4-68a) 
E { w ( t ) w ( t ' ) J  = q(t)  6 ( t  - t ' )  (4-68b) 

for all t ,  t' E T. This extension will be essential to an adequate description of a 
"wideband" noise process whose strength can vary with time, typical of many 
problems of interest. [Note that frequency domain concepts such as a frequency 
bandwidth cannot be handled rigorously for nonstationary processes, but in 
many applications q( . )  varies slowly with time, and quasi-static methods can 
be applied.] 

The accuracy of position data available to an aircraft from radio navigation 
aids such as radar, VOR/DME, or TACAN, varies with the range from the aircraft to the naviga- 
tion aid station. This range data is corrupted by wideband noise, and a reasonable model for 
indicated range rlildlcillcd is a stochastic process model defined for t E T and w E Q through 

EXAMPLE 4.3 

where w(':) is zero-mean white Gaussian noise, with q(') reaching a minimum when the aircraft 
is at minimum distance from the station. The q(') function of time can be established by knowing 
the nominal flight path as a function of time. 

Vector Brownian motion is a further extension, defined as an n-vector sto- 
chastic process, p( ., .), that has independent Gaussian increments with: 

E(P(t)) = 0 (4-69a) 

(4-69b) 

for r 2  2 t , ,  and Q ( t )  is symmetric and positive semidefinite for all t E T and 
Q( .)  is at least piecewise continuous. The corresponding ilecror white Gaussian 
noise would be the hypothetical time derivative of this vector Brownian motion: 
a Gaussian process w(.;) with 

E{w(t))  = 0 

E [w(t)wT(t')] = Q(t)G(t - t ') 

(4-70a) 

(4-70b) 

for all t ,  t' E T, with the same description of Q(.).  Note that (4-70b) indicates 
that w(.;) is uncorrelated in time, which implies that w(.;) is white (indepen- 
dent in time) because it is Gaussian. However, this does not mean to say that the 
components of w( .. . )  are uncorrelated with each other at the same time instant: 
Q(t)  can have nonzero off-diagonal terms. 
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EXAMPLE 4.4 The radio navigation aids described in Example 4.3 provide bearing in- 
formation as well as range. If b denotes bearing, the data available to the aircraft at time t can be 
modeled as 

r,,,d,c,,,',(t,W) = r,r,,,(r) + W , ( l . W )  

b,,,,,,,,,,,(~. ( 0 )  = h,,,,,(r) + w1(1. ( 1 ~ )  

with w(.:) a zero-mean white Gaussian noise to model the actual wideband noise corruption. 
The 2-by-? matrix Q ( t )  is composed of variances a:.,(t) and o$,(f)  along the diagonal, with an off- 
diagonal term of E ( w , ( t ) w , ( t ) ~ .  generally nonzero. 

3.6 STOCHASTIC INTEGRALS 

In Section 4.4, a formal approach to stochastic differential equations led to 
a solution form (4-42) involving an integral [to @(t,z)G(t)w(z)dz  with w ( . ; )  
white Gaussian noise, to which no meaning could be attributed rigorously. 
From Section 4.5, especially (4-61), one perceives that it may however be 
possible to give meaning to ito @(t,z)G(z)dp(z) in some manner, thereby 
generating proper solutions to stochastic differential equations. Consequently, 
we have to consider the basics of defining integrals as the limit of sums, being 
careful to establish the conditions under which such a limit in fact exists. To 
do this properly will require certain concepts from functional analysis, which 
will be introduced heuristically rather than rigorously. First the simple scalar 
case is developed in detail, then the general case can be understood as an 
extension of the same basic concepts. 

If a ( . )  is a known, piecewise continuous scalar function of time and p(.:) 
is a scalar Brownian motion of diffusion q( t )  for all t 6 T = [0, a), then we 
want to give meaning to 

I(t;) Li i1 a(z)dP(z,.) (4-71) 

called a scalar stochastic integral [l, 3,5,13,14]. The notation provides the 
insight that for a particular time t ,  I ( t ; )  will be a random variable, so that 
considered as a function of both t and w, I(.;) will be a stochastic process. In 
order to give meaning to this expression, we will require that the Riemann 
integral si0 a(z)2q(z )  dz be finite; the need for this assumption will be explained 
subsequently. Note that we could extend this to the case of stochastic, rather 
than deterministic, a(  -, .) if we desired to develop stochastic integrals appro- 
priate for solutions to nonlinear stochastic differential equations; this will be 
postponed until Chapter 11 (Volume 2). 

First partition the time interval [to,  f] into N steps, not necessarily of equal 
length, with to < t ,  < t z  < . . . < t, = t ,  and let the maximum time increment 
be denoted as At,: 

At, = max { ( t i  - 
i =  1 , .  . . ,N 

(4-72) 
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NOW define a special function u N ( . ) ,  called a “simple function,” through the 
relation 

(4-73) 

This is a piecewise constant approximation to the known function a( . ) ,  as 
depicted in Fig. 4.10. For this simple function, the stochastic integral can be 
defined constructively as the sum of N increment random variables : 

Let us characterize the random variable IN(r, .) probabilistically. Since IN(t, . )  
is composed of the sum of independent Gaussian increments, I N ( t ; )  itself is 
Gaussian. Its mean is 

(4-75) 

FIG. 4.10 Simple function aN( .). 
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which results from E {  . being linear and uN( - )  being deterministic (so it can be 
brought out of the expectations), and then the N separate expectations are zero 
by the properties of Brownian motion. Its variance can be generated as 

N -  1 

== 1 a,(ti)’E{[P(ti+l) - P(ti)]’) 
i = O  

where the reduction from N2 to N separate expectations is due to the indepen- 
dence of Brownian motion increments. Thus, 

= Jl a N ( T ) 2 q ( T ) d T  (4-76) 

Now it is desired to extend the definition of a stochastic integral in (4-74), 
valid only for piecewise constant a,(.), to the case of piecewise continuous a( .). 
We will consider partitioning the time interval into finer and finer steps, and see 
if the sequence of random variables IN(f, .)  so formed will converge to some limit 
a s N +  a. 

To motivate this development, consider the set of deterministic functions of 
time a ( . )  defined on [ l O , f ]  such that s:, a2(T)q(z)dz  is finite for piecewise con- 
tinuous q( .), identical to the assumption made at the beginning of this section. 
On this set of functions, called a Hilhert space (or a “complete inner product 
space”), the “distance” between two functions u,( . )  and up( .) can be defined 
properly by the scalar quantity [la, - aPll where 

IlaN - aP112 = [ a N ( T )  - a P ( z ) ] 2 q ( z ) L i T  (4-77) 

It can be shown that if a( . )  is an element of this set, i.e., ifJ’:, U 2 ( T ) q ( T )  dz is finite, 
then there exists a sequence of simple functions a k ( . )  in this set that converges 
to a( .  1 as k + m [i.e., as the number of partitions of the time interval goes to ‘xi 

and At, ,  the maximum time increment, defined in (4-72), goes to zero], where 
convergence is in the sense that the “distance” between ak and a converges to 
zero : 

(4-78) 

Moreover, if a sequence of elements from this “Hilbert space” is a “Cauchy” 
sequence (for an arbitrarily small c > 0, there exists an integer K such that for 
all i > K and j > K ,  /lai - u j [ /  < E ,  which heuristically means that the members 
of the sequence become progressively closer together), then the sequence does 
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in fact converge to a limit a( .). The limit is itself a member of that Hilbert space, 
which is assured by the “completeness” of the space. 

To consider the convergence of a sequence of stochastic integrals of the form 
(4-74), define another stochastic integral of this form, but based upon P time 
partitions, with P > N :  

P - 1  

~p(t,.)’ C ap(t j )[P(t j+i$.)  - P ( t j , ‘ ) ]  (4-79) 
j = O  

The difference between IN(r;) and Ip(r;) is then 

N -  1 P -  I 

[ I N ( [ )  - I P ( t ) ]  = C a N ( t i ) [ P ( t i + l )  - P( t i ) ]  - C a p ( t j ) [ P ( t j +  1) - P ( t j ) ]  
i = O  j = O  

Since u N ( . )  and up( . )  are piecewise constant, their difference must be piecewise 
constant, with at most N + P points of discontinuity. Thus, for some K I ( N  + P )  

k = O  

and, since [ a N (  . )  - up( .)] is piecewise constant, this can be shown equal to the 
ordinury Riemunn integral: 

E { [ I N ( f )  - l P ( r ) 1 2 1  = j-‘, [ U N b )  - a & ) I 2 d z ) d z  (4-81) 

Under the assumptions made previously, essentially that the random vari- 
ables under consideration are zero mean and of finite second moments, we can 
now speak of the Hilhert spuce of random ouriuhles I(t;), with “distance” be- 
tween random variables IN(t;) and Ip(r;) defined as J J I N ( t )  - lp ( r ) / ] ,  where 

J J l N ( f )  - l P ( t ) J J 2  = E { [ l N ( f )  - l P ( t ) 1 2 ;  (4-82) 

Combined with (4-81), this yields a distance measure identical to (4-77). A 
sequence of random variables l1(r;), I2 ( t ; ) .  . . . , generated by taking finer 
partitions of [ t o ,  t ]  such that Ark converges to zero, will be a Cauchy sequence, 
and thus will converge to a limit in that space, denoted as I(t;). By Eqs. (4-78) 
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and (4-83), this assured convergence is in the mean square sense: 

lim /Il(r) - I k ( t ) / / ’  = lim E {  [ I f f )  - Zk(t)I2; = 0 
k +  13 k -  m. 

(4-83) 

Thus, we can define the scalar stochastic integral I ( .  , .) properly through 
n 

Since Brownian motion is Gaussian and only linear operations on p(.;) were 
used in this development, I([,-) can be shown to be Gaussian with mean and 
variance 

(4-8 5a) 

(4-85b) 

Stochastic integrals exhibit the usual linear properties of ordinary integrals: 

Integration by parts is also valid: 

where the last integral term is not a stochastic integral, but an ordinar!) Stieltjes 
integral definable for each sample of p(.;) if a ( . )  is of bounded variation. 

Viewed as a stochastic process, the stochastic integral can be shown to be 
mean square continuous: [ l(t2) - I(tl)] is zero-mean and 

The limit of this ordinary integral as t ,  4 t2 is zero, thereby demonstrating 
mean square continuity. 
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Now consider two disjoint intervals I t l ,  t2 ]  and ( f 3 ,  t4], and form 

[ I ( t 2 )  - I(t1)l = J:‘ d t ) d B ( T ) ,  [ l(t4) - l(td] = a(t)dB(z) 

Since the intervals are disjoint, the independent increments of S( ., . ) in  ( r l ,  t 2 ]  are 
independent of the increments in (r3.t4]. Thus, [ I ( t2 )  - I(tl)] and [l(t4) - l ( t 3 ) ]  

are themselves independent, zero-mean, Gaussian increments of the I( ., . ) 
process: the I( .;) process is itself a Brownian motion process with rescaled 
difusion, as seen by comparing (4-88) with (4-67). 

Extension to the vector case is straightforward. Recall that an s-dimensional 
vector Brownian motion P( ., . )  is a Gaussian process composed of independent 
increments, with statistics 

E ( P ( t ) )  = 0 (4-69a) 

E{[P(f2) - P ( t l ) l [ P ( t J  - P(t1)ITS = Jz Q(t)lit (4-69b) 

with the s-by-s diffusion matrix Q(t)  symmetric and positive semidefinite and 
Q ( . )  a matrix of piecewise continuous functions. If A ( . )  is an n-by-s matrix of 
piecewise continuous time functions, then a development analogous to the 
scalar case yields a definition of an n-dimensional wctor-valued stochastic 
integral 

I(t;) = I:, A(t)dP(r) (4-89) 

by means of a mean square limit : 

(4-90) 
A ’ J:> A ’  I(t;) = 1.i.m. IN(f;).= 1.i.m. A,(r)dP(s) 

N -  XI N -  x, 

The random vector I(t,  . )  is Gaussian. with statistics 

E{l(t)) = 0 (4-9 1 a) 

E{l(t)lT(t)] = s‘ A(r)Q(t)AT(t)tlt (4-91b) 
fll 

In such a development, the appropriate “distance” measure / j l N ( t )  - lp(t)ll to 
replace that defined in (4-82) would be 

I I I d t )  - lp(t)1I2 = trEj[lN(t) - ~ ~ ( t ) ] [ ~ ~ ( t )  - ~,(t)]’) (4-92) 

where tr denotes trace. 

is itself a Brownian motion process with rescaled diffusion: 
Viewed as a function of both t E T and w E R, the stochastic process I (  ., . )  

(4-93) ~ [ [ l ( r , )  - ~ ( t ~ ) ] [ ~ ( r ~ )  - t ( t , ) l T ;  = J:’ A ( ~ ) Q ( ~ ) A ~ w ~  
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4.7 STOCHASTIC DIFFERENTIALS 

Given a stochastic integral of the form 

I([) = W O )  + J; A(z)dP(t) (4-94) 

the stochastic diferential of I ( t )  can be defined as 

dl(t) = A(z)dp(z) (4-95) 

Notice that the differential is defined in terms of the stochastic integral form, 
and not through an alternate definition in terms of a derivative, since Brownian 
motion is nondifferentiable. The dl(r) in (4-95) is thus a differential in the sense 
that if it is integrated over the entire interval from to  to a fixed time I, it yields 
the random variable [ I ( t )  ~ I ( t o ) ] :  

dl(t) = I([) - I ( t o )  (4-96) 

Viewed as a function of t ,  this yields the stochastic process [ f ( . )  - I(to)]. 
Heuristically, it can be interpreted as an infinitesimal difference 

dl(t) = I ( t  + d t )  - I(r) (4-97) 

One particular form required in the next section is the differential of the 
product ofa time function and a stochastic integral. Suppose s( ., .)is a stochastic 
integral (which can also be regarded as a Brownian motion) defined through 

s ( t )  = + if, A(z) dP(d (4-98) 

Further suppose that D(. ) is a known matrix of differentiable functions, and a 
random process y( ., . ) were defined by 

Y(t) = D(t)s(r) (4-99) 

If the time interval [ t o , t ]  were partitioned into N steps, one could write, 
assuming ti+ > t i ,  

N- 1 N- 1 

Substituting these back into (4-99) and rearranging yields 
N- 1 N- 1 

Since D( . )  is assumed differentiable, the mean value theorem can be used to 
write [D(ti+ - D(ti)] as D(zi)[ti+ - ti] for some zi E (ti, ti+ I) .  Putting this 
into the preceding expression, and taking the mean square limit as N + 00 

yields 

y(t) = db D(T)s(T)~T + d: D(z)ds (z )  + D(to)s(to) (4- 100) 
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Note that the first term could be interpreted as an ordinary Riemann integral 
for each sample function s(., mi) of s(., . )  (i.e., it can be defined in the almost 
sure sense as well as the mean square sense), but the second term is a stochastic 
integral which is defined properly only in the mean square sense. From (4-100) 
and the definition of a stochastic differential, it can be seen that for y(r;) given 
by (4-99), 

d y ( t )  = D ( t ) s ( t ) d t  + D ( t ) d s ( t )  (4- 101) 

Equation (4-101) reveals that the stochastic differential of the linear form in 
(4-99) obeys the same formal rules as the deterministic total differential of a 
corresponding y ( t )  = D(t)s(t). This will not be the case for nonlinear forms 
defined in terms of It6 stochastic integrals, as will be seen in Chapter 11 (Volume 
2). 

4.8 LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS 

equations of the form: 
Section 2.3 developed the solution to linear deterministic state differential 

X( t )  = F(t)x(t)  + B(t)u(t) (4-1 02) 

with u( . )  a known function of time. Now we would like to generate a system 
model of the form 

x ( t )  = F(t)x(t) + G ( t ) w ( t )  (4- 103) 

where w ( . ; )  is a white Gaussian noise process of mean zero and strength Q ( t )  
for all r E T ,  and analogously develop its solution. (Deterministic driving terms 
will be admitted subsequently.) However, (4- 103) cannot be used rigorously, 
since its solution cannot be generated. 

It is possible to write the linear stochastic diflerential equation 

dx( t )  = F(t)x(t)dt  + G ( t ) d p ( t )  (4-104) 

where G( . )  is a known n-by-s matrix of piecewise continuous functions, and 
p( ., .) is an s-vector-valued Brownian motion process of diffusion Q(t)  for all 
t E T [l, 5 ,  13, 141. For engineering applications, Eq. (4-103) will often be used 
to describe a system model, but it is to be interpreted in a rigorous sense as a 
representation of the more proper relation, (4-104). 

Now we seek the solution to (4-104). Recalling the interpretation of stochastic 
differentials from the last section, we equivalently want to find the x (  ., .) process 
that satisfies the integral equation 

(4- 105) 

The last term is a stochastic integral to be understood in the mean square sense; 
the second term can also be interpreted as a mean square Riemann integral, or 
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l:, F(T)x(T, q) dz can be considered an ordinary Riemann integral for a particular 
sample from the x(.;) process. 

Let us propose as a solution to (4-104) the process x(.;) defined by 

x ( t )  = @(t, to )Y( t )  (4-106a) 

where @ ( r ,  to) is the state transition matrix that satisfies &(r, t o )  = F(t)@(r, to)  
and @(to ,  t o )  = I, and y ( t )  is defined by 

where the order of the time indices in evaluating the preceding @( ., .) are to 
be noted (indicative of backward transitions). It must now be demonstrated 
that this proposed solution satisfies both the initial condition and differential 
equation (or integral equation). First, it satisfies the initial condition 

xUo) = @(to, f o ) Y ( t o )  = W t o )  = x(to) (4-107) 

The assumed solution (4-106a) is of the same form as (4-99), so the corresponding 
dx(t) can be written from (4-101) as 

(4-1 08) 

But, from (4-106b) and the definition of a stochastic differential, dy(t) is just 
@(to ,  t)G(t)dp(t), so that (4-108) can be used to write 

X(t) = X(to) + s' dx(.r) 
f0 

= x(to) f lb [F(z)@(z, to)]Y(z)dz  -t 16 @ ( T ,  t o ) @ ( t o ,  T)G(T)dp(t) 

= X ( ~ O )  + st: F ( T ) x ( t ) d T  + st: G(t)dp(z) (4- 109) 

Thus, the proposed solution form does satisfy the given differential equation 
and initial condition. 

From (4-106), the solution of'the linear stochastic differential equation (4-104) 
is given by the stochastic process x(.;) defined by 

x(t) = @(t, to)x(to) + s' @(t, T)G(z)dp(z) (4-110) 
f0 

The extensive development in Sections 4.4-4.7 was required in order to give 
meaning to this solution form. Note that the Gaussian property of Brownian 
motion p(.;) was never needed in the development: (4-110) is a valid solution 
form for any input process having independent increments. 

Having obtained the solution as a stochastic process, it is desirable to 
characterize the statistical properties of that process. First, the mean m,( .) 
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is described for all t E T as 

since the stochastic integral is of mean zero. To obtain the mean squared 
value of x ( t ) ,  Eq. (4-110) can be used to write E { x ( r ) x T ( t ) )  as the sum of four 
separate expectations. However, Brownian motion is implicitly independent 
of x ( t o )  by its definition, so the two cross terms are 0, such as: 

Thus, the mean squared zialue or correlation matrix of x ( t )  is 

E { x ( t ) x * ( t ) l  = @ ( k  to )E{x( to )XT( t0 ) } (DT( t ,  t o )  

+ 6; @(f, ~ G ( T ) Q ( ~ ) G ~ ( T ) @ ~ ( ~ ,  Z ) ~ Z  (4-1 12) 

where Q(t) is the diffusion of the Brownian motion p( ., . )  at time t .  The form of 
the ordinary Riemann integral in this expression is derived directIy from 

The couariance can be derived directly from the mean square value by 

(4-1 13a) 

Eq. (4-93). 

substituting 

E ( x ( r ) x T ( t ) J  = p,,(t) + m#)m.:(t) 

E { x ( t o ) x T ( t o ) ]  = P,,(to) + m,(to)m,T(to) (4- 1 13b) 

into (4-112) and incorporating (4-11 1) to yield 

p,,(t) = @(t ,  t o ) P x x ( t o ) ~ T ( t ,  t o )  + l j @ ( t . r ) ~ ( ~ ) ~ ( ~ ) ~ ~ ( ~ ) @ ~ ( t ,  r ) L / T  (4-114) 

From (4-110) it can be seen that, if x ( t , )  is a Gaussian random variable or 
if it is nonrandom (known exactly), then x ( t )  for any fixed t is a Gaussicln random 
variable. Thus, the. first order density ,fXcr,( C) is completely determined by the 
mean and covariance in (4-1 11) and (4-1 14) as 

fx(r,(C) = [(~~)n’2(Pxx(t)~”2]-1 expf-t[C - m,(t)]TP;x’(t)[C - m,(t)])  (4-115) 

Moreover, because the stochastic integral in (4-1 10) is composed of indepen- 
dent Gaussian increments, x( ., .) is a Gaussian process. Thus, the joint density 
j&, ) .x(r2) .  , , . X ( I N )  (C,, t2, . . . ,5,) is a Gaussian density for any choice of t , ,  r 2 ,  . . . , 
t, . Its mean components and covariance block-diagonal terms are depicted 
by (4-111) and (4-114) for t = t , ,  t,, . . . , t,. To completely specify this density 
requires an expression for the covariance kernel Pxx(ti, t j ) ,  to be derived next. 
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For t2 2 t ,  2 to ,  x(t2) can be written as 

x(t2) = @ ( t 2 ,  to)x(to) + df @ ( t 2 ,  t )G( t )  dS(z) 

= W t 2 ,  t l)@(tl ,  to)x(to) + w 2 ,  t l )  Jf: @ ( t l , w ( z ) d p ( d  
fo  

+ J:' @(t,,T)G(T)dp(z) 

= @(t2,tl)x(tl)  + Jy @(tz,z)G(z)dp(z) (4-1 16) 

Since the increments of p( ., . )  over [ t l ,  r,) are independent of both the incre- 
ments over [fo, t l )  and x(t,), the autocorrelation E{x(r2)xT(t1)) can be written as 

I E(x(r2)xT(t1)) = @(t,, ti)E{x(fi)XT(tl)) + E jd:' ~(t,,z)G(z)dp(z)XT(tI) 

= @ ( t 2 ,  tl)E{x(tl)XT(tl)) (4-117) 

Then (4-1 13) can be used to show that the desired cozlariance kernel for t ,  2 t1  is 

Pxx(t27f1) = @ ( t , , t , ) p , , ( t l ~ t l )  = @ ( ~ , ~ ~ d P X S ( ~ l )  (4-118) 

Close inspection of Eq. (4-116) reveals the fact that x(.;) is not only a 
Gaussian process, but a Gauss-Markov process as described in Section 4.4. The 
probability law that describes the process evolution in the future depends only 
on the present process description (at time t ,  for instance) and not upon the 
history of the process evolution (before time t , ) .  

Equations (4-1 1 l), (4-1 14);and (4-1 18) are the fundamental characterization 
of the Gauss-Markov process solution (4-1 10) to the linear stochastic differen- 
tial equation (4-104). However, it is often convenient to utilize the equivalent 
set of diferential equations for m,(t) and P,,(t) to describe their evolution in 
time. Differentiating (4-1 1 1 )  yields the niean finie propagation as 

fiA0 = b(t, to)m,(to) = F(t)@(t, t,)m,(to) 
fi,,(t) = F(t)m,W (4-1 19) 

Since the stochastic driving term in (4-104) has zero-mean, the mean of x(t) 
satisfies the homogeneous form of the state equation. Differentiating (4-1 14) 
yields, using Leibnitz' rule, 

P,,(t) = F(t)@(t, t,)px,(to)@T(t, t o )  + @(t, to)P,,(to)@T(t, to)FT(t) 

+ G(t)Q(t)CT(t) + f F(t)@(t, r)G(z)Q(z)GT(z)QT(t, z) dz 

+ J' @ ( r ,  z)C(z)Q(z)GT(z)cDT(t, z)FT(t)dz 
I 0  
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Taking F(t) and FT(t) out of the integrals since they are not functions o f t ,  
and rearranging, yields 

Pxx(f) = F(t)P,,(t) + P,,(t)FT(d + G(t)Q(r)GT(t) (4- 1 20) 

These are general relationships in that they allow time-varying system models 
and Brownian motion diffusion as well as time-invariant parameters. 

w,(t) 

x,(t) 
I -  
I 
I 

I I 

X 2 ( 0  ? * 

FIG. 4.1 1 Second order system model. 

EXAMPLE 4.5 Consider a 1 rad/sec oscillator driven by white Gaussian noises, as depicted 
in Fig. 4.1 1 for i = 0. The state equations can be written in the nonrigorous white noise notation 
as 

i ( t )  = F X ( t )  + G w ( t )  

Suppose the initial conditions at time r = 0 are that the oscillator is known to start precisely at 
~ ~ ( 0 1  = I. x,(O) = 3. Let wI(.) and wz( , )  be independent, zero-mean, and of strength one and two, 
respectively: 

E{w,(t)w,(t + 7))  = 16(r), E{w2(t)w,(t + 5 ) ;  = 26(r), 

Since the initial conditions are known without uncertainty, x ( t o )  can be modeled as a Gaussian 

E(wl(t)w,.(t + T)} = 0 

Now we want to derive expressions for rn,(t) and P,,(t)  for all t 2 0. 

random variable with zero covariance: 

Furthermore, from the given information, Q can be identified as 

To use (4-1 11) requires knowledge of the state transition matrix, the solution to &(t.to) = 

F ( t ) @ ( t ,  to ) ,  @(to,  t o )  = I. Since the system is time invariant, Laplace transform techniques could 
be used also. The result is 

1 cos(t - t o )  sin(t - to)  

- sin(t - to)  cos(t - to)  
@(t, to)  = @(f - t o )  = 
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Thus, (4-1ll)yields rn,(t) as 

1 [ cost  sin r ] [ : ]  = [ cos I + 3 sin t 

-sin t cost  -s int  + 3cos t  
mJr) = @(/,O)rn,(O) = 

P,,(t) is generated from (4-114) as 

Note that the covariance is diverging: the diagonal terms grow linearly with time with a sinusoid 
superimposed. Thus a single sample from the x(.;) process would be expected to be divergent as  
well as oscillatory. I 

EXAMPLE 4.6 Consider the same second order system as i i i  Fig. 4.11, but with damping 
added by letting the darnping ratio { be nonzero. F then becomes 

and the same calculations can be performed. or (4-1 19) and (4-120) used to write 

This covariance does nof grow without bound, and a steady state value can be found by evaluating 
PJ/)  = 0. to yield 

( I 2  + ?h2 

u2(1  - 4") + 2hZ 

P,,Jt --t Z )  = 
U2 

Deterministic control inputs can be added to the system model (4-103) or 
(4-104) without contributing any substantial complexity to the previous develop- 
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ment. Let the linear stochastic differential equation be written as 

dx(r) = F ( t ) x ( t ) d r  + B(t)u(t)dt  + G(t)dp(t) (4- 121 a) 

or, in the less rigorous white noise notation, 

x ( t )  = F ( t ) x ( t )  + B(t)u(t) + G(t)w(r) (4-1 21 b) 

where u ( t )  is an r-dimensional vector of deterministic control inputs applied at 
time t ,  and B ( t )  is an n-by-r control input matrix. The solution to (4-121) is 
the process x( .;) defined by 

x ( r )  = @(t, t o ) x ( t o )  + J: W t ,  ~ ) B ( z ) u ( z ) d ~  + s' Wr, z)G(z)dp(z) (4-122) 
20 

The only difference between this and (4-110) is the addition of the ordinary 
Riemann integral I:, @(t, z)B(~)u(z)dz, a known n-uector for fixed time t. Since 
this contributes no additional uncertainty, only the mean of x ( t )  is qfSected by 
this addition: P,,(t) is still propagated by (4-114) or (4-120), while m,(r) is 
propagated by 

m,(d = @(t, to)m,(to) + s' W t ,  z)B(z)u(z)dz (4-1 23a) 
f0 

or 

m,(t) = F(t)m,(t) + B(t)u(t) (4- 1 23b) 

EXAMPLE 4.7 Consider Example 4.6 but with w,(O changed to  [ u ( t )  + wI(t)]. where u ( r ) =  
u = constant for all t 2 0. Then the state equation can be written as 

yr'i = [ 0 1 ] [ X W ]  + +I" 0][w"t ' l  
i 2 ( f )  - I -2c x , ( t )  0 b wZ(r) 

so that m,(r) is given by 

I ["J')] = [ -; _3[%'"i + [;Ju = [ e Y 2 ( l )  + 
m,Jt) -mJO - 23L211) 

There is a steady state value of tnJt).  and it can be found by setting m,(t) = 0. Unlike Example 4.6. 
for which m,(r + .x,) = [:I. this yields 

The covariance relations remain unchanged from Example 4.6. 

The results of this section can be obtained using formal procedures on linear 
differential equations driven by white Gaussian noise. If p( ., . )  is Brownian 
motion of diffusion Q(t) for all time t E T,  then a stochastic integral I ( [ ,  . )  = 

ji0 A(z)dp(T;) can be defined properly in the mean square sense, with mean 
zero and 

E ( l ( t ) l T ( t ) )  = Jb A(z)Q(t)AT(z)dz 
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as found previously. If the formal (nonexistent) derivative of the Brownian 
motion is taken, white Gaussian noise w ( . ; )  results, with mean zero and 
strength Q(t) :E(w( t )wT( t ’ ) )  = Q(t )6 ( t  - f’). The results gained by assuming the 
existence of this formal derivative will be consistent with the results that were 
derived properly. Based on this formal definition, we could write 

I ( t )  [‘ A(r)w(r)dz 
‘0 

where L denotes “formally.” Then the mean and covariance would be 

E { l ( t ) i  A s’ A(T)E{w(T)}  d~ = 0 
to  

so, at least formally, this is consistent. In terms of this white noise notation, the 
state equation can be written as in (4-121b) and the solution written formally 
as in (4-122), with identical statistical characteristics. 

What is gained by avoiding the simplistic approach? First, such an approach 
does not force one to ask himself some fundamental questions, the answers to 
which provide significant insights into the nature of stochastic processes them- 
selves. Second, basing an entire development of estimators and controllers upon 
an improperly defined model will make the validity of everything that follows 
subject to doubt. Finally, such an approach is totally misleading, in that when 
nonlinear stochastic differential equations are considered, formal procedures 
will not provide results consistent with those obtained properly through the 
It8 stochastic integral. 

4.9 LINEAR STOCHASTIC DIFFERENCE EQUATIONS 

Consider the concept of an equivalent discrete-time system model motivated 
by eventual digital computer implementations of algorithms, as introduced in 
Section 2.4. Suppose we obtain discrete-time measurements from a continuous- 
time system described by Eq. (4-121), with u(t )  held constant over each sample 
period from sample time ti to ti+ 1 .  At the discrete time ti+ 1 ,  the solution can be 
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written as 

(4-124) 

This can be written as an equivalent stochastic difference equation, i.e., an 
equivalent discrete-time model, as : 

x ( t i +  1) = @ ( t i +  1 3  t i ) x ( t i )  f Bd(ti)U(ti) f wd(t i )  (4- 125) 

where Bd(fi) is the discrete-time input matrix defined by 

and w d (  ., . ) is an n-vector-valued white Gaussian discrete-time stochastic pro- 
cess with statistics duplicating those of J;;'' cp(ri+,,z)G(z)dp(z) for all ti E T, 

E{Wd(fi))  = 0 (4-1 27a) 

E{Wd(ti)WdT(ti)) = Qd(ti) = ~ " + '  @(ti+ 1 ,  z)G(z)Q(z)GT(T)@'(ti+ 1 ,  T ) d Z  (4-127b) 

E{Wd(ti)Wd'(tj)) = 0, ti # fj (4-127~) 

Thus, (4-125) defines a discrete-time stochastic process which has identical 
characteristics to the result of sampling the solution process to (4-121) at the 
discrete times t o ,  t l ,  t,, . . . . The subscript d denotes discrete-time, to avoid 
confusion between B( . )  and B d ( . ) ,  etc. 

Computationally, it is often more convenient to specify differential equations 
to solve over an interval rather than an integral relation as in (4-126) or (4-127b). 
To accomplish this, first define for any t E [ t i .  ti+ ,) 

B( t ,  t i)  = J: @(t, z)B(z) dz (4-1 28a) 

Q ( t ,  r i j  = f ~ ( t ,  T ) G ( ~ ) Q ( T ) G T ( ~ ) ~ T ( ~ ,  7 ) d r  (4-1 28 b) 

Taking the time derivative of these relations yields the desired result: the dif- 
ferential equations to be solved over each interval [ t i ,  ti+ E T to generate 
@(ti+ 1 ,  ti), Bd(ti), and Qd(ti), which completely describe the equivalent discrete- 
time model (4-125) corresponding to (4-121) [12]: 

6(r, t i)  = F(t)@(t, ti) (4-1 29a) 

B(t, ti) = F(t)B(t, t i)  + B( t )  (4- 129b) 

Q(r, ti) = F(t)Q(r, ti) + Q ( t ,  ti)FT(t) + G(t)Q(t)GT(r) (4-129c) 
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These are integrated forward from the initial conditions 

@(ti, ti) = I; B(ti, ti) = 0; Q ( r i ,  t i)  = 0 (4-1 30) 

(4-1 3 1 a) 

(4-1 3 1 b) 

In the general case, these integrations must be carried out separately for each 
sample period. However, many practical cases involve time-invariant system 
models and stationary noise inputs, for which a single set of integrations suffices 
for all sample periods. Moreover, for time-invariant or slowly varying F(. ), B( .), 
and [G(  .)Q( .)GT( .)I, if the sample period is short compared to the system's 
natural transients, a first order approximation to the solution of (4-129)-(4-131) 
can often be used [ 121 ; namely, 

@(ti+l, ti) I + F(ti)[ti+, - ti] (4-132a) 

Bd(t i )  z B(fi)[fi+ 1 - ti] (4-1 32b) 

Qd(ti)  G(ti)Q(ti)G'(ti)[ti+ 1 - t i ]  (4- 132~)  

Equation (4-125) is a particular case of a linear stochastic diference equation 
of the general form 

x(ti+ 1) = @(ti+ 1 7  ti)x(ti) + Bd(t i )U(f i )  -I- Gd(ti)Wd(ti)  (4-133) 

where wd( ., .) is an s-vector-valued discrete-time white Gaussian noise process, 
with mean zero and covariance kernel 

(4- 1 34) 

and Gd(ti) is an n-by-s noise input matrix for all t i  E T. In (4-134), Qd(ri) is a real, 
symmetric, positive semidefinite s-by-s matrix for all ti E T. Sometimes difference 
equations are written in terms of the argument i, for instant, rather than time 
t i .  Recall from Section 2.4 that if (4-133) did not arise from discretizing a 
a continuous-time model, there is no longer any assurance that @(ti+ t i)  is 
always nonsingular. 

The mean and covariance of the x( ., . ) process defined by (4-133) propagate as 

(4- 135a) mx(ti+ I )  = @ ( t i +  1 9  fi)m,(ti) + Bd(ti)U(ti)  

Px.x(fi+ 1 )  = @ ( r i + I r  t i ) p x x ( t i ) @ ' ( f i + l ,  t i )  f Gd(t iQd(f i )GdT(t i )  (4-135b) 

EXAMPLE 4.8 Consider a digital simulation of a first order lag as depicted in Fig. 4.12. Let 
w(.;) be a white Gaussian noise with zero mean and 

E[w(t)w(t  + z)] = Q 6 ( ~ )  
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Sample 
period 

At  

W ( t )  

FIG. 4.12 First order lag system model 

and let the interval between sample times be a constant, ( t i+ - t , )  = Ar. From the figure, the 
state equation can be written as 

k(t)  = - ( l / T ) X ( t )  + ( K / T ) w ( t )  

Now we desire an equivalent discrete-time model. The state transition matrix is 

@(c, r )  = @(r - r )  = e-'r-T)'T 

Therefore, the desired model is defined by 

x ( t i +  ,) = e-A"Tx(t i )  + wd(t,) 

where wd(.;) is a white Gaussian discrete-time process with mean zero and 

E{wd(ti)'] = l:"' @z(ti+1,z)[7] K 2  Q d z  = 2T[1 Q K 2  - e-2Ar'T] = Qd 

Steady state performance is reached, and can be found from either the continuous-time or 
discrete-time model. For the continuous-time model, in general, set 

P(t) = FP(t) + P(t)FT + GQGT = 0 

which here becomes 

P(r )  = - ( 2 / ~ ) ~ ( t )  + ( K ~ Q / T * )  = o 
so that 

P(r -+ m )  = Q K Z / ( 2 T )  

For the discrete-time model, the same result can be obtained by setting 

P(fi+ 1 )  = @ ( T i +  1 ,  ti)p(ti)@T(ti+ 1 ,  ti) + GdQdGa' = p(ti)  

or 

P ( t i + l )  = eFzAr iTP( t i )  + (QK2/(2T))[1 - c - * ~ " ~ ]  = P ( t i )  = P 

so that 

P [ 1  - e-2Ar'T] = ( Q K 2 / ( 2 T ) ) [ l  - e-2A'!T] 

OK 

P = Q K Z / ( 2 T )  

Assume that m,(to) = 0, so that 

E ( x ( t i + l ) x ( t i ) ;  = @ ( r i + l ,  t j ) P ( t j )  = r-AriTp(ri) 

which converges to eCAfiTP in steady state. Thus, if the sample period At is long compared to the 
first order lag time constant T, then there is very little correlation between x ( t i +  1) and x ( t i ) .  
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Monte Carlo simulations of systems will be discussed in detail in Section 6.8. 
Moreover, Problem 7.14 will describe means of generating samples of W d ( ' , ' ) ,  

required for simulations of (4-133) for the general case in which Qd(t i )  in (4-134) 
is nondiagonal. 

4.10 THE OVERALL SYSTEM MODEL 

The previous two sections developed continuous-time and discrete-time state 
propagation models. To develop an overall system model, the measurements 
available from a system must be described. We will be interested mostly in data 
samples rather than continuously available outputs. At time t i ,  the measure- 
ments can be described through the m-dimensional random vector z ( t i , .  ): 

z(tJ = H(ti)x(ti) + v(ti)  (4- 136) 

where the number of measurements m is typically smaller than the state dimen- 
sion n, H(ti) is an m-by-n measurement matrix, and v(ti) is an m-dimensional 
vector of additive noise. Thus, each of the m measurements available at time ti 
is assumed to be expressible as a linear combination of state variables, corrupted 
by noise. The physical data (i.e., numbers) from measuring devices are then 
realizations of (4-136): 

z(tJ = z ( t i ,  cook) = H(fi)x(ti, wok) + v( t i ,  ok) (4-137) 

The noise v(., .) will be modeled as a white Gaussian discrete-time stochastic 

(4- 1 3 8a) 

process, with 

E { V ( . t i ) }  = 0 

R(ti) ti = f j  

ti # t j  
E { v( ti)VT( ti)). = (4- 1 38 b) 

It will also be assumed that v( t i ,  .) is independent of both the initial condition 
x(t,) and the dynamic driving noise P ( r j ; )  or wd(tj,  .) for all t i ,  t j  E T.  A general- 
ization allowing correlation between these various random variables is possible, 
but this will be pursued.later. 

Thus, there will be two system models of fundamental interest to us. First 
there is the continuous-time system dynamics model 

(4- 1 39a) x ( t )  = F(t)x(t) + B(f)u(t) + G(t)w(t )  

or, more properly, 

dx(t) = F(t)x(t)dt + B(t)u(t)dt + G(t)dp(t) (4-1 39b) 

from which sampled-data measurements are available at times t , ,  t,, . . . as 

z ( t i )  = ~ ( t , ) x ( t , )  + v(ti) (4- 140) 
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- 1  I 

FIG. 4. I3 Continuous-time dynamics/discrete-time measurement model. 

Wdlt, - I )  
G J t , - i )  

FIG. 4.14 Discrete-time dynamics/discrete-time measurement model 

1-R-J 
FIG. 4.15 Continuous-time dynamics/continuous-time measurement model. 

This model is portrayed schematically in Fig. 4.13. The second modei of interest 
is depicted in Fig. 4.14: a discrete-time dynamics model 

X ( t i +  1 )  = @(ti+ I r  ti)x(ti) f Bd(ti)U(ti) -I- G d ( f i ) W d ( t i )  (4- 141) 

with measurements available at discrete times t , ,  t,, . . . , of the same form as 
in (4-140). Note that if a model is derived originally in the first form, then an 
“equivalent discrete-time model” can be generated as in Fig. 4.14, but with 
Gd(ti) equal to an n-by-n identity matrix for all times ti E T.  

A third possible model formulation is depicted in Fig. 4.15, consisting of a 
continuous-time dynamics model (4-139), with measurements continuously 
available as 

z ( t )  = H(t)x(t) + v(t)  (4- 142) 

with H(‘)  an m-by-n matrix of piecewise continuous functions, and v(.;) an 
m-vector-valued continuous-time noise process. This additive noise would be 
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modeled as a white Gaussian noise with zero mean and covariance kernel 

E { v ( t ) v T ( t ’ ) }  = R C ( t ) 6 ( t  - t’) (4-143) 

It would further be assumed that v ( t )  is independent of x ( t , )  and w(t’)  or P(t’) 
for all I ,  t’ E T (such an assumption could be relaxed, as mentioned before). 
Although such a model is of theoretical interest, the sampled-data measurement 
models are more significant practically, since virtually all estimators and 
stochastic controllers are implemented on digital computers. 

In fact, our attention will be focused upon the continuous-time dynamics/ 
discrete-time measurement model, since this will be the most natural description 
of the majority of problems of interest. For such a model, the statistics of the 
system outputs can be calculated explicitly in terms of corresponding state 
characteristics, which have been described previously. The mean of the measure- 
ment process at time ti is 

m,(ti) = E{z(ti)j = E { H ( t i ) x ( t i )  + v ( t i ) }  

= H ( t i ) E { x ( t i ) }  + E { v ( t i ) )  
mz(ti) = H(ti)mx(t i )  (4-144) 

The output autocorrelation is generated as 

E {z(tj)zT( t i ) }  = E { H( t j ) x (  t j)xT( ti)HT( t i ) )  + E {v( t j )vT(  t i)} 

+ E { H( t j )x (  t j ) vT( t i ) }  + E { v ( t j )xT( t i )HT(  t i ) }  

But, the third and fourth terms are zero, since we can write 

x ( t j )  = O(tj,  to)x[ro) + s” cD(tj,z)G(z)dp(z) 
fa 

or, for the equivalent discrete-time system, 

i.e., in either case as the sum of terms, all of which are independent of v ( t i ) .  
Thus, x ( t j )  and v(ti)  are independent, and so uncorrelated, so that the third term 
in the previous expression becomes 

H ( t j ) E { x ( t j ) v T ( t i ) )  = H ( t j ) E { x ( t j ) } E { v T ( t i ) J  = 0 

since v(ti)  is assumed zero-mean and simiIarly for the fourth term. Therefore, 
the output uutocorrelation is 

H (  rj)E { x ( t j)xT( t i)) H’( 1 i )  
‘ j  # (4-145) 

x( t i )xT( t i ) }HT( t i )  + R(ti) t j  = ti 
Yzz(rj, t i)  = E{z(t j )zT(t i )}  = 
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Similarly, the covariance kernel is 

Note that for (4-145) and (4-146), expressions for E { x ( t j ) x T ( t i ) }  and P x x ( t j ,  t i )  
were derived previously for t j  2 t i  as 

E ( x ( t j ) x T ( t i ) }  = Q ( t j ,  t i)E(X(ti)XT(ti)}  P x x ( t j ,  t i )  = @ ( t j ,  t i)pxx(ti)  

Z ( t )  - Filter mtcW source 

Schematic for Example 4.9. 

at time t, 

FIG. 4.16 

EXAMPLE 4.9 The following problem, first suggested by Deyst [3], incorporates many of 
the concepts that have been discussed. Consider Fig. 4.16. A signal source generates a scalar 
output which can be described as a stationary zero-mean process s(.;), which is exponentially 
time-correlated with correlation time T :  

E { s ( t ) j  = 0 

E{s(t)s(t  + T)} = 02e-lrl’T 

That is to say, the signal source is started at some time t o ,  and the transients are allowed to decay 
so as to achieve a steady state output process. Then, at time t,, the switch is closed. It is assumed 
that at the time just before switch closure, the filter output is zero: z(r , - )  = 0. The filter is a lead- 
lag type, with a transfer function 

Its amplitude ratio (Bode) plot as a’function of frequency is depicted in Fig. 4.17 for the case of 
a < b (b < a is also possible-this yields a low-pass lead-lag), The objective is to derive an expres- 
sion for the autocorrelation function of the filter output z(.;), valid for both time arguments 
assuming values greater than or equal to t,. 

Asymptotic 
approximation 

J 

I I I 
I I z w  

Lead-lag filter amplitude ratio plot. 

U b (Log scale) 

FIG. 4.17 
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w ( t )  :T = sir) ~ 

- 

FIG. 4.18 Model of signal generator. 

First, we must generate a model of the signal source. A system that generates a process dupli- 
cating the characteristics of s(';) is depicted in Fig. 4.18: a first order lag driven by zero-mean 
white Gaussian noise. The output s satisfies the differential equation 

S ( t )  = - ( l / T ) S ( f )  + w(t)  

where the strength of w[.;) is as yet unknown: i t  must be determined so as to yield the appro- 
priate steady state variance of s(';). The state transition matrix for this system model is 

qt,t') ~ e - ( t - t ' ) / ~  

Therefore, the statistics of s(,;), assuming E{s( t , ) )  = 0, are given by (4-111) and (4-114) as 

m,(t) = E{s(t)j = 0 

p,,(t) = E{s2(t))  = e-2( ' -rO)/TE { s2 ( t o)} + 6: e-z( f -r ' /=  Q d T  

1 = , - ~ ( I - ~ o ) / T E  s~ to)) + $QT[~  - e-2 ( r - rd /T  I (  
where we are seeking the appropriate value of Q:E{w( t )w(r  + t)/ = Q6(z). To obtain stationary 
characteristics of s, Q must be constant and we must let the transient die out by letting to + - co, 
yielding 

E { s z ( t ) )  + t Q T  

But, from the given autocorrelation function u2e-IrliT, this is supposed to equal u2, so the desired 
value of Q is 

Q = (2/T)uz 

Note that the model output obeys (4-118): 

E { s ( t  + ~ ) s ( t ) }  = @(t + T, t ) E ( s 2 ( t ) }  + e-r'Tu* T > O  

which is the desired form of autocorrelation. In fact, identifying the constant part of the given 
u2e-'r"T as the steady state mean squared value, and the function of T as the state transition matrix, 
gives the initial insight that a first order lag is the appropriate system model to propose. 

Another procedure for obtaining the appropriate Q would be to seek the steady state solution 
to (4-120). which for this case becomes the scalar equation 

pss[f) = - ( l / W s s ( f )  - (l/T)Pss(t) + Q = 0 

Since we desire P,,(t + co) = u2, this again yields Q = (2/T)u2. 
For the filter, a state model can be generated as in Example 2.6. Thus, an overall model of the 

situation is depicted in Fig. 4.19. Note the choice of integrator outputs as state variables x 1  and 
x2 .  Once the switch is closed, the state equations become 

k,(t) = -(l/T)x,(t) + W ( t ) ,  k2(t) = -bx , ( t )  + x,(t) 
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and the output equation becomes 

z(ti) = ax,(t;) + k2(t i )  = U X Z ( ~ ~ )  - bx,(tij + x i ( t i )  = [ a  - b]x,(t,) + x l ( t ; )  

In vector notation, this can be written as x ( t )  = Fx(t) + Gw(t), z(t,) = Hx(t,): 

Furthermore, the uncertainties can be described through 

Now (4-145) can be used to write the desired autocorrelation for r j  >_ ti as 

E { z ( t j ) z ( t i ) }  = HE{x(tj)xT(ti)) HT 

= H@(tj, ti)[Px,(ti) + mx(ti)mxT(ti)]HT 

But, mJt) is zero for all time t 2 t,: by time t,, all transients in xl(.) have died out, and it is driven 
by zero-mean noise; x2( . )  starts at x,(t,) = 0 since z (rs - )  = 0, and it is driven by the zero-mean 
process x i ( . ) .  Thus, the desired result is 

E { z ( t j ) z ( t i ) )  = H@(tj, ri)Px,(ti)HT 

and so @ ( t j ,  t i )  and P,,(ti) must be generated explicitly. 

invariant nature of the system: 
The state transition matrix can be derived using Laplace transforms because of the time- 

r 1 

so that 

1 

s + b  
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The covariance matrix P,,(t,) can be written for any t ,  2 t, through (4-114) as 

The initial condition is specified by noting x , ( t , )  = s(t,), and x,(t,) is known exactly: 

Substituting these into the expression for E { z ( t j ) z ( t i ) }  yields the final result as 

E{z(t j )z( t i )}  = u2[c12 exp[ -(f, + t j  - 2t,)/T] + cz2 exp[-b(t, + t j  - 2tJ 

- c,c,(exp[- b(rj - t,) - (t i  - r,)/T] + exp[-(tj - t J / T  - b(t, - t,)])] 

+ ( ~ u ' / ~ ) i : '  [c,2exp[-(ri + t j  - 2 T ) / T ]  + c,2exp[-h(ri + t,, - 2 T ) ]  

- c,c,(exp[- b(rj - 7) - (t i  - 7 ) / T ]  + exp[ - ( r j  - T) /T  - b(ri - T ) ] ) ]  dr  
where 

Note that the result is a nonstationary autocorrelation. To obtain a stationary output, we 
require not only a time-invariant system driven only by stationary inputs, but also must consider 
the output only after sufficient time for transients to die out. This stationary result as t, + - io 

can also be obtained by convolutions, but the initial transient after time t, cannot he generated 
through such an approach. 

4.11 SHAPING FILTERS AND STATE AUGMENTATION 

In many instances, the use of white Gaussian noise models to describe all 
noises in a real system may not be adequate. It would be desirable to be able to 
generate empirical autocorrelation or power spectral density data, and then to 
develop a mathematical model that would produce an output with duplicate 
characteristics. If observed data were in fact samples from a Brownian motion 
or stationary Gaussian process with a known rational power spectral density 
(or corresponding known autocorrelation or covariance kernel), then a linear 
time-invariant system, or shaping $her, driven by stationary white Gaussian 
noise, provides such a model. If the power spectral density is not rational, it 
can be approximated as closely as desired by a rational model, and the same 
procedure followed. Furthermore, if all one knows are the first and second 
order statistics of a wide-sense stationary process (which is often the case), 
then a Gaussian process with the same first and second order statistics can 
always be generated via a shaping filter. Time-varying shaping filters are also 
possible, but we will focus mostly upon models for stationary processes. 

The previous example in fact demonstrated the use of such a shaping filter, 
a first order lag, to duplicate the observed process s(.;). This section will 
formalize and extend that development. 

Suppose that a system of interest is described by 

x ( t )  = F ( t ) x ( r )  + G(t )n ( t )  (4-147a) 



4.1 1 SHAPING FILTERS AND STATE AUGMENTATION 181 

U 

- - - - - - - - _ - - - - - - _ _ - - - - - - - - - - - - 
I i Shaping filter System 

~ ( t )  = H(t)x(t) + v ( t )  (4 - 1 47 b) 

where n( ., .) is a nonwhite, i.e., time-correlated, Gaussian noise. Also, suppose 
that the noise n(.;) can be generated by a linear shaping filter: 

X f ( d  = F,(t)x,( t )  + G f ( t W )  (4-148a) 

n(t) = Hf(OXf(0 (4-148b) 

where the subscript f denotes filter, and w ( .  , .) is a white Gaussian noise process. 
Then the filter output in (4-148b) can be used to drive the system, as shown in 
Fig. 4.20. Now define the augmented state vector process xa( ., .) through 

1 
I 

__  
I 

to write (4-147) and (4-148) as an augmented state equation 

X,(t) = Fa([) 

and associated output equation 

(4-149) 

w(r) (4-150a) 

Ga(t) w(t) (4-150b) 

7 (4- 150~)  

z(t)  = Ha(t) xa(t) + v( t )  (4-150d) 

This is again in the form of an overall (augmented) linear system model driven 
only by white Gaussian noise. 

An analogous development is possible for the case of time-correlated 
measurement corruption noise. Let a system of interest be described by 

(4-1 51a) X(t)  = F(t)x(t) + G(t)w(t )  
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z ( t )  = H ( t ) x ( t )  + n(t) + v(t )  (4-1 5 1 b) 

where w(-;) and v(.;) are white noises and n(.;) is nonwhite. Generate 
n(.;) as the output of a shaping filter driven by white Gaussian wf(.;), as 
depicted in Fig. 4.21 : 

XAt) = F,(t)Xf(t) + Gf(t)Wf(t) (4- 152a) 

n ( t )  = Hf(t)xf(t) (4-1 52 b) 

The augmented state can be defined as in (4-149) to yield an augmented system 
description as 

(4- 153 b) 

which is again in the form of a linear system model driven only by white Gaussian 
noises. Obvious extensions can allow time-correlated components of both the 
dynamic driving noise and the measurement corruption noise for a given 
system. 

Certain shaping filter configurations are recurrent and useful enough for 
process modeling to be discussed individually. These are depicted in Fig. 4.22. 

i l  I I  

I 
I 
I I 
L _ _ _ _ _ _ _ _ _ _ _ _ _ _  J 

Shaping filter generating measurement corruption noise. 
Augmented system 

FIG. 4.21 
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The trivial case is stationary white Gaussian noise itself, of mean rn, and auto- 
correlation 

E{w(t)w(t  + T)) = [ P ,  + mo2] 6 ( ~ )  = X o  6(z) (4-154) 

Second, there is the random constant or bias model, generated as the output 
of an integrator with no input, but with an initial condition modeled as a 
Gaussian random variable x(t, )  with specified mean mo and variance Po.  Thus, 
the defining relationship is 

k(t) = 0 (4-1 55a) 

starting from the given initial condition ~ ( t , ) .  Note that this is a degenerate 
form of shaping filter, in that no noise drives the filter state equation. Since the 
samples are constant in time, the autocorrelation is constant over all T, resulting 
in an impulse power spectral density (all power concentrated at w = 0): 

Y,,(T) = E{x(t)x(t + 7)) = [Po + mo2] 

YJw) = 27c[P0 + mo2] 6(w) 

(4-1 55b) 

(4-1 5%) 

This is a good model for such phenomena as turnon-to-turnon nonrepeatability 
biases of rate gyros and other sensors: from one period of operation to another, 
the bias level can change, but it remains constant while the instrument is turned 
on. Care must be exercised in using such a model in developing an optimal 
estimator. This model indicates that although you do not know the bias mag- 
nitude a priori, you know that it does not change value in time. As a result, an 
optimal filter will estimate its magnitude using initial data, but will essentially 
disregard all measurements that come later. If it is desired to maintain a viable 
estimate of a bias that may vary slowly (or unexpectedly, as due to instrument 
failure or degradation), the following shaping filter is a more appropriate bias 
model. 

Brownian motion (random walk) is the output of an integrator driven by 
white Gaussian noise (heuristically, in view of the development of the previous 
sections): 

’ X(t) = w(t); X(t,) A 0 (4-156) 

where w(.;) has mean zero and E{w(t)w(t  + T)} = Q 4~). The mean equation 
would be the same as for the random constant, m,(t) = 0 or m,(t) = mx(fo) ,  
but the second order statistics are different: P x x ( t )  = Q instead of pxx(t) = 0, 
so that the mean squared value grows linearly with time, E { x 2 ( t ) )  = Q [ t  - to]. 

The random walk and random constant can both be represented by the use of 
only one state variable, essentially just adding the capability of generalizing a 
random walk to the case of nonzero mean or nonzero initial variance. 

Exponentiallji time-correlated (Jjrst order Markou) process models are first 
order lags driven by zero-mean white Gaussian noise of strength Q. As shown 
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in Example 4.9, to produce an output with autocorrelation 

Yxx(z) = E{x(t)x(t + 7)) = 02e-lrl/T (4-1 57a) 

i.e., of correlation time T and mean squared value o2 (and mean zero), the model 
is described by 

k ( t )  = -(l/T)x(t) + w(t) (4-157b) 

where Q = 2a2/T, or, in other words, E{x2(t)) = QT/2. The associated power 
spectral density is 

(4- 1 5 7 ~ )  

This is an especially useful shaping filter, providing an adequate approximation 
to a wide variety of empirically observed band-limited (wide or narrow band) 
noises. 

A second order Markov process provides a good model of oscillatory random 
phenomena, such as vibration, bending, and fuel slosh in aerospace vehicles. 
The general form of autocorrelation is 

as depicted in Fig. 4.22 [note that the autocorrelation periodically is negative, 
i.e., if you knew the value of x(t), then you expect x ( t  + z) to be of opposite 
sign for those values of time difference z]. This can be generated by passing a 
stationary white Gaussian noise w(.;) of strength Q = 1 through a second 
order system, having a transfer function most generally expressed as 

as + b 
G ( s )  = 

s2 + %ions + o,2  
(4-1 58b) 

or a state description as depicted in Fig. 4.22: 

where xl(t) is the system output and 

a = [(202/cosq)o,sin(a - q)] ' / ' ,  

c = h - 2ajw,, 

b = [(2a2/cosq)on3 sin(a + y1)I1j2, 

a = tanp1[[/J1mi2].  

In practice, 02, t , / ,  [, and on are chosen to fit empirical data. (See Problem 4.21.) 
For instance, [ is chosen to fit the observed resonant peak in power spectral 
density, from the condition of no peak (5 E (0.707,1]) to extreme resonance 
([ << 1). The extreme case of [ = 1 and a = 0 is not periodic at all, but provides 
a steeper rolloff of power spectral density than a first order Markov model. 
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4.12 POWER SPECTRUM CONCEPTS 
AND SHAPING FILTERS 

It is useful to be able to express the power spectral density of a wide-sense 
stationary output of a system directly in terms of the power spectral density of 
the input and the description of the system itself. Inherent in such a concept are 
the facts that the input is stationary, the system is time invariant, and we are 
interested only in a steady state description of the output (i.e., to -, --a). 
Not only would such a relationship indicate the effect of a given system on the 
statistics of a signal, it also will yield an expedient means of synthesizing a 
shaping filter to duplicate a desired power spectral density from a white noise 
input. This section develops the desired relationship and then directly applies 
it to shaping filter design. 

The input-output relationship of a single input-single output linear system 
can be described through a time domain analog of a transfer function, called an 
impulse response function G,(., .), where G,(t, t’) is the system output response 
at time t due to a unit impulse input applied at time t’. In terms of this function, 
the output z ( t )  can be expressed in terms of the input n(t’) for t’ E ( -  co, t ]  as 

z ( t )  = J:m G,(t, t’)n(t’)dt’ (4-159) 

For any physically realizable system, G,(t, t’) = 0 for t < t’: the system does not 
respond to an input before it arrives (the system is “nonanticipative”). If the 
system is time invariant, then the impulse response function is a function only 
of the time difference ( t  - r’), and not of t  and t’ separately, denoted by G,(t, t‘) 
G,(t - t’), so that (4-159) becomes 

z ( t )  = st- G,(r - t’)n(t’)dt’ (4- 160a) 

By defining a change of variables, ( t  - t’) = t (so that dt‘ = - dz), this becomes 

m 

z ( r )  = Som G,(t)n(t - t ) d t  (4- 1 60b) 

This is an ordinary convolution integral relation, the Laplace transform of 
which yields the multiplicative transfer function relation of Eq. (2-2). Note that 
physical realizability requires G,( t )  = 0 for t < 0 in this time-invariant case. 

Now (4-160b) can be used to write the stationary statistics of the output 
process z(.;) in terms of those of the input process n(.;): 
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Define C(.) to be the Fourier transform of G,(.): 

G(U) = JT m Gt(T)e-'"' d T  

By considering the Fourier transform of (4-1 61), the convolutions become 
product relations. 

First, due to physical realizability, Ji G , ( T ) ~ T  = J 5 r  G , ( T ) ~ T  in (4-161a). 
This is then recognized as the Fourier transform evaluated at w = 0: 

(4-1 62a) E j z ( t ) )  = E{n(t))G(O) = const 

The Fourier transform of (4-161b) is 

G,('Cl)Gt(T2)yflfl(T f T I  - T 2 ) d T l  dz2e- j"'dz  

But the orders of integration can be changed since Yfl,(.) is assumed Fourier 
transformable, so 

= G( -o)G(w)T,,,(co) 

where use has been made of the fact that G,(z) = 0 for z < 0. Remembering that 
G( - o) = G*(o) ,  the final result is 

Yzz(Ol) = G(o)G(  - w)Tflfl(w] = lG(~o)12Tfln(W) (4-162b) 

Note that this depends only on the magnitude, and not the phase, of G ( o ) .  
Similarly, (4-161c) and (4-161d) become 

Tl,z(f!l) = G(co)Yl,fl(o) (4-162d) 

In much analytical work with linear systems, control engineers use the 
Laplace transform instead of the Fourier transform. Rather than considering 
two-sided Laplace transforms, we will treat these as Fourier transforms with 
a change of variable, replacing Q by s/ j ,  i.e., by letting s = j w .  Since power 
spectral densities are even functions of w, there are no odd powers in o, so 
Yzz(s) is always a r e d  function of s: a rational TJs) can be obtained from a 
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rational Yzz(o) by replacing all powers of w2 by ( s / j )2  = - s 2 .  The results of 
(4-162) can then be written directly in terms of functions of s instead of o, with 
the only structural change being 

(4-162~') 

Now we can consider shaping filter design: suppose we have a stationary 
stochastic process n(., . )  with known power spectral density Tnn( .) (without 
loss of generality, a white process), and we want to generate from it a process 
z( ., . )  with a desired Tzz( -). If both spectra are rational (the ratio of polynomials 
in o), then the design of the linear time-invariant shaping filter is straightforward, 
once spectral factorization is understood. 

If Tzz( . )  is rational, then it can be written, since it is also even, as 

a, + u 1 0 2  + a2u4 + a3w6 + . . . 
b, + b l o 2  + b 2 0 4  + b306 + .  . + 

Tzz (w)  = 

or 

- 
' y z z ( s )  = 

a, - als2 + a2s4 - a3s6 + . . . 
b, - b,s2 + b2s4 - b3s6 + . . . 

Tz,(s) can then always be factored into the form 

(cl - s2)(c2 - s2) ' . . 
Y Z z ( s )  = K 

(d ,  - s2)(d2 - s2 )  . . 

(4-163a) 

(4-1 63b) 

(4- 1 6 3 ~ )  

Since the coefficients a, and bj are all real numbers, the ci's and dj's must either 
be real or occur in complex conjugate pairs. For real positive di, the poles are 
at + Jd,, as shown in Fig. 4.23a. For complex di, the poles are at +-A = 

i ( e  + j f ) ,  as in Fig. 4.23b. In such a case, there is another d, that is the complex 
conjugate of di, d j  = di*, with roots at = + ( e  - jf), as in Fig. 
4.23~. Thus, complex roots occur in quadruplets, symmetric about both the 
real and imaginary axes of the s plane, as in Fig. 4-23d. Similarly, any pure 
imaginary poles, the case for real negative d,, appear as doubles; this can be 
viewed as the case above in the limit of zero separation, and is depicted in Fig. 
4.23e. Zeros corresponding to the ci in (4-163c) are treated analogously. 

Now collect all factors of TLZ(s) which define poles or zeros in the left half 
s plane, and denote the product of all of these factors and f i  [recall (4-163c)I 
as TJs)~. Correspondingly generate T'zz(~)R of right half plane factors and fl. 
Since pure imaginary roots always appear as doubles, one would be associated 
with Yzz(~~)L and the other with Tzz(s)R. This yields the specrraIfactorization: 

= 

T z z ( ~ )  = T z z ( s ) L T z z ( s ) K  (4- 164) 

where all poles and zeros of Tzz(s)L are in the left half plane, and all of T J S ) ~  
are in the right half plane. Note that, because of the symmetry about both 
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FIG. 4.23 s-Plane plots of roots of rational Fzz(s). 

n z h 

T""M F&) 

FIG. 4.24 Shaping filter design. 

coordinate axes, 

Tzz(s)R = Tzz( - s)L (4-165) 

Now we have the situation depicted in Fig. 4.24: we know Tnn(s) and q z z ( s )  
for all s, and wish to determine the appropriate G(s)  to describe the shaping 
filter. From (4-162b), 

which can be written in factored form as 

(4- 166) 
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it will have all of its poles in the left half plane (and thus be stable) and all of 
its zeros also in the left half plane (and thus be minimum phase: for a given 
amplitude-versus-frequency Bode plot, this form has the least phase lag). 

EXAMPLE 4.10 Use a white (Gaussian) noise with T,,,(w) = Q for all w to generate an 
exponentially time-correlated (Gaussian) noise with 

First replace ro2  by ( -s2 )  to generate Yzz[s): 

Perform spectral factorization to obtain 

and similarly YJs . )~  = a. The desired shaping filter can then be expressed as 

Note that if we let n(.;) be a white noise with Q = 202/T, then passing i t  through a first order 
lag, G ( s )  = 1,"s + ( l j T ) ] ,  yields the desired result. This agrees with the results found previously by 
time-domain shaping filter design techniques. 

EXAMPLE 4.11 To illustrate the case of poles or zeros on the imaginary axis, consider 
generating a signal z(.;) with 

from white noise n";) with Y,,"(co) = Q. Replace wz by ( -s2) and perform spectral factorization: 

c2 - usz I:  + &s i. - J i s  
'Fzz( ,s)  = ~ = Iim ~ = l i m p  ___ 

- C l S Z  

h2 - s 2  c-.o b2 - . s 2  c - o  h + s  h - s  

where the use of E allows proper a3signment of signs. The shaping filter can be expressed as  

4.13 GENERATING PRACTICAL SYSTEM MODELS 

In order to generate a model of the errors and uncertainty in a physical device 
(sensor, actuator, etc.) or any other type of system, empirical test data is collected. 
For example, a gyro output signal might be recorded over a period of hours or 
days when subjected to known (as especially zero) inputs. Or, a number of 
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gyros might be tested-in this manner to obtain "population statistics" on all 
gyros of that particular type. 

Conceptually, sample autocorrelations can be generated by taking one set 
of data and generating all products of the form x(t , ) .u( t j )  for all discrete times ti 
and t j  of interest. This would correspond to x ( t i ,  wk) :  x ( t j ,  w k )  for a single wk E R. 
Then other sets of data would provide similar product values for different values 
of k. Averaging over N sets of data would yield the approximate sample auto- 
correlation Y x x ( t i ,  t j ;  N ) ,  where 

1 N  

- 

(4- 167) q x x ( t i , t j ; N )  ' ~ x( t i ,wk)x( f j ,<ok)  
k = l  

If the process x(.;) is stationary, then the sample autocorrelation is a func- 
tion of only the time difference ( t i  - t i ) ,  and so fewer products are required to 
define the function totally: qxx(ti - tj; N) could be evaluated by using (4-167) 
for any single value of t i .  Often the ergodic assumption is made in this case, 
yielding another sample autocorrelation Y ~ , ( m A t ;  N )  for m = 0, f 1, . . . , 

( N  - 1) as the time average 
1 N - I m l - 1  

y L , ( m A t ; N )  ~ X ( t i , o , ) X ( t i  + Im(Af,wk) (4- 168) 

This uses N samples from a single realization of x (  ., . ), equally spaced at a sample 
period of At ,  to evaluate an approximate autocorrelation as an average of all 
possible products of samples separated by m A t  seconds [there are few such 
products for m almost as large as N, and Y k x ( m  Ar;  N )  is assumed to be zero 
for m 2 N)]. The corresponding estimate of the power spectral densit!, junction 
can be defined as the discrete Fourier transform of Yxx( .  ; N ) :  

N i = o  

% 

TLx(co;N) = c Y k , ( m A t ;  N)e-im'"A' (4-1 69) 
m =  - m 

Prior to the advent of fast Fourier transform (FFT) algorithms, (4-168) and 
(4-169) were used directly for generating approximate autocorrelations and 
power spectral densities from sampled data signals of the form x(to), x ( t l ) ,  . . . , 
x(t+ Now a somewhat different sequence of computations is performed to 
generate the desired sample functions [7, lo]. First, the fast Fourier transform 
of the data is generated for i = 0, 1,2,  . . . , N - 1 as 

N -  1 

N -  1 

= x( to  + k A t ) ( e - j 2 n i N ) k i  (4-1 70) 
k = O  

where the frequency spacing w, between the discrete Fourier transform values 
is chosen to be w, = 2 n / ( N  A t )  to provide adequate frequency spacing according 
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to the “sampling theorem.” Second, a power spectral density estimate is com- 
puted from the result of (4-170) and 

1 
N 

YLx( iq ;  N )  = - IX(io,; N)I2 (4-171) 

Computing this for i = 0, 1,. . . , N - 1 requires 2N multiplications, since real 
and imaginary parts are squared separately. The autocorrelation Y:,(m At;  N )  
for m = 0, 1,. . . , N - 1 is computed as the inverse fast Fourier transform of 
(4-171). To smooth the result, decreasing the distortion due to only a finite set 
of data being used, this Y:,(m At; N )  is multiplied by a “window function,” 
i.e., each of its N values is multiplied by a predetermined coefficient, to yield a 
better (in terms of bias and variance properties) estimate of the autocorrelation, 
denoted as Y:’,(mAt; N )  for m = 0, 1, . . . , N - 1. Finally, a better estimate of 
power spectral density, Yyx(ius; N ) ,  i = 0, 1, . . . , N - 1, is computed as the fast 
Fourier transform of Ycx(. ; N ) .  Sometimes additional processing, as averaging 
of data subsets and “prewhitening,” are employed to produce even better esti- 
mates of autocorrelation and/or power spectral density. Although this procedure 
involves a substantial number of computations, it is significantly faster than the 
straightforward use of (4-168) and (4-169), due to the capabilities of FFT 
algorithms. 

Once such empirical data is generated, shaping filters can be produced by 
curve-fitting these sample functions. Any degree of complexity of the filters can 
be provided, depending on the complexity of the curves used to fit the data, This 
is illustrated by the following two examples. 

EXAMPLE 4.12 Suppose laboratory tests of a gyro yield empirical drift rate autocorrelation 
and power spectral density data as portrayed in Figs. 4.25a and b. A reasonable fit to the auto- 
correlation data would be a curve of the form 

Y,,(s) = uZe-lrliT + B 
which describes a combination of a random bias and an exponentially time-correlated component. 
The values of the parameters u, T, and B can be determined so as to provide the best fit of the 
assumed model to the data. 

Looking at the power spectral density data indicates that an additional wideband component 
(modeled as white) should also be included [the corresponding narrow pulse of Y&) at s = 0 
is hard to discern from data]. A reasonable curve-fit here is 

(Note that the bias is difficult to discern accurately from this data.) 
This yields a gyro drift model as depicted in Fig. 25c. with defining statistics 

E[XlZ(f0)~  = (1*. E { W , ( t ) W , ( t  + T)!  = [2a2/T]6(r) 

E(X,~(~,,)) = B, E{w,( t )w, ( t  + T ) ]  = Q ~ ( T )  

Naturally, more complicated fitted curves would yield more complex drift models. 
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1 - (0 

FIG. 4.25 Gyro drift model. (a) Curve-fitting empirical autocorrelation data. (b) Curve-fitting 
empirical power spectral density data. (c) Shaping filter. 

Qb‘ 
(0, 

w 
(0” U P  

FIG. 4.26 Power spectral density function for Example 4.13. 
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EXAMPLE 4.13 Suppose vibration testing of a structure produced an acceleration power 
spectral density at a certain location as in Fig. 4.26. Except for the peaking at w = wp, the data 
are well fit by 

which is generated by passing white noise of strength Q through a second order shaping filter 
described through 

b 

s2 + 2jw,s + <11,2 
Gi(s) = 

The peak at up can be generated by cascading a “notch filter” of the form 

with the shaping filter described by G,(s). The size of the resonant peak at wp is then adjusted 
by controlling the magnitude of il and iz. Unlike most applications of notch filters, we want 
to  accentuate the signal content in the “notch” region rather than attenuate it, so we require 
i z  < il. 

4.14 SUMMARY 

Stochastic processes were defined and then characterized through an infinite 
array of joint distribution functions. A practical, though generally only partial, 
characterization was then developed in terms of the first two moments: the 
mean value function and the correlation or covariance kernel. This statistical 
knowledge was shown to be complete for Gaussian processes, and very readily 
generated for Gauss-Markov processes. For wide-sense stationary processes, 
another useful characterization was developed in the form of power spectral 
density. 

A basic system model structure in the form of linear state dynamics driven 
only by known inputs and white Gaussian noise, with a linear measurement 
corrupted by additive white Gaussian noise, was motivated and shown to be 
widely applicable. With such a structure in mind, linear stochastic differential 
equations (4-121) and their solutions (4-122) were developed properly through 
stochastic integrals and Brownian motion. The Gauss-Markov state stochastic 
process could then be characterized by its mean (4-123), covariance (4-114) and 
(4-1 20), and covariance kernel (4- 1 18). 

With measurements typically available on a sampled-data basis as in (4-1 36) 
an overall system model was developed. An equivalent discrete-time system 
model (4-125) was also developed to describe such an output process from a 
physical system. Moreover, the output process characteristics were defined in 
terms of the state process description obtained previously: (4-144)-(4-146) 
portray the mean, correlation, and covariance kernel for this output process. 

Finally, the concept of a shaping filter applied the proposed general model 
structure to the problem of synthesizing a mathematical model to duplicate the 
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characteristics of empirically observed processes. Both time-domain and power 
spectral density techniques were exploited in this synthesis procedure. The 
generation of empirical autocorrelation and power spectrum data was dis- 
cussed, and curve-fitting these data then allowed complete definition of the 
appropriate shaping filter. 

At this point, we have adequate linear stochastic models for both static and 
dynamic systems. These will be exploited extensively in estimation and control 
and will also provide insights into nonlinear models and associated estimation 
and control algorithms. 
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PROBLEMS 

4.1 Consider the variable x( t )  defined by 

N 

x(t)  = C Ax(!;) 
i = 0  

where the variables Ax(ti) are independent and Gaussian scalars with statistics 

E(Ax(t ,)] = 0, E{Axz ( t , ) j  = q[ t ,+ ,  - ri] 

Find the characteristic function, +,(p.t), of ~ ( t )  and use it to determine the first two moments 
of x(t). 
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4.2 Verify the integral below where p( t )  is Brownian motion: 

4.3 Prove that Eq. (4-100) is valid by using fundamental definitions for a finite partitioning 

4.4 In deriving Eq. (4-145), the following relation was used: 

of the time axis. and then taking the limit as the time cuts become infinitesimally fine. 

i 

x(tj) = @ ( t j ,  t o ) x ( r O )  + 1 @ “ j ? r k ) G d ( t k -  l)Wd(fk- 1 )  
k = l  

Show that this is the solution to the stochastic difference equation (4-133) with u( t i )  = 0 for all 
time. 

4.5 Let p(  .;) be a scalar Brownian motion process with statistics 

E { p ( t j )  = 0, E { p ( t ) ’ )  = t 

The process x(.;) satisfies the stochastic differential equation 

dx(r) = P ( t ) c o s t d t  + sintdp(r)  

Determine the variance of x(t). 
Explain how you would determine the variance if the equation were, instead, 

dx(t) = x(t)costdt  + sintdpl t )  

4.6 Let x( ’, . )  be a discrete-time process satisfying 

x ( t i )  = @ ( t i , t i - I ) X ( t i - l )  + Gd(tt-r)wd(fi-l) 

where wd(.;) is a white Gaussian process with mean Wd(rj)  for all t i ,  and covariance kernel 
Qd(ti)dij. Show that x(.;) can also be generated by 

X ( t i )  = @(6, f i - l )x ( t i - i )  + G d ( t i - i ) U ( t i - l )  + G d ( t t - l ) W d ‘ ( f i - i )  

where the deterministic input u(ti) @,(ti) for all t i  and w;(.;) is a zero-mean white Gaussian 
noise with covariance kernel Qd(ti)bij. 

An engineer had the task of simplifying a system model for eventual filter implementa- 
tion. He was given a basic model of a noise input n( ., . )  into a physical system as in Fig. 4.Pla. 
where w1(.:) and w,(~: )  are independent white Gaussian noises. each zero-mean and of unit 
strength (variance kernel of one times the delta function). He has proposed that the model de- 
picted in Fig. 4.Plb is equivalent to the original, and it requires one less noise source in the overall 
system model. Do you agree that this is equivalent? Explain. 

Suppose you are investigating the system modeled as in Fig. 4.P2. The noises n I ,  n,, n,, 
and n4 are zero-mean white Gaussian noises independent of x ,  and x2 histories with variances 

4.7 

4.8 

E(“;( t )n , ( t  f T ) }  = N,  6 ( T )  

for i = 1 , 2 , 3 , 4  and N , ,  N,, N,, and N ,  specified values, 

E{n,(t)n,(r + T ) :  = K Z 3 6 ( ~ )  

and other cross-correlations zero. 

d, with 
The two sampling devices are corrupted by zero-mean white Gaussian noise sequences d ,  and 

E{dl( f i )d l ( l , i ) i  = D ,  6 i j ,  E [ d z ( f ; ) d z ( f j ) ;  = D 2 6 i j ,  E [ d 1 ( ~ ; ) d ~ ( t j ) ~  = D36; j  

and the di’s are independent of the xi’s and ni’s. 
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FIG. 4.P1 

Develop the linear state variable stochastic differential equations to describe the system, using 
x1 and x2 as states. 

Obtain the differential equations for the elements of the covariance matrix to describe the 
evolution of the second moment of x = [x,x21T. Assuming that the solution to the differential 
equation is available, can you generate an expression for the time-varying autocorrelation func- 
tion of the output, E { z ( t i ) z ( t j ) }  in terms of the elements of this covariance matrix solution? 

Can you generate an equivalent system description with fewer noise inputs than the six 
originally defined? SpeciJicatly describe such a system model and the statistics of the noises used 
to replace the original six. 

The transfer funcfion model for a system is given as in Fig. 4.P3, where w(.;) is a white 
Gaussian noise with 

4.9 

E { W ( f ) ' ,  = 0. E{W(?)W( f  i- T)] = b(T) 

If the system starts at rest at t = 0, determine the variances of y ( t )  and q( t )  for t 2 0. (Modeling 
suggestion: Standard controllable form is convenient.) 

4.10 A random process with power spectral density 

Yx,(0) = A/(a' + w2) 

drives a first order lag, described by 

T(s) = 1/(1 + "is) 
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What is the steady state mean squared value of y(t),  the output of the lag? Note that an expression 
of the form 

can be evaluated by the Cauchy residue theorem as 

E{yZ} = {residues of YJs) in left half plane] 

The result of such calculations is often tabulated in control texts and handbooks. 

work transfer function is 
4.11 A lead-lag network is driven by a scalar white Gaussian noise process w ( . ; ) .  The net- 

x(s)/w(s) = (S + u) / (s  + b)  

Statistics of the input w ( . ; )  are 

E { w ( t ) )  = 0, E{w(t)w(t  + T ) ]  = 6 ( r )  

All initial conditions are zero at t = 0. Find the nonstationary autocorrelation function for the 
output x(.;), E ( x ( f , ) x ( t , ) )  for all t, and t,, 0 I f, 5 r 2 .  Note that 

for A( .) a general time function, and the t ,  in the argument of the delta function equal to the lower 
limit of integration. 

4.12 Given the stochastic cector differential equation 

d x ( t )  = x ( t ) d t  + dp(t) 

with the initial conditions 

and where p( .;) is a vector Brownian motion with 

E{B(t) )  = 0, E{[P( t )  - P(t’)l[B(t) - B(r’)lTi = Qlt  - t‘l 

Determine E{x( t , )x’ ( t , ) }  for to  < t ,  < t,. 
4.13 Consider the discrete-time process x(.;) defined by 

x ( i  + 1) = [(i + I)/(i + 2)]x(i) 

with x(0) a Gaussian random variable with mean Ro and variance Po.  Determine the mean and 
mean square functions, and variance and correlation kernels for the process. Repeat this for 

x ( i  + 1) = [ ( i  + 1)/(i + 2 ) ] x ( i )  + wd(i) 

where wd(i )  is zero-mean white Gaussian noise of strength Qd for all i. 

A stationary process x(.;) with zero mean and autocorrelation e-’lr’ is applied at t = 0 
to a linear system with impulse response h(t)  = c ~ - @ ‘ U ( i ) ,  where U ( t )  is the unit step. Find the auto- 
correlation P,,(tl, tz) of the resulting output y(.;). 

Also generate the mean squared value of y ( t )  for all t. Use both spectral analysis and state 
space analysis (generating x(.;) as the output of a shaping filter) to solve this problem. 

4.14 
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4.15 Now suppose that the process x(,;) of the previous problem is applied instead to an 
integrator starting at rest at t = 0. Show that the variance of the output of the integrator is 

P y y ( t )  = (2/cr’)(rt - I + FI’) 

and thus never converges to a stationary process as t + X I .  

Einstein in 1905 gave a solution to the Brownian motion problem. He assumed the 
visible particles were large compared to the mean free path of the molecules of the fluid, so that 
the equations of motion of a visible particle would be well approximated by 

4.16 

x ( t )  = v ( t ) ,  m+(r) = -cv(t) + f ( t )  

where x ( r )  = position of parficle, v ( t )  = velocity of particle, rn = mass of particle, c = Stokes’s 
viscous force coefficient (constant), and f ( r )  = random force due to collision with molecules. The 
mean time between collisions is very short and f(c) is well approximated by Gaussian white noise, 
with 

E j f ( r ) i  = 0. Ejf(r)f(t + T ) ]  = q b ( ~ ) ,  q = const 

Assuming that 

E { x ( O ) )  = E(v(0) )  = E{x(O)’) = E { v ( ~ ) ’ }  = E{x(O)v(O))  = 0 

determine expressions for MDCLIFFE 

E { v ( r ) ’ ] ,  E { v ( f ) x ( f ) ) ,  and E { x ( r ) ’ )  

Recall Problem 2.7 concerning a single-axis stable platform system. It is desired to 
determine the response of this system to a random gyro drift driving function. Gyro drift is 
usually modeled as having a random component plus components that depend both linearly and 
quadratically on the acceleration of the instrument. In this problem we model only the random 
component. The random drift rate can be modeled in different ways, but for this problem, to 
simplify the analysis, let the gyro drift rate be an unbiased Gaussian white noise with 

4.17 

E(w,,,dr)j = 0, E ( ~ d , i r , ( t ) ~ d , i f , ( t  + T)) = N ~ ( T )  

Assume that the interfering torque can be modeled as a white Gaussian noise with 

E{Min,f(t) j  = 0, E{Mim,f(f)Min,f(t  + T ) ;  = M ~ ( T )  

For this problem let F , ( p )  = 1. 
Determine the expression for E { w i ( r ) )  as a function of time, assuming M and N to be constant. 
4.18 Consider a pendulum of length 1 with a bob of mass rn as shown in Fig. 4.P4. Horizontal 

winds perturb the pendulum from its equilibrium position, and the perturbing force is propor- 
tional to the ue1atioe wind velocity on the bob, with proportionality constant a: 

(perturbing force) = a .  (relative wind) 

The wind velocity is a white noise process with statistics 

E { W ( t ) }  = 0, E{w(t )w( t  + T)]  = hb(T)  

Develop the linearized state variable stochastic differential equations for the system: for sufficiently 
small angles 0, write nil: = sum of forces, or equivalently, mP0 = sum of torques. 

Obtain the differential equations for the elements of the appropriate covariance matrix. Deter- 
mine an expression for the variance of the bob displacement, x ( t ) ,  when the system has reached 
stationary operation. 
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Wind velocity w 
__t 

Local vertical / I  t 
n'Y 

bob 

FIG. 4.P4 

4.19 Given the sralar stochastic differential equation 

d x ( r )  = [ x ( t ) / r ]  d t  + dp(t),  f > 0 

where 

E ( X ( f , ) }  = 0, E{X(1,)2) = a, to  > 0 

E ( P ( t ) J  = 0, E{"f) - p(r')]*j = Y j t  - t'J 

and where p(.;) is Brownian motion with 

Determine the variance of x ( r )  for 0 < t o  < t 
If y ( t )  is defined for all t as 

Y ( t )  = $ x ( t )  

what is E { y ( t Z ) y ( t l ) j  for 0 < t ,  I t, I t,? 

4.20 Consider the scalar process x ( . ,  .) defined on [ t o ,  tf] by 

dx l t )  = - ( l / T ) x ( r ) d t  + dp(t) 

where p(.:) is Brownian motion of constant diffusion parameter Q, and ~ ( t , )  is a Gaussian ran- 
dom variable independent of P(.;), with mean &, and variance Po.  What must be true of 2,,, 
Po, and Q for the x ( . ; )  process to be wide-sense stationary over the interval [ to , r t ]?  Strict-sense 
stationary? 

4.21 Without assuming a priori that Q = 1, derive the appropriate Q value for the 
strength of the white Gaussian noise to drive a second order shaping filter, (4-158b) or (4-158c), 
so as to generate a second order Markov process with autocorrelation as in (4-158a) with q = 0. 
Generate expressions f0r.Q in terms of parameters d, [, and on, and show that reduction yields 
Q = 1. Obtain the result in both the time and frequency domains. Note that q = 0 i%h2 - d u ~ ) , ~  = 
(0 or Nrr, N = integer), which specifies the location of the zero of C(s) in (4-158b). 

(b) Show that q shifts the zeros of Y J T )  depicted in the bottom plot of Fig. 4.22: that the first 
zero occurs at T = (0.5s + q)/od and successive zeros are spaced a distance of AT = n/wd apart, 
where wd = m u , .  Show that the slope d'PrX(~)/d7 at T = 0' is given by a2(w, tan q - iwn). 

Thus, given an empirical autocorrelation function, the parameters required in (4-158b.c) can 
be established as follows. First o2 = YAX(O). Then wd and q are set by the first two zeros of Y&). 
The slope at T = O f  is used to obtain [ [w"] = wd tanq - [dY,,(0')/d~]/~?. Then [ is found by 
solving [/Jm = [[w,]/w,. Finally, a, a, b, and c are computed as given after Eq. (4-1%). 

Design the shaping filter to generate a random process having the power spectral density 

(a) 

4.22 

YX&) = a(w2 + b2)/(w4 + 4c4) 
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from a white noise with autocorrelation E { w ( t ) w ( r  + T ) ;  = Q ~ ( T ) .  Using the state model of the 
filter, calculate the mean squared value of x(t) for t E [O, a), assuming that the filter starts from 
rest at r = 0. 

4.23 The shaping filter depicted in Fig. 4.P5 is meant to generate a stationary output process 
x1(.;) in steady state operation. Show that, if w(.;) is zero-mean white Gaussian noise of strength 
Q. then in steady state, 

E { x I Z ( d )  -, Q/[4iwn31, E{Xz2( t ) }  -, Q/[4b,l  

If this is an adequate system model, is E { x z 2 ( r ) )  finite or not? 

FIG. 4.P5 

4.24 Design the shaping filter to generate a signal with an autocorrelation function of 

E(x(t)x(t  + T)] = K[ll/a)e-"'" - (l/b)e-bl'l] 

from an input of white noise with power spectral density value of Yo. 
4.25 An autocorrelation function curve-fitted to certain empirical data is of the form 

E{X(f)X(t  + T ) )  = b z [ C 1  f CZe-IrI'T f C3COSWT] 

where the positive constants e l ,  c ~ ,  c j ,  oZ, T, and cu are obtained through the curve-fitting process. 
Generate the state model for a shaping filter that would produce such an output process. 

4.26 Two proposed models for a shaping filter to generate a process x(.;) with a specified 
autocorrelation function are as depicted in Fig. 4.P6, where w1(.;) and w,( .;) are white Gaussian 
noises of zero mean and variance kernels 

E{Wl(L)W,(f + T ) )  = 41 6 ( T ) ,  E{Wz(f)Wz(f  + 7); = qz 6(T) 

If these are to provide identical x process statistics in steady state operation, what is the relation- 
ship required between q1 and q2? If x(.;) is to have zero mean and mean squared value K in 
steady state, what values of q1 and qz are required? 

l-m-' 
FIG. 4.P6 
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In terms of either 41 or q 2 .  what is the autocorrelation function for the process x ( . ; )  in steady 
state? 

4.27 It can be shown that a zero-mean Gaussian process with power spectral density of 
{Qo + 2bu2/(w2 + b2) :  can be generated by summing the output of a first order lag l/(s + b) driven 
by zero-mean white Gaussian noise of strength (2bu2) with a second, independent, zero-mean 
white Gaussian noise of strength Q,. Can the process also be-generated as the output of a lead- 
lag (s + a)/(s + b)  driven by a single zero-mean white Gaussian noise? If so, what are the strength 
of the noise and the value of the parameter a'? 

FIG. 4.Pl 

4.28 Let a linear model of vertical motion of an aircraft and barometric altimeter output be 
as depicted in Fig. 4.P7. Vertical acceleration is integrated twice to obtain altitude, and then the 
altitude indicated by the barometric altimeter, &, is the output of a first order lag (because of the 
inherent lag in the device). Derive the state equations appropriate to this system. Now let the ver- 
tical acceleration be modeled as a wideband (approximated as white) Gaussian noise of strength 
4,. with an additional time-correlated component whose autocorrelation function can be ap- 
proximated as 

E{x(t)x(t  + T ) )  = pexp(-iw,lr/)cos[w.(l - i2)1'21~l] 

Let the altimeter output be corrupted by 
( I )  a bias modeled as a process with constant samples, whose values can be described at any 

time t through a Gaussian random variable with mean zero and variance b2, 
(2) a widehand (approximated as white) Gaussian noise of strength R,, 
(3) an additional low frequency noise component, modeled as exponentially time-correlated 

Assume all noises have zero mean. 
Derive the state equations and output equation appropriate for the augmented system 

description. 

4.29 A first order linear system is driven by white Gaussian noise. The statistics of the out- 
put x(.;) are, for t t 0.2 sec, 

noise whose mean square value is S and whose correlation time is T. 

E { x ( t ) )  = 0, E { x 2 ( t ) )  = 1 + ecos' ( 5 t  - 1) 

and the statistics of the input w ( . ; )  are 

E { w ( t ) )  = 0, E{w(t)w(t  + T ) )  = [5ecus'  + sin11 b ( ~ )  

Find the differential equation describing the system. 



C H A P T E R  5 
Optimal filtering 

with linear system models 

5.1 INTRODUCTION 

The previous chapters addressed the stochastic modeling problem : how do 
you develop system models that account for uncertainties in a proper, yet 
practical, fashion? Chapter four in particular developed practical dynamic 
system models in the form of linear stochastic differential or difference state 
equations, with associated linear output equations. Now we can exploit this 
background to solve a class of optimal estimation problems: equipped with such 
linear models and incomplete, noise-corrupted data from available sensors, how 
do you optimally estimate the quantities of interest to you? 

Section 5.2 will formulate the problem in detail, and 5.3 will then derive the 
discrete-time (sampled data) optimal estimator for that problem formulation, 
the Kalman filter [35] .  Section 5.4 investigates the characteristics of the pro- 
cesses within the filter structure, both to define algorithm behavior and to allow 
systematic event (failure) detection and adaptation. Section 5.5 delineates 
criteria other than that used in the derivation, with respect to which the algo- 
rithm is also optimal. Computational aspects and alternate but equivalent forms 
of the filter are considered in Sections 5.6 and 5.7, and stability in Section 5.8. In 
Sections 5.9 and 5.10 the problem formulation is extended and the resulting 
algorithms described. Finally, estimation for the case of continuously available 
measurement data and the relation of these results to Wiener filtering are 
explored in Sections 5.1 1 and 5.12. 

5.2 PROBLEM FORMULATION 

Assume that modeling techniques have produced an adequate system descrip- 
tion in the form of a linear stochastic differential equation to describe the state 
propagation, with discrete-time noise-corrupted linear measurements available 

203 
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as the system outputs. Let the state process x(.;) of the system model satisfy 
the linear equation 

dx(t) = F(t )x ( t )d t  + B(t)u(t)dt  + G(t)dS(t) (5-la) 

or, in the less rigorous white noise notation, 

X(t) = F(t)x( t )  + B(t)u(t) + G(t)w(l) (5-lb) 

where x( .;) is an n-vector state process, one sample of which would generate a 
state time history: x ( t , o i )  = x(t) would be the system state at time t ;  u( . )  is an 
r-vector of piecewise continuous deterministic control input functions (more 
general input functions are possible, but piecewise continuous is adequate for 
our purposes); F(.)  is an n-by-n system dynamics matrix (of piecewise con- 
tinuous functions in its general form); B( . )  is an n-by-r deterministic input 
matrix; and G ( . )  is an n-by-s noise input matrix. If (5-la) is used, then S(.;) is 
s-vector Brownian motion with statistics (for all f ,  t' E T,  t 2 f): 

E{P(t)) = 0 

E{IS(t) - P(t')ICP(t) - Blt')lTI = JIQ(r)dr 

with Q(.)  an s-by-s matrix of piecewise continuous functions (most generally) 
such that Q(t) is symmetric and positive semidefinite for all t E T. On the other 
hand, if (5-lb) is used, then w( ., . )  is s-vector white Gaussian noise with statistics 

(5-2a) 

E{w(t)} = 0 

E(w(t)w(t')T} = Q ( t ) 6 ( t  - t ' )  
(5-2b) 

with the same description ofQ(.) as just given. 
The state differential equation (5-1) is propagated forward from the initial 

condition x( to) .  For any particular operation of the real system, the initial state 
assumes a specific value x(t,). However, because this value may not be known 
precisely a priori, it will be modeled as a random vector that is normally dis- 
tributed. Thus, the description of x( to)  is completely specified by the mean 
S o  and covariance Po: 

E { x ( t o ) )  = S o  (5-3a) 

E { [ x ( t o )  - ~ o l " t 0 )  - So]'} = Po (5-3b) 

where Po is an n-by-n matrix that is symmetric and positive semidefinite. 
Allowing Po to be positive semidefinite, instead of requiring positive definite- 
ness, admits the case of singular Po: the case in which some initial states or 
some linear combinations of initial states are known precisely. 

Measurements are available at discrete time points, t l , t 2 ,  . . . t i , .  , . (often, 
but not necessarily, equally spaced in time), and are modeled by the relation 
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(for all ti E T ) :  

Z(ti) = H ( t i ) x ( t i )  + v(ti) (5-4) 

where z( ., . )  is an ni-vector discrete-time measurement process, one sample of 
which provides a particular measurement time history.: z(ti,ruj) = zi would be 
the measurement numbers that become available at time t i ;  H ( . )  is an m-by-n 
measurement matrix; x ( . ; )  is the state vector process: x ( t , ; )  is a random vector 
corresponding to the state vector process at the particular time t i ;  and v( . ; )  
is an rn-vector discrete-time white Gaussian noise with statistics (for all ti, 
t j e  T ) :  

E{v( t i ) )  = 0 (5-5a) 

R(ti) ti = t j  

ti # tj 
E{v(ti)vT(tj))  = (5-5b) 

In this description, R(tJ  is an m-by-in, symmetric, positive definite matrix for all 
t i  E T.  Positive definiteness of R(ti)  implies that all components of the measure- 
ment vector are corrupted by noise, and there is no linear combination of these 
components that would be noise-free. The measurements modeled as in (5-4) 
are all that we have available from the real system under consideration. 

It is further assumed that x(t , ) ,  p(.;) or w(.;), and v ( . ; )  are independent 
of each other. Since all are assumed Gaussian, this is equivalent to assuming that 
they are uncorrelated with each other. 

It is desired to combine the measurement data taken from the actual system 
with the information provided by the system model and statistical description 
of uncertainties, in order to obtain an “optimal” estimate of the system state. In 
general, the “optimality” of the estimate depends upon what performance 
criterion is chosen. We will adopt the Bayesian point of view and seek the means 
of propagating the conditional probability density of the state, conditioned on 
the entire history of measurements taken [50]. Once this is accomplished, then 
the “optimal estimate” can be defined, but attention will be focused on the 
entire conditionul density itself, as it embodies considerably more information 
in general than any single estimate value. Under the assumptions of this problem 
formulation, the conditional density will be shown to remain Gaussian at all 
times, and therefore the mean, mode, median, and essentially any logical choice 
of estimate based upon the conditional density will all converge upon the same 
estimate value. 

The problem formulation just described is not the most general possible. 
The case of R(ti) being positive semidefinite instead of positive definite, or even 
null in the extreme case, can be considered and will warrant subsequent atten- 
tion. Furthermore, the assumed independence (uncorrelatedness) of the dynamic 
driving noise and the measurement noise may not provide an adequate model in 
some applications. For instance, in applications of optimal estimators to aircraft 
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navigation systems, commonly used models embody INS (inertial navigation 
system) noise sources in the dynamic driving noise and onboard radar un- 
certainties in the measurement noise: since the aircraft’s own vibration affects 
both of those systems, there is in fact some degree of correlation among the 
noise sources. Admitting such correlations into the problem formulation is also 
possible, though again the derivation is more complicated. The given problem 
statement will serve as the basis for the derivation in the next section. Sub- 
sequently, extensions to the problem formulation and resulting solutions will be 
considered. 

Before the estimator is derived, it will be convenient to introduce a new 
notational representation. Define a composite vector which comprises the entire 
measurement history to the current time, and denote it as Z(t,), where 

This is a vector of growing dimension: at time ti, it is a vector random variable 
of dimension ( i  . m) that models the information of the entire measurement 
history. Its realized value, analogous to z ( t i ,w j )  = z i ,  is Z i ,  where 

This is then the history of actual measurement values obtained in a single 
experiment (trial). Finally, the dummy variable associated with Z(t,), correspond- 
ing to ci being associated with z(t,), will be denoted as Ti .  

5.3 THE DISCRETE-TIME (SAMPLED DATA) 
OPTIMAL ESTIMATOR: THE KALMAN FILTER 

We are going to consider two measurement times, t i - l  and ti, and will 
propagate optimal estimates from the point just after the measurement at time 
ti- has been incorporated into the estimate, to the point just after the measure- 
ment at time ti is incorporated. This is depicted in Fig. 5.1 as propagating from 
time ti+- to time ti +. 

Suppose we are at time ti- and have just taken and processed the measure- 
ment z( t i -  w j )  = zi- 1. From a Bayesian point of view, we are really interested 
in the probability density for x ( t i -  conditioned on the entire measurement 
history to that time, f x c t ,  ~ ,)lz(t, Z i -  l )r  and how this density can be propa- 
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( 4 (b) 

FIG. 5.1 Estimate propagation. (a) Measurement z(ti- l , w j )  = z i - ,  becomes available. 
(b) Measurement z(ti, wj) = zi becomes available. 

gated forward through the next measurement time to generate fxcti,lz(r,,({ I Zi). 
Once the densities are described explicitly, the optimal estimate of the state 
at time ti can be determined. 

To start the derivation, we will assume that fx(?+ l ) I Z ( t i -  J</ Zi-  1) is a Gaussian 
conditional density: 

(5-8) 
Act,- l ) l ~ ( t i -  i)({lZi- 1) = [(2EY'*IP(t:- ~ 1 ~ ' ~ ] - ~  exp{.) 

{,> = { -$[< - ji(r:-l)]rP-l(t:-l)[{ - n(t,'_,)]} 

and P(t:- ,) to be the conditional mean and conditional where we dejne ji(t:- 
covariance, respectively : 

5i(tL1) 6 E { x ( t i ~ l ) ~ z ( f i ~ l )  = zi-l; (5-9) 

P(~:-~)G E{[x(tiPl) - ji(t:-l)][~(ri-l) - 5i(r:-l)]T]~(ti-l) = z ~ - ~ ,  ' (5-10) 

We will be able to verify this assumption, and in fact this can be visualized as an 
inductive proof type of derivation, since fx(to)lZ(to)(tj is actually {) [because 
the first measurement is at time t , ,  so Z(t,) is no measurement information at 
all], and fxct0,({) is assumed to be a Gaussian density. The following derivation 
considers the case from time ti- to time t i ,  and combining this with the (essen- 
tially duplicate) results from to to t ,  would complete an inductive proof. 

Furthermore, in the process of deriving the estimator algorithm, we will be 
able to verify that the conditional covariance defined in (5-10) equals the un- 
conditional covariance. In other words, the covariance recursion is not depen- 
dent upon the actual values of the measurements taken, and thus can be 
computed without knowledge of the realized measurement values Z,. For this 
reason, we will be able to precompute the time history of the covariance of the 
errors committed by using i i(t i+) as the optimal estimate of the state at time ti  
[recall the discussion in Chapter 3 :  i ( t i+; )  would be defined as E{x(ti)IZ(ti) = 
Z ( t i ,  .)>I. This will be of considerable practical significance, and will be exploited 
in both this chapter and the next. 

Recall Fig. 5.1 : we want to propagate the conditional density and associated 
estimate from time ti'- 1, just after incorporating the measurement z(ti- oj) = 
z , - ~ ,  to time ti+, just after incorporating zi. Let us decompose this into two 
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steps: ( I )  a time propagation from tT- to t i - ,  at time ri just before the measure- 
ment zi is incorporated, and (2) a measurement update from t i-  to t i + .  To make 
this derivation algebraically simpler, we will at first neglect the deterministic 
control inputs in (5-1). Later these will be incorporated by modifying only the 
mean equations of the algorithm: under our assumptions, these known inputs 
have no effect on the spread of density functions, only on their location. 

First consider the rime propagation from ti'- to ti-. From the Bayesian point 
of view, we want to establish the conditional density of the state at time t i ,  
conditioned on the measurement history up through the previous sample time 
t i -  1: . f x ( t , ) l ~ ( r , -  L)(CIZi- l). Conceptually, we will first prove that this density is 
Gaussian under the assumptions of Section 5.2, and then it will be characterized 
completely by explicitly evaluating its mean and covariance. 

By our model, x ( t i )  can be written as 

x ( r i )  = @(t i ,  ti- l)x(ri-l)  + wd(ri-J (5-11) 

where, in the context of equivalent discrete-time models, 

Because wd(ti- 1) is independent of x ( t i -  and Z ( t i -  1), the numerator in this 
expression can be decomposed and the result recombined by another applica- 
tion of Bayes' rule to obtain 

The density .fxct,- I ) I Z ( t , -  l ) ( C 1 3 i -  1) has been assumed to be Gaussian in this 
induction, and,fWd,,< l)(p) is Gaussian according to our dynamics model, so their 
product is also Gaussian. Thus, conditioned on Z ( t i -  x ( t i -  1) and W d ( f i -  1) are 
jointly Gaussian, and so ,fx(t,)lZ(t,- J<1Ti- 1) is in fact a Gaussian conditional 
density. 

To specify the density completely, its mean and covariance will now be 
computed. The conditional mean is found by invoking the linearity of the con- 
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ditional expectation operator and the nonrandomness of @(t i ,  t i-  1 )  to write 

E { x ( t i ) ( Z ( t i - , )  = Zi-l]  = E ( @ ( t i , t i - l ) x ( t i - l ) +  ~ d ( f ; - 1 ) I Z ( f ~ - l ) =  Zi-1; 
= @ ( r i , r i . ~ l ) E ~ x ( r i ~ l ) ~ Z ( r i ~ , )  = Z i - l ]  

+ E.(w,(ti- )Iz(ti- 1 )  = z,-., j 

But w,(ti- 1 )  is independent of Z ( t i -  ,), so its conditional mean equals its un- 
conditional mean, which was assumed to be zero, so 

E j x ( f i ) l Z ( t i - , )  = Z i - ] ]  = @(ti,ti-,)E{x(ti-,)~Z(ti-l) = Zi- l ]  (5-13) 

Now let ?(t i - )  denote the conditional mean of x ( t i )  before the measurement 
z ( f i )  = zi is taken and processed, i.e., 

% ( t i - )  E { x ( t , ) ( Z ( t , - , )  = Z i - ] )  (5-14) 

In terms of this notation and that of (5-9), the conditional mean time propaga- 
tion relation can be written as 

j z ( t i - )  = @(t i ,  ti- ,)jz(t;-,) (5-15) 

Similarly, if we define P(ti-) to be the conditional covariance of x ( t i )  before the 
measurement z ( t i )  = zi is taken and processed, 

p( t i - )  E { [ x ( t i )  - a ( t i - ) j [ x ( r i )  - %(ri-)]Tlz(ti-l) = zi-,) (5-16) 

then the conditional covariance propagates in time as 

p( t i - )  = ~ ( t i , t i - , ) ~ ( t i t _ , ) @ T ( t i , t i - l )  

(5-17) 

If s(t,-) is used as the estimate of x(t,) before zi is processed, then [ x ( t i )  - %(t i - ) ]  
is the error committed by the estimator %(ti - ) for the particular measurement 
history realization Z ( t i -  1) = Zi-  Consequently P(ri-) is the conditional co- 
variance not only of the state, but also of the error committed by using the 
conditional mean as an estimator of the state (this error will be shown to be 
zero-mean). The density function we have been seeking can now be written 
explicitly as 

L ( t , )  IZ(r, - 1 Zi- 1) = [(2nP2 1 p(ti-)l 1’2] - ~ X P { .  ) 
(5-18) { . I  = {-+[{ - j z ( t i - ) ITP- l ( r i - ) [< - % ( t i - ) ] )  

where %(t i - )  and P(ti-) are given by (5-15) and (5-17), respectively. 
Now we want to consider incorporating the measurement that becomes 

available at time t i ,  z(ti,toj) = zi, so as to generate the density , & , ) l z ~ ~ z ) ( < ~ Z i ) .  
Repeated application of Bayes’ rule will allow us to write this density in terms 
of three other densities, each of which can be evaluated rather easily. It is such 
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a desirable result that motivates and guides the particular usage of Bayes’ rule 
that follows. For convenience and compactness, the arguments of the density 
functions will be omitted. Bayes’ rule and the definition of z(tJ as the com- 
posite of Z ( t i -  1) and z(t i)  yield 

- fx(t,), w;).  ~ ( t ,  - 1) 

f r ( t ; , .  Z ( t i -  1)  

- 

- - . L ( t ~ x ( t , ) ,  z(r,- , ) f x ( t , ) .  Z ( t , -  1 )  

. L ) , Z ( t , -  , ) . f Z ( t ; -  1) 

4. 
- - f & t , ) l x ( t ; ) ,  ~ ( t ,  - l j . lx(r , ) /z( t ; -  l ) f i t , -  1)  

f i( t ,) lz(t ,  - , ) . f Z ( t i -  1)  

Canceling like terms yields the final result, 

. f x ( t , ) l ~ ( t ~ )  = .L(t ,) lx(rt) .   ti - l).fx(t,)lZ(t; - 1) (5-19) 
frut)lz(t2- 

The task at hand is to evaluate each density on the right hand side of (5-19), 
seeking eventually to show that ,fx(ti)lz(ti)(g I 3,) is Gaussian and to display it 
explicitly. 

The second numerator term has already been established, and is given by 
(5-18), so let us consider the other numerator term, 

According to our system model, the measurement z(ti) is given by 

z(tJ = H(t,)x(r,) + v(tJ (5-20) 

We desire the density function for the random variable z(t , ) ,  conditioned not 
only upon knowledge of the previous measurement history but also upon the 
fact that we know x(ti) has assumed the realization g. That fact fixes the random 
variable H(t,)x(t,) at the single known value of H(t,)g, with no uncertainty. 
Moreover, v(t,) is independent ofx(t,) and Z ( t i -  1), and is assumed Gaussian with 
mean zero and covariance matrix R(ti) .  Conditioned on x(ti) = g and Z ( t i -  1) = 

220,- z ( t i )  is a linear combination of a known vector and a Gaussian random 
vector, so fi(t,)lx(t,). Z( t ,  JCi I g, 3,- 1) is a Gaussian density, completely specified 
by its mean and covariance. The mean is given by 

E{z(t,)lx(t,) = g, Z(t , - l )  = 2Z- l )  = H(t,)E{x(ti)lx(ti) = g, z(ti-l) = Si-,) 
+ E{v(t,)lx(t,) = <, 2 ( t i p l )  = 3i-1) 

= H(ti)C (5-21) 
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The covariance matrix is : 

E{[z( t i )  - H(ti)g][z(ti) - H(ti){lTIx(ti) = c, Z(ti-1) = 9 i - 1 )  = R(tj) (5-22) 

Thus, we can write 

.&t,)~x(t,), ~ ( t ~ - 1 ) ( C i I < >  z i - 1 )  == [(2x)mi21R(ti)11i2]-1 ~ X P { . )  

{ . )  = { -4[Ci - H(ti)SITR-’(ti)[Ci - H(ti)g]> (5-23) 

Having evaluated the numerator terms in (5-19), we now consider the de- 
nominator, &t, ) lz ( t ,  , )(Cil2Y- l). The measurement z ( t i )  is again described as in 
(5-20), but now we are conditioning only on knowledge of the previous time 
history of measurements. First we want to show that fz(t,)lz(,q- l,(Ci[2T- is 
Gaussian. Since z ( t , )  is a linear combination of x(ti) and v(ti), we will be able to 
achieve this objective if we can show that, conditioned on Z ( t i - ] ) ,  x ( t i )  and 
v(ti) are jointly Gaussian. Bayes’ rule yields: 

f x ( t i ) . v ( ~ , ) l z ( t i ~ ~ ) ( g , a l ~ i - 1 )  = f v ( l , ) l x ( t i ) . z ( t i _ , ) ( a I g ,  g i - 1 )  

. f x ( t ; ) l Z ( t i -  l)(C]zi- 1) 

But v(ti) is independent of x(ti) and Z(ti-  I)r so this becomes 

f x ( t i ) , v ( t , ) l Z ( t i ~ , , ( g , ? I 2 T i -  1) = . fv ( t , )Ol ) fx ( t i ) lZ ( t j -  , ) ( t l s i - 1 )  

The two separate densities on the right hand side of this expression are each 
Gaussian, so their product is Gaussian, and thus , f i ( t i ) lZ(t ,  ,)(&I 2Ti- is itself 
Gaussian. The mean is calculated as: 

E{z(ti)/2(ri-J = Z i - ] >  = H(ti)E(x(ti)lZ(ti-l) = 9i-l] 

’ + E{V(ti)IZ(ti-,) = 

= H(ti)si(ti-) (5-24) 

The covariance is computed as 

E([z( t i )  - H(ti)si(ti-)][~(ti) - H(ti)si(ti-)]TIZ(ti- = 3 j - 1 ; .  

= E([H(ti)x(ti) - H(ti)%(ti-) +  ti)] 
. [H(ti)x(ti) - H(ti)%(ti-) + ~ ( t ~ ) ] ~ I z ( t ~ - ~ )  = 2 T - ,  j 

= H(ti)P(ii-}HT(ti) + R(ti) (5-25) 

Since j&t,),z(ti- J C i  ISi- 1) is a Gaussian density, we can now write: 

.L(t2)/z(tt-,)(Cil3i- 1) = [(2xn)m’21H(ti)P(ti-)HT(ti) + R(tj)l”2]-1 exp{.) 

{ . }  = { -$[Ci - H(ti)%(ti-)ITIH(ti)P(ti-)HT(ti) + R(ti)]- ‘ [ C i  - H(ti)%(ti-)]} 

(5-26) 

At this point, we have written (5-19) to generate a measurement update 
expression for evaluating fxct,,rzct,,(g 1 Si), and we have depicted each of the 
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FIG. 5.2 Evaluation of densities for use in Bayes' rule. (a)  Variance = P ( t i - ) .  (b) Variance = 

R(ti). (c) Variance = H(t i )P( t i - )H( t i )  + R(ti). 

separate Gaussian densities explicitly. This is portrayed graphically in Fig. 5.2. 
Substituting (5-18), (5-23), and (5-26) into (5-19) yields 

It is not immediately evident that (5-27) is in fact of Gaussian form: the three 
separate determinant terms would have to be equivalent to a single determinant 
square root in the denominator of the leading coefficient, and the sum of the 
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three quadratics in the exponential would have to be equivalent to a single 
quadratic form. We will demonstrate the quadratic form equivalency, and the 
manipulation of determinants is left to Problem 5.4 at the end of the chapter. 

To achieve the desired result, we will require use of "the matrix inversion 
lemma," valid for positive definite P and R :  

[P-' + HTR-'H]-' = P - PHT[HPHT + R]-'HP (5-28) 

This lemma is important enough to warrant proving; one such proof is outlined 
in Problem 5.2. It is of,special interest to us because the left hand side involves 
inversion of n-by-n matrices, whereas the right hand side requires m-by-m matrix 
inversion: in most problems ofinterest, m will be significantly less than n. A more 
general lemma, admitting positive semidefinite P, can be proven to yield 

[I + PHTR-'H]-'P = P - PHT[HPHT + R]-'HP (5-28') 

but we will not need this generality here. In fact, in the ensuing proof, we will 
assume P(ti-) to be positive definite and at the end of the development we will 
return to establish under what conditions the assumption is valid. Once (5-28) 
is proven, it is straightforward to generate two other useful matrix identities 
(see Problem 5.3) as well: 

[P-' + HTR-'H]-'HTR-' = PHT[HPHT + R] - (5-29) 

H[P-l + HTR-'H]-lHT = R - R[HPHT + R]-'R (5-30) 

What follows is somewhat difficult to motivate, in much the same way as 
scalar completion of squares is, except by keeping the overall objective firmly 
in mind: to generate a single quadratic form from the sum of three quadratics 
in (5-27). Through expanding, exploiting algebraic identities, and regrouping, 
we seek to combine all terms into a single quadratic. To make the algebra 
more tractable, we will omit the time notation, and denote 2(ti-) and P(ti-) 
by j i -  and P-, respectively. 

REDUCTION TO A SINGLE QUADRATIC FORM First expand the terms denoted by 
(.) in (5-27) to  get the sum of 12 terms, which can be combined conveniently as (recalling that the 
transpose of a scalar is jusi the scalar itsel0 

( . )  = Cr[p- - 1  + HTR-lH]C - ?<'[p- - I ^ -  x + N'R-'[;] 

+ (:[R-' - (HP-H' + R)-1]Ci + 29-THT[HP-HT + R]-'[; 

+ 9-'[P- - '  - HT(HP-HT + R)-'H]B- 

Consider the third term. The matrix which appears in it can be obtained by premultiplying and 
postmultiplying (5-30) by R - '  (which exists since R is positive definite): 

R-lH[p- - 1  + HTR-lH]-lR-I = R-IRR-'  ~ R-'R[HP-HT + R1-lRR-l  

= R - '  - [HP-HT + R]-' 
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so that the third term can be rewritten as 

{ +  {?R-'H[P- + HTR-'H]-lHTR-l[ij 

Now the objective is to operate on the fourth and fifth terms so as to  express them in terms of a 
quadratic form as xIT[P- -' + HTR-'H]-'x,, with xI and x2 some IL-vectors, so that subsequent 
combination of terms will be possible. 

Now consider the fourth term. If (5-29) is premultiplied by P-  - '  (which exists since P -  is 
assumed positive definite), we get 

p- - I  [p- - 1  + HTR-LH]-~HTR-I = p- -1P-HT (HP-HT + R]- '  

= HT[HP-HT + R]-' 

Thus, the fourth term can be rewritten as  

t i )  ( +  2f-Tp- -l[p- - 1  + HTR-1HI-IHTR-I 

Finally, look at the fifth term. If (5-28) is premultiplied and postmultiplied by P-  - I ,  we get 

p- - I  [p- - 1  + ~ T ~ - l H l - l p -  - 1  = p- -1p-p- - 1  - p- -1p-HT [HP-HT + R1-IHP-P- 

- - p- - 1  - HT[HP-HT + R]-'H 

Thus the fifth term can be put into the form 

{ + g - T p - - l [ p -  - 1  +HTR- lH] - lp - - lg - j  

Now the third, fourth, and fifth terms in the original expansion can be combined so as to write 
the expansion equivalently as  

( . )=cT[p-  - ' + H T R - ~  HI{ - 2CT[P- + HTR-'{i] 

+ [c?R-'H + 9-TP-1][P-' + HTR-'H]-'[HTR-'[, + P-lR-1 

To simplify the remaining algebra, define the n-vector a and the n-by-n matrix A as 

a 2 [p- + HTR-'ii] A e [p- + HTR-'H] 

In terms of this notation, the expansion becomes 

(.) = CTAT - 2CTa + aTA-'a 

Again motivated by the desired to  achieve a single quadratic form, we can write this equivalently as 

(.) = CTAC - 2CTAA-'a + aTA- 'AA- 'a  

= (C - A-la)TA(C - A-'a )  

This is the single quadratic form we have been seeking. W 

Combined with a similar development for the determinant terms, the preced- 
ing reduction has shown that the conditional probability density fx ( t , ) lZ ( t , ) (c  I Zi) 
is indeed a Gaussian density, with mean (A- 'a) and covariance A-' .  Consistent 
with the previous definition of %(tit-,), the mean of this conditional density 
is denoted as %(ti+): 

?(ti') 4 E ( x ( t i ) ( Z ( t i )  = Zi) = A-'a 

= [P(ti-)-' + HT(ti)R-'(ti)H(ti)]-'[P(ri-)-'%(fi-) + HT(ti)R- ' ( t i ) z i ]  

(5-31) 
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Similarly, the covariance is denoted as P(ti'): 

P(ti') E {   ti) - %(ti')]  ti) - % ( t i + ) ] ' I Z ( t i )  = Zi} = A-  ' 
= [P(ti-)- + HT(ti)R- '(ti)H(ti)] - ' (5-32) 

In terms of these statistics, the density f x ( t , ) l Z ( t , ) ( {  I Zi) can be written explicitly as: 

+ 112 
fitt)lz(t,)(t I Z i )  = [(2nP2 Ip(ti ) I  1- exp{ . }  

{ . }  = { -$[{ - %(ti+)IT~(t i ' ) - ' [ {  - %(ri+)]} (5-33) 

This is portrayed in Fig. 5.3. As indicated by the notation, the conditional 
mean % ( t i + )  is chosen as the optimal estimate. Not only is it the conditional 
mean, but also the conditional mode : it maximizes the conditional density of 
x ( t i )  conditioned on the entire measurement history (i.e., it is more probable 
to be in the interval between [%(t i ' )  - E] and [ % ( t i + )  + E ]  than any equivalent- 
sized region of {). It is also the conditional median and satisfies essentially 
any criterion of optimality once f x ( t , ) l Z ( t , ) ( {  I Zi) has been established. As men- 
tioned previously, if we do in fact use % ( t i + )  as the optimal estimate, then 
P(ti') is not only the state covariance but also the covariance of the error 
committed by that estimate of the state value. 

FIG. 5.3 Conditional probability density after measurement incorporation. Variance = 

P(ti'). 

Although (5-31) and (5-32) are valid expressions, they involve inversions of 
n-by-12 matrices, where n is the dimension of the state vector. If in, the dimension 
of the measurement vector, is significantly smaller than n (as is often the case), 
then the matrix inversion lemma can yield equivalent but more efficient expres- 
sions that require only m-by-m inversions. Substituting (5-28) and (5-29) into 
(5-31) yields: 

?(ti')=[P- -P-HT(HP-HT+R)-lHP]P- +[P-HT(HP-HT+R)-l]zi 
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Regrouping these terms and applying (5-28) directly to (5-32) yields the measure- 
ment update equations as: 

2( t j ' )  = %(ti-) + P(ti-)HT(ti)[H(ti)P(t,-)HT(ti) + R(ti)]-'[zi - H ( t i ) j i ( t i - ) ]  

(5-34) 

P(ri+) = P(t,-) - P(ti-)HT(ti)[H(ri)P(ti-)HT(ti) + R(t,)]-'H(t,)P(t,-) (5-35) 

Recall that this derivation was based upon the assumption that P( ti - )  was 
positive definite. Let us investigate the conditions under which this is valid. 
First, we will determine if P(t:-l) being positive definite is sufficient to make 
P(ti') positive definite. In (5-17), if P(r:- 1) is assumed positive definite, then 
@(ti ,  t i-  l)P(t2- l)@T(ti, ti- 1) is also positive definite by the properties of state 
transition matrices; the integral term is at worst positive semidefinite, so P(ti-) 
is positive definite if P(t:-l) is. In generating P(ti') from P(ti-) as in (5-35), 
there would seem to be some question about preserving positive definiteness 
because a term is subtracted from P(ti-) to obtain P(ti'). However, if the 
equivalent expression (5-3 1) is considered, this preservation becomes evident. 
Since P(ti-) is assumed positive definite, P(ti-)- ' is also positive definite. 
Added to this is the term HT(ti)R- '(ri)H(ti), which is positive semidefinite 
[since R(ti) is assumed positive definite, R(ti)- '  is positive definite, and so 
HT(t,)R-'(ti)H(ti) is an n-by-n matrix of rank at most m], so their sum P(ti+)- '  
is positive definite, and so is its inverse, P(ti'). 

Thus, we can conclude that once P(ti-) or P(ti') becomes positive definite, 
the covariances will remain positive definite from that time forward (although 
they may asymptotically approach singularity). For that reason, look at the 
initial time interval and determine under what conditions 

p(tl-) = ~ ~ t l , t o ) P o ~ T ( t l , ~ O )  + J16' c~(t,,z)~(z)~(z)~~(z)@~(t,,r)dz 
is positive definite. Two sufficient (not necessary) conditions would be if Po 
were positive definite or if the integral term were separately positive definite 
[i.e., Q(t) is positive definite for all t E [ to ,  r , )  and the system description is 
completely controllable from the points of entry of the dynamic driving noise]. 
Neither of these are .very restrictive assumptions, yet we really only require 
P(tl - )  itself to be positive definite. 

The derivation just presented was not the most general possible. For in- 
stance, R(ti) need not be positive definite for the algorithm to operate properly 
(as long as [H(ti)P(ti-)HT(ti) + R(ti)] is always invertible), even though this 
was required in our derivation. Nevertheless, the assumption made does en- 
compass the vast majority of applications of practical interest. 

To complete the derivation, let us add the effects of deterministic control 
inputs. As described previously, the only change in the estimator algorithm 
is that the state estimate (conditional mean) time propagation relation (5-15) 
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becomes 

%(t i - )  = @(ti ,  ti- l)%(f:- 1 )  + Sri  @(t i ,  z)B(s)u(~ 
t i -  1 
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dz 

Note that the discrete-time (sampled data) Kalman j l t e r  algorithm just 
derived entails the time propagation and measurement updating of conditional 
mean and Covariance equations. However, because all probability densities of 
interest have been shown to be Gaussian, this algorithm does in fact portray 
the entire conditional density of the state conditioned on the measurements 
taken: the Bayesian objective of propagating all probability information has 
been fulfilled. 

To summarize the algorithm, the optimal state estimate is propagated from 
measurement time t i -  to measurement time ti by the relations 

%(ti-) = @(ti, ti-l)%(t2-l) + J i  @(ti,z)B(z)u(z)dz (5-36) 
t i -  I 

P(t i - )  = @(ti, t i _  l)P(t2- l)@T(ti, ti- 1)  

+ Jti @(ti, T ) G ( ~ ) Q ( ~ ) G T ( ~ ) @ T ( ~ ~ ,  z) ~ ' z  (5-37) 
1 - 1  

At measurement time t i ,  the measurement z(ti,coj) = zi becomes available. The 
estimate is updated by defining the Kalman filter gain K(ti) and employing it 
in both the mean and covariance relations: 

K( t i )  = P(ti-)HT(ti)[H(ti)P(ti-)HT(ti) + R(ti)]- (5-38) 

%(ti ')  =%(ti-)  + K(ti)[zi - H(t i )%(t i - ) ]  (5-39) 

P(t i+) =P(ti-) - K(ti )H(t i )P(t i - )  (5-40) 

The initial conditions for the recursion are given by 

%(to) = E { x ( t , ) )  = 9 ,  

P(t,) = E {  [ x ( t , )  - So] [ x ( t o )  - 

(5-41) 

(5-42) = Po 
Figure 5.4 is a block diagram portrayal of the algorithm. The mathematical 

system model inherently in the filter structure generates %(t i - ) ,  the best predic- 
tion of the state at time ti before the measurement at time ti, z(ri,coj) = zi, is 
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processed. Moreover, this same system model allows generation of [H(ti)fi(ti-)], 
which is the best prediction of what the measurement at time ti will be before 
it is actually taken [recall (5-24)J The input to the algorithm is zi, the realized 
value of the measurement z(t i) .  The measurement residual r(ti) is then generated 
as the difference between the true measurement value zi and the best prediction 
of it before it is actually taken: 

r(ti) = zi - H(ti)fi(ti-) (5-43) 

(Many term this quantity the innoaations and reserve the name “residual” for 
the quantity [zi - H(ti)%(ti’)], which does not appear explicitly in the algo- 
rithm; we choose to retain the name residual because of the important procedure 
known as “residual monitoring,” in which the sequence of r(ti) values are 
monitored for adaptive purposes.) Then the residual is passed through an 
optimal weighting matrix K(ti)  to generate a correction term to be added to 
n(ti-) to obtain %(ti’): the algorithm has a predictor-corrector structure. 

To specify a Kalman filter algorithm completely, we need to define both 
the structure of the system model and a statistical description of the uncertainties 
in the model. The structure is established by F(t) or @(t i , t ) ,  B(t), G(t),  and 
H(ti) for all times of intercst, and the uncertainties are specified by go, Po, 
and the time histories of Q(t) and R(ti). 

EXAMPLE 5.1 Recall the example of being lost at sea in Section 1.5 of the first chapter. 
Just after time t 2 ,  after the trained navigator’s measurement was incorporated, the state estimate 
and variance were established as R ( t , + )  and P ( t 2 + )  = uX2(t2+). The dynamics model was given 
by (1-10) as 

k( f )  = u + W ( t )  , 

with u constant and w(.;) described as a zero-mean white Gaussian noise of strength 

E ( w ( f ) w ( t  + T ) )  = u,’~(T) 

Thus, we can identify F = 0 so ct, = 1, B = 1, G = 1, and Q = uW2. 
The time propagation equation for the state estimate would be 

. C ( t 3 - )  = @ ( r 3 , r z ) q t z + )  + iy @(r3,r)E(T)~(?)dT 

= 1 . %(t2 ’ )  + Jy 1 . 1 . u d r  

= a(t, +) + u[ t3  - t Z ]  

This is the result quoted in (1-11). Similarly, the variance time propagation is as delineated in (1-12), 

P ( t 3 - )  = @(t3 ,r* )P(r2 ’ )~T(r3 . t2 )  + iy @(~~,T)G(T)Q(~)G~(T)@~(~,, T ) ~ T  

= 1 ‘ P ( f Z + ) . l  + J y l  . l . C J , Z .  1 .  I d ?  

= P ( t 2 + )  + uw2[t3 - t Z ]  

At time t 3 ,  a measurement becomes available, modeled as 

Z ( t 3 )  = X ( f 3 )  + V ( f 3 )  
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where v(';) is a white Gaussian discrete-time noise process of mean zero and variance cr&: so 
H = 1, R = q!,. Based on this model, the measurement update relations become 

K ( t 3 )  = P ( t 3 ~ ) H T ( r 3 ) [ H ( r 3 ) P ( t , ) H T ( r 3 )  + R ( t 3 ) l - '  

= P ( t 3 - ) / [ P ( f 3 - )  + U:J 

2 ( t , ' )  = P(t,-) + K ( t 3 ) [ z 3  - H ( t , ) P ( t , - ) ]  

= 2 ( t , - )  + K ( t , ) [ z ,  - 2 ( t 3 - ) ]  

P ( t 3 + )  = P ( i 3 - )  - K ( t , ) H ( r , ) P ( t , - )  

= P(r3- )  - K( t3 )P(r3 - )  

These are identical to (1-13)-(1-.15). H 

The Kalman filter time propagation equations given by (5-36) and (5-37) 
are in a convenient form if the problem under consideration is modeled by 
time-invariant dynamics and dynamic driving noise with stationary statistics 
(F, B, G, and Q all constants) with a fixed measurement sample period. In this 
case, @(ti,  ti- andJ:;- @(ti ,  z)G(z)Q(z)GT(z)cDT(ti, z ) d z  are the same for every 
sample period and need only be computed once. Moreover, if the deterministic 
inputs are held constant over each sample period (as provided by a digital 
controller operating at the same iteration rate), then u(z) = u(ti- 1) for all 
z ~ [ t ~ - ~ , t J , a n d  

and the bracketed term is also constant from sample to sample. 
However, if the system or statistics are time varying, the time propagation 

equations would be more efficiently expressed in differential equation form. 
To generate this form, define 2(t / t i -  1 )  and P(t/r,- 1) for any t E [ti-  1, t i )  as the 
conditional mean and covariance conditioned on the measurements taken 
up to that time, i.e., up through z ( t i -  1, oj) = z i -  : 

2(t / t i -  = @(t, ti- l)5i(r:- + s' @(t, z)B(z)u(z)dz (5-44) 
ti- 1 

P(t/t,- = @(t, t i -  l)P(f:- ,)@'(t, ti- 1) 

Differentiating these yields 

i ( t / t i -  1) = F(t)5i(t / t i-  1) + B(t)u(t) (5-46) 

P(+-  = F(t)P(t/ti- 1 )  + P(t/tj- I)FT(t) + G(t)Q(t)GT(t) (5-47) 

which would then be integrated over the interval from ti- to t i ,  starting from 
the initial conditions 

(5-48a) %(ti- Jri-  1 )  = fi(t:- 1 )  

P(ti- J r i -  1 )  = P(t:- 1 )  (5-48b) 
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Integrating these to time ti (as by fourth order Runge-Kutta technique or by 
sequentially integrating over partitions of this interval by a first order method) 
would yield %(ti-) and P(ti-). 

In some cases the dynamics model is itself a discrete-time model, for instance 
an equivalent discrete-time model as discussed in the previous chapter. Let us 
replace the dynamics model of (5-1) and (5-2) with the linear stochastic difference 
equation 

x(ti) = @(ti, t i -  l)x(ti- 1 )  f Bd(ti- l)u(f;- 1 )  + Gd(fi- l)Wd(ti-  1) (5-49) 

where wd( ', .) is a discrete-time zero-mean white Gaussian noise sequence 
with covariance kernel 

(5-50) 

(Note that in the equivalent discrete model formulation, Gd was assumed to 
be the identity matrix.) The only change to the Kalman filter algorithm is that 
the time propagation equations (5-36) and (5-37) are replaced by 

% ( t j - )  = @(ti, t i -  1)2(t:- 1 )  + Bd(t;- l ) U ( t j -  1 )  (5-51) 

To specify a Kalman filter of this form completely, we again must depict both 
the structure [@(ti ,t i- ,) ,  Bd(tiLl),  Gd(t;-l), H(ti) for all times of interest] and 
uncertainties [go, Po, and Qd(ti- 1 )  and R(ti) for all times] of the model. 

EXAMPLE 5.2 We now consider an example based on a scalar dynamics model: a simple 
representation of a gyro on test. (This example will be reexamined throughout Chapter 5.) Gyros 
are subject to long term drifts, and we would like to estimate the drift rate from laboratory data. 
Assume that gyro drift rate can be adequately modeled as a stationary exponentially time-correlated 
Gaussian process (in fact, this is a rather good model for the dominant drift effects). To keep the 
problem restricted to one state variable, we will further assume that we can measure instantaneous 
drift rate. Thus, though not totally realistic, this problem can be viewed as a portion of a more 
realistic problem, and we seek to exploit its simple form to illustrate the use of the estimator 
algorithm. 

Figure 5.5 depicts the system model. Gyro drift rate is the state process x(.;), and since it is 
an exponentially time-correlated Gaussian process, it is shown as the output of a first order 
shaping filter (first order lag) driven by white Gaussian noise w(.;). The shaping filter break fre- 

Shaping 
filter 

Sampler 

FIG. 5.5 System model for gyro on test example. 
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quency c( is set at 1 rad/hr, i.e., the correlation time of the x process is one hour (reasonable for 
state-of-the-art gyros), and the statistics of w( .;) are 

E j w ( t ) )  = 0 

E ( w ( t j w ( t  + T)/ = Q6(sj.  Q = 2 deg2/hr 

The units of Q seem strange at first since w is in units of deg/hr, but are valid because 6 ( ~ )  carries 
units of (time)- '. It is assumed that sampled data measurements are taken every 0.25 hr. modeled 

z ( t ; )  = X ( t i )  + V ( t i )  

as 

where v(., ' )  is a discrete-time zero-mean white Gaussian noise with 

E(v(t ,)v(t ,))  = R h,,,, R = 0.5 deg'lhr' 

Note that declaring v(.;) to be a white sequence is really assuming that the correlation time of 
any noise corrupting the analog measuring device output is short compared to the sample period 
of the sampler. It is desired to process these measurements to obtain an optimal estimate of the 
gyro drift rate x(r). 

First generate the state differential equation. Since the Laplace domain transfer function of the 
shaping filter is: 

x(s)/w(s) = x / ( s  + c ( )  

we get, by cross multiplying 

sx(s) + ax(s) = xw(s) 

or, taking the inverse Laplace transform 

i ( t )  = - c t x ( t )  + c (W( f )  

from which we can identify F = -ct  7 -1. G = c( = 1. 

is 
If we want to use (5-36) and (5-37), we will need the state transition matrix, which in  this case 

@ ( r , , r , - , )  =exp[-cx(t, - t i - , ) ]  =exp[-1(0.25)] 2 0.78 

This could also be obtained through the inverse Laplace transform of ( s l  - F ) -  '. 

to serve as  Po.  The general stochastic process covariance relation 
It was assumed that x(.; j is a stationary process, so we must determine its steady state variance 

. P ( t )  = F(r)P(t) + P(t)FT(t) + G(t)Q(t)G?r) 

becomes 

P ( t )  = -2ctP(t) + a2Q 

so that the steady state value, evaluated by solving P ( t )  = 0, is 

deg2/hr2 P = rQ/2 = 1 

Thus, before any measurements are taken, we have the initial conditions of 

? ( t o )  = .to = 0 

P(t,) = Po = 1 

(assumed) 

deg2/hr2 
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At this point, the filter can be completely delineated. To propagate the estimate from sample 
time t i _ l  to the next time r , ,  (5-36) and (5-37) yield 

.?(ti-) = Q(r i , r i - l ) i ( rT- l )  = 0.78i(r:_,) 

P(ti-) = @'(ti, t i+ l)P(t:- 1) + J::, @'(ti, r).GZQ [/I 

= 0.78ZP(tT,)  + 2 J:;z exp[-2(ri - I)] ds  

= O.61P(ti+_ ,) + 0.39 

Note that these can also be'interpreted as the Kalman filter using (5-51) and (5-52), based on the 
equivalent discrete-time model with B, = 0, G, = 1, and Qd = 0.39. This propagation can also be 
represented in differential equation form by using (5-46) and (5-47) to write 

.+(t/ti-,) = F( t )a ( t / t i - , )  = -a(t/ti-l) 

P(t / l i -  I )  = 2F(t)P(t/ti-,) + GZ(t)Q(t)  

= - 2 ~ ( t / t ~ - , )  + 2 

which would be integrated forward from .?(ti_ , / r i - , )  = .?(f:-l)% P(r,-  
To update the estimate with the measurement 2 ,  at time t , ,  (5-38)-(5-40) yield 

I )  = P(t:_l) to time ti. 

2(ri+) = .?(ti-) + K( t , ) [ z ,  - H(t,).?(ti-)] 

[3; - act,-)] 
P(r , - )  

P( t , - )  + 0.5 
=.?( t i - )  + 

P(ti+) = P(ri-) - K(t,)H(ti)P(ti-) 

In the derivation of the Kalman filter algorithm, P(ti-) and P(t,+) were 
de$ned in (5-10) and (5-16) as conditional covariances of the state at time t i ,  
conditioned on z(ti- = Zi- l  and Z ( t i )  = Zi, respectively. However, the 
recursion relations (5-37), (5-38), and (5-40) for these matrices do not depend 
upon the particular sequence of realized measurements. The covariances are 
statistically related to the measurement history through the H ( t i )  and R(ti) 
sequences, but they are not functions of the specific measurement values. 
Whereas the state estimates (conditional means) are a function of measurement 
realizations, the error committed by such an estimate will be shown to be 
independent of Z(rJ Consequently, one can precompute the time history of 
P(ti-), P(ti+), and K(ti)  before actual measurement numbers zi are available: in 
fact, even before the measuring devices themselves are available. Since P(ti-) 
and P(ri+) are both conditional state covariances and state estimation error 
covariances, this precomputability allows early design tradeoffs of estimation 
accuracy versus measuring device precision [i.e., R(tJ time history] to ensure 
cost-effective systems that meet specifications. 
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Essentially 
steady 
state 

Time 
0.25 0.50 0.15 1 .oo (hr) 

FIG. 5.6 Error variance time history for Example 5.3. 

EXAMPLE 5.3 We can precompute the conditional state variance time history as generated 
by the Kalman filter for the problem of Example 5.2. Figure 5.6 portrays this variance time history 
through the fourth measurement sample time. [The values between sample times can be found 
from integrating (5-47), whereas (5-37) would generate only the P ( t i - )  values.] 

Note that the variance is constant over the first interval, since we started off in steady state 
conditions. Even on the first measurement, the estimate error variance is less than the measure- 
ment error variance of 0.5. Further, it decreases in time from 0.33 to 0.25: the algorithm uses the 
past history of measurement information, as propagated through its internal model, to yield this 
reduction. 

Figure 5.6 indicates that steady state filter operation has been essentially achieved by the 
fourth measurement update time. To substantiate this claim, the steady state conditions can be 
calculated by equating P(ri') to P(t,'_ 

0.5P(r,-) - 0.5[0.61P(r:- ,) + 0.391 

P(ri-) i 0.5 - [0.61P(rit_ I )  + 0.391 + 0.5 

0.30P(t:_ ,) + 0.19 
0.61P(t,f_ ,) + 0.89 

P(f,+) = 

- - 

Equating this to P(r:- yields 

0.61P" + 0.59P' - 0.19 = 0 

for which the positive solution is 

P +  = 0.255 
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Then, the steady state P -  is found from 

P -  = 0.61P’ + 0.39 = 0.546 

These values do confirm the claim. 

The filter performance exhibited in the previous example is typical for prob- 
lems with time-invariant system models and stationary statistics: an initial 
transient in P and K followed by an essentially steady state filter operation. 
In many applications, the transient is short compared to the total time of 
interest (suggesting a possible approximation of using the steady state filter 
for all time if the resulting performance degradation is not prohibitive; this will 
be discussed further in the next chapter). A different Po matrix will yield a 
different magnitude transient characteristic, but its duration will be the same 
and the steady state conditions are unaffected. 

On the other hand, changing Q or R in the filter structure does affect the 
transient duration and the steady state operation. Increasing Q would indicate 
either stronger noises driving the dynamics or increased uncertainty in the 
adequacy of the model itself to depict the true dynamics accurately. This will 
increase both the rate of growth of the P(r) elements (or eigenvalues) between 
measurement times and their steady state values. As a reult, the filter gains will 
generally increase, thereby weighting the measurements more heavily: this is 
reasonable since increased Q dictates that we should put less confidence in the 
output of the filter’s own dynamics model. By similar reasoning, increased R 
would indicate that the measurements are subjected to a stronger corruptive 
noisc, and so should be wcighted less by the filter. In fact, this will decrease the 
gain values, the eigenvalues. of the [K(ti)H(ti)P(t,-)] term are smaller so the 
error variances going from t , -  to r,+ decrease to a lesser extent, and the steady 
state covariance eigenvalues are larger. If the eigenvalues of Q are large com- 
pared to the eigenvalues of R (in the scalar case, if the Q/R ratio is large), steady 
state is quickly reached because the uncertainty involved in the state propaga- 
tion is large compared to the accuracy of the measurements, so the new state 
estimate is heavily dependent upon the new measurement and not closely 
related to prior estimates. 

EXAMPLE 5.4 To see the effects of variations in Q and R,  Example 5.3 will be repeated for 
the following cases (case 1 is Example 5.3 itself). 

Case Q (deg2/hr) R (deg’jhr’) 

7 1 - 0.5 
L 4 0.5 
3 - 1 .o 
4 4 1 .o 

7 

3 
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Po was set to the stationary value, which is 1 deg2/hr2 for Q = 2 deg2/hr. and 2 deg2/hr2 for Q = 

4 deg2/hr; the same Po could have been used for all cases, but the differing transient would quickly 
decay and the same steady state filter operation would be achieved. Table 5.1 displays the time 
history of P(t i - ) .  P(tif), and K ( t i )  values for the four cases. 

In this scalar example, the “tracking” properties of the filter will be very evident: if K ( t i )  is 
approximately one, %(t,’) is approximately equal to z i .  Conversely, if K(t,)  is very small, then 
a([,) is not “tracking” the measurements closely, but rather is heavily weighting the output of its 
own internal system model. 

TABLE 5.1 

Efecrs of Q uiid R Vuriaiion 

Time (hr) 0.25 0.50 0.75 1.00 

I .oo 
0.33 
0.67 

2.00 
0.40 
0.80 

1 .oo 
0.50 
0.50 

2.00 
0.67 
0.67 

0.59 
0.27 
0.54 

1.02 
0.34 
0.67 

0.69 
0.41 
0.41 

1.19 
0.54 
0.54 

0.55 
0.26 
0.52 

0.99 
0.33 
0.66 

0.64 
0.39 
0.39 

1.11 
0.52 
0.52 

0.55 
0.26 
0.52 

0.98 
0.33 
0.66 

0.63 
0.39 
0.39 

1.09 
0.52 
0.52 

Doubling Q and retaining the original R (case 2) causes the difference between P(t:- ,) and P(i i - )  
to increase over that of case 1 : in steady state, this is (0.98 - 0.33) = 0.65 versus (0.54 - 0.26) = 
0.28. Not only are the oscillations larger due to more rapid growth (more rapid input of un- 
certainty) between sample times, but the steady state P(ti-) and P(r,+) are larger as well. With 
the same measurement precision but more uncertainty in the system model, there is less certainty 
in the estimate. The gains K(!J are larger, and the filter “tracks” the measurements to a greater 
degree. 

Doubling R and keeping the same Q as in case 1 (case 3) causes the difference between P(ti-) 
and /‘(ti+) to decrease: in steady state, (0.63 - 0.39) = 0.24 as opposed to 0.28. Steady state P(t,-) 
and P(r,+) are larger, since there is now more noise corruption in the measurements. Furthermore, 
there is now greater uncertainty in the measurements relative to the model uncertainties, so the 
K(t , ) ’ s  are smaller, and the filter no longer “tracks” the measurements as closely. 

Doubling both Q and R yields case 4. Here the gain time history is identical to that of case 1 : 
because we have a scalar linear system description, the ratio Q/R is the determining factor of 
steady state gain. In fact, for this problem, steady state filter gain can be shown to be 
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Thus, proportionately increasing Q and R had no effect on the K ( t i )  time history, while P ( t i - )  
and P(t i+)  were doubled (a linear system with doubling of all input magnitudes). 

"Tuning" a general Kalman filter involves achieving "good" values of Po. Q, and R, good in 
the sense that the best estimation accuracy is obtained from a specified Kalman filter structure. 
The task of determining the best set of matrices is considerably more difficult than the scalar case, 
but this example does provide some basic insights. . 

5.4 STATISTICS OF PROCESSES 
WITHIN THE FILTER STRUCTURE 

The previous section derived the Kalman filter, through which the condi- 
tional probability density fx( t , ) lZ( t , ) (< I Z i )  could be generated explicitly for all 
time. This density function, or the mean and covariance which define it, provides 
all the possible information obtainable about the system stare. Now we inves- 
tigate the statistical description of some of the processes within the filter struc- 
ture itself. 

The error committed by using %(ti+) as an estimator of x ( t i )  would be defined 
as 

(5-53) 

where 2 ( t i + )  is the random variable E { x ( t , ) l Z ( t i )  = z ( t i , . ) } ,  one realization of 
which would be the numerical output of the filter algorithm. Since x ( t i )  and 
ii(ti+) can be shown to be jointly Gaussian, conditioned on Z ( t i ) ,  e ( t i + )  is a 
Gaussian random variable, and its density function is then completely specified 
by its mean and covariance. The mean is 

E { e ( t i + ) l Z ( t i )  = Z i )  = E { x ( t i ) l z ( t i )  = Z i )  - E ( i i ( t i + ) l z ( t i )  = Z i }  
= %(ti+) - %(ti') = 0 

e ( t i + )  A x ( t i )  - n(t,+) 

(5-54) 

ie.. the estimator is unbiased since the error is zero mean. The covariance is: 

This proves the previous statement that the conditional covariance of the error 
committed by using 2 ( t i + )  as an estimator is equal to the conditional covariance 
of x ( t i )  itself. Consequently, we can write 
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This is functionally independent of the particular realized measurement values, 
Z i ,  since P(ti') does not depend on Zi; for this reason, it is often written as 
fe(t,+)lZ(r,)(<). By exploiting this and the concepts of marginal densities and 
Bayes' rule, the unconditional density feet, +)(c) can be written as 

(5-57) 

Thus, if we use %(ti') as our state estimator, the error committed, e(ti'), is 
independent of Z(t,) ,  the entire measurement history random variable. 

Figure 5.7 portrays this graphically. If the time history of measurements Zi 
changes, then the conditional mean 2(ti') changes, but the shape of the density 
function fx(t , ) lz(t , ) (c)  Zi) [which is just fe ( t ,+ ) lZ( t , ) (c  I Zi) shifted by the conditional 
mean] remains unchanged. This is a unique characteristic, not true of nonlinear 
estimation problems in general. 

This independence says conceptually that the estimator gleans out as much 
information from the measurements as possible, and there is nothing left in the 
measurements that could tell you anything about the error. Geometrically, the 

Conditioned on 
Z ( t , , W , )  

Conditioned on 

-- $2 

FIG. 5.7 Estimation error independence of measurement history. 
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error is orthogonal to the projection of the real x ( t i )  onto the measurement 
subspace (in a Hilbert space of random variables) : Kalman originally developed 
the filter recursion relations from this geometrical insight. 

Similarly, if we define 

(5-58) a e(t,-) = x ( t i )  - %(ti-) 

then, feci, - , l z ( i , -  Jc1Zi- ,) can be shown to be Gaussian, with 

E{e(ti-)lZ(ri-l) = Zi- l }  = 0 (5-59) 

E{e(ti-)eT(ti-)lz(ti-,) = Zip , )  = p( t i - )  (5-60) 

Two other closely related processes in the filter are the residual (innomtions) 
and new information processes, denoted as r( ., .) and s(.;), respectively, and 
defined for all t i  E T by 

r ( t i )  9 z ( t i )  -- H(ti)2(ti-) (5-61) 

s(ti) 62 K(ti)r(ti)  (5-62) 

The term [z i  - H(ti)2(ri-)] in the filter measurement update equation (5-39) 
is a realization of r ( t i ) :  the difference between the current measurement value zi 
and the best prediction of its value before the measurement is actually taken. 
It is then a particular realization of s(ti) that is added to i7(ti-) to obtain %(ti'). 
We can rewrite r ( t i )  as 

r ( t i )  = z(t i)  - H ( t i ) 2 ( t i - )  

= H(ti)x(tj) + v(tJ - H(ti)2(tjP) 
- 

= H(ri) @(t i ,  t i-  l )x(t i - l )  + S" @(ti,z)B(~)u(z)dz 1 i t - I  

= H(ti)@(ti,ti-l)e(tif_l) + H(ti) Sti @(ti,z)G(t)dp(t) + v(ti) (5-63) 

But e(t;- 1), Ji;-, @(ti,z)G(z)dJ3(t), and v(ti)  are all random variables that are 
independent of Z(ti-  But, by their definition, 
r(tl) ,  r(tz), . . . , r ( t i - l )  are linear functions of Z(ti- l ) ,  so r ( t i )  is independent of 
all previous r ( t j ) 's .  In other words, the r(r,) sequence is a white sequence. In view 
of (5-61), this also demonstrates that s(t i)  is independent of z(tj+ 1) and that the 
s( t i )  sequence is  white: each new piece of information is independent of the 
information gained in the past or, geometrically, s(t i)  is orthogonal to 2( t i - ) .  

f , - l  

so r ( t i )  is independent of Z(ti- 
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Moreover, based on arguments of linear combinations of jointly Gaussian 
random variables being Gaussian, r(ti) and sfti) are both Gaussian for all t i .  
To describe these processes completely, we only need to specify means and 
covariance kernels (conditioned on measurements or .not does not matter, but 
quantities dejined as conditional entities will be identified, so we choose to 
condition on Zi- 1): 

(5-64a) E(r(ti)} = E{r(ti)/Z(ti-l) = Zip1]  = 0 

E{r(ti)rT(ti)) = E{r(ti).rT(ti)IZ(ti-l) = Z, - , )  
= E{(H(t,)[x(t;) - 2(tip)] + ~ ( t ; ) )  

. (H(ti)[x(ti) - %(ti-)]  + v(ti))TIZ(ti- = Z i -  1, 1 

= H(ti)P(ti-)HT(ti) + R ( t i )  (5-64b) 

E(s ( t i )J .  = K(t,)E(r(t,)} 7 0 

E (s( ti)sT( ti)} = K( ti)E { r( ti ) rT( ti ))KT( t i )  

(5-65a) 

= K(ti)[H(ti)P(ti-)HT(ti) + R(ti)]KT(ti) 

= P(ti -)HT( ti)[H(ti)P( ti -)HT( ti)  + R( ti)] - H( ti)P( ti- ) (5-65b) 

Obtaining (5-65b) exploited the symmetry of [H(ti)P(ti-)HT(ti) + R(ti)]; the 
result is singular in general, being n-by-n and of rank at most in. As expected, we 
recognize (5-65b) as the term that is subtracted from P ( t i - )  to obtain P(ti+): the 
decrease in estimation error covariance due to incorporating the information 
of the measurement at time t i .  

T h e  residual sequence has been shown to be a white Gaussian sequence of mean 
zero and cooariance [H(ti)P(ti-)HT(ti) + R(ti)]. This can be exploited for the 
practical purposes of either sensor failure detection or reasonableness checking 
of measurement data. The preceding is a proper characterization of the residual 
process provided that the mathematical model upon which the filter was based 
accurately depicts the real system behavior. During operation of the filter, the 
actual residual sequence realization can be monitored and compared to this 
description. If the description appears valid up to a point in time, thereafter 
being violated consistently, one can deduce that something occurred in the real 
system to invalidate the model within the filter. If the violation occurs in only 
one component of a vector residual process, one can further deduce that the 
measuring device generating that particular residual component is the source 
of difficulty: a failure (soft or hard) can be declared in that sensor. 

Optimal “likelihood function” methods or ad hoc techniques of event detec- 
tion (hypothesis testing) can be used to perform a test for the occurrence of a 
sensor failure [51,52]. Essentially, the N most recent residual signals are 
examined to determine whether they differ significantly from the statistical 
description of their values that assumes no failures [9,55]. The number N is a 
design parameter. It is kept greater than one to prevent failure declarations due 
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to a single residual sample of large magnitude: consistently large residuals 
indicate abnormalities, whereas individual realizations of large magnitude are 
to be expected. On the other hand, it is inappropriate to use all the residual 
samples from the initial time to current time, since this would decrease the 
sensitivity to true failures as time progressed. Thus, a “moving window” of the 
N most recent samples, with N on the order of 5 to 20, would be used. 

Statistical hypothesis testing theory indicates that a good choice of likelihood 
function [67] for event (failure) detection would be in the form of sum of 
natural logs of conditional densities for components of residuals: for the kth 
component, 

i 

L N k ( t i ) =  1 ln,f,k,,,,IrkctJ-l),...,rk(tl,(Pj(Pj-l,. . . , P I )  (5-66) 
j = i - N + l  

If the residual sequence can be assumed to be a set of independent zero-mean 
Gaussian random variables, then this can be rewritten as 

(5-67) 

where ck( t i )  is a (slowly varying) negative term independent of the observed 
residual values (thus containing no information of direct use for failure detec- 
tion), and ok2(tj) is the estimate of the variance of possible kth residual values 
based on the assumption that no failures have occurred. The value of l / a k 2 ( t j )  

can be evaluated as the kth diagonal term of [H(tj)P(tj-)HT(tjj + R ( t j ) ] - ’ ,  a 
matrix that has already been computed in the filter algorithm. If r k 2 ( t j )  becomes 
consistently larger than that predicted by akz(t j )  over the most recent N samples, 
LNk( t i )  will become more and more negative; if its value goes beyond a pre- 
determined threshold, a failure can be declared. 

Figure 5.8a portrays a possible residual process realization in the filter de- 
scribed in Example 5.2. Until time t ,  (time of sensor failure), the residual sequence is well described 
as  a zero-mean white Gaussian sequence of variance u2 = [HPHT + R ]  : about 68”,, of the samples 
lie within the lo bounds, 95% within the Zu bounds, etc. At tF,  the bias shifts markedly from zero. 
In Fig. 5.8b, the residual process strength increases markedly at time t,. For either case, the likeli- 
hood function L N ( f i )  would be as depicted in Fig. 5 . 8 ~ :  from time tp on, the r2( t j ) /uZ(r j )  terms are 
larger, so L N ( t i )  grows more negative. Upon passing the threshold, a failure is declared. 

Residual monitoring is also used for reasonableness checking of measure- 
ments before they are processed by the filter. If a spurious data point is received, 
we would want to reject it rather than let it corrupt the filter computations. If 
a measurement residual is greater than (for instance) the 3a value computed by 
the filter, it can be declared as unacceptable. However, if this happens on a 
frequent basis, the cause may be either a sensor failure or a filter divergence 
problem (the filter’s estimates do not correspond well to the real system be- 
havior). In this latter case, it is critical not to reject large residuals, since they 
are the only means of correcting the divergence! Filter divergence [25] and 
more sophisticated use of residual monitoring (adaptive estimation algorithms, 

EXAMPLE 5.5 
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FIG. 5.8 Residual monitoring and sensor failure detection. (a) Residual bias shift. (b) Re- 
sidual strength increase. (cj Likelihood function L N ( t i )  for either case. 

which modify their internal models and/or gains online by exploiting the 
observed residuals) will be discussed in detail in subsequent chapters. 

5.5 OTHER CRITERIA OF OPTIMALITY 

In Section 5.3 we derived the Kalman filter algorithm in a Bayesian manner 
by generating explicit recursions for the Gaussian conditional probability 
density for the states, conditioned on the entire measurement history, 
fx(t,)lz(t,)(< I Zi). Then %(ti ’)  was chosen as the “optimal estimate” because it was 
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the mean, mode, and median of this density function. There are other criteria 
ofoptimality that are logical for an estimation problem [16,18,29,31,64,68,82], 
and thus there are other means of deriving the filter relations. Some of these 
aspects will now be discussed. 

By virtue of being the conditional mean, niti ') is also the minimum mean 
square error (MMSE) estimate [54, 821. In a general estimation problem, if 
]ZEST(ti) is some estimator of x(ti)  and eEsT(ti)  is the error committed by this 
estimator. 

eEsT(ti) = x( t i )  - g E S T ( t i )  (5-68) 

then the estimator that minimizes the cost function 

['EST( 'i 11 = { e E S T ( t i  )TeEST(t i  1) (5-69) 

is the conditional mean. This is true for any form of probability distribution 
function Fx~t,~lz~zrJ<l ZJ Moreover, if Fxt,r, lzct , t(<l Zi) is Gaussian, as is true for 
the particular problem addressed in this chapter, the conditional mean also 
minimizes any cost function of the general quadratic form 

J [ ? E S T ( f i ) ]  = E{eEsT(ti)TM(ti)eEsT(ti)} (5-70) 

where M ( t i )  for all ti E T form a set of arbitrary symmetric, positive semi- 
definite matrices. For further discussion of least squares estimation, see [ 1, 5, 24, 
27, 28, 32, 33, 57, 64-66, 73, 75-77]. 

EXAMPLE 5.6 Consider an estimation problem with a two dimens~onal state vector. Con- 
sider M(r,) constant in time, set equal to apy of the following: 

According to the above claim, the some estimator (the conditional meanj wotild optimize (5-701 
for all five choices. Whether you  are interested in estimating only .x,, only .x2, or both with any 
relative importance in estimation accuracy, the same estimator would he used. 

Also due to its being, the conditional mean, %(ti') minimizes the symmetric 
cost ,function criterion [14, 54, 69, 70, 821. Define a general estimation error 
cost function as 

If C( . ) is symmetric and nondecreasing, 
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and iffxct,,,zct,,(< I Zi)  is unimodal (one-peaked), symmetric about the conditional 
mean, and satisfies 

(5-73) 

then the cost function (5-71) is minimized by the conditional mean. For the 
problem at hand, the assumptions on .fx!ri,,zcr,,({IZi) are met, and we need 
only assume (5-72) to be true. Note particularly that there was no need to 
assume C( . )  to be convex, so that all the cost functions depicted in Fig. 5.9 are 
admissible. Comparing this claim to the fact that the conditional mean is the 
MMSE estimate, optimality with respect to a more general cost criterion has 

FIG. 5.9 Cost functions admissible according to Eq. (5-72). 
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been achieved, but at the expense of additional restrictions on the allowable 
class of stochastic processes [the assumptions on .fxc,,,lz(,,,(~)Zi)]. 

To obtain a maximum likelihood estimate of the system state, an appropriate 
“likelihood function” [17, 67, 841 must be defined as a scalar function relating 
the available measurements (whose values are known), -the state variables (the 
unknowns to be estimated), and any other pertinent parameters. One choice of 
a likelihood function (though not the “classical” choice) would be fx(r,tlz(t,t(t 1 Z i )  
itself. By maximizing this likelihood function, we are actually finding the mode 
(location of the peak) of the conditional density, and the resulting estimator is 
often called the maximum a posteriori, or MAP, estimate. 

To show that ??(ti’) is the MAP estimate of the state [30,62,66,82] involves 
an algebraically simpler derivation than the reduction that followed Eq. (5-27) 
originally. Under the assumptions of our problem formulation, f X ( f , ) l Z ( f , ) ( t ~ ~ i )  
is Gaussian, so it is more convenient to define the (log-) likelihood function as 
the natural logarithm of the conditional density, 

Maximizing this function yields the same estimate as maximizing the density 
itself, since for any function f ,  f and Infattain their maxima at the same point. 
Substitute (5-27) into (5-74) to obtain 

To generate the MAP estimate of x(ti), denoted as gMAP(ri), we must solve 

I 81- [C Z ~ I I ~ C  lt-gMAp(t,) = oT (5-76) 

or 
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for which the solution is 

%MAp(ti) = [p(ti-)- '  -t HT(ti)R- l(ti)H(ti)]-l[HT(ti)R-l(ti)[i -t p( t i - ) -  '%( t i - ) ]  

(5-77) 

Comparing this to (5-31) reveals that &p(ti) = %(ti+). 
The classical maximum likelihood estimate (often denoted as MLE) is found 

by maximizing the likelihood function chosen to be the conditional density 
x(ti)(3i I g), or its natural logarithm. Conceptually, maximizing this maxi- 

mizes the probability of the event that did in fact occur, i.e., Z ( t i ,  oj) = Zi, 
expressed as a function of c. It can be shown that, under the assumptions of the 
original derivation, the value of g which maximizes this likelihood function is 
again %(ti') if there is no a priori state information (an MLE does not incorpo- 
rate such data): %(ti') is the maximum likelihood estimate (MLE) of x(ti) if 
Po = m1, i.e. if PO ' = 0, and converges asymptotically to the MLE if PO ' # 0 
r6oi. 
L A  

As a maximum likelihood estimator, %(ti+) possesses certain desirable 
characteristics [17, 23,49, 82, 841. Under rather general regularity conditions, 
a general maximum likelihood parameter estimator can be shown to be con- 
sistent (it converges to the true value as the number of measurement samples 
grows without bound), asymptotically unbiased, asymptotically normally 
distributed, and asymptotically efficient (as the number of samples grows 
without bound, it is unbiased, has finite covariance, and there is no other 
unbiased estimate whose covariance is smaller). For this particular problem 
formulation, these asymptotic properties are also true for a finite number of 
measurement samples. 

Furthermore, %(ti') is the minimum uariance unbiased linear estimate 
[2-5,26,66,72] of the state. Consider the same problem formulation as in 
Section 5.2, except that the noises need not be Gaussian. Then x'(ti') is the 
estimator out of the class of linear unbiased (zero-mean error) estimators that 
yields a minimum error variance (minimum trace of the error covariance 
matrix). It is the best linear estimator in this sense, but there are nonlinear 
estimators which may outperform it. In the original derivation, we imposed 
the Gaussian assumption and did not have to seek the best linear filter: under 
this additional assumption, the linear filter is the best filter of any kind. 

The original derivation of the Kalman filter was based on the fact that 
9(ti') is the orthogonal projection of the true state x(t i)  onto the subspace spanned 
by Z( t i )  [35, 47, 641. The orthogonal projection lemma of functional analysis is 
applied to the estimation problem as posed in the infinite-dimensional Hilbert 
space of random variables with finite second moments. We will not delve into 
the rigor of the proof, but the geometric insight is that if the estimate of x(ti)  E % 
is desired in the form of some &(ti) confined to a subspace of b, then the 
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best estimate (approximation) is the orthogonal projection of x ( t , )  onto that 
subspace: such that the error defined in (5-68) is orthogonal to that subspace. 

Thus, the Kalman filter algorithm is optimal with respect to many different 
criteria. This reveals the power and importance of this algorithm, the practical 
design and implementation of which will be detailed subsequently. 

5.6 COVARIANCE MEASUREMENT UPDATE 
COMPUTATIONS 

The most troublesome numerical aspect of the Kalman filter is the measure- 
ment update of the covariance matrix, so the properties of alternate compu- 
tational forms are of substantial interest. 

As originally obtained in the derivation of the estimator, this update can be 
written as 

P(t,+) = [P(t,-)-' + HT(ti)R-'(t,)H(t,)]-' (5-78) 

Although this form adds the measurement information in a simple manner 
that preserves symmetry well, it requires two n-by-n inversions each sample 
time (unless an inverse covariance is used in place of the covariance, as discussed 
in the next section), where n is the number of state variables. 

Applying the matrix inversion lemma to (5-78) provided an alternate form of 

(5-79a) P(t,') = P(t,-) - P(ti-)HT(ti)[H(ti)P(ti-)HT(ti) + R(ti)]- 'H(t,)P(t,) 
= P(ti-) - K(t,)H(ti)P(ti-) (5-79b) 

This involves m-by-m inversions, where m is the dimension of the measurement 
vector. For m significantly less than n, as is the case in many practical applica- 
tions, (5-79) is therefore much more efficient than (5-78). However, (5-79) can 
involve the small difference of large numbers, especially if the measurements 
are very accurate. On a finite word length computer, this can cause serious 
numerical precision problems, even to the extent of not assuring positive 
definiteness of the result. (Once any computed covariance obtains a negative 
eigenvalue, all subse,quent computations are erroneous since they are based 
on a theoretical impossibility. In practice, filters can be "tuned" or modified 
so as to be able to avoid or recover from such numerical errors, as will be seen 
in subsequent chapters.) 

Consider the first measurement time in the gyro on test introduced in Ex- 
ample 5.2, but let R be changed from 5 x lo- '  degz/hr' to 5 x deg2/hr2. Then P(f,-) = 1, 
K( t , )H( t , )P ( t , - )  = 0.99950025, and P(t i ' )  = 0.00049975 to eight significant figures. To three 
significant figures, K ( f i ) H ( t i ) P ( r i - )  would be rounded up to one and P(ti+) would be zero. Iftrunca- 
tion were used rather than rounding, then K(fi)H(ti)P(fi-) would be 0.999 and P ( f , + )  would be 
0.001. Both cases are seen to be very erroneous on a percentage basis. 

EXAMPLE 5.7 
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The update (5-79b) is readily seen to be equivalent algebraically to 

P(ti+) = [l - K(ti)H(ti)]P(ti-) (5-80) 

Not only does this form fail to assure positive definiteness as true of (5-79b), 
but it suffers additionally from the fact that symmetry is not well preserved 
either. Whereas (5-79b) entailed subtracting one symmetric form from another, 
(5-80) is in the form of a product of a nonsymmetric matrix and a symmetric 
one, and thus it is a less desirable form. 

If the state estimate update equation is rewritten as 

j i ( t i + )  = [I - K(ti)H(ti)]5i(ri-) + K(ti)zi (5-81) 

it can be readily shown that an equivalent expression for P(ti') is the "Joseph 
form" (after the man who first developed it): 

P(fi+) = [I - K(ti)H(ti)]P(ti-)[I - K(ti)H(ti)IT + K(ti)R(ti)KT(ri) (5-82) 

This is in the form of the sum of two symmetric matrices, the first being positive 
definite and the second being positive semidefinite (n-by-n, and of rank at most 
m). Consequently, numerical computations based upon this form will be better 
conditioned, better assuring both the symmetry and positive definiteness of 
P(t,') than previous forms. Furthermore, it is insensitive, to first order, to small 
errors 6K(ti) in the computed filter gain: for a first order error 6K(ti), the error 
in the P(ti+) computed by (5-82) is of second order, while the error in the previous 
forms is of first order, 

6P(ti+) = - 6K( ti)H(ti)P(ti-) (5-83) 

Similarly, it is less sensitive to arithmetic truncation than the other forms: 
especially in the cases in which the measurement noise is small, (5-79) and (5-80) 
will be subject to first order truncation error effects, while (5-82) will only be 
affected to second order. This becomes a crucial consideration for online 
applications in which the minimum computer wordlength that achieves ade- 
quate performance is sought. 

Although the Joseph form has some desirable characteristics, it requires a 
considerably greater number of computations (multiplications and additions), 
so more computer time is required. (Section 7.8 will tabulate required operations 
for various forms; Problem 5.17 develops a more efficient implementation of 
the Joseph form.) A tradeoff must be analyzed to determine if the benefits 
warrant the additional loading. In fact, there are some cases, especially those 
characterized by long periods of essentially steady state behavior, in which 
the inherently greater number of adds and multiplies (each individual operation 
with truncation or roundoff effects of its own) causes larger numerical errors 
in the Joseph form than in the others. 
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To date, it is typical to perform the majority of the algorithm computations 
in single precision. Regardless of the form used, the covariance measurement up- 
date calculations are done in double precision to maintain numerical accuracy. 

For online applications in which time constraints are critical, symmetry 
can be exploited by propagating and updating only lower triangular forms of 
the covariance matrix. This requires only i n ( n  + 1) scalar terms instead of n2, 
which can be substantial for large n. However, due to symmetry preservation 
problems, some operational filters maintain all nz terms and periodically 
resymmetrize the covariance matrix by averaging the appropriate elements. 

Symmetry can be exploited further by using a square root covariance 
formulation: express and compute the algorithm results in terms of P1l2 instead 
of P (a matrix P’” such that P1’2P1/2T = P can always be defined for a sym- 
metric positive definite P matrix). This attains equivalcnt numerical accuracy 
with approximately half the wordlength, while requiring a number of computa- 
tions comparable to that of the Joseph form update for P. A related technique, 
known as U-D covariance factorization, in which P is factored as P = UDUT, 
with U being upper triangular and unitary and D being diagonal, provides the 
same numerical benefits but with considerably less computational loading. 
“Square root filtering” is the subject of Chapter 7. 

An alternate expression for the filter gain K(t,), given originally by (5-38), is 

K(ri) = P(ti’)HT(ti)R-’(tj-) (5-84) 

Equivalence can be demonstrated by substituting (5-79a) into (5-84) to obtain 
(5-38). Although (5-84) is a simpler expression, it is not very useful for the 
discrete-time update (sampled-data) filter formulation, since it requires P(tj’) 
to be known before K(ti) can’ be obtained! However, this equivalent expression 
will be of use for the continuous-measurement case and in fact is the computa- 
tional form of the Kalman gain for that case. 

5.7 INVERSE COVARIANCE FORM 

The previous section mentioned the idea of expressing the optimal estima- 
tion algorithm in terms of the inverse of the covariance matrix, instead of the 
covariance itself. Though an algebraically equivalent result, this form will pos- 
sess some unique characteristics, as allowing a startup procedure for the case 
of PO’ being singular. This form will be directly exploited in the optimal 
smoothers of Chapter 8 (Volume 2). Moreover, the inverse covariance matrix 
is directly related to the Fisher information matrix, allowing an interpretation 
of filter performance in terms of information theoretic concepts. Finally, the 
relationship of the optimal estimator to the classical Gauss-Markov theorem 
for a special class of problems becomes apparent from this form. 
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The usual recursion relations for the covariance matrix in the estimation 
algorithm can be written as 

P-'(ti+) = P-'(ti-) + HT(ti)R-'(ti)H(ti) (5-85) 

P(~L'+I) = @ ( t i +  1, ti)P(ti+)@'(ri+ 1, ti) + Gd(ti)Qd(ti )GdT(ti)  (5-86) 

Applying the matrix inversion lemma to (5-85) yields the familiar Kalman filter 
equations. Instead, apply the lemma, one form of which states that for X and Y 
both n-by-k matrices, 

(A + XTY)-' = A-' - A-'XT(I + YA-'XT)-'YA-' (5-87) 

to (5-86) by identifying 

A = @(ti+i,ti)P(ti+)@'(fi+l,ti); XT = G,j(ti)Qd(fi); Y = GdT(fi)  

to yield, for Qd(ti) nonsingular (not very restrictive), 

p- '(ti+ 1 )  = M ( r i +  1 )  - M ( t i +  l )Gd(t i ) [CdT(ti)M(ri+ l)Gd(ri) 

+ Qbl(fi)]- 'GdT(ti)M(ti+ 1 )  (5-88) 

where 

M(ti+i) = mT(ti, ti+ 1)P-'(ti+)@(li, t i +  1 )  (5-89) 

In (5-89), note the order of time indices in the state transition matrices: appro- 
priate for backward time propagation of the system relations (forward prop- 
agation of adjoint relations). If Qd(ti) = 0, then (5-88) is not applicable, and 
P-'(fi+ 1 )  = M(ti+ The inverse covariance time propagation equation (5-88) 
is analogous in form to the covariance update equation (5-79). The analog of 
the Joseph form (5-82) has also been derived, with superior numerical charac- 
teristics similar to that of (5-82). Define the gain matrix %(ti) as 

%(ti) = M(ti+ l)Gd(ti)[GdT(ti)M(ti+ l)Gd(ti) f Qa '(ti)] - ' (5-90) 

In terms of this gain, (5-88) becomes 

P- '(ti+ 1 )  = M(ti+ 1 )  - s(ti)GdT(ti)M(ti+ 1 )  (5-91) 

or, in the analog of the Joseph form [49], 

p-'(fi7+ 1) = [I - s(fi)Gd'fti)]M(ti+ ')[I - %(ti)GdT(ti)]' + T(ri)Qa ' ( t i ) s T ( t i )  

(5-92) 

In certain circumstances, the a priori statistical information about the state 
may not be complete: there is no information about the state initial conditions 
in some or all directions of state space. This can be modeled as the limiting 
case of certain eigenvalues of Po going to infinity, or those of PO going to zero. 
Because it remains finite, the inverse covariance would be more desirable to 
employ. 
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If P-'(to) = PO' is singular, then until P-'(ti) attains full rank, a unique 
estimate of the full state cannot be made. To allow a viable startup procedure, 
the state estimates % ( t i - )  and %(t i+)  are replaced by 

(5-93a) 

(5-93b) 

The recursions for 9 are then 

9(ti') = 9( t i - )  + HT(ti)R-'(ti)zi (5-94) 

(5-95) 
Y(tl'+ 1) = [I - X(ti)GdT(ti)]QT(ti, t i+  1)[9(ti') + P-'(fi+)Q(fi, t i+ i)Bd(ti)u(ti)] 

starting from the initial condition 

Q(t,) = PO'%, (5-96) 

Once P-'(t, +) becomes nonsingular, then its inverse can be computed to 
obtain P(ti+), and the optimal state estimate can be expressed as 

%(ti+) = P(ti+)g(ti+) (5-97) 

From that time forward, it is possible to revert to the more familiar covariance 
form or to continue in the inverse covariance form. The latter is more con- 
venient in certain situations, as in smoothing. 

Thus, the inverse covariance form of the optimal estimator has been de- 
scribed. Measurement updating is accomplished through (5-85) and (5-94), 
and time propagation by (5-89), (5-90), (5-91) or (5-92), and (5-95). Initial con- 
ditions are P-'(r0) = PO1 and 9( ro )  = P;'S,. These relations are valid for 
Qd(ti) positive definite; unless there is no driving noise, a positive definite 
s-by-s Qd(ti) can always be generated for an n-by-n positive semidefinite 
[Gd(ti)Qd(ti)GdT(ti)] form of rank s. If there is no driving noise [Qd(ti) = O for 
all ri], then the time propagation relations become 

P- '(LF+ 1) = M(ti+ 1) (5-98) 

(5-99) 9(ti+ 1) = ' Q T ( f i r  t i+ 1)[9(ti') -k P-'(ri+)@(ti. t i+ i ) B d ( t i ) U ( t i ) ]  

A concept related ta the inverse covariance is the Fisher information matrix 
which is a measure of the certainty of the state estimate due to measurement 
data alone; i.e., the a priori information of x ( t o )  being modeled as Gaussian with 
mean Wo and covariance Po is disregarded. The information matrix 9 ( t i , t l )  
is given by 

i 

$(ti, t l)  = QT(tj, ti)HT(tj)R-'(tj)H(tj)@(rj, t i )  (5- 1 00) 
j =  1 
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where, as noted previously, @(t j ,  t i )  f o r j  < i is the transition matrix for propa- 
gating the system state backward in time. To relate this concept directly to the 
previous algorithm, ignore the dynamics driving noise: assume that there is no 
W d ( t i )  sequence, or equivalently, that Qd(ti) = 0 for all ti. Under this assumption, 
(5-85), (5-89), and (5-98) yield 

,a(t,,t,) = P-yti+)  - @T(t,,ti)P;l@(to,ti) (5-101) 

If there were no a priori information about the state, or formally if P i 1  = 0, 
then the information matrix is the inverse of the corresponding estimator error 
covariance. The larger the eigenvalues of $(t i ,  tl), the smaller the eigenvalues 
of P ( t i + ) ,  and the more precise our estimate is. If any eigenvalues of 3 ( t i ,  t l )  are 
zero, there are directions in state space along which our measurements give us 
no information. Not surprisingly, this information matrix is directly related to 
the observability matrix studied in Chapter 2 [see Eq. (2-74)J 

Expressing the definition of the information matrix, (5-loo), for times ti and 
ti- 1 ,  and equating like terms, yields the following recursion : 

$(ti, t l )  = @T(ri-l , t i)9(ti- l ,  t l)@(ti-l , t i)  + HT(ti)R-l(ti)H(ti) (5-102) 

From this relation, it can be seen that the "information" contained in a single 
measurement at time ti is [HT(ti)R-'(ti)H(ti)]: the term added to P-'(ti-) to 
generate P-l(ti+). 

EXAMPLE 5.8 Reconsider the estimator for the gyro on test. Example 5.2, in inverse variance 
form. Initial conditions are 

< - ' ( t o )  = PO' = 1 hr2/degz 

j ( t o )  = P,'.?, = 0 

Equations (5-85) and (5-94) yield the measurement updates as 

P-'(r,')  = P - ' ( r , - )  + H T R - ' H  = P-' (r i - )  + 2 

p ( f i + )  = .C(fi ) + H'rR I;; = .T(r, ) + 2:; 
The time propagations are 

M ( t , + l )  = (W1)TP- l ( r i+ )W1 = (0 .78 ) -2P-1 ( f i+)  = 1.64P-1(ti+) 

The time history of the inverse variance (and gains) can be precomputed, and is displayed in 
Fig. 5.10. These results are directly COmpdrdbk to Fig. 5.6, the plot of the error variance for the 
same problem. Note that the "information" added at each measurement time is H'R- 'H = 

2 hr2/deg2. 



242 

4 -  

3 -  

2 -  

1 

5 .  OPTIMAL FILTERING WITH LINEAR SYSTEM MODELS 

A P - ' ( r )  
(hr2/deg2) 

3 
- 

3.00 

- 

- 1 

- 

Essentially 
steady 
state 

1.80 1.81 c 

I I I I I - Time 
0 0.25 0.50 0.75 1.00 - (hr) 

FIG. 5.10 Inverse variance time history for Example 5.8. 

5.8 STABILITY 

This section specifies the rather nonrestrictive conditions under which the 
filter algorithm is stable [22,53]. Issues involved in the stability of stochastically 
driven systems are not completely resolved, but Lyapunov stability theory has 
been applied to the homogeneous portion of the filter to establish zero-input 
stability criteria. In fact, conditions will be established under which the filter 
is a uniformly, asymptotically stable linear system, which then implies bounded 
input-bounded output (BIBO) stability: for bounded inputs into the filter, the 
output (state estimate) is bounded. We note that zero-input and BIBO stability 
are significantly more distinct issues for nonlinear systems. 

The state equations (5-36) and (5-39) of the Kalman filter algorithm can be 
rewritten as 

fi(ti') = [I - K(ti)H(t;)]2(ti-) + K(ti)zi 
= [I - K(ti)H(ti)]@(ti, t i -  l)fi(tT- 1) 

+ [I - K(ti)H(ti)] J i  @(ti ,z)B(z)u(z)dz  + K(ti)zi (5-103) 
t i - 1  

We want to consider the stability of the homogeneous part of the filter, 

fiih(ti+) = [I - K(ti)H(fj)]@(ti, fi-l)5ih(tT- (5- 104) 
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a linear discrete system model with state transition matrix equal to 

[I - K(ti)H(ti)]@(ti, t i -  1). 

To specify the sufficient conditions for stability succinctly, we must introduce 
some system theory concepts and terminology. We assume a system model as 
described in Section 5.2. Such a system representation is said to be stochas- 
tically controllable if there exist positive numbers a and 8, 0 < a < 8 < co, and 
a time interval At such that, for all t 2 to + At, 

MI I l-At @(t, z ) C ( z ) Q ( ~ ) G ~ ( z ) @ ~ ( t ,  z)dz _< PI (5 -  105) 

where M1 2 M, means (M, - M,) 2 0, i.e., (M, - M2) is positive semidefinite. 
This implies that the system is completely controllable with respect to the points 
of entry of the dynamic driving noise (see Section 2.3, which further implies that 
the driving noise affects all of the states. However, (5-105) is a stricter require- 
ment than complete controllability: not only must the integral be positive 
definite, but must be bounded both above and below. 

Analogously, the discrete-time system representation (5-49), which may have 
arisen as an equivalent discrete-time system model, is stochastically controllable 
if there exist CI and 8 , O  < M < P < 03, and a positive integer N such that, for all 
i 2 N ,  

i 

2 @(t i ,  t j ) G d ( t j - I ) Q d ( t j -  i ) G d T ( f j -  l ) a T ( f i ,  f j )  5 PI (5-106) 
j = i - N +  1 

As in (5-105), this is stricter 'than, and implies, complete controllability with 
respect to the points of entry of the dynamic driving noise wd(.;). 

The sampled-data system representation of Section 5.2 is said to be stochas- 
tically observable if there exist positive numbers a and P, 0 < a < 8 < co, and 
a positive integer N such that, for all i 2 N ,  

i 

a1 I @'(tj, ti)HT(tj)R-'(tj)H(tj)@(tj, ti) I PI (5-107) 

Due to the requirement of being bounded both above and below, this is a 
stronger condition than, and implies, complete observability with respect to 
the points of exit of the measurements from the system model. Thus, it also 
implies that the effects of changes of any states can be observed in the outputs. 
Note that the summation term that appears in (5-107) is in fact the information 
matrix $(ti, t i - N +  

In Section 5.10, optimal estimation for the case of continuously available 
measurements will be discussed. The measurement model will be 

j = i - N +  1 

z ( t )  = H ( t ) x ( t )  + v ( t )  (5-108) 
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with v (.;) a zero-mean white Gaussian noise with E(v(t)vT(t + 7)) = R,(t)d(t). 
Such a system representation is similarly said to be stochastically observable 
if there exist positive numbers cc and P, 0 < 01 < < a, and a time interval At 
such that, for all t 2 to  + At, 

a1 I J-*, OT(t, t )HT(z)R,  ‘(z)H(t)O(t, t )d t  I PI (5-109) 

The integral in this expression is the information matrix, .%(p(t, t - At), appro- 
priate to this continuous-time model. 

Note that the condition of stochastic controllability is not met if Q(t) = 0 
over the entire interval in (5-105) or Qd(tj- = 0 over the summation range in 
(5-106): the case of no dynamic driving noise. Neither is it met if these strengths 
have infinite eigenvalues over a finite length of time. Similarly, stochastic ob- 
servability is violated if R- ‘ ( t j )  or Rc- ‘(t) are zero over the entire time of interest 
(infinite noise corruption) or if they are infinite over any finite time (the case of 
perfect measurements). 

I f  the system model upon which the Kalmanfilter is based is stochastically 
obseruable and stochastically controllable, then the j l t er  is uniformly asymptoti- 
cally globally stable. This means that if we consider the homogeneous equation 
(5- 104), then 

(5-110) 

i.e., in the limit as the number of data samples grows without bound, the norm 
(“length” or magnitude) of j ih ( t i f )  goes to zero (asymptotic), no matter what the 
initial conditions (global), and the rate of convergence is not a function of 
absolute time (uniform). Mathematically, the system model is uniformly asymp- 
totically stable if there exist positive constants cc and P such that, for all ti 2 to,  

the state transition matrix to transition j ih(t0) to time ti has a norm bounded 
above by cc exp[ -P(ti - to)]. The proof of this claim through explicit generation 
of an appropriate Lyapunov function is omitted, but can be found in the work 
of Kalman [36], Deyst and Price [22], Sorenson [72], Jazwinski [31], and 
McGarty [53] (the last reference correcting errors made in previous deri- 
vations). 

It is important that the sufficient conditions for filter stability do  not include 
stability of the original system model itself. The system model (and the actual 
system itself) can be unstable, and the filter equations may simultaneously be 
stable. Even if the system states are in fact growing without bound, as for 
example in the onset of nuclear reactor runaway, the errors committed by the 
filter in estimating those states will remain bounded. Thus, if the “true” state 
time history were as in Fig. 5.1 1, the state estimate could track this behavior as 
in plot (a) rather than exhibit an error growing unbounded so as to indicate no 
system instability, as in plot (b). This is a very desirable filter characteristic. 
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I j- Time 

PIG. 5.1 1 Estimation performance for unstable systems. (a) Unstable system and stable 
filter. (b) Unstable system and unstable filter. The solid lines indicate “true state” and the dots 
indicate state estimates. 

As might be suggested by the filter derivation of Section 5.3, if the system 
model is stochastically controllable, then P(ti+) is positive definite for all i 2 N .  
If it is both stochastically controllable and stochastically observable, P(t,’) is 
also uniformly bounded from above for all i 2 N .  Furthermore, under these 
conditions, if PI([,+) and Pz(ti+) are two solutions to the filter recursions for 
different initial conditions Pl0 2 0 and P,, 2 0, respectively, then [PI([,+) - 
P2(tii)] converges uniformly asymptotically globally to 0. (For proofs, see 
Jazwinski [31].) This last claim indicates that as more measurement information 
is incorporated, the effect of Po (which is often subject to uncertainty itself) is 
“forgotten.” Since the same would be true of the [Pl(t,+) - P2(t i ’ ) ]  sequence 
when started from some time later than to ,  this also indicates that the effect of 
numerical errors in computing P( ti+) are similarly “forgotten.” However, nu- 
merical errors associated with finite computer wordlength warrant particular 
attention, in that the stability claims just made are based upon an assumption 
of unbounded wordlength. Chapter 7 will discuss this problem and its solution 
in greater detail. 
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5.9 CORRELATION OF DYNAMIC DRIVING NOISE 
AND MEASUREMENT NOISE 

Assume that a sampled-data problem is adequately described by the discrete- 
time (possibly equivalent discrete-time) system model 

X ( t i )  = @(ti,  fi-l)X(ti-I) + Bd(t i -  , ) U ( f i -  1) -k Gd(ti- 1)Wd(ti-  1 )  (5-49) 

d t i )  = H(ti)x(ti) + v(ti) (5-4) 

with the usual Gaussian description of the initial conditions and zero-mean 
white noise processes W d ( ' , ' )  and v(.;): 

(5-3) E(x(t0)) = Po, E { [ x ( t o )  - SO"(~0) - 201') = Po 

R(ti) t i  = t j  

ti # t j  
E{v(ti)vT(rj)} = 

(5-50) 

(5-5) 

The Kalman filter for this problem formulation was previously investigated 
under the assumption that the dynamic driving noise wd( ., .) and measurement 
noise v( ., .) were uncorrelated; the algorithm is specified by (5-38)-(5-42) and 

Now we want to consider an extension of these results, allowing correlation 
between the two noise processes (assumed jointly Gaussian), the need for which 
was motivated in Section 5.2. Let this correlation be described by 

(5-51)-(5-52). 

C(ti) ti = t j  

ti  # t j  
E{Wd(ti)VT(fj)). = { (5-111) 

A generalized derivation [36] yields the optimal estimation algorithm with the 
same initial conditions and measurement update relations, i.e., leaving (5-38)- 
(5-42) unaltered, but with time propagation equations modified from (5-51) and 
(5-52) to (note the time index has been changed for convenience): 

%(ti+ 1 )  = @(ti+ 1, ti)a(ti') + B d ( t i ) U ( t i )  

+ Gd(ti)C(ti)[H(ti)P(fi-)HT(ti) + R(fi)]-'[~i  - H(ti)P(ti-)] (5-112) 

p(ti+ 1) = @(ti+ 1 ,  ti)P(ti+)@'(fi+ 1, ti) 4- Gd(ti)Qd(ti )GdT(ti)  

- Gd(ti)C(ti)[H(ti)P(ti-)HT(ti) + R(ti)] - 'CT(ti)GdT(ti) 

- @(ti+ 1, ti)K(fi)CT(ti)GdT(li) - Gd(ti)C(ti)KT(ti)@T(fi+ 1 ,  ti) (5-1 13) 

Note that if t l  is assumed to be the first measurement time, (5-51) and (5-52) 
are used for the first sample period. 
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EXAMPLE 5.9 Return to the gyro on test example. but now let 

E ( W d ( t i ) V ( t i ) ;  = c = 0.2 

Then the time propagation relations become (note G, = I )  

a ( t ~ , )  = 0 . 7 8 . ~ ~ ' )  + 0 . 2 [ ~ ( t ~ - )  + o . ~ ] - ~ [ z ~  - w - ) j  
P(r;+ = (O.78)'P(r2+) + 0.39 - (O.2)'[P(ri-) + 0.5]-1 - 2[0.78]K(ti)[0.2] 

or, since K ( t j )  = P ( t i ' ) H ( t i ) R ( t i ) - '  = 2P(t,'), 

P(ti+ I )  = 0.78(0.78 - 0.80)P(ti+) + 0.39 - 0.04[P(ti-) + 0.51-l 

= -b.016P(ti+) + 0.39 - 0.04[P(ti-) + 0.51-l 

Calculating the error variance and gain time history yields 

Time 0 0.25 0.50 0.75 1.00 

P(ti-) - 1.00 0.35 0.34 0.34 
P(t ,+)  1 0.33 0.21 0.20 0.20 
K(t i )  - 0.67 0.42 0.40 0.40 

This can be compared to Fig. 5.6 for the case of no correlation between wd(.;) and v(-;). The 
decrease in steady state values from P(t , - )  = 0.55 to 0.34 and P(t i ' )  from 0.26 to 0.20 is due to the 
exploitation of the correlation between the dynamic noise and the noise that corrupts the observable 
outputs: the z ,  realizations reveal more about the noise process wd( ., .). 

If (5-49) is an equivalent discrete-time system model, the previous problem 
formulation corresponds to correlation between the noise corrupting the mea- 
surement at time ti and the dynamic driving noise over the ensuing sample 
period. It is also useful to consider a model involving correlation between the 
dynamic noise over a sample period and the noise corrupting the measurement 
at the end of that interval. Thus, consider the same problem formulation, but 
replacing (5-1 1) with 

(5-114) 

For this formulation,, the generalized filter algorithm entails the original initial 
conditions and time propagation equations, i.e., (5-41), (5-42), (5-51), and (5-52). 
However, the measurement update relations (5-38)-(5-40) are replaced by (note 
the similarity to the result of Problem 3.19) 

K,(ti) = [P(ti-)HT(ti) + Gd(ti- JC(ti)][H(ti)P(ti-)HT(ti) 

+ R(ti) + H(ti)Gd(ti-I)c(ti) + CT(ti)GdT(ti-l)HT(ti)]-' (5-115) 

%(ti') = % ( t i - )  + Kc(ti)[zi - H(ti)P(ti-)] 

P(ti') = P(ti-) - K,(ti)[H(ti)P(ti-) + CT(ti)GdT(ti- I)] 

(5-116) 

(5-117) 
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EXAMPLE 5.10 Again consider the gyro on test example with correlation between wd(.;) 
and v( .;), but now in the form of 

E[wd(ri-ljv(ri); = C = 0.2 

Then the measurement update equations become (with Gd = 1): 

K,(t i )  = [ P ( t i - )  + 0.2][P(ti-) + 0.5 + 0.2 + 0.21-l = [P(ti-) + 0.2]/[P(ti-) + 0.91 

.?(ti') = ? ( t i - )  + K,(t ,)[Z, - x(ti-)] 

p(ti+) = P ( t i - )  - K,(t i )[P(t i - )  + 0.21 
The error variance and gain time histories can be computed as  

Time 0 0.25 0.50 0.75 1.00 

P ( t , - )  - 1.00 0.54 0.49 0.48 
P(ti+) 1 0.24 0.16 0.15 0.15 
K, . ( f , )  - 0.63 0.51 0.50 0.49 

Here there is no correlation between the v(t i )  corrupting the current measurement and wd(ti) 
driving the dynamics during the next sample period, so there is a greater spreading of errors over 
the next interval than in Example 5.9: in steady state, [P(ti, - P(ti')] here is (0.48 - 0.15) = 0.33 
versus (0.34 - 0.20) = 0.14. With less confidence in the dynamics model here, the filter gain is 
higher (0.49 versus 0.40 in steady state) to weight the measurement data more heavily. By being 
correlated with wd(t i -  1)1 v(ri) is also correlated with x( t , ) ,  so the measurement z(rij is more strongly 
correlated with x(ti), and thus the lower P ( t i + )  value here (0.15 versus 0.20). W 

These examples reveal the improved estimation precision due to exploiting 
the noise correlation: observing a particular realization of v( ., . )  as the corrup- 
tion on the measurements yields probabilistic information about the realizations 
of wd(', ')  that have driven the system dynamics. As expected, either of these 
formulations reduce to the original Kalman filter algorithm if C(ti) 3 0 for all 
time. Moreover, if v(ti) is correlated with both wd(ti- 

{[::;i)l I [  CiT(ti) CzT(fi) R(ti) 

the above results can be.combined. In practical applications, a tradeoff analysis 
would be conducted to determine whether the performance improvement 
afforded by this algorithm warrants the increased computer burden beyond 
that of the more conventional Kalmaii filter formulation. 

and wd(ti), as 

1 Q d ( t i - 1 )  0 cl(fi) 

E wd(ti)  [Wr.iT(ti- l)WdT(ti)VT(ti)] = 0 Q d ( t i )  Cz(fi) 

5.10 TIME-CORRELATED MEASUREMENT NOISE; 
PERFECT MEASUREMENTS 

In the optimal estimator derivation of Section 5.3, the covariance of the mea- 
surement corruption noise, R(ti), was assumed positive definite because R -  '(ti) 
was required in certain steps of that derivation. However, R - ' ( t i )  does not ap- 
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pear in the final recursions, so positive definiteness may not in fact be necessary. 
In fact, the algorithm will operate as long as [H(ti)P(ti-)HT(ti) + R(t,)] is 
invertible. The particular case of R(ti) = 0 for all time is of interest because of its 
applicability to problems in which measurements are corrupted only by time- 
correlated noise as well as to formulations involving “perfect” measurements. 
For these cases in which R(ti) is singular, stochastic observability may well be 
violated, but recall that this is part of a sufficient rather than necessary condition 
for filter stability. Numerical problems will be accentuated, howeve; (see 
Chapter 7). 

First let us demonstrate that time-correlated measurement noise does lead 
to a filter formulation in which R(ti) is zero for all time. Let the system model be 
described (in white noise notation) as in Fig. 5.12. The system dynamics model is 

X(t)  = F(t )x(r )  + B(t)u(t) + G(t)w(t) (5-118) 

with w(.;) a zero-mean white Gaussian noise of strength Q(t)  for all t E T. 
The available discrete-time measurements are modeled as 

Measurement 

z ( tJ  = H ( t i ) x ( t i )  + nf(ti)  (5-119)  

where nf(.;) is a zero-mean time-correlated Gaussian process: the output of a 
time-correlated noise generator, i.e., a shaping filter. This shaping filter is de- 
scribed by (the subscript f denotes filter) 

X A f )  = Ff(t)xdt) + GAt)w,(t) (5- 120) 

n,(t) = H,(t)x,(t) (5-121) 



250 5. OPTIMAL FILTERING WITH LINEAR SYSTEM MODELS 

The overall system model can be expressed in terms of the augmented state 
xa(.;) as described in Section 4.1 1, 

(5- 122) 

as 

(5-123) 

(5- 124) 

(5-125) 

This is in the form of a linear system driven only by white Gaussian noise 
wa( ., .), but from which is available perfect measurements of certain linear 
combinations of states at discrete times. 

Now let us consider the problem involving perfect measurements in general. 
The optimal estimator will be generated by a limiting process on previous 
results, and the difference in the characteristics of the resulting algorithm will be 
described. Let the available measurements be modeled as 

z(ti) = H(t,)x(ti) + v ( t J  

with the zero-mean white Gaussian noise v(.;) being of strength R(ti)  = &I, 
E > 0 (so that R(ti) is positive definite). The filter update equations are 

%(ti') = %(ti-) + P(ti-)HT(ti)[H(ti)P(ti-)HT(ti) + E I ] - ~ [ z ~  - H(t,)ri(ti-)] 
P(ti+) = P(ti-) - P(ti-)HT(ti)[H(ti)P(ti-)HT(ti) + ~1] -~H(t , )P( t~ - )  

Now observe the result of letting E + 0, i.e., the limit of perfect measurements. 
Although E must be nonzero to be assured of the existence of density functions 
used in the original derivation, characteristic functions can be used to maintain 
validity of this operation. As E + 0, P(ti+) will become singular, unlike the 
previous characterization of the algorithm. The result of the limiting process is 

%(ti+) = % ( t i - )  + P(ti-)HT(ti)[H(ti)P(ti-)HT(fi)]-l[~i - H(ti)%(ti-)] (5-126) 

P(ri') = P(ti-) - P(ti-)HT(t,)[H(ti)P(ti-)HT(ti)] -lH(r,)P(ri-) (5-127) 

Let us investigate the invertibility of [H(t,)P(ti-)HT(t,)] and the singularity 
of P(ti') further. Let z(tJ = H(t , )x(r , )  be written out as 
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Thus, if H(ti) is of full rank [i.e., if h,(ti), . . . , h,(ti) are a linearly independent 
set of m vectors], then there are m directions in state space along which we have 
perfect measurements (if it is not of full rank, then there are rank [H(ti)] such 
directions). With respect to some coordinate frame in state space, then, we can 
get perfect measurements of m (rank [H(ti)]) out of the n states. Figure 5.13 
depicts the case of a two-dimensional measurement and a three-dimensional 
state: by knowing z1 and z 2 ,  we know the state in two of three directions per- 
fectly, i.e., in a two-dimensional subspace of R3. 

FIG. 5.13 Perfect two-dimensional measurement in three-dimensional state space. xhl = 

( l / /h i ( t t ) l )z i ;  Xh2 = ( 1 / l h ~ ( 4 ) l ) Z ~ .  

If P(ti-) is positive definite (of rank n)  and H(ti) is of full rank m, then 
[H(ti)P(ti-)HT(ti)] is a positive definite m-by-m matrix, and so has an inverse. 
P(ti') will then be singular, of rank (n - m ) ;  m eigenvalues are zero. This 
singularity is readily seen by premultiplying (5-127) by H(ti) to obtain 

H(ti)P(ti+) = H(ti)P(ti-) - H(ti)P(ti-)HT(ti)[H(ti)P(ti-)HT(ti)] - 'H(ti)P(ti-) 
= H(ti)P(ti-) - H(ti)P(ti-) = 0 (5-128) 

Heuristically, when you take a perfect m-vector measurement, the error prob- 
ability density collapses in the directions along which you can determine the 
values of the state components exactly. 

Thus, we want P(ti-) to be positive definite (of rank n), whereas P(t,'l is 
singular (positive semidefinite, of rank n - m), with 
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One syficient condition for this to be true would be for the integral term itself 
to be of rank n:  for the system representation to be stochastically controllable 
over each sample period. 

EXAMPLE 5.11 Consider the gyro example again, but now let the measurement be cor- 
rupted by a bias only, with no additional white noise corruption, as depicted in Fig. 5.14. The 
bias is modeled as the output of an undriven integrator: the shaping filter is simply if([) = 0. In 
augmented state vector form, this becomes 

The initial conditions are assumed to be 

so the appropriate estimator initial conditions are 

For the given augmented Fa, the state transition matrix is 

The time propagation relations are, by (5-36) and (5-37), 

\ Z(t i )  = -m+L W ( t )  c( 

FIG. 5.14 Gyro corrupted by a bias. 
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The measurement update relations are given by (5-126) and (5-127) as 

P(t;+) = P(t;-) - K(ti)HP(t;-) 

By direct addition of the above expressions, it can be seen that 

2(t;')  + n,(t;+) = zi 

Such a phenomenon invariably occurs due to the perfect measurement of [ x j t ; )  + xI(ti)]. As 
shown in Fig. 5.15, when a measurement z ( t , , w j )  = zi becomes available, we know the value of 
[ x ( t i , w j )  + x,(t; ,  w j ) ]  exactly: the probability density describing the possible values of x ( t j )  and 
x , ( t i )  has collapsed down to being nonzero only above the line [ x ( r i , w j )  + x, ( t i ,wj ) ]  = 2 ; .  (As time 
goes on between measurements, the probability density spreads out again.) Thus, P ( t j ' )  is singular, 
of rank one. If we were to rotate coordinates (by similarity transformation) to the (,* - t2* co- 
ordinates in the figure, there would be no  uncertainty in the tl* direction just after a measure- 
ment, and so 

FIG. 5.15 Perfect measurement for Example 5.1 1 
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As suggested in the example, it is convenient to define a coordinate trans- 
formation such that the perfect measurements are in fact direct measurements 
of individual state variables. Actually, a more general transformation than a 
simple rotation can be exploited to advantage. Assume H(ti) to be full rank: 
this is not restrictive, since if it were not, we would have redundant perfect 
information. An n-by-n nonsingular transformation matrix T(ti) can be defined 
for each ti E T as 

(5-129) 

where H(ti) is the measurement matrix and J(ti) is any convenient (n  - m)-by-n 
matrix that yields a nonsingular (and thus invertible) T(ti). Since this procedure 
is computationally attractive for the time-invariant H case, we confine our 
attention to 

(5- 129') 

Through this transformation, the problem can be expressed in terms of x*( t) ,  
where 

X*(t) = Tx(t), ~ ( t )  = T-'x*(t) ( 5- 1 30) 

as the equivalent 

x*(t) = F*(t)x*(t) + B*(t)u(t) + G*(t)w(t), z ( r )  = H*x*(t) (5-131) 

with F*(t )  = TF(t)T-', B*(t) = TB(t), and G*(t) = TG(t). In view of (5-130), 

(5-1 32) 

In other words, the first m components of x*(ti) are just z(ti),  so H* = [I ~ 01, 
where I is m-by-m and the zero matrix is m-by-(n - m). The remaining (n  - m) 
components of x*(t,) are identified as y(ti):  by choice of J, this vector can often 
be a vector of variables to be estimated. 

The optimal estimate of x*(ti) is obtained by operating on the measurement 
vector zi. The advantage in using the transformed variables is that the first m 
rows and columns of P(ti+) are identically zero and need not be computed. If 
desired, the optimal estimate of the original state vector x(ti) can then be 
computed as %(t i+)  = T- '%*(ti+). 

EXAMPLE 5.12 In Example 5.1 1. the suggested coordinate rotation can be accomplished by 
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But, since we are interested specifically in obtaining an estimate of the first component of x , ( t i ) ,  
a more convenient choice of J would be [l 01, yielding 

Thus we get 

Thus, the y ( t J  of (5-132) is in fact x ( t i ) ,  the variable to be estimated. The defining matrices are 

l l c c  

G* = TG = [l ol[o] = I:] 
H* = [l 01 

The filter update relations are 

In higher-dimensioned problems, there would be greater computational advantage to using trans- 
formed variables. 

The construction of a state estimate given perfect measurements from a 
system that has no dynamic driving noise (but initial conditions are not known 
perfectly) can be developed by means of Luenberger observers [45,46,48]. 
Coordinate transformations similar to that of (5-1 29) are utilized in the design 
of observers, in which the state estimate is generated as %(ti’) = T-’%*(ti), 
where 2*(ti) is given by (5-132), with z(ti) provided by the measuring devices 
and y ( t i )  the output of an (n - m)-dimensional linear system (the “minimal 
order observer”). The inherent freedom of choice of J is exploited to achieve 
desirable dynamic performance of the algorithm. Observer-estimators [78,79] 
can be developed for ’the problem of state reconstruction in which noises drive 
some states and corrupt some measurements. This is of practical significance in 
cases involving large differences in precision of sensors so that, with respect to 
the finite wordlength of the digital computer being used, some measurements 
“look perfect” compared to others. Observer theory has also been extended to 
the stochastic case [42, 80, 811. For details, see the cited references. 

The problem of time-correlated measurements can be handled by an alter- 
nate approach [ 101 that avoids state augmentation (and thus increased state 
dimension). Instead, consecutive measurements are differenced to generate 
pseudo-measurements in which the corrupting noise is white. Consider the 



256 5. OPTIMAL FILTERING WITH LINEAR SYSTEM MODELS 

discrete-time system and shaping filter representations 

X(t i+ 1) == @(t i+  1, t i )x ( t i )  + Gd( t i )Wd( t i )  (5-1 33a) 

x f ( t i +  1) == @f( t i+  1 7  t;)xf(ti) + G d f ( f i ) w d f ( f j )  (5-133b) 

with w d (  .;) and Wdf( . ,  ' )  zero-mean independent white Gaussian noises of 
strengths Qd(ti) and Qdf(ti), respectively, for all ti E T ,  and assume that x ( t o )  
and xf(to) are uncorrelated. Further assume the measurement to be of the form 

~ ( t ; )  = H ( t i ) x ( t i )  + x f ( t i )  (5-133~) 

Note that this implies xf(ti) is an rn-vector process and that H,(ti) I for all 
ti: a definite restriction, except that the useful case of exponentially time- 
correlated noise on each scalar measurement fits this description. Now define 
the pseudo-measurement process z d (  ., .), with d denoting difference, as 

Zd(ti)  = z ( f i + l )  - @ f ( t i + l , f i ) Z ( f i )  (5- 134) 

Although z d ( t i , o j )  will yield information about x(ti), it does not become 
available until one sample period later, since it requires knowledge o f z ( t i +  1 ,  wj) .  
Writing z d ( t i )  in terms of (5-133) yields 

Since z(ti+ 1, w j )  is required before z,(ti) can be processed, this actually yields 
an optimal smoothing problem formulation rather than an optimal filtering 
problem, and the algorithm can be developed using the results of Chapter 8 
(Volume 2). In application, the measurement z(ti+ l,oj) is taken at time t i +  

Zd( t i ,  oj) is thereby computed, %(t i )  is then calculated, and the estimate propa- 
gated to the current real time t i +  as n(tt:+ l). 
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5.1 1 CONTINUOUS-TIME FILTER 

As discussed previously, practical application of optimal estimation almost 
invariably involves implementation on a digital computer, which inherently 
dictates sampled-data format for measurements. Consequently, attention has 
been concentrated on this formulation. This section provides a formal derivation 
of the continuous-data Kalman filter [15,37]; it can be made rigorous, and the 
concepts involved are of considerable theoretical significance, but the additional 
difficulty and effort is not warranted in view of our objective to attain efficient, 
practical algorithms. One might consider generating the continuous filter and 
then discretizing it for eventual implementation, but there is a serious drawback 
to this procedure, discussed subsequently. 

Consider the same continuous-time dynamics model as used before 

d x ( t )  = F ( t ) x ( t ) d t  + B(t)u(t)dt + G(t)dp(r) (5-1 37) 

or, in white noise notation 

x ( t )  = F ( t ) x ( t )  + B(t)u(t) + G(t)w(t) (5-137‘) 

where p(.;) is Brownian motion of diffusion Q(t)  for all t E T ,  or w ( . ; )  is 
zero-mean white Gaussian noise of strength Q(r) for all t E T.  Let ~ ( t , )  be 
modeled as a Gaussian random variable with mean Po and covariance Po. 

We want to consider continuously available measurements, modeled by the 
process zc(., .) defined by 

z,(t) = H ( t ) x ( t )  + v,(d (5-138) 

where v,( ., .) is a zero-mean white Gaussian noise with 

E{vc(t)vcT(t + T)] = Rc(t)&z) (5-139) 

The subscript c is meant to distinguish these continuous time processes from 
the analogous discrete-time processes considered previously. 

To derive the desired result, we will consider a discrete-time measurement 
process and examine the result of letting the time between sample times decrease 
in the limit to zero. Thus, the measurements are described by 

1 z ( t i )  = H ( t i ) x ( t i )  + v( t i )  (5- 140) 

where v ( . ,  . )  is a zero-mean white Gaussian sequence with 

E{v(ti)vT(ti))  = R(t i )  = Rc(ii)/Ari (5-141a) 

E(v(ti)vT(tj))  = 0, i # j (5-141b) 

where R(t i )  and R,(ti) are positive definite and symmetric for all ti E T and 
Ati is the time interval [t ,+ - ti]. Without any real loss of generality, we let all 
Ati’s be the same, At, in the derivation. The covariance Rc(ti) in (5-141a) will 
eventually become the strength of the continuous-time white Gaussian noise 
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process vc(., . )  that corrupts the continuous-time measurements. This descrip- 
tion results in an autocorrelation function as depicted in Fig. 5.16, defined for 
discrete values of z. Note that as At -+ 0, a Dirac delta function (an infinite 
impulse at z = 0) is achieved. We further assume that x(to), p(.:) or w(.;), and 
v( ., .) are independent, and that F( .), B( .), G( .), €I-( .), Q(.), and R,( .) are at 
least piecewise continuous. 

E [V( t j )V( t i  + T)) 1 

-5At -4At -3At  - 2 A t  - A t  Ac 2At 3At 4Ac 5At 

FIG. 5.16 Autocorrelation function for discrete-time v(., .). 

The discrete-time Kalman filter for this problem formulation is given by 
Eqs. (5-36)-(5-42) with R(ti) repeated by R,(t,)/At. In the time propagation 
relations, the state transition matrix can be expanded as 

@(fi,ti- ,j .= I + F(t,-,)Ar + CJ(At2) (5- 142) 

where lo(At2) is composed of terms involving powers of At greater than or 
equal to two, such that 

- 0  lim -- 
~ t - 0  At 

Co(At2) 

First consider the state estimate equations: substituting (5-142) into the %(ti-) 
equation, (5-36), yields' 

%(ti-) = [I + F(ti-,)At]5i(t~-,) + r' [I + F(r){ti - ~ j ] B ( ~ ) u ( r j d z  + 19(At2) 
t i -  I 

= %(tT- ,) + F(ti- ,)%(r;- ,)At + B(a)u(a)At + L((At2) (5-143) 

where CT is somewhere in the interval [ t i - , , t i ) ,  by the mean value theorem. 
Substituting (5-143) into the a(t,') equation, (5-39), yields 

5i(ti') = 5i(tT- ,) + F(ti- ,)5i(t;- , )At + B(a)u(a)At + o(At2) 
+ P(ti-)HT(ti)[H(ti)P(ti-)HT(ti)At + Rc(ti)]-l At[zi - H(ti)5i(ti-)] 
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Now when %(ti’- ’) is brought to the left hand side of this equation, the entire 
result divided by At, and the limit taken as At -+ 0, we get 

i ( t )  = F ( t ) a ( t )  + B(t)u(t)  + P(t)HT(t)R;’(t)[z(t) - H(t)%(t)] (5-144) 

where, in the limit, ji(tT-l) -+ !?(ti-) -, 2(ti’) %(t )  and P(t;-’) -+ P(ti-) + 

P(ti’) 2 P(t). Note that z( . )  is a sample from the continuous-time measurement 
process z,( ., . ). Performing similar operations on the covariance equations 
yields 

P ( t )  = F(t)P(r) + P(t)FT(t) + G(t)Q(t)GT(t) - P(t)HT(t)R;’(t)H(t)P(t) 
(5-145) 

This has not been very rigorous, but existence of the desired limits can be 
proven by means of probability one arguments and the concept of martingales, 
to prove, among other things, that 

lim E { x ( t ) J z ( r , )  = z l , .  . . , z(t , )  = zk;  t , ,  . . . , t k  _< t }  
k- w 

= E{x( t ) l z , ( z )  = z(z); to I z I t )  

We will gloss over these aspects here. Thus, the continuous-time Kalman filter 
is specified by the differential equations (5-144) and (5-145), which are integrated 
forward from the initial conditions 

(5-146a) 

(5- 146b) 

Figure 5.17 portrays the basic system model and the continuous-time Kalman 
filter based upon this model. From this figure it is evident that within the 
structure of the filter is a mathematical model of the real system that provides 
the measurement data input to the filter, just as in the discrete-time measurement 
case. The filter incorporates such a model, driven by an optimal gain times the 
difference between the actual measurements received, z( t),  and the optimal 
estimates of what theseshould be based on the mathematical model output, 
H(t)fi(t), the residual [ z ( t )  - H(t)%(t)]. 

In the continuous-time case, the Kalman filter gain is seen to be 

K(t) = P(t)HT(t)Rc- ‘ ( t )  (5-147) 

If P(t) is “large” (having large eigenvalues), then the residual is heavily weighted : 
if we are very uncertain of the current estimate %(t), then the new information 
from the measurements is emphasized. Similarly, if R,(t) is ‘‘small,’’ i.e., if the 
measurements are very accurate, then the measurement information is weighted 
heavily. In fact, P(t)HT(t)RC-’(t) can be interpreted heuristically as a signal to 
noise ratio. 
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L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - -  J 

FIG. 5.17 (a) Continuous-time system model and (b) Kalman filter. 

An algebraically equivalent form for the error covariance equation, (5-145), 
in terms of the Kalman gain K(t) of (5-147), is 

P(t)  = F(t)P(t) + P(t)FT(t) + G(t)Q(t)GT(t) - K(t)R,(t)KT(t) (5-148) 

The first two terms of either of these expressions indicate the homogeneous 
system effects (usually stabilizing), the third term is the covariance increasing 
effect due to the dynamic noise w(., .). and the fourth term is the error covariance 
decreasing effect of incorporating the measurement information. Thus it is 
reasonable that removing the last term, i.e., removing the continuously available 
measurements, yields the relation for propagating the error covariance between 
sample times in the sampled-data Kalman filter. 

Equation (5-145) or (5-148) is a continuous-time matrix Riccati differential 
equation. As a regular differential equation, it has the usual properties of 
existence, uniqueness, aud continuity of solutions. However, Riccati equations 
are very difficult to integrate numerically, being very sensitive to integration 
step size and often exhibiting unstable computed solutions despite theoretical 
solution stability. 

Most practical estimation problems are characterized by system dynamics 
most naturally modeled by differential, rather than difference, equations. 
However, the designer knows from the outset that a digital computer will be 
employed in the eventual estimator implementation, thus dictating sampled- 
data rather than continuous-time measurements. Consequently, there are two 
means of systematic estimator design. First, we could take the continuous-time 
system model, design the continuous-time filter, and then discretize the result. 
Second, we could determine an equivalent discrete-time model and generate 



5.1 1 CONTINUOUS-TIME FILTER 261 

the discrete-time filter from it. However, the first approach is fraught with the 
difficulties of integrating Riccati differential equations, while the second 
involves significantly better behaved recursions. Moreover, the discretization 
of a continuous filter is an approximation to an optimal discrete-time filter, 
whereas a discrete-time filter based on an equivalent discrete-time model 
involves no approximations. Thus, the preferable design approach is to dis- 
cretize the model first and then generate the filter. 

EXAMPLE 5.13 Once again we examine the gyro on test, but now assuming that measure- 
ment data are available continuously. modeled as 

Z J t )  = X ( I )  + V J t )  

where vC(.;) is a zero-mean white Gaussian noise with E{v,(t)v,(t + T); = RC(t )6( t ) .  In view of 
(5-141a), if we want the continuous-time estimator performance to  approximate that of the discrete- 
time filter, the appropriate noise strength would be 

R,(t) = R,  = [R(t,)Ar] = (0.5 deg2/hr2)(0.25 hr) = 0.125 deg2/hr 

The estimator is given by 

i ( r )  = - rP ( t )  + [P(t)/R,][z(r) - % ( r ) ]  = -a ( [ )  + [ 8 P ( r ) ] [ ~ ( t )  - %(t ) ]  

integrated forward from the initial condition a([,) = 0, where P ( t )  satisfies the Riccati equation 

P ( t )  = - 2 ~ P ( r )  + Q - [P2(r)/R,] = -2P(t)  + 2 - 8 P 2 ( r )  

with an initial condition of P(t,) = 1. For this problem, a steady state value of P(r)  is achieved, 
and it can be found by setting P( t )  = 0: 

2 - 2P - 8 P 2  = 0 

for which the positive solution is 

P = 0.392 

The total solution for P(t )  is, letting u = JE' + (Q!R,) = ,/fi 

Figure 5.18 plots this result, superimposed upon the result of Example 5.3. The continuous-time 
solution passes through the region bounded by the oscillations of the discrete-time filter. As At + 0. 
these variations converge t,o the continuous-time result. For instance, consider halving the sample 
period. As a result, the increase in P ( t )  is not as great before the next measurement becomes avail- 
able. However, to maintain constant R,, the discrete-time R(t,)  would have to be doubled ac- 
cording to (5-141a) [we want to let Ar + 0 while letting v(fi) + v,(t,) of strength R,]. Each decrease 
in P ( r )  due to measurement updating is thus less, since the measurements are now corrupted by 
stronger noise. 

Note that if the product [R(r,)At] were not held constant, the discrete-time solutions would 
not converge to the continuous-time solution. If R(t,) were kept constant instead, more of equally 
accurate data would be available by halving the sample period. In the limit, perfect continuous 
measurements would be achieved, and P(r)  would instantaneously go to zero at to  and stay there 
for all time. 

The numerical characteristics of the Riccati differential equation solution, 
especially sensitivity to integration step size, motivate either avoiding methods 
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FIG. 5.18 Error variance of continuous-time filter for gyro example. 

dependent on its solution or seeking solution techniques other than straight- 
forward integration. To generate a solution to an n-by-n Riccati matrix differ- 
ential equation, it is possible to exploit an associated 2n-by-n linear matrix 
differential equation. Specifically, a solution to (5-145) can be expressed as 

P(t) = U(t)v-'(t) (5-  149) 

where U(t) and V(t) are n-by-n matrices satisfying the homogeneous linear 
differential equation and initial condition 

where V(t) is always invertible. 

Proof' of Equiz~a/enc.y First, the assumed form (5-149) satisfies the initial condition 

P(t,) = U(t,)v-'(t,) = ~ ~ 1 - l  = Po 

Differentiating the assumed form yields (dropping the time notation for convenience) 

P = U V - '  + U d ( V - ' ) / d t  

But, since VV-'  = I , d { V V - ' } / d t  = 0 = VV-'  + V d ( V - ' ) / d t ,  so 

dV- 'J& = - V - ' V V - '  

(5-1 5Ob) 
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if V(t) is in fact invertible, giving 

Substituting the partitions of (5-150a) into this yields 

P = (FU + GQG'V)V-' - UV-'(H'R,'HU - F'V)V-' 

= FUV-' + GQGTVV-' - UV-'HTR, 'HUV-' + UV-'FTVV-' 

= FP + GQG' - PH'R, 'HP + PF' 

which is in fact the original Riccati equation to be solved, (5-145). The matrix V(r) can be shown 
to be of full rank, and thus invertible, for all time. 

Although (5-1 50) is a homogeneous linear differential equation, it embodies 
unstable modes; straightforward integration is not generally practicable, but 
eigenvalue techniques provide a useful means of attaining the steady state P 
satisfying (5-145) for the case of time-invariant systems with stationary noises 
[12,58,59]. Other means of solving (5-145) include iterative procedures 
[38-411, perturbation methods [61], the partitioned algorithm approach 
[43,44], matrix factorization methods [63], the matrix sign function method 
[6, 191, and other means of enhancement in numerical integration [85]. 

The stability characteristics of the continuous-time filter are analogous to 
those of the discrete-time filter, described in Section 5.8. Here we consider the 
homogeneous portion of the filter state equations, 

% ( t )  = [F(t) - P(t)HT(t)Rc-'(t)H(t)]ii(t) + P(t)HT(t)RC-'(t)z(t) (5-151) 

Then, if the system model upon which the continuous-time Kalman filter is 
based is stochastically observable (5-109) and stochastically controllable (5-105), 
then the filter is uniformly asymptotically globally stable. As in the sampled- 
data case, it is possible to generate a stable filter from an unstable system model. 

Unlike the discrete-time case, R; ' ( t )  appears explicitly in the continuous-time 
Kalman filter gain, (5-147), so that a singular R,(t)  will require a substantial 
modification in the optimal estimator algorithm. Care must be taken when 
performing a limiting procedure to derive the optimal continuous-time estima- 
tor for problems characterized by time-correlated or no measurement noise, as 
considered in Section 5.10. (As in that section, filtering in the presence of only 
time-correlated measurement noise is a special case of filtering with perfect 
measurements, once state vector augmentation is exploited.) In the limit, the 
problem formulation and the optimal estimator, or Deyst Jilter [ll, 13,20,21, 
741, are as follows. Let the system dynamics be modeled as in (5-137) and let the 
continuous-time measurements be free of white noise corruption : 

zc(t) = H ( t ) x ( t )  ( 5- 1 52) 

Assume that F(.), B(.) ,  G ( . ) ,  and Q(.)  are continuous with continuous first 
derivatives and H( - ) is continuous with continuous first and second derivatives. 
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Then the optimal estimator is specified in terms of an n-dimensional state y(t) as 
(5-1 53a) % ( t )  = y(t) + W(t)z(f) 

$0) = {[I - W(t)H(t)]F(t) - W(t)H(t) - W(r)Ii(t)}%(t) 

+ [I - W(t)H(t)lB(Mt) (5- 15 3b) 

(5- 153~)  

(5-1 53d) 

A(t) = P(t)HT(t) + [P(t)FT(t) + G(t)Q(t)GT(t)]HT(t) 

W( t) = A( t) [ H( t)G( t)Q( t)GT( t)HT(t)] - 

P ( t )  = F(t)P(t) + P(t)FT(t) + G(t)Q(t)GT(t) - W(t)AT(t) (5-153e) 
where (5-153a) and (5-153b) determine the basic filter structure, W(t) in (5-153d) 
is the filter weighting (gain) matrix, and (5-153e) is a matrix Riccati differential 
equation for the estimate error covariance. Figure 5.19 portrays the estimator 
structure. Note that, unlike the Kalman filter, the measurement z(t) can appear 
in the filter output directly with no integration. Because of this direct feed- 
through, in stationary-noise, time-invariant-system cases this filter can be 
described by a matrix of transfer functions, each of which are able to have a 
numerator of degree equal to that of the denominator. On the other hand, 
transfer functions corresponding to the steady state Kalman filter must have 
numerators of degree less than the corresponding denominators. 

L--J [ I -  WH]F - W H  - W H  

FIG. 5.19 Deyst filter structure 

Direct feedthrough of z(t) also affects the initialization of the filter. Before any 
measurement data are taken, the a priori statistics of x ( t o )  are %(to)  = go and 
P(to) = Po. However, at time ro there is a discontinuity [the form of which for 
%(to')  and P(to+) is evident from a discrete-time Kalman filter update]: 

(5- 154a) %(to') = Po + POHT(tO)[H(tO)POHT(tO)]-'[z(tO) - H(to)5io] 

p( toC)  = Po - PoHT(to)[H(to)PoHT(to)]- 'H(to)Po (5-154b) 

A([,+) = P(to+)HT(to) + [P(to+)FT(to) + G(to)Q(to)CT(to)]HT(fo) (5-154~) 

W(to') = A(to+)[H(to)G(to)Q(tofGT(t,fHT(t,)] (5- 154d) 

y( to+)  = % ( t o + )  - W(ro+)z(to) (5- 154e) 
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Thus, the filter cannot be initialized until the measurement value at time to 
becomes available. 

The m-by-m matrix [H(t)G(t)Q(t)GT(t)HT(t)] must be nonsingular to be 
assured of the existence of its inverse, required by the algorithm in (5-153d). 
Unless H(t) is of full rank for all t E T ,  it will be singular; but linearly dependent 
rows of H can always be ignored since this is just redundant perfect information. 
Heuristically, thjs matrix represents the strength of first integrals of white noise 
in the measurements; its singularity implies that there exist one or more mea- 
surements, or linear combinations thereof, that contain no first integrals of 
white noise. If there is no white noise entering the system model just one integra- 
tion before the measurement, one or more differentiators can be inserted into 
the filter input channel to generate derivatives of the measurements as “new” 
measurements (since we are more than one integration away from a white noise 
source, the differentiation process is not troublesome). 

Consider the gyro with a bias as in Examples 5.11 and 5.12, with model 
depicted as  in Fig. 5.14, but now assuming that measurements are available continuously. In 
terms of the transformed coordinates of Example 5.12. we have [ x , ( t )  = z(r),  x z ( r )  = gyro drift 
rate to be estimated] 

EXAMPLE 5.14 

To apply the Deyst filter equations, [HGQG’H’] must be evaluated: 

[HGQGTHT] = [ l  O ] [ : ] Q [ n  -c(][;] = U’Q 

This is invertible, as expected, since the measurement is separated from the white noise w(.:) by 
only one integration. 

Consider the covariance. The initial condition is given in terms of the components of Po by 
(5- 154b) 

where the first row and dolumn are zero because we know z ( to)  exactly. The Riccati equation, 
(5-1 53e), becomes 

again because z ( f )  is known exactly. Thus, the only Riccati equation to solve is the scalar equation 
for PZz(t), for which the solution is 

P z z ( ~ )  [QP~z( to ’ ) l / [Q  + P z z ( f o + ) ( f  - t o l l  

This reduction of the dimension of the Riccati matrix equation by m, the number of measurements, 
always occurs in the transformed coordinates. Note that as t x, P Z z ( t )  + 0. 
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Substituting into the rest of the filter equations yields 

where 

j , ( t )  = 0 

= - [PzAt)/Q]22(t) + [P,z(t)/(aQ)I-([) 

But it can be shown that y l ( fo+)  = 0, so yl( t )  = 0 for all time t ,  and then 

.?,(t) = z ( t )  

as anticipated. A block diagram of the filter is given in Fig. 5.20. Note the direct feedthrough of 
z ( t )  through C,. In this filter, t , ( t )  is in fact the estimate of the gyro drift rate. D 

EXAMPLE 5.15 To see the effect of singular [HGQGTHT], consider the same problem as 
the preceding, but let the gyro drift rate plus bias be put through a first order lag [h / ( s  + b)] before 
becoming available as measured output. Figure 5.21 presents a state model block diagram in 
untransformed coordinates. The augmented system equations are: E;J = [ -0“ b : b - :I[ h X 3 ( t )  ::q + [i]W 

Z ( t )  = [O 0 l ] x ( t )  

Since the white noise enters the model more than one integration back from the measurement, 
[HGQGTHT] is singular: 

To circumvent this singularity problem, define a “new measurement” 

Z ‘ ( t )  = ( l / b ) l ( t )  + z( t )  
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FIG. 5.21 System model for Example 5.15. 

Because of the differentiation of z ( t )  in this definition, the new measurement is separated by only 
one integration from the white noise. In fact, in the Laplace domain, z'(s) = [(s + b)/b]z(s) ,  or 

z'(t)  = xl(t) + x,(t) 

We have already processed this measurement in the previous example. 
Note that if a white noise entered the model a t  the same location where x2(t) enters, the Deyst 

filter could be employed with no  difficulty. Moreover, if the output of the lag [b/(s + h)] were 
corrupted by white noise, a Kalman filter could be used directly. 

5.12 WIENER FILTERING 
AND FREQUENCY DOMAIN TECHNIQUES 

The purpose of this section is to relate the optimal filtering results obtained 
by time-domain (state space) methods to frequency domain techniques. Further- 
more, the pioneering work of Wiener [34,36,83] will be presented, culminating 
in the Wiener-Hopf equation. His original problem formulation and the 
Wiener-Hopf equation itself are in the time domain, but under restrictions 
(namely, system time-invariance, noise stationarity, and infinite data length) 
that allow frequency domain interpretation. Although these results have been 
extended to less restrictive assumptions, the most useful means of solving the 
Wiener-Hopf equation to yield systematic design capability, the Bode-Shannon 
technique, is a frequency domain procedure. In the case of time-invariant system 
models and stationary noises, the Wiener filter will be shown to be equivalent 
to the steady state Kalman or Deyst filter appropriate to the given problem. 
Throughout this section, the power spectrum and frequency domain system 
concepts developed in Sections 4.3 and 4.12 will be exploited. 

First the optimal linear estimation problem will be discussed in the commu- 
nication theory context and notation appropriate to Wiener filter development. 
Assume that an input signal i(.;) is the sum of a wanted signal s(.;) and an 
unwanted noise n(.;) 

i(t) = s(t) + n(t) (5-155) 

for all t E T. The signal may in fact be deterministic, but can in general be a 
stochastic process. It is desired to generate the device which will accept i ( t )  
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- - -  

as an input and yield s(t + At) or some function of it as an output. (If At = 0, the 
device is called a j l te r ;  if At > 0 the device is a predictor; if At < 0, the device is 
a smoother. We will pursue the concept of a filter.) 

Despite this desired function, the device that will actually be generated will 
accept i ( t)  and produce an output y ( t )  for all t E T..The desired output of the 
device is d(t), the output of some specified linear system described by impulse 
response function T d ( ’ )  in response to be being driven by ~ ( t ) .  For each sample 
s( t ,w j )  = s( t )  for all t E T, d ( t )  is 

d ( 0  J: , T,(f - ?)[‘I d T  

Z)S(T) d z  (5-156) 

(Note that time-invariance is assumed by writing Td( .) instead of Td( ., .), but 
this can be generalized.) In most cases of interest, T,(T) is d(z) for all T :  in other 
words, d(t) = s(t), which is to say that we desire filter output y ( t )  to be the 
signal s ( t )  itsell? 

Thus, a block diagram of the optimal filtering problem would be as depicted 
in Fig. 5.22. Note that we cannot really separate out s(t) to put through the 
“desired operation,” or else there would be no filtering problem at all. The filter 
error, e(t), is the difference between the actual filter output y ( t )  and the desired 
output d( t )  

e ( t )  = Y(t)  - d(t) (5-157) 

or, in most cases, [ y ( t )  - ~ ( t ) ] .  From the many possible criteria for optimality, 
that of least mean square error is particularly tractable if one can specify process 
autocorrelation functions and the system impulse response function or transfer 
function of the desired operation. 

In the general problem formulation, the characterization of the input and 
noise is important; if these are stochastic processes, it is particularly important 
to know whether they are stationary or not. Also important is the amount of 
design freedom: do we assume that the filter structure is to be linear or that it is 
time-invariant? To ensure practical value of the design, it is usually required 
that the filter be realizable (nonanticipative): that the optimal filter impulse 
response function satisfy T,,(T) = 0 for all T < 0. (This was inherent in the 
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recursive state nature of the Kalman filter.) A final design parameter of the filter 
is its operating time: whether it operates on a finite measurement sample length 
or if it represents a steady state solution for an infinite length of measurement 
data. 

In 1942, Wiener solved the filtering problem under the following assump- 
tions: (1) the signal s(t)  and noise n(t)  are each samples from stationary random 
processes which have some distinguishing statistical characteristics, (2) the filter 
is a (time-invariant) linear device that operates on an infinite record of data, 
and (3) the optimality criterion is minimum mean square error. Note that only 
time-invariant devices need be considered since we seek a filter that produces 
an output with stationary statistics in response to a stationary input. Denoting 
a given filter impulse response function by TF(.), realizations of (5-157) can be 
written as 

e ( t )  = y( t )  - d ( t )  = JT TF(r)i(t - z)nT - d(t)  

where the limits of integration are valid because of infinite data record length 
and realizability. Thus, the mean square error for any filter is 

m 

E { e 2 )  = E{y2} - 2E{yd} + E{d2} = Yy,,(0) - 2Yyd(0) + E{d2) 

(5-1 58) 

where YXz(7) denotes the correlation function ofx(t) and z(t + z), E{x( t ) z ( t  + T ) ] .  

By employing variational techniques, the filter may be written as the sum of the 
optimal filter described by impulse response function TFo( .) plus a perturbation 
described by ATF(.): 

TF(t) = TFO(t) $. &ATF(t) 

for all time t of interest. This is substituted into (5-158), and then the necessary 
condition for a minimum is 

Since ATF(t) is arbitrary for all t 2 0 and zero for t < 0, for the above expression 
to be valid, the term within the brackets must itself equal zero. Thus is obtained 
the now famous Wiener-Hopf equation 

(5-1 59) 

The solution to this integral equation is not a trivial task. To find TFO(.), 
given 'Pii(.) and Yid(.), it is usually necessary to employ integral transform 
techniques and solve for the filter transfer function in the frequency domain. 
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Perhaps the most useful solution method is the Bode-Shannon technique [7], 
which states that, if the desired transfer function Td(s) and the signal and noise 
spectra are all rational, then the solution for the optimal realizable filter is 

(5-1 60) 

where the subscripts L and R denote spectral jactorization and 9 denotes 
separation by partial fraction expansion (to be explained further as the entire 
procedure is specified). 

The power spectral density of the input is given by 

Y i i ( S )  = Yss(s) + TJS) + Yns(s) + Ynn(s) (5-161) 

where, as before, the subscript i denotes input, s refers to signal, and n pertains 
to noise. If the noise and signal are uncorrelated, as if often the case, then (5-161) 
becomes 

Tii(s) = Tss(s) + T n n ( s )  (5-161') 

This expression can be partitioned by spectral factorization (see Section 4.12) as 

Tii(s) = Tii(s)LTii(s)R (5-1 62) 

where Tii(s)L has all of its poles and zeros confined to the left half s plane (includ- 
ing half the pole and zero doubles on the imaginary axis), and Ti i (~ )R similarly 
has all of its poles and zeros in the right half plane including the other half of 
the doubles on the jw axis). These factors are used directly in (5-160). 

The cross power spectral density between the input and the desired output 
is given by 

y i d ( s )  = Td(s)[Tss(s) + T'ns(s)] (5-163) 

If the noise and signal are uncorrelated, this becomes: 

y i d ( S )  = Td(s)Tss(s) (5-163a) 

We are especially interested in the case of Td(s) = 1, for which 

Tid(4 = TiS(4 = TS&) + Tns(S) (5-163b) 

and if the noise and signal are also uncorrelated, then this simplifies to 

T i d ( S )  = Tss(s) (5- 163~)  

To use the Bode-Shannon technique, first the expression [qi&)/Tii(s)R] is 
generated, and then it is separated by partial fraction expansion: 

(5- 164) 

where N is the number of distinct poles and p i  is the multiplicity of the j th  pole. 
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This sum can then be separated into the sum of terms corresponding to left half 
plane poles, denoted as[Tid(s)/yii(s)R]p, and a sum of terms corresponding to 
right half plane poles, denoted a~[T~,(s)/T~,(s)~].: 

[Tid(s)/Tii(s)R] = [T id (S) /T i i (S )R]p  + [qid(s)/qii(s)R].d (5-165) 

The term [Tid(S)/Tii(S)R]&r is then multiplied by [1/qii(.9)L] to obtain T,,(s), the 
optimal filter transfer function. 

This method is probably the easiest means of solving the Wiener-Hopf 
equation, but it is valid only for cases involving stationary signal and noise and 
infinite length data records. Thus, a systematic design technique is available for 
generating steady state optimal filters in the frequency domain, but its power 
and applicability is more restricted than that of the Kalman filter synthesis 
capability. 

EXAMPLE 5.16 Assume that we have a signal and noise which are uncorrelated, with power 
spectral densities given by 

yqs(OJ)  = / l / ( U 2  + to'), ynn((0) = To 

i.e., an exponentially time-correlated signal corrupted by white noise. We want to design the optimal 
filter to accept the sum of these two and output the best representation of the signal alone. The 
desired output is the signal itself, so Td(s) = 1 and 

A 
Y j d ( ~ )  = T,,(sJ = ~ 

u= - s* 

The input power spectral density is 

Yii(S) = T&) + Y""(.S) 

Letting c2 = u2 + (A/To), spectral factorization of Ti,(s)yields 
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Multiplying this by l /Yi i ( .s]L yields TFO(s)  as 

1 - A ( c - a ) - l  
- 

A - - _ _ _ ~  
To(u + c) c + s To(2 - a2) c + s 

c- (2  
- -~ 

S + C  

~ ~- 
where c = Juz  + ( A ,  To). 

Let us investigate the reasonableness of this first order lag as the optimal filter form. The break 
frequency of the filter is c = JtrZ + ( A / Y o ) ,  I f  the low frequency signal-to-noise ratio is much 
greater than one: 

,4!(Totr') >> 1 

c 2 v ,4:T0 >> ( I  

then the break frequency is approximately 
~ 

and the magnitude of the filter transfer function is approximately one at low frequencies. Thus for 
the case in which the input contains a large proportion ofvalid information, the filter pays consider- 
able attention 10 the input and does not attenuate it significantly until a frequency considerably 
beyond the signal break frequency, a. 

When the signal-to-noise ratio is small, 

A!(Tntr2) << 1 

then c z a and the low frequency gain is approximately i [ A / ( Y 0 t r 2 ) ]  << 1. Thus, the filter attenuates 
the input and breaks where the signal breaks. 

Numerous attempts were made to extend Wiener's work by relaxing some 
of his assumptions [a, 71,861. By 1953 the necessary condition for a time-varying 
optimal filter operating on a finite length data record (of length At) generated 
by samples from nonstationary stochastic process inputs was shown to be 

soA' T,,(z, o)Yii(o - t ,  r~ - z) dz - Yid(o - t ,  o) = 0 (5- 166) 

Although very general problems had been formulated and necessary conditions 
for optimality obtained in the form of integral equations, the solution to these 
equations is extremely difficult (if at all tractable) for all but the original, more 
restricted, Wiener-Hopf equation, (5-159). It would not be until 1960, with the 
advent of state space time-domain methods, the Kalman filter, and digital 
computers, that a practical design procedure would be available to generate 
optimal filters capable of operating on finite data samples of nonstationary 
stochastic process inputs. 

The Kalman filter can readily be applied in this communication theory 
context. The wanted signal ~ ( t )  is considered to be H ( t ) x ( t ) ,  the output of a 
linear system driven by white noise: this is justifiable if the signal spectrum is 
assumed to be (well approximated as) rational. The corruptive noise which is 
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added to the signal is also considered to be white noise, v,( ., .). Actually, by 
means of shaping filters, this formulation can be generalized to allow the corrup- 
tive noise to be the sum of time-correlated and white noises (if the corruption 
is composed only of time-correlated noise, then a Deyst filter must be used 
instead). 

The continuous-time Kalman filter is given by (5-144-(5-146) without the 
deterministic noise term, and in general is a time-varying system. If the system 
model is time invariant ( F ,  G, and H constant) and the noises are stationary 
(Q and R constant), the filter may reach steady state performance in which the 
covariance P is a constant (sufficient conditions for stability being given in 
Section 5.11). For this condition of P ( t )  = 0, the Riccati equation becomes an 
algebraic relation 

P = FP + PFT + GQGT - PHTRc- ' HP = 0 (5-167) 

In the steady state condition, the rate at which uncertainty increases (given 
by GQGT) is just balanced by the rate at which new information enters 
(PHTRc-'HP) and the dissipative effects of the system (FP + PFT). For a steady 
state covariance matrix, the optimal filter is also time invariant, given by 

k ( t )  = FW(t) + PHTR; '[z(t) - HS(t)] (5- 1 68a) 

= [ F  - KH]%(t) + Kz(t) (5-168b) 

Taking the Laplace transform of this (neglecting initial conditions) yields 

(sI - F + KH)W(S) = Kz(s) 

so that 

%(s) = [(sI - F + KH)-'K]z(s) (5-1 69) 

where the term in brackets is the transfer function representation of the steady 
state Kalman filter [56].  It is identical to the Wiener filter found for the case of 
white corruptive noise by solving the Wiener-Hopf equation (5-159) by the 
Bode-Shannon technique. In order words, the steailj? state Kalman jilter is 
equicalent to the Wiener filter for the same problem formulation. 

Consider the same problem as previously solved by Wiener filter design in 
Example 5.16, be now determine the Kalman filter to generate an optimal estimate of the wanted 
signal. First it is necessary to determine the shaping filter which will generate a stochastic process 
with the given power spectral density Yhs(w) = A/(uz + d). This is found to be a first order lag 
described by 

EXAMPLE 5.17 

G(s) = l/(s + a )  

driven by white noise with mean zero and strength A .  
Thus, the system model upon which the filter is based is 

a( t )  = -ax(t) + w(t ) .  z,(r) = x ( t )  + v, ( t )  
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with 

E{w(r)w( t  + T ) ;  = A ~ ( T ) ,  E{vc(r)vc(t + T ) ;  = Y n  r i ( r )  E{w( t jvc( t  + 5 ) )  = O 

The Kalman filter is specified by 

. i ( t )  = -a2(1) + [P(f)/To] [:(/I - .?(I)] 

where P(rj satisfies the Riccati equation 

P ( t )  = -ZaP( t )  + A - [ P z ( / ) / T o ]  

In steady state, the variance is a constant, P. given by 

P = T J o [ J 2 q n q  - ( I ]  = T,,[C - u] 

Thus, the steady state filter becomes a time-invariant system described by the differential equation: 

P(t) = - [ a  t (~;T,,)] . i .( t)  + [ P ,  Vo]r(t) 

= -[fl + c - a]a( t )  + [c - a ] z ( t )  

= -[r]n(rj + [ r  - u]z(r)  

or equivalently by the Laplace transfer function 

a($ c - fl 

$7) s + c 
- 

This is identical to the result of Example 5.16. 
Note again that this is a steady state Kalman filter. P(t )  is a complicated time function: 

-~ 
P ( r )  = Ynd~/2 + (AjTL,,)tanh(t + !i) - Tt,,4 

-. -~ 
!i = taiih-'([u + (P,:Y' ,)]jJa'  + ( A ,  Y(,)] 

and the filter is generally a time-varying linear system. 

Furthermore, the steady state Deyst filter is equiualent to the Wiener jlter 
for the same problem formulation. For a system model given by (5-137) and 
(5-152), the Deyst filter was given by (5-153) and (5-154). For the particular case 
of a time-invariant system driven by stationary noise w( ., .), a steady state 
solution can be reached: 

(5- 170a) a(t) = y(t) + Wz(t) 

y ( t )  = [I - WH]FS(t) (5- 1 70b) 

'A = [PFT + GQGT]HT 

W = A[HGQGTHT] - 

(5- 1 7 0 ~ )  

(5-1 70d) 

0 = FP + PFT + GQGT - WA'" (5-1 70e) 

The Laplace transform transfer function of this filter is readily shown to be 

%(s) = {[sI - (I - WH)F]-'[I - WHIFW + W)Z(S) (5-171) 

This can be shown to be identical to the Wiener filter for the case of time- 
correlated measurement noise only. Note the direct feedthrough term W in 
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(5-171): unlike the Kalman filter, the steady state Deyst filter transfer function 
matrix can have numerators of order equal to the corresponding denominators, 
as previously claimed. The equivalency of the two forms is demonstrated for a 
particular application in Problems 5.26 and 5.27. 

5.13 SUMMARY 

This chapter formulated and solved the optimal estimation problem for the 
case in which a linear system model driven by white Gaussian noises and deter- 
ministic inputs adequately describes true system behavior. Because of its prac- 
tical applicability through digital computer implementation, the sampled data 
formulation was emphasized throughout. Table 5.2 summarizes the Kalman 
filter algorithm for discrete-time measurements, comprised of relations for 
propagating the state estimate and error covariance from one measurement 
time to the next, and update equations for incorporating the next measurement 

TABLE 5.2 

Knlman Filter for Discrere-Time Meusurements 

State Dynamics Model Time Propagation Relations 

Measurement Model 
~ ~~~~ 

Measurement Update Equations 
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into the estimate. Three forms of time propagation relations are enumerated in 
the table: (1) differential equations to be solved numerically, based on the 
stochastic differential equation description of state dynamics, (2) the discrete- 
time algorithm based upon the solution to the original stochastic differential 
equation, and (3) the discrete-time algorithm based upon a stochastic difference 
equation (especially viewed as an equivalent discrete-time model to the original 
continuous-time dynamics). By recursively generating the conditional mean and 
error covariance, the Kalman filter actually maintains an explicit description 
of the entire conditional density for the states conditioned on the entire mea- 
surement history, thereby fulfilling the objective of Bayesian estimation. The 
analytical and computational characteristics of the Kalman filter were analyzed, 
alternate and extended forms explored, continuous-time measurements con- 
sidered and equivalency to Wiener filtering in the steady state investigated. 
The next chapter will further explore the design and implementation of practical 
Kalman filters. 
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PROBLEMS 

5.1 The two-dimensional random vector x = [xIxJT has the probability density: 

A perfect measurement of x1 is obtained as z(wj) = x l ( m j )  = z = 1. What is the probability density 
of the vector x, conditioned on the measurement z(w i )  = z? 
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5.2 Prove the matrix inversion lemma, (5-28): for P and R positive definite, 

(P-' + HTR-'H)-' = P - PHT(HPHT + R)-'HP 

Show this by looking at the partitioned matrix 

and letting A -  ' be given by the partitioned matrix 

and solve the equations that result by setting AA-  = I for the value of D (the upper left partition 
of A - ' ) .  

5.3 Having proven (5-28), use it to establish (5-29) and (5-30). 

5.4 In reducing (5-27) to (5-33), it is necessary to show that 

IHP'HT + ~ 1 1 ' 2  1 -__ - 
lP-('izlR11/2 IP+I'/Z 

To show this, we exploit three basic properties of determinants: 
(1) 
( 2 )  IAl = IATI, 

(3) 

if A and B are n-by-n, then lABl = IAl IBI, 

(a) Show that 

so that IP*l = IP+I /HP-HT + RI. 

matrix is valid 
(b) Show that the following matrix inversion of a partitioned, symmetric, positive definite 

and use this to demonstrate that IP*J = IP-1 IRI. 
(c) Combine (a) and (b) io establish the result. 
5.5 Verify the numerical results in Table 5.1 of Example 5.4. 

5.6 Show that x ( t i )  and %(ti') are jointly Gaussian, as claimed in Section 5.4. Also show that 

E{x(tijkT(ri+)lZ(r,) = zi) = Ejx(t i ) jZ( t i )  = Z i ) l T ( r i + )  = f ( t i+ )RT(t i+  j 

as claimed in Eq. (5-55). 

5.7 Section 5.5 discussed logical definitions of an "optimal" state estimate other than that used 
to derive the filter results in this chapter. Under what conditions do some of these alternative 
approaches yield the same value for the "optimal" estimate for a general estimation problem (it., 
no linear model or Gaussian noise assumptions)? 
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L _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  J 

FIG. 5.P1 Circuit for Problem 5.8. R ,  = R ,  = 1 R; c, = cz  = 1 F 

5.8 Consider the circuit shown in Fig. 5.P1. It has been constructed and sealed into the 
proverbial black box. Capacitor c, has a very low voltage rating and it is desired to monitor the 
voltage across c1 to determine when it exceeds the capacitor limit. The only measurement that 
can be made on this system is the output voltage, e o .  However, thanks to an exceedingly good 
voltmeter, essentially perfect measurements can be made of this voltage at discrete times. In order 
to estimate the voltage across c I ,  assume that u ( t )  can be described as 

E{u,( t , )u( t , )}  = Q 6 ( t 2  - t l ) ,  

Determine an expression for the optimal estimate of the voltage across c ,  . Assume that the system 
starts up with no charge in the capacitors. Plot the variance of the error in the estimate as a 
function of time, taking measurements every half second for two seconds. 

Repeat the solution, assuming the voltmeter output to be the true voltage e ,  plus a zero-mean 
white Gaussian noise v(,;) with E(v(ti)v(tj)} = R 6,,, R = 0.2 V2.  

5.9 Suppose the scalar process y( . ,  . )  satisfied the differential equation 

E { u ( t ) )  = 0, Q = 2 V'sec 

y( r )  + y(t) = 0 

where y(0) and g(0) are modeled as jointly Gaussian random variables with 

ECY(O)] = 0, E[Y(O)] = 0 

E[Y(o)2] = 4, . E[Y(0)2] = 2, E[Y(O)Y(O)] = 1 

A discrete-time measurement process z(.:) is available as the output from the system, with 

Z( tJ  = Y(t i )  + v(tJ 

where v(.;) is a white Gaussian sequence, independent of y(0) and q(O), with 

E[v(t,)] = 0, E[V(ti)2] = 1 

Completely determine the optimal discrete-time estimator for ?'(ti). What does "optimal" mean 
here? 

Use the difference equation for the error covariance matrix (or the inverse of that matrix) to 
show that 2n sec is a poor choice of sample period. 

5.10 Consider the scalar system model 

X ( f i + l )  = X ( f i )  + Wd('i) 

where x(.;) is the state and wd(.;) is a discrete-time Gaussian noise with 

E[wd(ri)] = 0, E[Wd2(fi)] = 4, E[wd(ri)wd(r,)] = 0 ( i  # j )  

The initial state is modeled as Gaussian with statistics 

E [ x ( t , ) ]  = 1. E [ x 2 ( t 1 ) ]  = 2 
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Scalar measurements are available at times t ,  and rz as 

z ( t i )  = x(t,) + v(ti)  ( i  = 1.2) 

where v(., .) is a Gaussian sequence with 

E[v(t,)] = 0, E[v2(ti)] = 4, ~ [ v ( t , ) v ( t ~ ) ]  = 0 - ( i  # , f )  

Determine the explicit equations for the optimal estimate of x at time t l  and t 2 :  let z ( r l , w j )  = zl, 
and z ( t 2 , w j )  = z 2 ,  and obtain explicit equations for the estimates .?(ti-) and .?(ti’), the estimate 
error variances P ( t i - )  and P ( t i C ) ,  and optimal gain K(ti) for times t ,  and t 2 .  What is the value of 
the “information” added to P -  ‘ ( t i - )  by the measurements at times t ,  and t,? 

5.11 Suppose you have a system’described by the relation 

x(tJ = 0 . 7 ~ ( t , - ~ )  + wd(ri- ,), f i  = 1. 2, 3 . . 

starting from some known value x ( t ,  = 0) = .yo, where the wd(.:) is a white Gaussian sequence 
described by statistics 

E{wdltj)j = b = 0.2, E{[Wd(t i)  - b]’: = 0.01 

Further suppose that at each sample time ti ,  two separate measurements are available: 

z,(t i )  = 2x(ti) + vl(ti), z2(ti) = x(t,)sint, + v2(ri) 

where the sequences of v1(.;) and vZ(.:) are independent white Gaussian sequences, each inde- 
pendent of w,( .;) with statistics 

E{v,( t , )}  = 0, 

E{v,(t,)f = 0, 

E { v I 2 ( t i ) ]  = 1 

E{v22( t , ) }  = COSZ(ti) 

(a) Suppose you have an optimal estimate of the state at some time based upon the 
measurement history up through time t i _  with associated error variance 
P(t:- l). Write the equations for propagating the optimal estimate and error variance to the next 
sample time before the next measurement.is taken, i t . ,  to obtain .?(ti-) and P(ti-). Explain your 
logic fully. If Z(f:- ,) = 4 and P(t:- ,) = 1, what are .?(ti-) and P(ri-)? 

(b) Is there redundancy in the phrase “independent white” Gaussian sequences in the problem 
statement? 

(c) Let the measured values at ti be 

and this estimate is :(ti’- 

z,(ti,wj) = z i l  = 3, z , ( t , , W j )  = zi2 = 1 

Show explicitly that the same .?(ti’) and P(t i ’ )  are obtained by recursively updating the estimate 
with z , ( t i )  and then z,(ti) and by “batch processing” z,(ti) and z2(ti) simultaneously by defining a 
vector 

and updating. Think before brute force evaluations-it can save significant time and algebra in 
obtaining the “batch process” result. 

(d) In part (c), a covariance matrix R(t,) associated with the measurement noise was generated. 
What property of this matrix was critical to the equality of the two processing methods? 

5.12 The performance function for the altitude hold mode of an airplane autopilot is given 
by the transfer function 

h(s) 0.3(s + 0.01) 

h,(s) 
-= 

(s2 + 0.006s + 0.003) 
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where h represents altitude and h, is commanded altitude. The altitude command h, is modeled as 
a constant h,, plus white Gaussian noise 6h,(t) in the command channel 

h,(t) = hc,, + Fh,(t) 

The constant h,, is modeled as a normal random variable with statistics 

Mean = 10,000 ft, Variance = 250,000 f t2  

Noise in the command channel has the following statistics: 

E[Gh,(r)] = 0, E[6hc(t)6h,(t + T)] = N , S ( T ) ,  N ,  = 400 ft2 sec 

and 6h,(.;) is independent of all other processes. 
Continuous measurements of altitude are available and we wish to process them to obtain the 

minimum variance estimate of altitude. The altitude measurements contain white noise, so the 
model is 

h,(r) = h(r) +6,,(r) 

where h,(t) is measured altitude and 6,(r) is independent white noise: 

E[G,(t)] = 0, E[G,(t)S,(t + T)] = N , ~ ( T ) .  N ,  = 900 ft2sec 

(a) Determine the differential equations defining the minimum variance estimator of h(t). 
Write these equations out in scalar form. Explain how you would determine the coefficients of these 
equations. 

(b) Repeat, but use discrete-time measurements every second, with zero-mean white Gaussian 
noise of strength 900 ftz corrupting the measurements. 

5.13 A radiometric area correlation guidance (RACG) system establishes a “position measure- 
ment” by taking a radiometric “picture” of the terrain directly below a vehicle and comparing 
(correlating) this with a prestored coordinatized map of the terrain. For simplicity, assume that 
one-dimensional position time propagation can be described by 

X ( t i + l )  = X(t;) f u At + Wd(ti)  

with u being a nominal vehicle velocity, At = ( t i + ,  - ti) = constant, wd( ., . )  being zero-mean white 
Gaussian noise with E{wd2(ti)} = Qd = constant, and x ( to )  Gaussian with mean R, and variance 
Po.  Assume that the “position measurement” at time ti is well modeled as 

z ( tJ  = X ( t i )  + v ( t J  

with v(.;) zero-mean white Gaussian noise with E{v2(ti)J = R = constant. Assume x ( t o ) ,  wd(.;), 
and v(.;) are independqnt of each other. 

Let At = 1 min, and assume you want to minimize the rms error in position estimate at the end 
of a 10-min flight. Measurements are admissible at t i  = 0, 1, .  . . , 9  (not at ti = lo), but because 
prestored maps consume significant computer memory, only two maps and thus only two measure- 
ments can actually be taken. The question is, where in the flight should they be scheduled? 

(a) Let Po = Qd = R = (100 ft)’ and solve for the optimal rms terminal position error. 
(b) Assume that if the rms position error at time of measurement update should exceed 250 ft, 

there is an unacceptably large probability that the true vehicle position is beyond the boundaries 
of the prestored map, precluding a valid position measurement at all. Solve the problem again 
under this additional constraint. 

(c) 
(d) 
(e) 

Solve part (b) for Po = (300 ft)’, Qd = R = (100 ft)’. 
Solve part (b) for Qd = (300 ft)’, Po = R = (100 ft)’. 
Solve part (b) for R = (300 ft)’, Po = Qd = (100 ft)2. 
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5.14 Show that the inverse covariance form estimator for the case of Qd(ti) = 0 for all t ,  and 
PO = 0 reduces to the classical solution for the linear, unbiased, minimum variance estimate of 
x ( t i )  [assuming v( ., ' )  is white but not necessarily Gaussian] given by the Gauss-Markov theorem: 

i iG-m(ti)  = . F 1 ( r i ,  t , )  C mT(tj ,  ti)HT(rj)R-'(rj) 
j =  1  

5.15 Show that the optimal prediction of x ( t j )  based on measurements through time t i  < t j ,  
E{x( t j ) lZ ( r i )  = Zi), can be evaluated by means of 

P(tjl t i )  = @ ( t j ,  ti)P(ti+)mT(tj, t ; )  + dy  @ ( t j ,  r)G(T)Q(z)GT(r)@T(tj. t)dz 

Show that this can be generated recursively by iterating only the time propagation relations of a 
Kalman filter, without measurement updates, ( j  - i) times from the initial conditions %(t i ' )  and 

One practical use of this idea is to partition a sample period At into N subintervals to maintain 
accuracy in numerical integration. Then the filter iteration period is ( A t / N ) ,  and a measurement 
update is computed only every N propagations, generating optimal predictions at each intermediate 
point. Similarly, if one measurement becomes available every N At sec and another every M At sec, 
with M and N unequal integers, the filter iteration period could be set at a constant At sec, providing 
optimal state predictions at points where neither measurement becomes available. 

5.16 Show that the Joseph form covariance measurement update for scalar measurements 
can be expressed equivalently in the computationally efficient manner: 

P(ti'). 

a = P(ti-)HT(ti), 

b = PIHT(ii) - K( t , )R( t i ) ,  

PI = P(ri-) - K(ri)a'- 

P(t i+)  = P,  - bKT(t,) 

5.17 Let a signal of interest be the output of a first order lag driven by white Gaussian noise 
w,(  ., .), and let that signal be corrupted by exponentially time-correlated noise n( ., .), modeled as 
the output of a first order shaping filter driven by white Gaussian noise wZ(.;), as depicted in 
Fig. 5.P2. The system (plant) is described by the transfer function F,(s )  = l/(s + m,) and the noise 
shaping filter is described by F,(s) = l/(s + con). Relevant statistics are 

E{w,(t)} = 0, 

E{w,(t)} = 0, 

E{w,(t)w,(t + T)) = 2 6 ( ~ )  

E{w,(t)w,(t + z)} = 1 6 ( ~ )  

Assume w,(  ', .) and w,( .;).are independent and that the appropriate initial conditions are 

E{s(t ,)J = 0, E{n ( t , ) }  = 0 E { s 2 ( t , ) j  = 1 E{nZ( t , ) )  = 

Determine a recursion equation for the variance of the error in the estimate of the signal using 
discrete-time measurements z(tJ By performing a coordinate transformation, you should be able 

FIG. 5.P2 System schematic for Problem 5.17. 
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to express the recursion for the appropriate element of P*( t i ’ )  solely in terms of the value of that 
same element at time ti- 

5.18 Consider the first order system modeled by 

X(t) = W(t) 

where w( .;) is white Gaussian noise with statistics 

E[w(t)] = 0, E[w(t)w(t + T ) ]  = 46(r) 

Assume that at time t = 0, the initial state x ( 0 )  is modeled as a Gaussian random variable with 
statistics 

E[x(O)] = 10, E [ { x ( O )  - lo)’] = 25 

The observed signal is 

Z ( t )  = X(t)  + V ( t )  

where v(’;) is white Gaussian noise’independent of w(.;) with 

E[v(t)] = 0, E[v(t)v(t + z)] = 16S(r) 

First determine the exact equations of the Kalman filter to estimate x ( t )  for all t. Then investigate 
the steady state behavior of the filter as t --t m. Show that this steady state behavior is in fact time 
invariant; determine its transfer function. 

5.19 Given the linear system model depicted in Fig. 5.P3, where w1(.;), w2(.;), v(.;), xl(0), 

and x2(0)  are mutually independent, zero mean, and Gaussian, with 

E{w,(t)w,(t + 7 ) )  = a(,), E[wz(r)wz(i + 7 )  = d ( 7 )  

E{X,(O)’) = 1, E{Xz(O)’) = 2, E{V(t)V(f + T) = 2h’ (T )  

Determine the optimal estimator for x 3 ( t )  using continuous measurements z(t). (Question to answer 
first: How many state variables are required to describe the system?) 

FIG. 5.P3 System model for Problem 5.19. 

5.20 Recall the satellite orbit problem discussed in Examples 2.7 and 2.8. The perturbation 
equations for describing small deviations from an assumed circular orbit were given in Example 2.8. 
Note that there is no process noise included in these state equations. It is desired to measure these 
small orbital deviations from observations on the ground. Two proposals are presented: 

(1) In an effort to keep the measurement stations rather simple and inexpensive, only angle (x3) 
measurements will be made. However, the designer realizes the very likely possibility of measure- 
ment errors and includes an optimal filter in his proposal for estimating the states. The measurement 
may be represented as 

Z , ( t )  = X,(t) + V , ( t )  
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E[v,(t)] = 0, E[vi(t)v,(t  + z)] = R1 6 ( ~ )  

(2) The second design proposes to use measurements of range (xI) only. In this case, 

Z A t )  = X l ( t )  + vz(t)  

where 

E[v,(t)] = 0 E[V,(r)vz(t + T ) ]  = R ,  6(Z)  

It is your task to determine which of these proposals is superior. Are both system models observable? 
What does that indicate? Is there any benefit to incorporating both z1 and z,? 

5.21 A linear system has the input/output transfer function 

x ( s )  s + CI 

w(s) s + p 
The input w ( t )  is known to be identically zero. The initial condition on the system, x(O), is modeled 
as a Gaussian random variable with 

_ = _ _  

E { x ( O ) }  = 0, E{x(0)2)  = 1 

Continuous measurements of the form 

Z ( t )  = X ( t )  + v ( t )  

are available with v( . ; )  a white Gaussian noise with 

E { v ( t ) )  = 0, E{v( t )v ( t  + z)) = S(z) 

Determine the optimal estimator of x ( t )  and the associated error variance explicitly for all t 2 0. 
To obtain an explicit evaluation of the variance as a function of time, the following fact can be 

useful. If the positive definite matrix M.satisfies the differential equation 

M = A M   MA^ - MBM 

then M -  satisfies the linear equation 

M-1 = - A T M - ~  - M - ~ A  + B 

5.22 Consider the unstable first order system 

A([) = X ( t )  + W ( t )  

with measurements 

z( t )  = x(r) + v ( t )  

where 

E { w ( t ) )  = 0, 

E{v( t ) }  = 0, 

E{w( t )w( t  + z)]  = Q 6 ( r )  

E{v(r )v( t  + T ) )  = R ~ ( T )  

Let Q = 1. 
(a) Solve for the error variance, P(r). as a function of time, assuming P(r = 0) = P o .  Using 

your expression for P ( t ) ,  evaluate limt-J P(r) .  For values of R = 1.2, and 4. sketch the curve P( r )  as 
a function of time. (Use Po = 1.) 
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(b) Consider the homogeneous part of the filter which is given by the differential equation 

j. = [ l  - P/R]y 

Using the Lyapunov function V( . ; )  defined by V(y, t )  = yTP-'(t)y, the system can be shown to be 
asymptotically stable. Why is this significant? 

5.23 A continuous measurement process, z( .;) is given as 

z i t )  = at + n(r) 

where a is modeled as a Gaussian random variable with 

Era] = 0, E[a2] = 1 

and n(.;) is a white Gaussian noise process with 

E[n( t ) ]  = 0, E[n(t)n(t + T)] = 2 6 ( ~ )  

Obtain the optimal filter for estimating a. Is the filter a stable system? 

and the low frequency gain is about 4 [ A / ( T 0 a Z ) ] .  Show this. 
5.24 In Example 5.16 of Section 5.12, it was stated that for small signal-to-noise ratio, c 

5.25 Show that Eq. (5-171) is valid. 

5.26 Consider a system described by F,(s) = l/s driven by white Gaussian noise wl(  ,. ,) whose 
iutput is corrupted by exponentially time-correlated noise described as the output of the noise 
,haping filter F,(s) = l/(s + a )  driven by white Gaussian noise wz( .;). See Fig. 5.P.1. Noise statistics 
)f the uncorrelated w 1  and w2:  

a 

E[wi(t)] = 0, E[wi(t)wi(f + T)] = Q i  J ( T )  

E[w2(Ol = 0, E[wz(t)w2(t + T ) l  = Q 2  4 ~ )  

nitial condition statistics: 

EIXl(t0)) = 0, E{xz(to)} = 0 

~[z(t , )x , ( t , ) ]  = gl2  

E[x,(to,']  = OIZ, . E[Xz(to)21 = 0 z 2 ,  ~ [ x , ( t o ) x , ( ~ o ) l  = 0 

E [ ~ ( t , ) ~ l  = nzz, 

Determine the optimal continuous-time estimate for the state variable xl. Observe the behavior 
as t -+ w. Show that it can be described by a time-invariant system with transfer function 

%l(d - c1(s + a) 

z(s) s + ac, .-E-+7-4t) 
xz(0 __ 

s + a  

FIG. 5.P4 System configuration for Problem 5.26. 

5.27 

5.28 

Show that the result of the previous problem is identical to the result of a Wiener filter 

Design an optimum linear filter (Wiener filter) to separate noise n(.;) from a signal 

design for the steady state problem. 

s(';) when these processes are uncorrelated with each other and 

Y J ( ~ )  = i/(w2 + 1).  T ~ ~ ( ~ ~ )  = 2wz/(w4 + 1) 
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5.29 (a) An engineer presents you with a single input/single output black box that he says 
contains a steady state Kalman filter. To test the performance of the filter you subject it to a 
time-correlated noise with autocorrelation function 

Y’&) = E{n(t)n(t  + r ) !  = Ne-51‘1 

and obtain an output whose power spectral density is 

What do you think of the engineer’s competence? 
(b) Somewhat perplexed, you go back and ask him how he designed the filter. He tells you 

that he was faced with design of a filter to separate a signal from a signal-plus-noise input. where 
the signal power spectral density ~ J I u )  and noise power spectral density Tn,,(cuj could be ap- 
proximated as 

and the signal and noise are not correlated with each other. Calculate the Wiener optimum filter, 
and compare your answer to his, and offer him any appropriate constructive criticism. 

Show that the discrete-time Kalman filter algorithm of Table 5.2 can also be expressed 
in the following form (“innovations form”) [32,33]: 

5.30 

%(I;+ 1) = @(t i+ i , t i ) i i ( t i - )  + B,(t;)u(tij + N ( t i ) v ( t i )  

z ( t i )  = H(ti)%(ti-) + E(ti)v(ti) 

where 

E ( f i )  = [H(ti)P(ti-)HT(ti) + R(ti)]”’ 

 ti) = C-’(ti)[zi - H(ti)%(ti-)] 

J r ( t i )  = @(ti+ 1 ,  t i )P( t i - )HT(t i )~-T(t i )  

p(t, 1 )  = ~ ( f i + ~ , t ; ) P ( t ~ - ) ~ ~ ( f i + i . f i )  + Gd(ti)Qd(ti)Gd‘(ti) - .K(r,).KT(ti) 

Note that the square root matrix used in the preceding is defined such that A1’Z(A’’2)T = A for a 
given matrix A. Also show that v(.;) is a zero-mean white Gaussian sequence with E{v(ti)vT(tj)) = 
I h ; i .  



C H A P T E R  6 
Design and performance analysis 

of Kalman filters 

6.1 INTRODUCTION 

This chapter seeks to exploit the Kalman filter algorithm to its fullest 
potential. To do so will encompass a complete depiction of a systematic design 
procedure, practical aspects of implementation, and development of software 
tools to provide performance analysis capability for any Kalman filter configu- 
ration operating in the real world environment. Extensive examples are the 
vehicle for developing and emphasizing the essential points of designing efficient, 
practical filters, and these examples are drawn from the application area that 
has probably exploited Kalman filtering the most: optimally aided inertial 
navigation systems. This is by no means the only important applications area, 
but concentrating attention on one particular problem area will allow a more 
extensive portrayal of filter design than would a superficial look at many dif- 
ferent contexts. For additional applications, see Leondes [28] and Schmidt [47]. 

6.2 THE REQUISITE OF ENGINEERING JUDGMENT 

Chapter 5 may have left the impression that an optimal filter Can be generated 
automatically once a body of applied mathematics has been mastered. Despite 
the mathematical formalism of the Kalman filter approach, a substantial 
amount of engineering insight and experience is required to develop an effective 
operational filter algorithm. 

As mentioned in Chapter 5, a mathematical model of both the system struc- 
ture (state dynamics and output relations) and uncertainties is inherently 
embodied in the Kalman filter structure. Attaining an adequate mathematical 
model upon which to base the,filter is the crux of the design problem. Even once 
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a particular model is chosen as appropriate for a given application, a consider- 
able effort remains: obtaining appropriate numerical evaluation of coefficients 
(especially covariance matrix elements) within the model. This process is called 
“tuning” a given Kalman filter, and it involves an iterative search for the 
coefficient values that yield the best estimation performance possible from that 
particular filter structure. 

Moreover, the design must meet the constraints of online computer time, 
memory, and wordlength required. These considerations dictate a philosophy 
of using as simple a filter as possible that yields adequate results (i.e., meeting 
performance specifications). Consequently, the designer must be able to exploit 
basic modeling alternatives to achieve a simple but adequate filter, adding or 
deleting model complexity as the performance needs and practical constraints 
require. 

Evaluation of true performance capabilities of simplified, reduced order 
filters is of critical importance in the design procedure. Although a Kalman 
filter computes an error covariance internally, this is a valid depiction of the 
true errors committed by the filter only to the extent that the filter’s own system 
model adequately portrays true system behavior. It is very possible for the filter 
not to perform as well as it “thinks” it does. If the computed error covariance is 
inappropriately small, so is the computed gain : the filter weights its internal 
system model too heavily and discounts the data from the “real world” too much, 
leading to filter estimates not corresponding to true system performance, with 
a simultaneous indication by the filter through its computed covariance that 
all is well, a condition called filter divergence. 

Moreover, numerical precision and stability problems can corrupt perfor- 
mance substantially, especially when the filter is implemented on a short 
wordlength computer. This motivates consideration of alternative algorithm 
formulations, such as square root filters (to be discussed in Chapter 7). 

Evaluation of true performance capabilities involves both covariance analy- 
ses and Monte Carlo simulations, which will be discussed in Section 6.8. To 
achieve a valid portrayal, the designer must fully understand the assumptions 
that underly a statistical analysis of performance. He must investigate the effects 
of nonwhite noises, non-Gaussian noises, neglected nonlinearities, and approxi- 
mations used in, achieving a model form compatible with the Kalman filter 
assumptions. Moreover, testing and simulation experience with the actual 
digital implementation is crucial before the software is finalized. 

In certain applications, the basic Kalman filter structure itself has to be 
modified. For example, sensor data (rather noisy) is often available more fre- 
quently than the established sample rate of the filter algorithm (especially since 
most sensors are analog devices). In this case, one might consider prefiltering 
of the data to smooth out the noise, rather than just sample it periodically and 
neglect the information available between sample instants. One can in fact 
generate an equivalent single data value that incorporates this information, 
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but it is not the simple replacement of raw data by an averaged signal that first 
occurs to an engineer (this will be pursued later in Section 6.5). Other examples 
would be artificially limiting the filter’s “memory” of past data, setting lower 
bounds on acceptable variance evaluations, discarding measurement samples 
that fail reasonableness tests, and adaptively setting filter gains. 

The design of an effective operational Kalman filter entails an iterative 
process of proposing alternative designs through physical insights, tuning each, 
and trading off performance capabilities and computer loading. A systematic 
procedure for accomplishing such a design, as developed in Section 6.9, will 
accentuate the need to bring engineering judgment to bear on the overall filter 
development. 

6.3 APPLICATION O F  KALMAN FILTERING 
TO INERTIAL NAVIGATION SYSTEMS 

To consider basic aspects of filter implementation in the context of realistic 
applications, the next sections of this chapter will concentrate upon applying 
a Kalman filter to inertial navigation systems. Fundamental concepts will be 
developed in this section, followed by three specific examples in succeeding 
sections. 

A conventional gimbaled inertial measurement unit [2,4,25,40,41] consists 
of a platform suspended by a gimbal structure that allows three degrees of 
rotational freedom, as depicted in Fig. 6.1. From the geometry of the configu- 
ration, it is possible to attach the outermost gimbal to the body of some vehicle, 
and to allow that vehicle to undergo any change in angular orientation while 
maintaining the platform fixed with respect to some desired coordinate frame. 
Gyros on the platform sense the angular rate of the platform with respect to 
inertial space, and their outputs are sent through electronics to the torquer 
motors on the gimbal structure, commanding them to maintain a desired plat- 
form orientation regardless of the orientation of the outermost gimbal. Feedback 
control loops that keep the gyro outputs nulled will maintain the platform fixed 
with respect to inertial space; additional computed inputs can be added to these 
loops to maintain some other orientation, such as north-east-down corre- 
sponding to the current location of the vehicle. These feedback loops are such 
that, in practice, the platform orientation is kept essentially stable regardless 
of the most violent vehicle maneuvering. 

Thus the platform remains aligned with respect to a known reference coordi- 
nate system. Accelerometers on the platform then provide vehicle acceleration 
with respect to that known set of reference coordinates. Actually, accelerometers 
measure specific force, so local gravity must be computed and subtracted 
appropriately from these sensor outputs to obtain a measurement of actuai 
vehicle acceleration. The resulting signals can be integrated (or pulses counted 
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Gimbal two 

Controlled member 

Accelerometers 

motor 

T 

(gimbal zero) 

Gimbal zero Gimbal one Gimbal two Gimbal three 

Typical gimbaled inertial measurement unit. Modified from Gyroscopic Theory, 
Design and Insfrumentarion by Wrigley, Hollister, and Denhard. 0 1969. Used with the permis- 
sion of The M.I.T. Press. 

if the signal format is a pulse rate proportional to acceleration) to yield vehicle 
velocity and position. 

Moreover, the gimbal angles, the angles formed between the various members 
of the gimbal support structure, provide direct readout of the Euler angles to 
describe the vehicle’s angular orientation. Thus, the inertial navigation system 
(INS) provides attitude information as well as translational information. 

The question naturally arises, why does this instrument require optimal 
aiding by other navigation sensors? Due to the tight control loops just described, 
an INS provides very good high frequency information. However, because of 

FIG. 6.1 
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gyro characteristics, the system drifts at a slow rate: the long term, or low 
frequency, content of the data is poor. All inertial systems have position errors 
that grow slowly with time, and these errors are unbounded. A typical INS might 
be classed as a “one nautical mile per hour system,” meaning that after one 
hour of operation, the position error standard deviation has grown to one 
nautical mile. 

Some external source of data, such as radio navigation aid position informa- 
tion or Doppler velocity, would naturally be considered as a means of bounding 
or damping these errors. As opposed to an INS, most other navigation aids 
provide data which is good on the average (i.e., low frequency), but subject to 
considerable high frequency noise, due to instrument noise, atmospheric effects, 
antenna oscillation, unlevel ground effects, and so forth. 

Given an INS and other sources of data, one would want to combine the 
available information in an optimal manner if possible, efficiently providing an 
estimate of navigation parameters that is best with respect to some criterion. 
Some earlier navigation systems reset the INS to agree with the other data 
sources, essentially declaring these other sources perfect and discarding the 
information previously held in the INS. The Kalman filter approach is instead 
to use the statistical characteristics of the errors in both the external information 
and the inertial components to determine this “optimal” combination of infor- 
mation. Actually, the filter statistically minimizes the errors in the estimates of 
the navigation parameters: on an ensemble average basis, no other means of 
combining the data will outperform it, assuming the internal model in the filter 
is adequate. Once the problem and system model are completely specified, the 
Kalman filter algorithm systematically provides this optimal estimate. 

It will be seen that, although the filter is designed in the time domain, it does 
in fact weight each information source most heavily in the frequency regime 
where it provides good information and suppress each in the frequency region 
where it is most prone to errors. In other words, the filter will use the good low 
frequency data from the external sources to damp out the slowly growing errors 
inherent in the INS. Because of these differing sensor characteristics and the 
existence of well-developed adequate system models, there is substantial benefit 
to be gained by applying Kalman filtering to aiding INS systems. 

Typical external information sources would include 

Position data: 

(1) radar-onboard and/or ground based: 
(2) radio navigation aids: TACAN, LORAN, OMEGA, VOR/DME; 
(3) Global Positioning System (GPS) navigation satellites; 
(4) position fixes: star sightings, landmarks; 
( 5 )  radiometric area correlation (comparison of a radiometric “picture” of 

terrain to a stored map); 
(6) laser ranging. 
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Velocity data: 

(1) Doppler radar, 
(2) indicated airspeed from the air data system. 

Altitude data: 

(1) barometric altimeter, 
(2) radar altimeter, 
(3) laser altimeter. 

The filter for combining these data sources with an INS is typically a digital 
computer algorithm that uses sampled data (with sample period on the order 
of 5-60 sec) to maintain estimates of approximately 10-20 state variables. For 
instance, the navigation system filter designed for the B-1 bomber (which will 
serve as a basis for future designs) consists of a 13-state horizontal plane 
subsection and an independent 4-state vertical channel component, operating 
with a 6-sec sample period. 

There are two very important aspects of implementation of a Kalman filter 
in conjunction with inertial systems (and other applications): total state space 
ziersus error state space formulatioil (also denoted as direct versus iridirect 
filtering in navigation literature), and feed’brward versus feedback mechaniza- 
tions [3]. These aspects will now be discussed. 

As the name indicates, in the total state space (direct) formulation, total states 
such as vehicle position and velocity are among the state variables in the filter, 
and the measurements are INS accelerometer outputs and external source 
signals. In the error state space (indirect) formulation, the errors in the INS- 
indicated position and velocity are among the estimated variables, and each 
measurement presented to the filter is the dlfSerence between INS and external 
source data. 

Consider first the total state spacejilter, as depicted in Fig. 6.2. In this direct 
configuration, the Kalman filter is in the INS loop. The INS accelerometer 
signals and external source data both feed into the filter, which provides not 
only the desired navigation information, but also the appropriate commands 
to the gimbal torquer motors to maintain the platform aligned with the chosen 
coordinate frame. The angular orientation of the platform then dictates what 
accelerations will be sensed by each of the accelerometers attached to it. 

The benefits of such a configuration are that the available information is 
weighted optimally rather than operated upon by fixed gains and integrators. 
Optimal time-varying gains can provide substantial improvement in perfor- 
mance over the classical approaches of resets or fixed gain updating, such as 
reducing INS gyrocompass (initial alignment) time from about 30 to 7 min 
while meeting the same precision specification. 

However, there is a very serious drawback to this implementation. Being in 
the INS control loop and using the total state space representation, the filter 
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FIG. 6.2 ‘Total state space (direct) Kalman filter. 

would have to maintain explicit, accurate awareness of vehicle angular motion 
as well as attempt to suppress noisy and erroneous data. Sampled data usage 
requires a sampling rate of at least twice the frequency of the highest frequency 
signal of interest for adequate reconstruction of the continuous-time system 
behavior (by the Shannon sampling theorem; engineering practice tends toward 
five to ten times the highest frequency signal). Admitting aircraft roll rate 
capability on the order of 400 deg/sec, the filter would need a very fast sample 
rate and would have to perform all computations within this short sample 
period. Moreover, in most cases, the Kalman filter is allocated only a small 
portion of the capabilities of a central processor, and it is run “in the back- 
ground’’ at a lower priority than more critical algorithms, such as digital stability 
and control programs. It is impossible to implement a high order Kalman filter 
practically on state-of-the-art computers and meet this sample rate requirement. 

Not only are the dynamics involved in the total state space description com- 
posed of high frequency content, but they are well described only by a nonlinear 
model. The development of a Kalman filter is predicated upon an adequate 
linear system model, and such a total state space model does not exist. 

Another drawback to this design is that, if the filter should happen to fail 
(as by a temporary computer failure), the entire navigation system fails : the 
inertial system cannot operate without the filter. From a reliability standpoint, 
it would be desirable to provide an emergency degraded performance mode in 
case of such failure. 

As a result of these considerations, the direct mechanization is restricted to 
alignment, calibrations, bias determination in laboratory testing, certain sub- 
marine applications (involving slower dynamics), and the like. Section 6.6 will 
pursue this subject further. 
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Inertial 
system 

The error state space (indirect) Kalman filter estimates the errors in the 
navigation and attitude information using the difference between INS and exter- 
nal source data. The INS itself follows the high frequency motions of the vehicle 
very accurately, and there is no need to model these dynamics explicitly in the 
filter. Instead, the dynamics upon which the filter is based is the set of inertial 
system error propagation equations, which are relatively well developed, well 
behaved, low frequency (Schuler 84-min mode dominant), and very adequately 
represented as linear. Because the filter is out of the INS loop and is based on 
low frequency linear dynamics, its sample rate can be much lower than that of 
a direct filter. In fact, an effective indirect filter can be developed with a sample 
period on the order of half a minute, thereby achieving practicality with respect 
to the amount of computer time required. For these reasons, the error state 
space formulation is used in essentially all (except submarine) terrestrial aided 
inertial navigation systems. 

Besides state space differences among Kalman filters, there are two distinct 
types of implementations, feedforward and feedback. The indirect feedforward 
version is depicted in Fig. 6.3. From this diagram, it can be seen that the filter 
compares the two sets of data and uses the result to estimate the errors in the 
inertial system. By subtracting these estimated errors from the inertial data, 
the onboard computer maintains the optimal estimates of position, velocity, 
and attitude. The inertial system operates as though there were no aiding: it is 
“unaware” of the existence of the filter or the external data, so if either should 
fail, the unaltered INS information would still be available. Herein lies the 
disadvantage of the feedforward approach though. Acceptable Kalman filter 
performance depends upon the adequacy of a linear dynamics model, so it is 
necessary for the errors in the inertial system to remain of small magnitude. 
However, the INS is free to drift with unbounded errors, thereby invalidating 
this basic assumption. 
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Thus, an indirect feedback configuration as in Fig. 6.4 is motivated. The 
Kalman filter again generates estimates of the errors in the inertial system, but 
these are fed back into the INS to correct it. In this way, the inertial errors are 
not allowed to grow unchecked, and the adequacy of a linear model is enhanced. 
There is a further advantage to this configuration. Since the INS is corrected 
after each measurement sample, many of the predicted error states at the next 
sample time will be zero, and thus these components of jz ( t , , )  need not be 
computed explicitly. With regard to filter or external aid failure, because of the 
slow sample rate and slow INS error dynamics, such failures could be detected 
and the corrections to the INS could be removed before much (any) performance 
deterioration were caused, 

The general comments of this section will be developed further in the fol- 
lowing sections, which consider two error state space filters and a total state 
space design. 

Corrections to inertial system 

6.4 INS AIDED BY POSITION DATA: 
A SIMPLE EXAMPLE 

Let us consider the combining of inertial system data with position data 
provided by radar or’a radio navigation aid [21-23,25,30,52]. Conceptually, 
we will want to weight the INS information heavily in the high frequency range 
(where it provides good data), and emphasize the position data in the low fre- 
quency range. This will be a very simple problem formulation confined to a 
single direction. More complicated, three-dimensional system models are more 
realistic, but the two-state model to be studied will allow simple algebra and 
greater transparency of effects of system model characteristics upon filter per- 
formance. The insights gained will be directly extendable to more complex 
problems. Furthermore, this problem will be formulated with continuous-time 
measurements to allow direct frequency domain interpretation of the filter’s 
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operation. The more realistic case of sampled-data measurements will be con- 
sidered subsequently. 

For this example, model the inertial navigation system simply as a double 
integrator of noise-corrupted acceleration information, as depicted in Fig. 6.5. 
The noise w(. , .) is a white Gaussian noise of mean zero and variance kernel 

(6- 1 ) 

entering at the acceleration level, and it is meant to model the errors corrupting 
the INS accelerometer outputs (accelerometer biases and noise, platform mis- 
alignment, etc.). The noise-corrupted acceleration is integrated once to yield 
INS-indicated velocity vi(. , . ), and a second time to obtain inertially-indicated 
position ri( ., .). 

Similarly, consider a simple model for the radar or radio navigation aid 
(a model which is actually incorporated into many operational filters) as the 
true position r t ,  corrupted by noise v(.;). The v(.;) process is a zero-mean 
white Gaussian noise of strength R, : 

E{w(t)w(t + T ) }  = Q ~ ( T )  

E{v(t)v(t + T ) }  = R , ~ ( T )  (6-2) 

meant to model the wideband noise corrupting the data provided by a radar 
or radio navigation aid. The negative sign in the model in Fig. 6.5 is just for 
convenience, as will be seen in a moment. This noise is denoted as v(.;) to 
correspond to the notation adopted earlier, and should not be confused with 
the subscripted velocity variables (subscripts used in this development are 
t = true, i = inertial system, and r = radar or radio navigation aid). 
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The two error state variables for this example are 

f i r ( t )  = ri(t) - rt(t) (6-3a) 

6v(t) = Vi(t) - vt(t) (6-3b) 

i.e., the errors in INS-indicated position and velocity. The measurement to be 
presented to the filter is the difference between the inertially indicated position 
and that measured by the radar or radio navigation aid; from the figure, 

(6-4) 
= [rt(t) + Wt)l - [rt(t) - V ( d 1  
= 6r(t) + v(t) (6-5) 

z ( t )  = ri(t) - r,(t) 

This then is a “measurement” of the error 6r(t), corrupted by noise ~ ( t ) ;  the 
original negative sign on v( ., .) yields the positive sign here. 

To establish the state dynamics model for the error states, first consider the 
total states r i (  ., .) and vi( ., .). From Fig. 6.5 we can write (in white noise notation) 

[ \ii(t) fi(t)] = [“ 0 0 ’][ v,(t) ri(t)] + [;I [a,(t) + w(t)] 

However, the true position, velocity, and acceleration are related by 

Subtracting (6-7) from (6-6), and using the error state definitions of (6-3), yields 
the desired relations as 

(6-8a) 

(X(t) = F ~ ( t )  + G W ( t ) )  (6-8b) 

In problems for which the total state model is nonlinear rather than as in (6-6), 
the error state equation would be derived through perturbation techniques. 
In terms of this state vector notation, (6-5) becomes 

(6-9a) 

( ~ ( t )  = H ~ ( t )  + ~ ( t ) )  (6-9b) 

Initial conditions are established by modeling x(t , )  as a Gaussian random 
variable, with mean zero (appropriate for error states) and covariance Po : 

(6-10) 
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The diagonal terms er2 and cv2 are the variances of uncertainty in knowledge 
of initial position and velocity, respectively, and the off-diagonal term is the 
initial cross correlation between position and velocity, with Y,, the associated 
correlation coefficient. 

The objective is to use the measured difference 

[ri(t,  W j )  - rr(t, ~ j ) ]  = [ri(t) - ~ r ( t ) ]  (6-1 1) 

for all time t of interest, combined with knowledge of the system model and 
statistical description 
in both data sources. 

The continuous-time 
(5-146) as 

of initial conditions and the noises and/or uncertainties 
to generate the optimal estimate 

Kalman filter for this problem 

of the state realization 

(6-12) 

is given by (5-144) to 

1 
- [z(t) - &(t)] 
R C  

(6-13) 

(6-15a) 

(6-15b) 

A block diagram of the filter is given by Fig. 6.6. The filter is seen to be a device 
that accepts z(tj, the measured difference between INS and radar (or radio) 
indicated positions, and outputs optimal estimates of &(t) and hu(t). Note that 
the residual difference between z( t )  and &(t) is put through optimal gains into 
a model of the system to attain the new best estimates &(t)  and Ju(t). 

The filter gains in (6-13) are time varying, but they converge to steady state 
values in a short time. By solving P(t )  = 0, the steady state values can be shown 
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to be covariance P and gain K, where 

(6- 16a) 

(6-16b) 

where w, equals (Q/R,)''4. in radians per second (the reason for denoting it as w, 
will become apparent later). The initial transient behavior of the filter gains 
depends on Po, but they are within a few percent of their steady state values 
(independent of Po) after w,t = 2, so a prediction of time to reach steady state 
would be approximately (3/w,) sec. Note that if the noise variance kernel (or 
power spectral density) parameters Q and R, were determined completely, so 
would on and the gains. 

This filter can be put into feedforward configuration as shown in Fig. 6.7. 
The optimal estimates of errors committed by the INS, &(t) and &(t), are sub- 
tracted from the INS data, to yield optimally estimated navigation information : 

?(i) = ri(t) - &(t) (6- 17a) 
.. 
A 

6( t )  = ui(t) - &(t) (6- 17b) 

For analytical purposes to be considered presently, Fig. 6.7 shows the actual 
INS and radar (radio navigation aid) systems replaced by the mathematical 
models used to represent them. 

Let us consider steady state filter operation. Under these conditions, Laplace 
transform techniques can be used to provide a frequency domain interpretation 
of the filter, and Bode amplitude ratio plots can characterize the transfer func- 
tions between INS noise w( t )  or radar noise ~ ( t )  and the outputs &(t) or &r). 
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Inertial system, Pi + i; - - 
modeled as: I - - 

As an intermediate step, the filter transfer function [&(s)/z(s)] is given as 

-- &) - [ K ,  + (K2/S)I[l/Sl - Kl[s + (K2IKl)I 
z(s) 1 + [ K ,  + (K2/s)][l/s] - s2 + K,s + K 2  

(6-18) 

Thus, the filter is a second order system with undamped natural frequency on 
(motivating the original notation w,) and damping ratio &‘2: the “optimal” 
damping ratio that provides minimum settling time for a second order system. 
Furthermore, from Fig. 6.7 it is apparent that ?(s)/r,(s) = -P(s)/v(s) and 

Thus, the transfer function from radar (radio) noise to position estimate is 
represented by Fig. 6.8: the filter operates as a low-pass filter on the radar, 
attenuating this signal at frequencies above w, with a 20 dB/decade rolloff, as 
desired. By a similar procedure, INS-caused errors are attenuated at frequencies 
below wn with a 20 dB/decade rolloff, as desired. For example, components of 
error at the Schuler frequency w, would be attenuated by the factor ( W , / W , ) ~ .  
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FIG. 6.8 Bode amplitude ratio plot of transfer function [F(s)/o(s)]. 

Figure 6.7 reveals that optimal estimates of both position and velocity are 
obtained from the position-type measurement without requiring a dzflerentiation. 
This is extremely advantageous, since differentiation of a noisy signal accen- 
tuates the noise and generally yields unsatisfactory results. 

Because the Kalman filter is based upon the assumed validity of a linear 
system model, a feedback configuration is preferable to feedforward. Perhaps 
the most straightforward means of generating the feedback implementation is 
to write the system and filter equations in terms of corrected INS states. Define 

(6-20a) 

(6-20b) 

as the outputs of an INS corrected by feedback from the filter, and write the 
difference of (6-6) and (6-13) (for stochastic processes or for their realizations as 
done here) as: 
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By writing the residual as 

and using (6-20), this becomes 

(6-21) 

Figure 6.9a is a block diagram representation of these equations, from which 
the INS, radar (radio), and filter become readily apparent, Portrayed in Fig. 

FIG. 6.9 Feedback filter configuration 
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6.9b is an equivalent form obtained by replacing the feedback path through 
K2(t )  and the first INS integrator by K 2 ( t )  and an integrator in the filter itself. 
Thus, with grossly approximate models for the INS and radar (radio), the 
filter achieved in Fig. 6.9b in steady state becomes a proportional plus integral 
filter with transfer function 

This is precisely the form that has been suggested by classical filtering techniques 
for this application. Unlike the classical approach of essentially guessing an 
appropriate filter transfer function form, however, optimal estimation theory 
dictates the form of the filter once an adequate system model has been estab- 
lished. 

This has been an extremely simple example to demonstrate the mechaniza- 
tion of an optimally aided inertial navigation system and to reveal certain 
facets of the Kalman filter incorporated in the system integration. However, 
the same error state space formalism and fundamental estimation concepts are 
directly applied in practice to more realistic system models. By replacing the 
two-state INS error model with the Pinson 9-state (three position errors, three 
velocity errors, and three platform misalignment angles) error model [40,41,52], 
and replacing the single white noise w( ., .)by appropriate disturbances generated 
from numerous shaping filters, an operational discrete-time filter can readily 
be developed based on the basic insights gained from this example. 

A tradeoff of algorithm simplicity and estimation performance is involved in 
the choice of state space model: one wants to portray the dominant effects of 
the error dynamics well enough to attain desired accuracy for the overall 
navigation system, while meeting constraints of computer time, memory, 
wordlength, and the like. 

Furthermore, once the basic model form is chosen, “best” values for noise 
statistics must be attained. In this problem, if Q and R, were not known com- 
pletely, engineering judgment could be employed to select values to achieve a 
good break frequency on for the steady state filter. Iterative fine tuning of a 
filter will be discussed in detail in Section 6.8.  

6.5 DOPPLER-AIDED INS 

The functional diagram of a Doppler-aided inertial navigation system 
[19, 21, 25, 32, 40, 45, 521 in one axis is given in Fig. 6.10. The arrow denoted 
“platform orientation” is meant to indicate a physical connection rather than 
an electrical signal connection : what the accelerometer measures is dictated 
by the angular orientation of its sensitive axis, fixed to the INS platform. As is 
typical of terrestrial navigation systems, it will be assumed that the platform is 
aligned to a local-level coordinate frame (north-east-down, wander azimuth, 
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FIG. 6.10 Functional diagram of Doppler-aided INS in one axis. 

etc.) and the accelerometer in Fig. 6.10 is one whose sensitive axis is nominally 
horizontal. (Thus, there is no computed gravity term subtracted from its output.) 

The difference between INS-indicated velocity and Doppler-indicated 
velocity is sampled to provide discrete-time measurements to the Kalman 
filter, implemented in a digital computer. As can be seen from the diagram, this 
is an indirect feedback configuration : each time the measurement is sampled 
and ?(ti') is computed, the filter outputs four discrete-time corrective signals 
which are fed back into the INS. The four parameters to be corrected are 
position, velocity, platform misalignment angle, and gyro drift rate. 
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Position and velocity integrators (computer registers) can be corrected 
essentially instantaneously. Similarly, the drift rate compensation register can 
be altered impulsively, yielding a compensation signal (analog, or pulse rate if 
the INS is a pulse-torque loop design) that is held constant over the ensuing 
sample period. We will assume that instantaneous corrections to the platform 
misalignment are also achievable. In fact, the gimbal torquer motors are 
commanded to remove estimated misalignments at maximum rate, which 
yields a response time very short compared to the filter sample period. In some 
inertial systems, the outputs are resolved through a direction cosine matrix 
which can be changed instantaneously, while the gimbal motors simultaneously 
zero out the estimated error from the physical platform orientation, thus 
enhancing the validity of the assumed impulsive correction capability. 

The filter is often implemented as a software program in a general purpose 
digital computer, inherently requiring sampled data measurements. Typically, 
the two velocities are sampled and differenced every 5 to 30 sec, and thus 
discrete-time corrections are applied to the INS with this same periodicity. 
For this example, we will assume a 30-sec sample period. Note that it is the use 
of the error state space model with its slow, linear dynamics that allows such 
a slow filter algorithm iteration rate to be employed. 

First let us formulate the mathematical system model. Since we seek coupled 
first order linear differential equations, an error state space formulation will be 
used. Neglecting accelerometer bias (which is justifiable in many practical 
systems since other error sources dominate the bias effects), there are four 
variables of primary interest: 

6 r  = error in INS-indicated position, 
6 r  = error in INS-indicated velocity, 
I) = platform misalignment angle (or attitude error, tilt, or “correction to 

E = gyro drift rate. 
the vertical”), 

In terms of these variables, the state differential equation becomes : 

where g is the magnitude of the gravity vector at the earth surface and Re is the 
radius of the earth (effects of vehicle altitude on g and the difference of the true 
geoid shape from an assumed sphere are included in navigation equations but 
neglected in the error state space filter). The first component of (6-23) simply 
says that the time rate of change of position error is equal to velocity error. To 
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interpret the second component, recall that a local-level inertial system is used: 
nominally the accelerometer sensitive axis is orthogonal to the gravitational 
field, but if there is a platform misalignment angle sr/(t), the accelerometer 
senses g sin $(t) ,  which for a small misalignment angle is approximately g$(t) .  
The time rate of change of velocity error equals the error in sensed acceleration, 
or gsr/(t). If the vehicle were traveling at velocity u( t )  over an earth of radius Re,  
the correct angular rate at which to command the platform to maintain it 
aligned to the local level would be zl(t)/R,, so an error in knowledge of z(t) 
would yield an inappropriate rate command of dz:(t)/R,. The time rate of change 
of platform misalignment angle equals this plus gyro drift rate, with the signs in 
the third component of (6-23) determined by angle sign conventions. Finally, 
assuming gyro drift rate to be adequately modeled as an unknown constant 
yields the last entry in (6-23). If a random walk model of bias were used, or 
equivalently if a pseudonoise were to be added to reflect the fact that an un- 
known constant were not a totally adequate model, then (6-23) would become 

'0 1 0 0- 
o o g o  
0 - l / R e  0 --1 
0 0 0 0  

where w( ., - )  is a zero-mean white Gaussian noise of appropriate strength Q. 
One objective of this example is to investigate the difference in filter performance 
caused by the two bias models. 

The state initial condition is modeled as a Gaussian random variable, x(to). 
It is estimated that the system is error-free initially (since deterministic errors 
would be compensated): 

E{x( to ) j  = S o  = [0 0 0 OIT (6-25) 

The initial covariance matrix Po provides a statistical measure of confidence 
that the states truly are error-free: 

In this matrix, the diagonal terms represent variances, or mean squared errors, 
in knowledge of the initial conditions. Po is often assumed diagonal for lack of 
sufficient statistical information to evaluate its off-diagonal terms; this infers 
that initially the four states are uncorrelated, or independent since x( to)  is 
assumed to be Gaussian. 

The measurement to be used as the input to the filter is the sampled difference 
between INS and Doppler velocities. By the definition of &(ti), the INS- 
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indicated velocity at time t i  is modeled as 

VINs(ri) = Vtrue(ri) + & v ( t i )  (6-27) 

For this problem, the Doppler velocity indication is modeled as the true 
velocity corrupted by the discrete-time white Gaussian noise v(  ., .), of mean 
zero and variance R : 

VDoppler(fi) = Vtruc(fi) - v ( r i )  (6-28) 

Thus, the measurement can be modeled as 

Z ( t i )  = VINAri)  - VDoppler(fi) 

= & ( t i )  + v(tJ 

In terms of the error state vector notation, this becomes 

Z ( t i )  = [O 1 0 01 

( z ( t i )  = H 

(6-29) 

(6-30) 

+ v ( t i )  (6-31a) 

Based upon the system model of (6-23) or (6-24), (6-25), (6-26), and (6-31), 
the Kalman filter can now be delineated. First consider propagation from 
sample time ti- to time t i .  It is assumed that when the measurement is sampled, 
the update computations are performed and the corrective signals applied to 
the INS, at which point the optimal error state estimate becomes 

where the additional .superscript c denotes after the control is fed back to the 
inertial system. Moreover, the estimated tilt is zeroed out as quickly as possible, 
so that by the next sample time (and well before that time in the sample period), 
before the next measurement is processed, the estimated state is 

(6-32) 

Consequently, there is no need to compute a( ti-) explicitly onboard. 
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If (6-23) is used as the state dynamics model, the covariance propagation 
relation is 

P(ti-) = ~( t i , t i - l )P( t i '_ , )@T(t i ,  t i - 1 )  (6-33) 

where @ ( t i ,  T i -  
P(ti-) can be found by integrating 

is the state transition matrix associated with F. Equivalently, 

P( [ / t i  - ) = FP( [/t i  - , ) + P( fi t i  - ) F' (6-34) 

forward to time ti from P(ti- ,/ti- ,) = P(t,'_ 1 )  at ti- 1. If a random walk bias 
model and (6-24) were used instead, these would become, respectively, 

P(ti-) = <D(ti , t i- l)P(t , ; '_l)~T(ti , t i- l)  + r' @(ti, .r)GQGT<DT(ti ,z)dz (6-35) 
t i - 1  

and 

P ( t / t i - , )  = FP(t/ti-l) + P(t/ri-,)FT + GQGT (6-36) 

To update the estimate at a measurement sample time, the filter gain is calculated 
as 

K(ti) = P(ti-)HT[HP(ti-)HT + R]-I 
K , ( t i )  P l ~ ( t i - 1  

= [~~~~~~ = 1 . [ ..l'-~ (6-37) 
P22(tj-) + R P32(fi-) 

K4( t i )  P42(ti-) 

Since %(ti-) is zero, the usuahtate estimate update, 

% ( t i f )  = %(ti-) + K( t i ) [ z i  - Hf(ti-)] 

simplifies to 

?(ti') = K(ti)zi = 

Finally, the covariance update is 

(6-38) 

P(ti+) = P ( t i - )  - K(ti)HP(ti-) (6-39) 

An error analysis (performance analysis) can be conducted before any actual 
hardware is built, because, under our assumptions, the estimation error co- 
variance matrix is not a function of the actual measurement values. A first step 
in such an analysis would be to propagate the filter covariance equations. 
However, one must beware of a misinterpretation of these results that has been 
committed in some past filter design efforts. The filter-propagated error co- 
variance is a good representation of the actual performance to be expected 
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only to the extent that the filter system model is an adequate representation 
of the “real world” environment. A more thorough and valid performance 
analysis will be discussed subsequently in Section 6.8. 

Assume first that a filter is based upon the noise-free dynamics, 16-23), so 
that the filter error covariance time propagation. is given by (6-33) or (6-34). 
Let the strength of the measurement corruption noise be 

R = 0.25 ft2/sec2 (6-40) 

In other words, the Doppler is modeled as a device with wideband (white) noise 
contributing an rms .(root mean square) error of 
initial state covariance be 

y o 0 0  o 
0 0 0  0 

Po = I  0 0 0  0 
10 o o 4 meru2 

0.5 ft/sec. Finally, let the 

(6-41) 

where a meru is a milli-earth-rate-unit, equal to 0.015 deg/hr. This Po infers 
that we are absolutely certain of all initial conditions except for the value of 
gyro drift rate. By itself, this would be rather unrealistic, but this can be viewed 
as one step in establishing an “error budget” to indicate overall system errors 
due to a single source of uncertainty; such a concept will be pursued further 
in Section 6.8. 

Figure 6.11 depicts the rms errors in INS position and velocity indications 
and the rms platform misalignment for the case of a “pure” inertial system, 
running free without any Doppler aiding. These plots were generated by taking 
the square root of the diagonal terms of the filter-computed covariance matrix. 
From plot (a), it can be seen that if our model were an adequate representation 
of the INS, then this is about a 1$ nautical mile per hour inertial system. Also 
apparent from the plots is the Schuler mode oscillation [rectified in plot (c)] 
with a period of 84 min, as expected from the characteristic equation associated 
with the F in (6-23): 

1/11 - FI = 0 = i 2 ( L 2  + g/R,) = i12(A2 + os2) (6-42) 

Now assume that the difference between INS and Doppler velocities is 
sampled and processed by the filter every 30 sec. Figure 6.12 presents the 
corresponding rms errors in position, velocity, platform misalignment, and 
gyro drift rate estimates provided by the Doppler-aided inertial system. The 
performance improvement is impressive: the position error plot indicates 
achievement of an aided system with performance on the order of 1/50 nautical 
mile per hour. But this is a realistic prediction of true performance only if the 
simple four-state model adequately models true system behavior. If it were 
valid, one would expect about 687i of the cases of real system operation to lie 
within this envelope, 95% to be within an envelope of twice the magnitude, 
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FIG 6.1 la,b Pure inertial system. (a) rms position error. (b) rms velocity error. 
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FIG. 6 . 1 1 ~  Pure inertial system. rms platform misalignment. From Schmidt [45] with per- 
mission of author. 

and so forth. Practical experience with Doppler-aided inertial systems would 
discount this validity significantly. 

Recall that these plots pertain to the random constant bias model: there is 
no dynamic driving noise w(.;). From Fig. 6.12d it can be seen that the filter 
“thinks” that the error in the gyro drift rate estimate asymptotically goes to 
zero, and it turns out that the Kalman gain for the drift rate estimate, K,, 
also goes to zero. From the postulated mathematical model, this is appropriate: 
with no noise w(*;), the model “tells” the filter that you are uncertain of the 
initial value of drift,rate, but that you are sure it is a constant value. Therefore, 
the filter estimates the drift rate using early measurement data, sends out the 
appropriate correction signals, and essentially ignores later measurements 
(because it “knows” once a good estimate is obtained, it is good for all time, 
since drift rate is a constant according to the model). 

However, rarely are you so sure of drift rate (or other “biases” or parameters) 
being a true constant in time that you would be willing to cease estimation of 
its value after an initial transient period. Furthermore, this would preclude 
the possibility of sensor failure detection as discussed in Section 5.4. Thus, the 
dynamics model (6-24) is motivated, leading to filter equations as in (6-35)  or 
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FIG. 6.12a,b Doppler-aided inertial system (a )  rms position error. (b) rms velocity error. 
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FIG. 6.12c,d Doppler-aided inertial system. (c) rms platform misalignment. (d) rms gyro 
drift rate error. From Schmidt [45] with permission of author. 
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(6-36): a “pseudonoise” is added, of strength appropriate to how quickly you 
think the “bias” might actually change in time. As a result, the diagonal terms 
of P(ri-) and P(ti’) and the filter gains K(ti)  converge to nonzero values, and a 
valid estimate of drift rate is maintained by using measurement data over the 
entire time of filter operation. 

One of the most effective operational Doppler/INS navigation Kalman 
filters (as implemented on the F-1 11 aircraft) is a direct extension of this example 
[ 3 2 ] .  It consists of 12 states: two horizontal positions, two horizontal velocities, 
three platform misalignments, three gyro drift rates, and two Doppler error 
states. Vertical position and velocity are not maintained in the filter, but are 
filtered classically with barometric altimeter data; the third axis of misalignment 
angle, i.e., azimuth error, is modeled directly because it is critical to system 
performance. Essentially, the first ten states just apply the one-dimensional 
example to the three-dimensional case, with a slightly more complicated F( .)  to 
account for cross-coupling effects. The final two states are shaping filter states 
to allow more accurate depiction of Doppler error characteristics: like the gyro 
drift rate shaping filters, these are simply noise-driven integrators to generate 
a bias plus random walk. For use over land, they correspond to Doppler scale 
factor and boresight error, whereas for use over water (in which case errors 
caused by the water surface effects dominate) they correspond to sea motion 
error states in the two horizontal directions. 

The filter operates in a partial feedback mode, with a sample period of 8 sec. 
No feedback is provided to the Doppler because the additional computation 
and system complexity required to do so was not warranted by performance 
benefits. Since Doppler errors do not exhibit the unbounded growth charac- 
teristic of INS errors, it is not critical for system model validity to provide 
such feedback. Similarly, gyro drift rate compensation feedback was removed 
after a tradeoff analysis indicated that the resulting hardware simplification 
could be gained with no appreciable performance degradation. Thus, not all 
components of ii(ti-) can be assumed to be zeros, and some state estimate time 
propagation computations are required. 

Doppler velocity is available more often than the 8-sec filter sample period, 
so some smoothing or prefiltering of the velocity difference signal could enhance 
system performance. If one were to average the signal over an 8-sec period 
(with a dumped integrator), noise would in fact be smoothed out, but the 
resulting average would be a good representation of the signal at the midpoint 
of the integration interval, not at the end of the interval. Simply averaging 
the signal and inputting the result into the Kalman filter would thus introduce 
a 4-sec “delay” in the measurement data. To account for this directly, additional 
integrator states could be added to the filter model, indicating that z(t,) is not 
a velocity difference signal but an average (time integral over a sample period, 
divided by the period) of such a signal. Such an increased-dimension filter was 
evaluated against the 12-state design that accounted for the averaging to some 
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degree with a modified H(ti) and R(t,), and the simpler design was chosen 
because performance still met specifications while computer loading was 
decreased. 

The filter also employs reasonableness checking via residual monitoring 
as discussed in Section 5.4. If the observed residual exceeds 2.83 times the 
computed standard deviation, the data point is rejected and the operator is 
alerted. 

In early operational tests, the pure inertial mode unfortunately seemed to 
outperform the Doppler velocity-aided inertial mode. This was indicative of 
an overly pessimistic model of errors committed by the INS and/or an overly 
optimistic model of errors in the external velocity signal. By gathering extensive 
sensor performance data (unavailable at time of initial design), better values of 
noise strengths Q and R were established, the filter retuned, and performance 
improved substantially. 

The point of this discussion is that the simple four-state filter discussed in 
this section provides the essence of a practical, proven design. 

6.6 INS CALIBRATION AND ALIGNMENT 
USING DIRECT KALMAN FILTER 

Kalman filters are exploited in the initial calibration and alignment of 
inertial systems as well as optimal aiding during the navigation mode of 
operation. A direct filter can process external information in order first to 
estimate the system misalignments and miscalibrations and then to command 
appropriate control signals to remove the estimated errors. The external 
information may simply be the fact that the vehicle is sitting still at a known 
location (i.e., preflight), or it ’may be position and/or velocity data from other 
sources (i.e., inflight alignment, with TACAN data, for example). In fact, 
experience has shown the necessity of a Kalman filter to achieving inflight 
alignments rapidly and precisely enough to meet most system specifications. In 
this section, however, the simpler problem of preflight calibration and alignment 
will be discussed. A rudimentary problem will be considered first, progressing 
in complexity to the filter form as essentially implemented for the Apollo 
spacecraft program., 

Basically, in a preflight procedure, the accelerometers are calibrated by the 
known gravity acceleration magnitude, and the gyros by the known inertial 
rate of rotation of the gravity vector, at a point on the surface of the earth. The 
platform is approximately aligned to a local-level coordinate frame, and then 
the gyros alone are used to generate the commands appropriate to maintain an 
inertially fixed platform orientation. Since the estimates of platform mis- 
alignments and gyro drift rates will depend upon the measurement by the 
accelerometers of the rotation of the gravity vector with respect to the “inertial” 
frame as instrumented by the gyros, critical disturbances will be accelerometer 
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quantization errors and the motion of the vehicle (for instance, wind-induced 
sway for a missile on a launch pad). Therefore, the eventual filter design must 
account for these effects. 

First consider a simplified single-axis problem formulation, with continuous- 
time measurements [42], as depicted in Fig. 6.13. The-gimbal motors are driven 
by a known command torque, T,,, (zero if an inertially stable platform is 
desired) and by gyro drift rate E.  The accelerometer sensitive axis is parallel to 
the platform, so if it is misaligned from local-level by an angle $, the acceler- 
ometer output is g sin $ z g$, corrupted by a wideband noise, modeled as 
white noise vC(.;) of strength R, .  The purpose of the calibration filter is to 
accept the accelerometer data and to estimate the misalignment angle $(t)  and 
gyro drift rate E(  t). 

I -  

Accelerometer 

Platform orientation I) 1 
FIG. 6.13 Simplified functional diagram of INS calibration. 

A very simple dynamics model would be 

(6-43a) 

(IW) = F ~ ( t )  + B u( r ) )  (6-43b) 

in which the gyro drift rate is modeled as an unknown constant. The measure- 
ment from the accelerometer can be modeled as the continuous-time relation 

(6-44a) 
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Based on this model, the filter equations for calibration are 

K(t) = P(t)HTR; ' 
(6-45) 

integrated forward from the initial conditions %(to) = Po,  P(to) = Po. Note that 
because there is no dynamic driving noise, P(t) will converge to 0, but it is the 
transient performance that is exploited in this application. The structure of the 
filter given by (6-46) is diagramed in Fig. 6.14a. 

Now consider alignment : assume that calibration has been completed and 
a drift rate estimate 2, is available, and that the platform has been torqued so 
as to zero out the estimated misalignment. Thus, at the time when alignment is 
initiated, t,, E(t,) = Z,, and $(fa) = 0. Now it is desired to maintain this local- 
level orientation, using the filter to aid in generation of the required command 
torque Tcorn(r). Since 

\jr(t) = Tcorn(t) + ~ ( t )  (6-48) 

according to our model, in order to regulate $(t)  to zero, the appropriate 
command would be 

Closing the feedback loop on the filter yields the result portrayed in Fig. 6.14b. 
This is essentially the same filter as used in calibration, except that the system 
itself provides the feedback of $(t) for a continuous Kalman filter design. The 
initial conditions for this filter are 

(6-50a) 

(6- 50b) 

Note that P(t,) is taken from the calibration filter and that Pll(t,) is not zero: 
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$1 4 

A 

FIG. 6.14a Simplified calibration filter. 

Accelerometer u 
I ‘  Platform orientation 

FIG. 6.14b Simplified calibration filter 

the platform has been torqued so that $( fa )  is zero, but there is still uncertainty 
in the actual value of IC/(t,). 

This simple problem can be readily modified to account for the pertinent 
aspects of a realistic calibration and alignment. First, the filter will be imple- 
mented on a digital computer, dictating sampled data. Moreover, the INS loop 
is generally a pulse-torque loop, with accelerometer signals formatted as pulse 
rates proportional ‘to specific force (so each pulse is proportional to a velocity 
increment), and similarly torque pulses applied to the gimbal motors instead 
of analog signals. Through a pulse counter on the accelerometer output channel, 
the available discrete-time measurements are really integrals of acceleration 
over a sample period, corrupted mostly by the quantization of the pulses them- 
selves. Thus, if we introduce a “dumped integrator state (one which resets to 
zero after each sample time) &(t), satisfying 

%t) = s w  (6-51) 
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then this can be augmented to the original state equation (6-43), and the mea- 
surement model altered to the discrete-time relation 

z ( t i )  = [0 0 11 (6-52) 

Here v(.;) is a discrete-time zero-mean white Gaussian noise of strength R 
appropriate to model the quantization error effects. 

The effects of vehicle oscillations (wind sway of a missile, roll of an aircraft 
carrier, etc.) can be added as well; complicated high frequency dynamics as 
encountered in inflight alignment would pose a more difficult problem. Consider 
a missile on its launch pad, and assume that acceleration of the INS case from 
first mode bending of the missile due to winds is significant enough to be 
modeled in the filter. First mode bending dynamics can be represented by a 
second order linear system, and a standard model of winds (the Dryden model 
[6]) is an exponentially time-correlated Gaussian noise. Consequently, to add 
this effect in one axis direction requires a three-state shaping filter; letting 
pb, ub, and ab be the horizontal displacement, velocity, and acceleration, respec- 
tively, of the INS case due to wind-induced bending, one state space represen- 
tation of the shaping filter is 

The white Gaussian noise w( ., . )  is of appropriate strength to yield the desired 
rms value of wind, gwind, with correlation time 1 j A :  Q = 23q&,. If the bending 
dynamics model is second order with undamped natural frequency on and 
damping ratio [, then the three parameters M ,  p. and Yare specified by c! = - 1,wn2, 
p =  - con2 - 2&iwn, and y = - 2 j 0 ,  - 3,. Augmenting this to the dynamics 
given by (6-43) and (6-51) yields a six-state model with x = [$ E 6 P b  v b  aJT, 
and a measurement model given by 

z(tJ = [O 0 1 0 0 l]X(ti)  + V ( t i )  (6-54) 

Repeating this development for the second horizontal direction, and adding 
an azimuth angle error state results in the 13-state model which served as the 
basis of the Apollo calibration and alignment Kalman filter design. In actual 
implementation, the filter gains were precomputed and curve-fitted, and the 
approximate gain functions stored for online usage. Adequacy of this simple 
design is attested to by the success of the Apollo missions. 
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6.7 GENERATING ALTERNATIVE DESIGNS 

A systematic design procedure will encompass the generation of alternative 
filter designs and a realistic evaluation of performance capabilities versus com- 
puter loading for each one. It is possible to devise filters based on very extensive 
models, but these are usually more sophisticated than really needed, and are 
prohibitive computationally. The designer is willing to sacrifice some degree of 
performance in order to achieve practical computational levels. Typically, he 
will seek the most simplified filter system model that retains the dominant fea- 
tures of the original system and provides adequate estimate precision. This is 
probably the most difficult aspect of designing a Kalman filter, and it requires a 
good understanding of the underlying physics of the system as well as compe- 
tence in filtering theory. 

Suppose a large-dimensioned, complex system model existed upon which 
a filter could be based that far exceeded performance requirements (the most 
complete of these to be termed a “truth model” in the next section). Since the 
number of multiplications (time-consuming on a computer) and additions re- 
quired by the filter algorithm are proportional to n3 and the storage is propor- 
tional to n2 (where n is the dimension of the state vector), one significant means 
of reducing the computer burden is to delete and combine states [31, 33,46,41, 
491. There is often substantial physical insight into the relative significance of 
various states upon overall estimation precision that suggests which states 
might be removed. States with consistently small rms value especially warrant 
inspection for possible removal. An error budget performance analysis of the 
most complete filter, to be discussed in the next section, is an invaluable aid to 
this state dimension reduction. 

EXAMPLE 6.1 A standard error model of an accelerometer [2,4,21,41, 521 is as follows. 
Let an orthogonal coordinate system be denoted as having axes x, y, and z .  Then the error in the 
output of the accelerometer whose sensitive axis is along the .x coordinate direction. CI,, is: 

where abr is bias error (modeled as a random constant plus random walk), 6k, is scale factor error 
(modeled as a random constant), 6k,, is sensor misalignment about they axis (modeled as a random 
constant), 6k,, is sensor misalignment about the z axis (modeled as a random constant), arbx is 
“random bias” error .(modeled as an exponentially time-correlated noise, with short correlation 
time on the order of minutes), arbx2 is “random bias” error (modeled as an exponentially time- 
correlated noise, with long correlation time, typically an hour  or longer), and where ./.;. ./,;.. and ( 
are the components of true specific force relative to the .x-y-z coordinate frame. 

In most operational aided INS Kalman filters, only a single bias state is included, if any at all. 
A white noise source is added to indicate both the accelerometer error effects and the additional 
model uncertainty due to the deleted states. 

EXAMPLE 6.2 With respect to the same X-.I-Z coordinates of Example 6.1, a generic model 
for the errors in a single-degree-of-freedom gyro with sensitive axis along the x coordinate direction 
is [2, 4, 21, 41, 521: 
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where E~~ is gyro drift rate bias error (modeled as a random constant plus random walk), 6k, is 
scale factor error (modeled as a random constant), 6kXi is sensor misalignment about the i = y or 
r axis (modeled as a random constant), wrbX is time-correlated gyro drift rate (modeled as an expo- 
nentially time-correlated noise), kXi is a “y-sensitive error,” sensitive to specific force in the i = .x. J. or 
I direction (modeled as a random constant), kXi i  is a “g2-sensitive error,” sensitive to the square of 
specific force in the i = x, y ,  or z direction (modeled as a random constant), k x i j  is a “cross-term 
y2-sensitive error,” sensitive to the product of specific forces in the i and l  directions, i # J  (modeled 
as a random constant), and w, is the white noise gyro drift rate (not requiring a state). The coefficients 
wicx, wicv, and wier are the components of the angular rate between inertial space and the x-y-z 
coordinate system, as measured in that system. 

For conventional (fluid- or dry-tuned) gyros, only the Edx or orbX state is usually retained for 
aided INS Kalman filters, since this drift rate predominates. In laser gyros, thew, noise predominates 
(and the g- and g2-sensitive errors are essentially zero), so no states are required in the Kalman 
filter for gyro errors, only a white noise model. 

EXAMPLE 6.3 One conventional approach to reducing state dimension is to attempt to 
replace exponentially time-correlated noises (requiring single-state shaping filters) with appropriate 
white noises (requiring no states):Consider a stationary exponentially time-correlated zero-mean 
noise with rms value u and correlation time T ,  i.e., with autocorrelation 

Y ~ . J T )  = E{x(t)x(t + T ) }  = u2e-lrliT 

with w(.;) a zero-mean white Gaussian noise of strength Q = 2u2/T. The power spectral density 
for x(.;) is 

which is plotted in Fig. 6.15. 
The adequacy of replacing this noise by a white Gaussian noise is based on the premise that the 

system driven by the noise will attenuate high frequency content. Therefore, an appropriate strength 
to choose for the white noiseis that which duplicates the low frequency power spectral density of 
x(.;), namely 2uZT. W 

Power spectral density of 
white noise approximation 
to xl.;) 

J 
2v2T - 

(Half-power 
value) 

L - 
1 IT (0 

(Break frequency) 

FIG. 6.15 White noise approximation to exponentially time-correlated noise. 
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It must be emphasized that deleting states and combining many states into 
fewer “equivalent” states must be evaluated in terms of resulting filter perfor- 
mance, as described in the next section. Experience has shown that reductions 
motivated by the best of physical insight can sometimes degrade estimation 
accuracy unacceptably. Moreover, an inappropriately reduced filter of state di- 
mension n can often be outperformed by a filter involving less than n, differently 
chosen, states. The extreme case of this would be the higher-dimensioned filter 
being based on an unobservable model, for instance, in which two states 
correspond to different physical variables but which are indistinguishable from 
outputs from the model, while the lower-dimensioned filter model combined 
states to achieve observability. 

The number of additions and multiplications required by a filter algorithm 
can be minimized by exploiting canonical state variables, since the matrices in 
this equivalent representation embody a high density of zeros. There is also 
some computational advantage to decomposing vector measurements into 
separate scalars or partitions, and iteratively updating with lower-dimensioned 
measurements. Obviously, one might also attempt to reduce the computational 
burden by increasing the sample period of the filter. 

Once a filter dimension and structure are established, it is often possible to 
neglect dominated terms within the matrix elements. Moreover, entire weak 
coupling terms can be removed, yielding matrix entries of zero and thereby 
decreasing the number of required multiplications. In certain applications, 
such removal allows decoupling the filter states to generate separate, smaller 
filters. 

EXAMPLE 6.4 In the Pinson error model for an INS implementing a north-east-down 
platform coordinate frame, one term in the F(t) matrix is [2wi,R, cos L(t)  - u,(t)]/R,, in which 
wie is the earth rotation rate, L(t)  is current latitude, u,( t )  is eastward vehicle velocity, and Re is the 
earth radius. Since [w&] is on the order of 1000 knots, u,(t) can be neglected except for very high 
speed aircraft or near-polar operations. This entire term is small compared to Schuler frequency- 
dominated terms; when these weak coupling terms are ignored, the entire filter for aiding the INS 
with external source data often decouples into a horizontal plane filter and a separate vertical 
channel filter, with an acceptable (minute) amount of performance degradation. H 

Sometimes terms that can be ignored comprise the time-varying nature of the 
model description (or at least the most rapid variations), so that the filter can 
be based upon a time-invariant model (or at least a model that admits quasi- 
static analysis). This inherently yields computational advantages such as a 
single value for @, B,, and Q, being valid for all time. 

The methods discussed to this point have involved the generation of a 
simplified model, with subsequent filter construction. It is also advantageous 
to consider approximating the filter structure itself. Because of the separability 
of the conditional mean and covariance equations in the filter, it is possible to 
precompute and store the filter gains rather than calculate them online. This 
precomputed filter gain history can o fen  be approximated closely by curve-jitted 
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Time 

FIG. 6.16 Characteristic gain time history. 

simple functions, such as piecewise constant functions, piecewise linear functions, 
and weighted exponentials. Thus, the filter covariance and gain calculations, 
which comprise the majority of the computer burden, are replaced by a minimal 
amount of required computation and storage. This is a tremendous benefit to 
the practicality of the online filter operation. For the case of a filter based on a 
time-invariant system model with stationary noises, a typical gain time history 
is depicted in Fig. 6.16. If, as in this plot, a short initial transient is followed by 
a long period of essentially steady state gain, the very simple approximation of 
using steady state gains for all time may be wholly adequate for desired per- 
formance. There are some drawbacks to using stored gain profiles. Future gains 
do not change appropriately when scheduled measurements are not made, 
due to data gaps or measurement rejection by reasonableness tests. Nor can 
prestored gains adapt online to compensate for filter divergence. Finally, 
lengthy simulations are often required to design a single gain history that will 
perform adequately under all possible conditions for an actual application. 

6.8 PERFORMANCE (SENSITIVITY) ANALYSIS 

Throughout the previous sections, the critical significance of an “adequate” 
system model within the filter structure was stressed. The question remains, 
how do you assess the adequacy of various filter designs relative to each other 
and/or to a set of performance specifications? 
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FIG. 6.17 The context of performance (sensitivity) analyses. 

Consider Fig. 6.17, a schematic presentation of the situation under study. 
Suppose that system modeling and filter design efforts have produced N 
different prospective Kalman filters. Each is based upon a particular model of 
the “real world”: a linear system with structure defined by {F, B, G, H} 
(or {a, Bd, G,, H} in terms of an equivalent discrete-time model) and un- 
certainties defined by (a,, Po, Q, R)’ (or { j i o ,  Po, Qd, R)). The filters can vary 
greatly due to model differences, over a spectrum of small state dimension and 
deliberately crude approximations to high-dimensioned filters incorporating 
more system modes, cross-coupling effects, and high-order shaping filters for 
accurate portrayal of stochastic process characteristics. They might also differ 
due to aspects of algorithm implementation, such as Joseph versus standard 
covariance measurement update, gain history approximations, wordlength 
variations, etc. 

In actual operation, any one of these filters would be driven by sampled 
data measurements from actual sensors operating in the “real world” environ- 
ment. To make rational design decisions, one must have at his disposal an 
accurate statistical portrayal of estimation errors committed by each jilter in the 
“real world” enaironment. Moreover, this information must be generated 
without actually building each filter and testing it in the “real world.” A perfor- 
mance (sensitivity) analysis fulfills this objective by replacing the “real world” 
in Fig. 6.17 by the best, most complete mathematical model that can be devel- 
oped, called a truth model or “reference model.” Such a truth model is the 
product of extensive data analysis, and shaping filter design and validation, as 
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described in Section 4.13. It is essential to expend enough effort in its generation 
to be confident that it adequately represents the “real world,” since the ensuing 
performance evaluation and systematic design procedure is totally dependent 
upon this assumption. For example, a very adequate generic model of the 
errors in an inertial navigation system has been constructed over the years 
in the form of a linear model of about 70 states driven by white Gaussian noise; 
thorough laboratory and flight testing of a particular INS allows complete 
specification of the model parameters to yield the “truth model” for that system. 
As inertial systems have improved, the “truth model” itself has become more 
refined so as to portray system characteristics accurately that were once 
considered insignificant. For example, in the next generation of systems, a 
dominant error source in addition to accelerometer and gyro uncertainties 
will be the difference between the true earth shape (geoid) and the assumed 
ellipsoid used in navigation computations. Without incorporating this effect, 
a “truth model” would be seriously inadequate. 

It is desired to achieve a direct comparison of performance capabilities of 
filters that may well estimate completely different, and different numbers of, 
state variables. However, for any given application, there are certain variables 
of critical interest. In optimally aided inertial systems, for example, the nine 
variables of position, velocity, and attitude indications in the three axis direc- 
tions are paramount. All prospective filters will estimate these quantities or 
variables functionally related to them. These critical variables, which we will 
denote as y(.;), will serve as the basis of comparison of the filter designs. 
Although a scalar performance index is appealing from a mathematical and 
numerical optimization point of view, in practice the designer really seeks 
information about these critical variables individually, so attention will be 
focused on them. 

Figure 6.18 depicts the means of conducting a performance analysis of a given 
Kalman filter design [8, 31, 33, 34, 361. The truth model is an n,-dimensional 

I ! b . I 

Truth 
model 

I filter I 
I I 
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state model, linear or nonlinear, driven by (white Gaussian) noise w,( ., .), that 
accurately generates the measurement process z,(. , .). The subscript t will be 
used to denote quantities and processes associated with the truth model. A 
sample from this discrete-time process, z , ( t i ,w j )  = z t ( t i )  for all time ti E T ,  is 
then a representation of a measurement time history to be used as input for a 
single run of the filter algorithm. The filter operates on this input and generates 
the state estimate process j ? ( . ; ) .  If it is implemented in feedback fashion as 
described in the preceding sections, the filter can also output feedback controls 
to the actual system, so a possible feedback path from the filter to the truth 
model is shown in the figure. Suppose that the p critical quantities are related 
to the filter states through a linear transformation : 

9( t i - )  = C(ti)j?(ti-) (6-55a) 

9(ti’) = C(t,)%(t,’) (6-55b) 

Usually C ( t i )  is a time-invariant p-by-n matrix, and often with partitions as a 
p-by-p identity matrix and p-by-(n - p )  zero matrix; ie., the critical quantities 
compose the first p components of the filter state. Nonlinear functional relation- 
ships would be handled in an analogous manner, but we emphasize use of 
linear models here. Thus, the optimal estimates of the quantities of interest are 
generated as 9(ti-;)  and 9(ti’;) for all times ti E T.  

Being a mathematical representation, the truth model, unlike the “real 
world,” generates a (continuous-time) state process x,( ., .) as well as a measure- 
ment process z,( ., .). We will assume that the true values of the critical quantities 
are related to this state by a linear transformation (again easily extended to a 
nonlinear function) represented by a p-by-n, matrix C, (often time-invariant): 

for all t E T. This affords access to these true values, something which the “real 
world” denies us. Using (6-55) and (6-56), we can generate the “true” error 
committed by the Kalman filter in attempting to estimate the quantities of 
interest at time ti, before and after measurement incorporation : 

(6-57a) 

(6-57b) 

If we admit impulsive system response to the feedback control from the filter, 
as discussed in Section 6.5, then a third error, corresponding to after both mea- 
surement incorporation and impulsive control application, is of interest as well : 

e,(t’c,.) = v(t+”;) - y , ( t jC ; )  ( 6 - 5 7 ~ )  

The superscript c denotes after control is applied. 
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The objective of the performance analysis is to characterize the error process 
(6-57) statistically. It is also called a sensitivity analysis because we wish to 
evaluate the sensitivity of this performance to changing the filter structure. In 
addition, we may well want to study the effects of changing sensor hardware or 
system environment; i.e., altering the truth model. Because of using stochastic 
processes as the basic modeling entity, we are more interested in the statistical, 
or ensemble average, behavior of the error process than in a single sample out 
of this process. 

One means of generating this statistical information is a Monte Carlo study. 
Essentially, many samples of the error process are generated by simulation and 
then the sample statistics computed directly. If enough samples are generated, 
these should approximate the process statistics very well. Unfortunately, this 
is a costly and time-consuming process. 

If the truth model itself is in the form of a linear system driven by white 
Gaussian noise, from which are available linear measurements corrupted by 
white Gaussian noise, there is another, more efficient means of generating the 
statistical information, namely, a mean analysis [I 41 and a couariance analysis 
[ I I ,  17,18,31]. Especially in the case of using an error state space Kalman 
filter, the means of all processes are often assumed to be zero for all time, and 
attention is concentrated on the covariance analysis. From one run of a covari- 
ance analysis is generated the time history of P,(.), the covariance of the true 
estimation errors committed by a given filter; the square roots of its diagonal 
terms yield the time histories of standard deviations (or “one-sigma values,” 
equal to rms values if processes are zero mean) of errors in the estimates of the 
critical quantities of interest. This is directly comparable to the massive task of 
running the filter repeatedly,. storing all pertinent performance data, and com- 
puting sample statistics, as required for a Monte Carlo analysis of the same 
filter. 

To  develop the performance analysis equations, consider Fig. 6.18 again. 
If the truth model is itself a linear system model, then the entire system enclosed 
by the dashed lines is nothing but a linear system driven only by white Gaussian 
noise. As seen in Chapter 4, if we want to characterize the output process from 
such a system model, we must first characterize the state process within the 
system, in this case being composed of the partitions x,(.;) of the truth model 
and ii( .. . )  of the filter under investigation. First we will develop the stochastic 
process description appropriate to a Monte Carlo analysis, and from it develop 
the statistical description appropriate to a covariance analysis. The derivation 
will assume all processes to be zero mean, appropriate to error state space 
Kalman filters, and therefore deterministic inputs u( . )  are neglected; an ex- 
tension relaxing these assumptions would be straightforward but more com- 
plicated to account for nonzero means and biased estimates. 

The truth model is described by the stochastic differential n,-dimensional 
state equation 

(6-58a) dx,(t) = F , ( t ) x , ( t )  dt + G,(ttdP,(f) 
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(6-58b) 

where Pt(., .) is an s,-vector Brownian motion of diffusion QJt )  for all t E T :  

JqP,(t)) =a (6-59a) 

E {  [Pdt) - Pd01 [Pt(t) - Pt(t’)I’> = J Q J z )  dz (6-59b) 

or w , ( . ; )  is an s,-vector zero-mean white Gaussian noise of strength Q,(t) for 
all t E T :  

E{w,( t ) )  = 0 (6-60a) 

E ( ~ t ( t ) ~ , * ( t ’ ) }  = Q , ( t P ( t  - t’) (6-60b) 

Note that (6-58) does not as yet account for feedback from the Kalman filter: 
the necessary modifications will be incorporated once the filter is described. 
The initial condition for this differential equation is that x,(to) is described as a 
zero-mean Gaussian random variable with covariance Pt0 : 

(6-61a) 

(6-61b) 

Available from the truth model at discrete times ti are the m-dimensional 
measurements z,(t i ,  .): 

zt(ti) = Ht(ti)xt(ti) + vt(fi) (6-62) 

where v,(.;) is a discrete-time rn-vector white Gaussian noise described by 

E{vt(ti)j = 0 (6-63a) 

(6-63b) 

In terms of the truth model state, the quantities of direct interest to the perfor- 
mance evaluation are denoted as the continuous-time p-vector process y,( ., .): 

Ydt) = CI(t)XI(t) (6-64) 

The Kalman filter being analyzed is based upon a different, generally lower- 
dimensioned, system model, called a design model (this model never explicitly 
appears in the performance analysis, it just serves to generate the filter). The 
n-dimensional design state equation is 

’ dx(r) = F(t)x(t)dt + G(t )dp( t )  (6-65a) 

or 

x ( t )  = F(r)x(t) + G(t )w( t )  (6-65b) 
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with s-vector driving noise of diffusion (strength) Q(t)  for all t E T :  

E{P(t)) = 0 (6-66a) 

E{[P(t) - P(f’)l[P(f)  - P(t’)IT) = J t Q ( ~ ) d r  (6-66b) 

E{w(t ) }  = 0 (6-67a) 

E(w(t)w’( t ’ )}  = Q ( t ) d ( t  - t’) (6-67b) 

The initial condition x(t0) is Gaussian with 

ECx(t0)j = 0 (6-68a) 

E{X(to)XT(to)l\ = Po (6-68b) 

The design model of the measurement history is the discrete-time m-vector 
process z( ., .) 

 ti) = H(ti)~(t i )  + V ( t i )  (6-69) 

with v( . ,  .) a discrete-time m-vector white Gaussian noise with 

E{v(ti)} = 0 (6-70a) 

E(v(ti)vT(tj)} = {Rt) ti = t i  

ti # tj 
(6-70b) 

Finally, the outputs of most concern are described by the p-vector y(.,  . )  

Y ( d  = C(t)x(t) (6-71) 

Despite the notational similarities of (6-65)-(6-71) and (6-58)-(6-64), the two 
models are distinctly different. 

The Kalmanfilter based upon this design model is specified between update 
times by the time propagation equations 

(6-72a) q t i - )  = @(ti, ti- l)qt;- 1) 

P(ti-) = @(ti,  ti- l)P(t2-l)OT(ti, f i -  + Qd(ti- (6-72b) 

(6-72~) 

or, equivalently, 

P(t/t i -  = F(t)2(f/ti- 1) (6-73a) 

P ( t / r j -  = F(t)P(t/t,- + P(t/tj- )FT(r) + G(r)Q(r)GT(t) (6-73b) 

solved forward to time ti from the initial conditions 

2(fi-l/ti-1) = 2(ti+_,) (6-73~) 

P(tj-l/ti-l) = P(tZ-,) (6-73d) 
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At measurement sample times, the update relations are 

K ( t i )  = P(ti-)HT(ti)[H(ti)P(ti-)HT(ti) + R ( t i ) ]  - (6-74a) 

ii(ti') = $ ( t i - )  + K ( t i ) [ z , ( t i )  - H(t i )%(t , - ) ]  

P(ri') = P ( t i - )  - K ( t , ) H ( t i ) P ( t i - )  

(6-74b) 

(6-74~) 
(6-74d) = [I - K ( t i ) H ( t i ) ] P ( t i - ) [ I  - K(ti)H(ti)]' + K(ti )R(t i )K'(f i )  

Note the appearance of z,( ., .) in (6-74b). Initial conditions for the algorithm are 

ii(t,) = 0 (6-75a) 

P(t0)  = Po (6-75b) 

Note that these equations have been written as a stochastic process description, 
one sample of which will correspond to a single operation of the filter: this is 
done since we want to evaluate the ensemble average performance of the filter. 
In terms of this algorithm, the estimated values of the critical quantities of in- 
terest at sample time ti  are: 

g ( t i - )  = c ( t i ) $ ( t i - )  

9( t i ' )  = C(ti ) i i ( t i ' )  

(6-76a) 

(6-76b) 

and, if we wanted these estimates any time in the sample period [ t i -  t i ) ,  (6-73) 
could be used to generate 

9 ( t )  = C(t)i7(t/ti_,) (6-76~) 

Since a Kalman filter will often be implemented in an indirect feedback 
configuration, in which error state estimates are fed back to the actual system 
to try to correct it, the preceding truth model and filter relations will now be 
modified to allow performance analysis of such a configuration. One type of 
feedback discussed previously is the impulsive control o r  discrete-time reset. 
Quantities maintained as contents of computer memory locations (or outputs 
of integrators) can be changed instantaneously based upon the error estimate 
%(ti'). Examples of variables controlled in this manner in aided inertial systems 
are position, velocity, and direction cosine matrix elements for attitude informa- 
tion. Maximum rate torquing of the INS platform is commanded to remove 
estimated misalignments; although this is not an instantaneous change, it 
is accomplished rapidly enough compared to the filter iteration period that it is 
well approximated as impulsive. Once % ( t i + )  is computed, the reset control is 
calculated as a function (assumed linear) of it, D,( t i )2( t i ' ) ,  where the notation 
calls out that this is a discrete-time control that affects the true system (truth 
model). After application of the control, the truth model state process descrip- 
tion becomes 

x, ( t ic )  = x, ( t i )  - Dt(r i ) i i ( t i+)  (6-77) 
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The filter should be "told" that this feedback to the system has occurred, so 
its state estimate is modified as 

i i(t; ') = i i(t, ') - D(ti)ii(ti+) = [I - D(ti)]ii(ti') (6-78) 

where the n-by-n D(t i )  is meant to model the effect of feedback through the 
actual n,-by-n gains D,(t i )  into the system. This i i ( tTc) replaces i i ( t i + )  as the 
initial condition for the next time propagation. 

Some true system variables are controlled over the entire sample period 
rather than impulsively. As discussed in Section 6.5, gyro drift rate compensa- 
tion is achieved by torquing the gyro with a constant (analog signal or pulse 
rate) control over a sample period [ti-,  , ti), proportional to the negative of 
the drift rate estimate 2(t:-l) obtained at the beginning of the interval. This 
form of feedback could be implemented directly into the performance analysis, 
but a simpler and good approximate model is to treat the feedback as continuous 
control, X , ( t )n ( t / r , -  l). Thus, the truth model equation (6-58) is modified to 

x J t )  = F,(t)x,( t )  - X , ( t ) i i ( t / t , -  1 )  + G,(t)w,(t) (6-79) 

Again, the filter is to be informed of such feedback, so (6-73a) becomes 

i ( t / t , - , )  = F(r)jl(r/ti-l) - X ( t ) i i ( t / t i -  1) = [F(t) - X ( r ) ] j l ( r / r i - J  (6-80) 

Similarly, F ( t )  is replaced by [ F ( t )  - X ( t ) ]  in (6-73b), or equivalently, the state 
transition matrix that appears in (6-72) is associated with [F(t) - X(t)] rather 
than F(t). 

At this point, we have described the truth model and Kalman filter that 
appear in Fig. 6.18. For convenience, we now define the augmented state vector 
process xa( ., .) for this entire configuration: for any time in the interval [ti- ti), 

(6-81) 

i.e., an (n, + n)-vector stochastic process with partitions of the truth model and 
filter states, respectively. From (6-79) and (6-80), the augmented state vector 
time propagation relation is: 

(6-82) 

solved forward from time t i -  with the initial conditions 

(6-84) 
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This can be written equivalently through the discrete-time solution model : 

xa( t i - )  = @a(tir t i -  l)xa(t:-cl) + Wda(ti- 1 )  (6-85) 

where Oa(tj, t i - l )  is the (n, + n)-by-(n, + n) matrix that satisfies 

&a(t, t i -  1 = Fa( t )@a( t ,  t i  - 1.) (6-86a) 

Ga(tj-,,ti-,) = I (6-86b) 

and w d a ( ' , ' )  is a discrete-time (n, + n)-vector white Gaussian noise process 
with mean zero and covariance: 

E{wda(tt- I)w;f,(ti- I ) }  = Qda(ti- 1 )  

= lzr Q)a( t i ,  z)Ga(z)Q,(z)G,'(z)Q),T(ti, 7)d.r (6-87) 
L -  1 

To generate the measurement update relations, first of all the truth model 
state is unchanged: 

X , ( f i + )  = x , ( t i - )  (6-88) 

The filter update can be written as: 

a@,+) = i i( t i-)  + K(ti)[zt(ri) - H(ti)2(ti-)] 
= [I - K ( t i ) H ( t i ) ] i t ( t i - )  + K ( t j ) z , ( t i )  

= [I - K ( t i ) H ( t i ) ] n ( t j - )  + K ( t i ) H , ( t i ) x , ( t i )  + K ( t i ) v , ( t i )  (6-89) 

Equations (6-88) and (6-89) yield an augmented state vector measurement 
update as 

x a ( t i + )  = A a ( t i ) x a ( t i - )  + K a ( t i ) v , ( t i )  (6-90) 

where 

(6-9 la) 

(6-91 b) 

The impulsive (reset) control update can be described, using (6-77) and (6-78), 
as 

xa(tTC) = Da(ti)xa(ti+) 

where 

(6-92) 

(6-93) 
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Note that if feedback is not employed, Da(ti) is simply an (n, + n)-by-(n, + n) 
identity matrix. Initial conditions for these relations are: 

(6-94) 

Finally, the output e l ( . ; )  in Fig. 6.16, the error committed by the filter in 
estimating the essential quantities, can be generated from the augmented state 
vector at any time t E T as 

e,(t) = ca(t)xa(t) (6-95) 

where 

= [-C,(t) ~ C(d1 (6-96) 

In a Monte Carlo study, these relationships are used to generate individual 
samples of stochastic processes, employing random number generators to 
obtain each simulation (see Problem 7.14 for a discussion of process sample 
generation). A set of initial conditions is established through a realization of 
(6-94), time propagation conducted through a sample from (6-82) or (6-85), 
and measurement and control updates via (6-90) and (6-92). Thus, a sample 
of the estimation error process is computed from (6-95). The output from a 
single computer run of a Monte Carlo study is a single sample e,(t, ol) for all 
time t of interest. A second run produces e,(t ,o,)  for all t, and so forth, as 
portrayed in Fig. 6.19. A statistical description of this error process is achieved 
by computing sample statistics, averaging over the number of runs conducted. 

The equations for a covariance analysis [8, 17, 18, 311 are readily obtained 
from these relations. Since, all processes are assumed to be zero mean, the 
covariances of the augmented state and estimation error can be defined as 

(6-97) 

(6-98) 

The time history of PJt) is the desired output and Pa(t) is calculated as a means 
of obtaining this result. The appropriate initial conditions are obtained from 
(6-94) as 

T Pa@,) = E { x a ( t o ) x a  ( to)}  = (6-99) 

Propagating between sample times is accomplished by integrating 

P a ( t )  = Fa(t)Pa(t) + pa(t)F,T(t) + Ga(t)Qt(t)G,T(t) (6- 100) 

forward from time t i-  1, with initial conditions as Pa(t:21), to time ti, as seen 
from (6-82)-(6-84). This can be expressed equivalently, from (6-85)-(6-87), as 

p a ( t i - )  = ~ a ( f i , t i - l ) P a ( ~ ~ - ’ ~ ) ~ ~ ( f i ,  t i - J  + Qda( t i -1 )  (6- 101) 
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Sample value of 
error in estimate of 
critical quantity 

FIG. 6.19 Outputs of three Monte Carlo simulation runs. 

The measurement update relation derived from (6-90) and (6-91) is 

p a ( t i + )  2 Aa(ti)Pa(ti-)AaT(ti) + Ka(ti)Rt(ti)K,T(ti) (6-102) 

From (6-92) and (6-93), the impulsive (reset) control update is 

Pa( t: ") = Da(ti)Pa(ti +)D,T(ti) (6- 103) 

As the state covariance recursion is generated, the desired error covariance can 
be obtained at any time of interest, using (6-95) and (6-96), as 

pe( t )  = Ca(t)pa(t)C,T(t) (6-104) 

Because the augmented system is a linear system driven by white Gaussian 
noise, the covariance relations are independent of the actual measurement 
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time history, so it is possible to perform this covariance analysis a priori, without 
resorting to noise generator simulation of process samples. 

To conduct a covariance analysis, one must explicitly define the structure 
and uncertainties of the truth model (F, or @,, G,,  HI, Q,, and R, time histories 
and Pl0) and of the design model upon which the filter is based (F or 0, G, H, 
Q, and R time histories and Po). Note that the only effect of Q(-)  and R(.) in 
these equations is to establish the filter gain K ( . ) :  the design model w(.;) and 
v(.;) do not directly affect the spreading of samples of the a ( . ; )  process. 
Moreover, a filter modification which incorporates approximated gains instead 
can be analyzed readily. 

One particular use of a covariance performance (sensitivity) analysis is a 
systematic approach to the,filter tuning [13, 15, 16,20,24,27,33,37-39,50,51] 
process. The basic objective of filter tuning is to achieve the best possible 
estimation performance from a filter of specified structural form, i.e., totally 
specified except for Po and the time histories of Q and R. These covariances not 
only account for actual noises and disturbances in the physical system, but 
also are a means of declaring how adequately the assumed model represents 
the “real world” system. The simpler and less accurate the model, the stronger 
the noise strengths should be set, but it is difficult if not impossible to specify 
best numerical values a priori. 

In the tuning process, the filter structure and the entire truth model remain 
fixed. For one set of values of Po and time histories of Q and R in the filter, 
the covariance analysis provides the time history of the “true” rms errors in 
estimates of critical quantities committed by the filter, obtained from the square 
roots of diagonal terms of P,. Another set of these noise parameters can be 
chosen, thereby generating another time history of rms estimation errors. This 
procedure can be repeated until the “best” choice of parameters is found, best 
in the sense that filter errors are minimized. Thus, the tuning process can be 
considered a numerical optimization problem, a constant parameter optimiza- 
tion if stationary statistics are assumed, or a significantly more difficult function 
optimization if stationarity is not assumed. As such, it can be solved by auto- 
matic search methods or by manual calculation: using physical insights to 
propose changes in the noise covariances, and continuing to vary them until 
the performance no longer improves. Manual “optimization” is more prevalent 
in practice. Basically, the Po matrix is the determining factor in the initial 
transient performance of the filter, whereas the Q and R histories dictate 
the longer term (“steady state” if time-invariant system and stationary noise 
models apply) performance and time duration of transients. 

When performing the filter tuning, it is useful to compare the actual rms 
errors committed by the filter to the filter’s own representation of its errors: the 
P covariance time history computed as an integral part of the estimator algo- 
rithm. This time history is also directly available as an output from the co- 
variance analysis [Pe(t) would be directly comparable to C(t)P(t)CT(t), but 
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all filter channels are usually observed individually for tuning purposes, so 
here we consider C( t )  I and C,(t) defined appropriately]. One would want 
the filter to perform as well as it “believes” it is performing. If, due to mistuned 
noise parameters, the filter underestimates its own errors, it will not “look 
hard enough” at the measurements, with resulting filter divergence problems 
if the discrepancy is significant enough [12, 43, 441, as depicted in Fig. 6.20a. 

rms error 

Computed rms error 

I , I I I I - 
Time 

(a) 

rms error 

Computed rms error 

“True” rms error 

I 1 I I I I I - - 
Time 

(C) 

Filter tuning through covariance analysis. (a) Filter underestimates its own errors: 
divergence. (b) Filter overestimates its own errors: tracking of measurement noise. (c) Well-tuned 
filter. 

FIG. 6.20 
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On the other hand, if the filter’s internally generated covariance overestimates 
the errors being committed, then the filter weights the measurements too heavily, 
expending too much effort to track the noisy data and not exploiting the bene- 
fits of its internal model enough, as seen in Fig. 6.20b. By choosing the noise 
parameters so that the overall time histories of actual rms errors and the 
square roots of the filter P matrix diagonal terms match well, the actual estima- 
tion errors are effectively reduced at the same time. This is portrayed in Fig. 
6.20~: note that the true rms error is lower than in the two preceding plots. 
Allowing the filter to overestimate its own errors slightly, so as to minimize the 
likelihood of divergence, is a commonly adopted means of generating a con- 
servative filter design. 

Other means of filter tuning are possible as well. If truth model noise (and 
structure) parameters are known only with some uncertainty, it is possible to 
tune a reduced order filter by a game theoretic (minimax) approach, in which 
the uncertain parameters “try” to maximize the estimation errors and the filter 
design parameters “try” to minimize it. The result is a single filter design with 
acceptable performance over the entire range of uncertain parameter values 
[9], without increased online computation required, as would be the case for 
an adaptive estimator. 

Once a particular filter has been tuned, an error budget [l, 15,16,20,24,27, 
33, 37-39, 50, 511 can be established. Essentially, this consists of repeated 
covariance analyses in which the error sources (or small groups of sources) in 
the truth model are “turned on” individually to determine the separate effects 
of these sources. At particular times of interest, the rms errors in estimates of 
quantities of interest due only to a single source of error are recorded. For 
instance, Fig. 6.21 plots a north position rms error budget for a particular 
filter considered for a Doppler-aided INS application, at a point following a 
long period of overwater flight (a worst-case scenario for such a navigation 
system). This information is useful for a number of purposes. If the filter under 
test were based upon the full-scale truth model, this would indicate that it is 
most essential for the filter to model INS gyro drift rate (three single-state 
shaping filters) and wideband Doppler noise (modeled as white noise): it 
suggests a filter that neglects the states modeling the other contributions and 
increasing the strength of noises to account for such deletion. If the filter 
under test were such a practical design, and tuned properly, then this error 
budget would indicate navigation errors being dominated by gyro drift rate 
and Doppler noise: if hardware were to be improved, the most cost-effective 
improvement would be an INS with better gyro drift characteristics and/or 
a better precision Doppler. Note that, because of the linearity of the covariance 
analysis equations, the total navigation rms error can be found as the root- 
sum-square of the individual independent contributions. 

Besides tuning or generating an error budget for a single filter, a covariance 
analysis provides an effective means of conducting a trade08 analysis among 
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FIG. 6.21 Navigation sensor error budget subsequent to long overwater flight. 

the various proposed designs. By explicitly evaluating the performance capa- 
bilities and computer burden of each design, the engineer has obtained the 
information necessary to make a rational selection of the filter most appropriate 
to his particular application. Sensitivity to parameter variations in the filter 
or system hardware (i.e., the truth model) can be obtained in a straightforward 
manner by repeated covariance analyses, or adjoint methods [7] can be em- 
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ployed to describe local sensitivity to small variations in many parameters 
simultaneously. 

Although a covariance performance analysis is computationally more 
efficient than a Monte Carlo study and so should be exploited, there is a definite 
advantage to employing the Monte Carlo approach in addition. First of all, 
a Monte Carlo study encompasses a system simulation in which the actual Jilter 
algorithm is embedded. As such, portions of the simulation can be replaced by 
actual data or hardware as it becomes available. Moreover, sign errors in the 
filter algorithm that may not be readily apparent in a covariance analysis due 
to squaring effects become evident in the Monte Carlo study: if the two per- 
formance analyses are based on the same models and disagree significantly 
in predicted estimation accuracy, sign errors are to be suspected. Finally, 
effects of nonlinearities such as device saturation or neglected terms in attaining 
linear perturbation equations cannot be evaluated by a covariance approach, 
and must be investigated through Monte Carlo means. 

6.9 SYSTEMATIC DESIGN PROCEDURE 

As can be surmised from the preceding sections, Kalman filter development 
requires an iterative proposing of filter modifications and evaluating of each 
version’s capabilities of meeting performance requirements (rms estimation 
errors, etc.) and practical constraints (computation time, storage, sequencing, 
cost, etc.). A systematic design procedure would be conducted in the following 
manner : 

(1) Develop a “truth model” (a complete, complex mathematical model 
that portrays true system behav’ior very accurately) and validate with laboratory 
and operational test data (this serves as the basis for evaluating all prospective 
designs, so one must establish its validity with the utmost confidence); if non- 
linear, linearize it for later covariance analyses. 

(2) Generate the Kalman filter based upon the “truth” model as a “bench- 
mark” of performance and analyze its capabilities. ( I f  the truth model is linear, 
the filter-generated covariance provides a valid performance analysis; if non- 
linear, Monte Carlo evaluations are necessary.) 

(3) Propose simplified, reduced order system models by removing and 
combining states associated with nondominant effects, deleting weak cross- 
coupling terms, employing approximations, etc. (this requires substantial 
physical insights into the problem at hand), and develop the simplified filters 
based on each model ; also consider approximated filter structures. 

(4) Conduct a covariance performance analysis of each proposed Kalman 
filter being driven by measurements derived from the truth model of the real 
system; as an iteration within this step, “tune” each filter to provide best possible 
performance from each. 
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(5) Generate a Monte Carlo analysis of designs from the preceding step 
that show most promise. 

(6) Conduct a performance/computer loading tradeoff analysis and select 
a design; investigate square root and other forms of implementing the chosen 
design. 

(7) Implement the chosen design on the online computer to be used in 
the final system. 

(8) Perform checkout, final tuning, and operational test of the filter. 

Through such a procedure, a logical decision process based on sufficient 
empirical data is incorporated into the design. As a result, the final implementa- 
tion should perform as well as predicted in earlier stages of design. (If the 
implementation is error free and performance is not as predicted, this indicates 
that the original declaration of the truth model was faulty.) Although the 
procedure consumes much time and effort, the overall design risk is less than 
that associated with making design decisions with less supportive analysis, 
in which inadequate performance is not detected until operational test. It is, in 
fact, a cost-effective procedure. 

6.10 

This section illustrates use of the design procedure of Section 6.9 to generate 
a practical Kalman filter for a full-scale example of aiding an inertial system 
with position data provided by navigation satellites [5, 101. First the truth 
model will be delineated and the performance of the filter based on the truth 
model portrayed. Based on insights gained from the physics of the problem 
and this covariance analysis, reduced order filters will be suggested and analyzed. 
One parameter of distinct interest for this problem is the filter sample period, 
and sensitivity to its variation will be demonstrated. 

The Global Positioning System (GPS) currently under development consists 
of‘ 24 navigation satellites, placed eight in each of three different orbits. Each 
satellite contains a transmitter, receiver, and a quartz crystal oscillator “clock.” 
Periodically a ground tracking network measures and updates the ephemeris 
and satellite clock phase and frequency in order to maintain synchronization 
of all satellite clocks. The satellites in turn continually transmit this information 
together with a range code, formatted such that each satellite signal can be 
distinguished from the others by the user. By means of a correlation detector, 
the time (phase) shift between each satellite signal and the user’s unsynchro- 
nized clock is measured in his receiver, to provide an indication of range from 
the satellite to the user. If the user has an INS, its position indication and the 
satellite emphemeris data can be used to compute an INS-indicated range 
to the satellite. The difference of these two range indications, called “range 

INS AIDED BY NAVIGATION SATELLITES 
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divergence,” serves as an input to an indirect feedback Kalman filter to yield 
an integrated GPS-aided inertial navigation system. Four such range divergence 
signals become available at each filter sample time, i.e., from four separate 
satellites, in order to correct the three components of position and clock phase 
difference (a dominant effect which enters the model directly as a position error). 

A scalar range divergence measurement associated with satellite j ( j  = 1,2, 
3,4) can be written in terms of INS-indicated range Rj-INS, satellite-indicated 
range RjmSat, true range Rj-true, and associated errors 6Rj- INS and 6Rj-,,t as: 

z j ( t i )  = Rj-INS(ri) - Rj-sat(t i )  

= [Rj-true(ti) + 6Rj-INS(ti)] - [Rj-true(ti) + 6Rj-sat(ri)] 

= 6 R j - I N d f i )  - 6Rj-sat(ti) (6-1 05) 

Since INS-indicated range is based upon INS-indicated position of the user 
vehicle and satellite-provided ephemeris data on its own current position, 
?jRj-INS(ti) is due to errors in both these sources. However, the satellite orbital 
parameters are very precisely updated by the ground tracking network and 
are negligible (any small uncertainties due to this effect can be accounted for 
by increasing the satellite clock phase error). Let the INS platform instrument 
an east-north-up coordinate frame so that the INS position errors are 6r = 

[6re,6r,,6rUlT. Then if ij = [ije, i,,, ijulT is the unit vector direction from the 
user to satellite j ,  expressed in east-north-up coordinates, the error 6Rj-INS(ti) 
can be written as 

SRj- INS( t i )  = - ij(ti)’ S r ( t i )  

= [ - ije(ti)] 6re(ri) + [ - ijn(ti)] &,(ti) + [ - iju(ti)] 6ru(ti) (6-106) 

The range measurement error model, validated through empirical data, is 

6Rj-sat(fi) = c 6 T u ( t i )  - c 6 T s j ( t i )  + b , j ( t i )  - v,j(ti) (6-107) 

where c is the speed of light, 6T,(ti) is user clock phase error, 6TSj( t i )  is satellitej 
clock phase error, including error due to ionospheric delay, brj(ti) is a small range 
bias term accounting for tropospheric delay and uncertainty in the speed of 
light, and vj(fi) is white Gaussian measurement noise modeling high frequency 
corruption of satellite signal and quantization error. Substitution of (6-106) 
and (6-107) into (6-105) yields the zj(ti) measurement relation for the truth 
model. 

The truth model dynamics model is based upon the Pinson error model 
[40, 41, 521 for the three position errors (6re,6rn,6ru), three velocity errors 
(6ve,6vn,6vu), and three attitude errors ($e, $,,$,,) in an INS, specified by the 
9-by-9 F( .) given in Fig. 6.22 and driven by sources of uncertainty. 

The time rates of change of the velocity errors are driven by accelerometer 
errors as given in Example 6.1 of Section 6.7: three accelerometers with six 
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error states per sensor, yielding 18 augmented states. Also driving these velocity 
errors are gravity anomalies: three exponentially distance-correlated states to 
model the difference between the geoid and the ellipse assumed in the naviga- 
tion equations; these enter because computed gravity is subtracted from the 
specific force outputs of the accelerometers to. yield vehicle acceleration. 
Exponentially distance-correlated processes are the outputs of first order lags 
driven by white noise, with the lag time constant T equal to [ d / V ] ,  where cl is 
the correlation distance and I/ is the vehicle velocity magnitude. The time rates 
of change of attitude errors are driven by gyro errors as given in Example 6.2 
of Section 6.7: three single-degree-of-freedom gyros with 14 error states per 
sensor, or 42 additional states. Thus, the INS error model incorporates 72 states. 

The mathematical models for both the user clock and the four satellite clocks 
[5, 10,211 are structurally identical, but the user clock initial errors are orders 
of magnitude greater than those of the satellite clocks because of the greater 
accuracy of the periodically updated satellite clocks. The generic model is 
portrayed in Fig. 6.23 and is specified by 

6T(t) = co + clt  + c,t2 + eT(t) (6-108) 

1.C. = c2  I.C. = c, I.C. = co 

4IP 
FIG. 6.23 Clock error model. 

where co, c,, and o2 are random variables and eT( . ; )  is an exponentially time- 
correlated noise satisfying 

eT(t) = + wT(f) (6- 109) 

where w T ( . ,  .) is white Gaussian noise. Thus, each of the five clocks contributes 
four more states to the system model, for a total of 20 augmented state variables. 

Finally, the range biases brj in (6-1 07) are modeled as the outputs of undriven 
integrators. This adds four states, to yield a total truth model state vector of 
dimension 96. 
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Truth model parameter values were set so as to represent a state-of-the-art 
INS being updated every 30 sec by four GPS satellite range measurements. 
The user vehicle was simulated as flying for one hour at constant speed and 
altitude over a great circle path. First the Kalman filter based upon the truth 
model was studied through a covariance performance analysis, concentrating 
on the nine error states of position, velocity, and attitude indications. Figure 
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FIG. 6.24a North rms position error of filter based on truth model. 
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6.24 presents the north rms position and velocity errors achieved. Note that the 
position error in Fig. 6.24a starts to grow slightly at the end of one hour’s 
flight, indicative of possible divergence problems for longer flights. This problem 
is the result of using the same four satellites for all updates: in practice an 
optimal set of four (ten will be in view at a given time on the average) would be 
chosen, and analyses have shown this procedure to preclude divergence. 
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FIG. 6.24b North rms velocity error of filter based on truth model. 
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Although a 96-state Kalman filter would be totally impractical, this does serve 
as a baseline against which to compare other reduced-order simplified designs. 

Through error budgets and physical insights, the least significant state 
variables were deleted or combined, shaping filters reduced in complexity (in 
the cases of INS gyro and accelerometer models, the gravity anomaly models, 
and clock eT models, to the limiting case of white noise, requiring no states 
at all), and remaining noise strengths increased to account for the simplifica- 
tions. Eventually a 15-state design was attained, being composed of the nine 
basic INS states (Sr, ,  dr, , dr,, Sue,  Sv,, Sv,, I)e, $,, I),,), the co clock phasejrange 
error state in (6-108) for each of the four satellites, and both the co and c1 
frequency offset state for the user clock. Moreover, the weak coupling terms 
in the F matrix were removed; Schuler frequency terms (w,' and 2wS2) were 
retained so that the model applicability would not be restricted to short periods 
of time, on the order of 30 min. Thus, the upper 9-by-9 partition of the filter 
F matrix replaces that given in Fig. 6.22 with the matrix depicted in Fig. 6.25. 

are:  

dr,: 

Sr, : 

80,  : 

So,: 

sv,: 

&e : 

4": 
&. : 

FIG. 6.25 Modified 9-by-9 F matrix of Pinson error model (nonzero 
elements only). 

The performance of this 15-state filter, after being properly tuned, is dis- 
played in Fig. 6.26. Despite the vast reduction in size and complexity of the 
filter, performance degradation from that of Fig. 6.24 is totally insignificant in 
position estimation accuracy, while being more apparent in the velocity estima- 
tion. However, this design is performing well within specification and provides 
a good tradeoff of complexity and performance. Range-rate measurements 
could be used additionally to improve this filter's ability to maintain accurate 
velocity estimates, if desired. 

Some insights suggested a further simplification might be achieved by 
discarding the four satellite clock phase/range error states and the user clock 
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FIG. 6.26a North rms position error of 15-state simplified filter 

frequency offset error, yielding a ten-state filter. However, performance analysis 
of this design (after retuning) revealed an unacceptable degradation in estima- 
tion capability, as depicted in Fig. 6.27. 

Returning attention to the acceptable 15-state design, it was desired to 
observe the sensitivity of performance to slower update rates. Figure 6.28 
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FIG. 6.26b North rms velocity error of 15-state simplified filter. 

indicates that tripling the sample period from 30 to 90 sec still yields acceptable 
estimation precision. 

Thus, covariance performance analysis has been shown to be a versatile 
tool for initial stages of Kalman filter design and tradeoff studies. Nevertheless, 
this is but a part of a total systematic design and implementation of an opera- 
tional filter algorithm. 
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FIG. 6.27a North rms position error of 10-state simplified filter 

6.1 1 PRACTICAL ASPECTS OF IMPLEMENTATION' 

Throughout the development of a filter algorithm, one must be aware of the 
constraints imposed by the computer in which the software will reside: 

See References [28,29, 31, 35,46-481. 
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FIG. 6.2713 North rms velocity error of 10-state simplified filter. 

cycle time (and through it, the time to perform a load, store, add, multiply, 

memory size and access; 
wordlength (Is rounding to nearest number or truncating least significant 

bits used, i.e., are wordlength errors symmetric or biased? Are square root forms 
or other means of enhancing numerical precision and stability warranted?); 

divide, etc.); 
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FIG. 6.28a North rms position error of 15-state filter with 90-sec update period. 

readout AID quantizations; 
instruction set; 
calculation capability; 
arithmetic type (floating or fixed point?). 

In many applications, the filter will be one of many algorithms processed by a 
central digital computer. Consequently, the designer must plan real time 
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FIG. 6.28b North rms velocity error of 15-state filter with YO-sec update period. 

allocation and sequencing to be compatible with estimation accuracy specifica- 
tions, sensor interfacing, and other software processing requirements. Often 
the iteration period of the filter is long compared to that of other jobs, such as 
a 30-sec period for an INS-aiding filter versus a 0.02-sec period for digital 
flight control inner loops. Therefore, the filter computations are typically 
performed “in the background” on a time-shared computer, admitting priority 
interrupts for more time-critical jobs. 
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FIG. 6.29 Kalman filter computer memory requirements. 

In the past, storage requirements have been a critical factor in the practicality 
of a filter design. Figure 6.29 plots the number of computer words required by 
actual navigation Kalman filters as a function of the number of state variables 
being estimated. These numbers account for both program instruction and 
permanent storage locations dedicated to the filter, but not erasable storage 
common to other programs. For instance, to implement a 16-state filter will 
require about 2200 words, about equally divided between instructions and 
permanent storage. In this figure, a curve has been drawn to indicate an approx- 
imate graph of this data for very efficient filters. Note that it does not exhibit 
a proportionality between required storage and the square of the state dimen- 
sion as might be predicted theoretically (for n >> rn, the number of words 
required is predicted to be dominated by a term equal to 2.5n2). This is caused 



356 6. DESIGN AND PERFORMANCE ANALYSIS OF KALMAN FILTERS 

by the fact that, as the state dimension of a filter grows, the defining matrices 
typically become considerably more sparse. Nevertheless, because computer 
memories are becoming dramatically less expensive, future filter designs may 
not focus so much attention on storage aspects. 

Similarly, the number of computations can be calculated as a function of 
state variables used. For n >> m, approximately 4n3 multiplications, and the 
same number of less time-consuming additions, would be needed for a single 
recursion of the filter. Again, this is not totally realized in practice due to 
increasing matrix sparsity with higher state dimension. 

The practical constraints imposed by the computer do dictate a design 
philosophy ofgenerating as simple a filter as possible that will meet performance 
specifications. Means of reducing complexity that are generally exploited are 

reducing state dimension while maintaining dominant facets of system 
behavior ; 

neglecting terms, decoupling, and other model simplifications ; 
canonical state space; 
exploiting symmetry (computing only lower triangular form of symmetric 

precomputations; 
approximations, as curve-fitted or constant gains; 
long sample periods, possibly using measurement prefiltering to make 

iterative scalar measurement updating; 
removal of double precision requirements by use of a "square root filter" 

approximation of stored constants as powers of two so that multiplications 

efficient, rather than straightforward, programming of the algorithm such 

matrices); 

this feasible; 

implementation (discussed in Chapter 7); 

are replaced by simple shift operations; and 

as replacing 

Pf = P- - P-HT(HP-HT + R)-'HP 

by 

A = P-HT, B =HA + R, C = B- '  P+ = P- - ACAT 

Another practical consideration is the means of performing the estimate 
time propagations numerically. We will concentrate on the covariance time 
propagation. One method is to integrate the equation 

P(t/ti- = F(t)P(t/ti-,) + P(t/t ,-  l)FT(t) + G(t)Q(t)GT(t) (6-110) 

= P(t,? '). If we let At represent [ti - t i-  '1, forward to time ti from P(ti_ ' / t i -  
then simple Euler integration yields 

P(ti-) P(r,"_ ') + [P(t i -  J t i -  ,)I At (6-111) 
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where means computationally equivalent to. Integration accuracy is im- 
proved if the derivative in this relation were evaluated at the midpoint of the 
interval instead of the beginning: 

If neither of these sets of relations yield adequate performance, either the sample 
period can be subdivided and first order integration applied repeatedly to 
each step along the 'subintervals, or a higher order integration technique such 
as fourth order Runge-Kutta can be employed. 

Another means of accomplishing the time propagation is through 

P(ti-) = @ ( t i , t i - l ) p ( t ~ - l ) @ T ( t i , f i - l )  + & ( t i - 1 )  (6-113a) 

(6-113b) Qa(ti- 1 )  = J z i  @(ti,  z)G(z)Q(z)GT(z)QT(ri, t )dz 
t i - 1  

Chapter 4 indicated a first order approximation for @(ti, ti- 1 )  and Qd(ti- 1) 

as (see 4-132): 

(6- 1 14a) @ ( t i , t i - l )  A I + F(ti-l)At 

Q d ( t i - 1 )  G(ti-l)Q(ti-l)GT(ti-l)At (6-114b) 

These numerical approximations are similarly improved if the matrices are 
evaluated at the midpoint of the interval instead of the beginning, or approx- 
imated by the average of their values at both ends of the interval. Moreover, 
subdividing the sample period and applying such relations repeatedly also 
will improve precision. 

If the system model is time 'invariant, or has time variations that are slow 
enough to represent F adequately as constant over a single filter sample period, 
then the state transition matrix can be approximated by a truncated matrix 
exponential : 

N i  

(6-115) 

where N might be chosen as two. Again, subpartitioning into J portions can 
be used to advantage to obtain 

J -  1 

@(ti ,t i- l)  = n @ ( t i - l  + ( j  + l)At/J, t i- l  +jAt/J) (6-116) 

where each element in the product is calculated as in (6-115). A first order 
approximation to such a result would be 

j = O  

J -  1 

@ ( t i , r i P l )  A I + 1 [F(ti-, +jAt/J)][At/J] (6-117) 
j = O  

Other methods of evaluation were discussed in Problems 15-17 of Chapter 2. 
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If the first order approximation to Qd(ti- 1 )  given in (6-114b) is inadequate, 
other methods can be applied. First of all, the Q(t , t iP1)  equation to be inte- 
grated to yield Qd(td- 1), (4-129c), is identical in form to (6-1 lo), with the only 
difference being the initial condition. Therefore, the methods applicable to 
(6-1 10) are also usable here. Second, trapezoidal integration of (6-1 13b) yields 

Q d ( t i - 1 )  a[@(ti,ti-,)G(t,-l)Q(ti-l)GT(ti-l)@T(fi,ti-l) 
+ G(ti)Q(ti)GT(ti)] At (6-118) 

This form is especially attractive since it replaces having to know @(ri,z) for 
all z with evaluating only @(ti, ti- as discussed previously; it is in fact the 
method used in the F - I l l  navigation filter [32]. If GQGT is constant, then 
(6-1 14a) can be substituted into this expression and terms rearranged to yield 
another approximation as 

Qd(fi- 1) A +[@(ti, ti-l)GQGT + GQGTQT(ti, ti-,)] At (6-119) 

which was used in a LORAN-inertial navigation filter for the Army [26]. 
Higher order integration techniques are possible, but are seldom necessary. 

Residual monitoring as described in Section 5.4 is typically exploited in 
operational filters, at least for reasonableness checking and discarding of “bad  
data points for which the residual magnitude exceeds some specified multiple 
of the computed standard deviation. Current designs embody more sophis- 
tication, using the residual monitoring for sensor failure declaration or adaptive 
purposes. 

If a human operator is to provide measurements to the filter, the man- 
machine interface is a unique problem. Not only is update timing an issue, 
but so is the operator’s confidence in the filter’s perceived performance. For 
example, in the operation of the F-111 navigation filter, the operator can key 
in landmark position data. The accuracy ascribed to such data through asso- 
ciated diagonal elements in the R matrix was such that the Kalman gain was 
low and the navigation system updated its calculated position by only a small 
fraction of the residual. This dissatisfied navigators to the point where they 
attempted to “compensate” with fictitious position data or to override the 
filter function if they believed their own data to be precise [32]. To circumvent 
this lack of confidence, designers of a more recent navigation filter have in- 
corporated the ability to “tell” the filter that the landmark information keyed 
in is thought to be poor, average, or very good: the navigator inputs both data 
and one of three predetermined R values to set the filter gain accordingly [l]. 

6.12 SUMMARY 

This chapter has developed the means of exploiting the Kalman filter 
derived in the previous chapter, converting it from a result of mathematical 
optimization theory to a useful and flexible engineering tool. As has been 
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emphasized throughout the discussion, there are many possible filter de- 
signs for any given application. Physical insight and engineering judgment 
are essential to proposing viable designs, and then a thorough and accurate 
performance/loading tradeoff analysis must be conducted to generate a superior 
filter algorithm. A systematic approach to this iterative design procedure has 
been presented, one which minimizes the risk of erroneous decisions and major 
design modifications late in the filter development process, and one which 
maximizes the probability of an efficient, practical design that meets or sur- 
passes all performance specifications. Because of constraints imposed by the 
computer and overall system of which the filter is an integral part, the design 
philosophy to be adopted is not to achieve the best possible performance at 
any cost, but to develop the simplest design that ensures attainment of per- 
formance goals. 

Examples have concentrated upon the application of Kalman filtering to 
aiding inertial navigation systems. This has been an area benefited significantly 
by the Kalman filter, for two fundamental reasons. First of all, the error char- 
acteristics of an INS and other navigation aids complement each other well: 
the INS provides accurate high frequency data while the other sources supply 
good low frequency information. Thus, there is much benefit to be derived 
from combining such data through an optimal estimation algorithm. Perhaps 
more importantly, though, very adequate error models in the form of linear 
system representations driven by white Gaussian noise have been developed 
and validated for this application area, which is precisely the form required by 
the Kalman filter. As adequate models are developed in other areas, optimal 
estimation theory will become more widely exploited. Progressively the funda- 
mental application of filtering theory will mature to a point where the systematic 
design procedure presented in this chapter can glean out the fullest potential 
of “optimal” filtering in the form of an efficient operational data processing 
algorithm. 
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PROBLEMS 

6.1 Combining Inertial and ILS Information A substantial amount of work is now being 
conducted in the area of combining inertial and instrument landing system (ILS) signals by means 
of a Kalman filter. An ILS is composed of two beams, one oscillating in the vertical plane (which 
provides the glide-slope measurement) and another in the horizontal plane (to provide the localizer 
measurement). These oscillate in restricted arcs about the nominal approach path to the runway. 

It is proposed that, once the localizer beam and glide-slope beam are captured, the ILS and 
inertial data be combined optimally. In effect, the inertial system is used to smooth the ILS data 
before presenting the approach information to the pilot. 

It is assumed that the aircraft will have achieved a location and velocity “close” to a nominal 
trajectory to the runway. The inertial system (possibly aided during the preceding cruise segment 
of flight) will provide the necessary initial conditions. Furthermore, initial offsets in the stable 
member alignment from vertical, accumulated velocity errors, and the effects of gyro drift during 
the ILS/INS mode will have negligible effects and can be ignored. 

For category I1 (restricted ceiling and visual range) landings, ILS beam errors and onboard 
receiver errors are expected to cause deviations from the ideal trajectory according to the following 
table of path angle peak deviations (outer and middle markers are located in line with the runway 
along the approach trajectory and threshold refers to the end of the runway). 

Location Localizer deviation Glide-slope deviation 

Beyond outer marker 5~0.4” k0.1” 
Outer marker to middle marker 
Middle marker to threshold - + 0.07“ k0.06” 

k0.4” decreasing to k0.07’ k0.1” decreasing to k0.06” 

(a) How would you incorporate this data (a typical specifktion) into the format required in 

The localizer measurement at  time instant t, is modeled by 
the Kalman filter formulation? 

LIL&,) = Ltrue(t,) + 6L,,,(tZ) - v,(t,) (1) 
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Here v l  and v2 are white Gaussian noises with zero mean and variances u:, and u:*, respectively 
(and they are assumed to be uncorrelated). However, empirical data revealed that a simple white 
noise added to the true values did not model thc true errors sufficiently, so 6LILs and SSILs were 
addcd. These are modeled as Lero-mcan, exponentially time-correlated Gaussian processes with 

E{6S1,,(t,) 6S,,,(tj)} = us2e-l',-r~l/T (4) 

where T is the correlation time common to both. It can be shown that a signal with such a time 
correlation can be produced by passing a zero-mean, white Gaussian noise through a first order 
lag. In sampled data form, the "shaping filter" equations are 

where At is the time between samples, ti - ti- I .  

(b) Determine the appropriate value of the variances of wdl and wdz noises such that the 
steady state outputs of the "shaping filters" satisfy Eqs. (3) and (4). 

The inertial system provides predictions of the deflections from the desired glide-slope path, 
based upon the current latitute, longitude, and altitude as calculated by the INS. These inertial 
predictions are expressible as 

L I N S ( t i )  = Ltruc (I,) + & L I N S ( t i )  (7) 

slhs(ti) = Struck) + (8) 

Now, if x, y, and z are, respectively, the east, north, and upward directions, then the above equations 
can be linearized about a nominal approach trajectory. 

Express 6L,,,(fi) and 6 S , N S ( t i )  in terms of F x ( t i ) ,  6 y ( t i ) ,  &(ti), the INS errors. To do this, it is 
suggested that a geometrical picture be drawn to display true and INS-indicated x, y, z, L, and S. 
Knowledge of the location and heading ofthe runway can be assumed to be prestored information 
in the computer. 

As in the simple example in Section 6.4, the INS can be modeled as (for periods of time as short 
as those of interest for landing) a double integrator of acceleration: 

(c) 

6 x ( t i )  = 8 x ( t i -  + (At) 6v,(ti-,) (9) 

F V , ( t , )  = &v,(t,- I )  + W d t ,  ~ 1 )  (10) 

with wdx a white Gaussian zero-mean noise sequence with variance Q,.  Similar equations would 
then exist for the y and I' directions as well. 

(d) Write out the discrete-time equations that describe the error state space description of 
this system model. There are eight state variables, but an eight-dimensional state vector is not 
necessary: decoupling is possible. Decouple the equations into the appropriate number of sets of 
equations of the form 

X ( t i )  = @ X ( t , - , )  + GdW,(ti-,), Z ( t i )  = HX(ti) + V ( t i )  

These decoupled equations define the state space model for separate Kalman filters. 

indirect feedback filter is implemented. 

it be done? 

(e) Write out the Kalman filter equations. Note that the time propagation is simplified if an 

(f) Consider the possibility of nearly optimal simplified gains for this problem. How might 
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6.2 The noise random variable v(ti)  in (6-52) is a Gaussian noise meant to model the effects of 
quantization on the measurement at time t i ,  and this problem establishes the appropriate descrip- 
tion of such a noise. Suppose that an analog-to-digital converter or some other quantizer operates 
with a quantization level ofA. 

(a) If it uses “rounding,” the device will convert any input r( tJ  in the range 

[kA - &A] 5 r( t ; )  < [kA + ;A] 

into an output y ( t J  = kA. If all input values are equally likely, a good model of the error due to 
quantization is a uniformly distributed random variable. Completely describe its density function, 
mean, and variance. 

(b) If the quantizer uses “truncation,” converting any input r( t i ) ,  

[kA] s r( t i )  -= [kA + A] 

into an output y(tJ = kA, how does this change the results in (a)? 
(c) Gaussian random variables can be used to approximate the uniform variables just proposed. 

An equivalent mean can be set and either the variance can be set equal to the variances found in 
(a) and (b), or the 3u value set equal to half the range (i.e., A/2). Generate these approximations 
and plot the results. 

6.3 If numerical problems arise in a filter due to a wide dynamic range of values of interest 
(as covariance matrix eigenvalues for example), rescaling of variables is often conducted to reduce 
this range. 

(a) Let a three-dimensional filter be described in terms of variables xl, x2, and xg. Convert 
this to a filter expressed in terms of states cxIr x2, and x3. where c is a scale factor. Describe the 
new filter defining quantities in terms of the original F, B, (let r = 2). G,Q,GdT, fi,, Po, H (let 
m = 2), and R. First do this by writing the scalar equations explicitly, then by means of an appro- 
priate similarity transformation. 

(b) Generalize this to describe the filter in terms of variables (rlxl). (c2x2) and (c3x3), with 
c,, c2.  and c3 chosen scale factors. 

6.4 Show that XJ.;) defined in (6-81) is a Gaussian process. 

6.5 A good model for a given system is that it is composed of a first order lag, with transfer 
function l/(s + a): 

YI .:I 1 1 1 X I . , . ) +  

s + a  

where y(., .) can be modeled as a stationary, exponentially timecorrelated zero-mean Gaussian 
noise with correlation time T: 

E{y(t)y(t + r)}  = 5e-Ir”’ 

Discrete-time measurements are available as 

Z( tJ  = x ( d  + v ( 4 )  

where v(.;) is a zero-mean, white Gaussian noise with variance 

E { V ( t , ) 2 j  = 2 

The system starts at  rest. 

and C, [assuming x(.;) to be the quantity of basic interest]. 
(a) Generate the “truth” model for this problem, explicitly depicting F,, G,, H,, Q,, R,, P,o, 
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(b) To build an efficient Kalman filter, you might consider simplifying the model by replacing 
the time-correlated noise with a white noise of appropriate strength in the model upon which the 
filter is based. What is the appropriate strength of the white noise? What relationships between 
sample period At, correlation time T, and system parameter u would yield confidence in this being 
an adequate model? 

(c) Specify the Kalman filter equations explicitly for propagating and updating the optimal 
estimate of the system state, depicting and justifying choices for F, G ,  H, Q. R, Po, and C. 

(d) Explicitly write out the equations that would be used for a covariance pcrformance analysis 
(sensitivity analysis) of the resulting filter operating in an environment defined by the "truth" model 
of part (a). 

6.6 In the previous problem, if the strength of white noise in the reduced-order model were 
chosen so as to duplicate the low frequency power spectral density value of the original noise, then 
Q = 10T. Another means of choosing Q would be such that the steady state variance of x(';) 
generated by the reduced order model is equivalent to that of the original model. Show that this 
yields Q = [lOT],"l + a T ] .  Is this significantly different? 

Consider an estimator algorithm identical in structure to a Kalman filter but with a gain 
matrix K ( t , )  different from the Kalman gain K(t,)  for each time t,. Show that if the estimate error 
covariance before measurement incorporation is P(ti-), then the covariance of the error committed 
by the estimate after measurement incorporation is 

P(t,+) = [I - K(ti)H(ti)]P(ti-)[I - K(ti)H(ti)lT + K(ti)R(t,)KT(t,l 

6.7 

by first writing 

%(ti+) = [I ~ K(ti)H(ti)]%(ti-) + K(t i ) z ( t i )  

Thus the Joseph form update generalizes to this case, whereas other forms do not. 

is that P(r) satisfies 
Show that the analogous result for a continuous-time, continuousmeasurement linear filter 

P(I) = [F(t) - K(t)H(t)]P(t) + P(t)[F(t) - K(t)H(t)]" + G(t)Q(t)GT(t) + K(t)R(t)KT(t). 

6.8 What modifications have to be made to the algorithm of Section 6.8 to evaluate approxi- 
mated gains rather than the true Kalman gain in the filter? What if you wished to evaluate some 
general linear predictor-corrector filter forms? 

Both Monte Carlo and covariance analysis relationships can be developed analogous to 
those in Section 6.8 by replacing the augmented state vector process xs(., .) defined in (6-81) by an 
augmented vector 

6.9 

where 

e , ' ( . ; ) P  xJ.;) - TP(.,t,-,:) 

and T is an (n,)-by-n matrix relating the n filter states to the n, states of the truth model. In many 
cases, T is of the form 

Then it is the process e,'( .;) directly, or a covariance description of this process, which is of interest 
as an analysis output, comparable to e,(.;) of (6-95) or (6-104). Develop the appropriate Monte 
Carlo state relations and covariance matrix relations for this formulation. 
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6.10 Error ellipsoids are typically employed to obtain a geometrical interpretation of an error 
covariance matrix for a Gaussian random vector. For an n-dimensional, zero-mean error x, a 
family of ellipsoids having surfaces of constant probability density can be defined through 

< T p - l c  = k 

where k is some arbitrary constant. The ''error ellipsoid corresponding to probability 9" is the 
particular ellipsoid for which the probability that the error x(wj) = x lies inside that ellipsoid is 8. 
The principal axes of that error ellipsoid can be described by the n vectors v'?4.,ei where the 2,'s are 
the eigcnvalues of P and the e,'s arc the corresponding eigenvectors. 

for d = 0.6826 and 0.9974 (corresponding 
to 1u and 3u ellipses for thescalar case) for error vector dimensions n = 1,2,3,4,6. These are com- 
monly chosen error ellipsoids for analysis purposes. Also presented is the ratio [k(B = 0.9974)]''2: 
[ k ( b  = 0.6826)]"2, used as a multiplicative factor on the axis dimensions of the first case ellipsoid 
to generate those of the second. 

The following table presents the values of k and 

Verify these results. 

Y = 0.6826 d = 0.9974 
Error vector [ k ( b  = 0.9974)]'!2 

dimension n k \I% k ,/z [k(.Y = 0.6826)]'" 
~~ ~ ~ 

1 1.000 1.000 9.000 3.000 3 . 0  
2 2.296 1.515 11.820 3.438 2.27 
3 3.527 1.878 14.157 3.763 2.00 
4 4.720 2.172 16.251 4.031 1.86 
6 7.038 2.653 20.062 4.479 1.69 

6.1 I Suppose that a two-dimensional Gaussian random vector expressed in principal co- 
ordinates (i.e., with diagonal covariance matrix, with ox2 and oyz as diagonal terms) can be used to 
describe a planar distribution of interest, such as the location of the splashdown landing site for a 
returning manned spacecraft. A performance description often employed is the CEP, the circular 
error probability, the radius of the circle that contains 50% of the realizations of the random vector. 

(a) Show that, if ux = uy = u and the circle is centered at the mean vector [mx,m,,]T. that the 
CEP is 1 ,177~.  

(b) Let ax > fly and generate the integral relation to solve for CEP, assuming the circle to be 
centered at the mean vector. Two commonly used approximations to this result are 

m1 = 0.588[uX + u,]. e2 = 0 . 5 6 3 ~ ~  + 0 . 6 1 4 ~ ~  

Compute true and approximated CEPs for cases of ox = uy, 2a,, 3uy, and 4gp. The error in the 
second approximation is less then lo, to about (u,/u,) = 3, and less than lo"; to about (ux/oy) = 10. 
beyond which point the severe ellipticity of equiprobability loci makes CEP a poor means of 
performance description. 

(c) If the CEP circle is not centered at the mean value, is the CEP larger or smaller? Explain. 
Numerical integration is necessary for determining CEP in these cases. 

6.12 This problem is meant to indicate the extreme care necessary in interpreting a certain 
means ofconducting and graphically presenting error budget type information. Instead of analyzing 
the individual effects of N different error sources as done to generate Fig. 6.21, one might progres- 
sively add each source to the previous sources on N separate runs. Then a chart might be plotted 
as in Fig. 6.Pl:  
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Let N = 3 and assume that the contribution to some rms error of interest by each separate source 
(as plotted in Fig. 6.21) can be denoted as ol, u2, and u3 due to sources numbered 1, 2, and 3, 
respectively. 

(a) Let u, = o2 = rr3 = u and plot both graphs. Which source yields the greatest effect on 
system performance? 

(b) Let source 2 be incorporated first, then source 3, then source 1. Repeat part (a). Is there a 
fallacy in the relative importance of sources inferred from the progressive addition method? 

(c) Let sources be added progrcssivcly in numerical order, and let cr, = 1. u2 = 1.5. and 
u3 = 1.7. What ordering ofrelative importance is suggested by the graphical methods just described? 

6.13 Demonstrate the validity of the computational forms of (6-118) and (6-119). 
6.14 A human navigator has erroneously keyed in the wrong position update information into 

an optimally aided inertial system employing a Kalman filter. He immediately keys in the correct 
data twice in succession, seeking to force the filter to pay significantly greater attention to the good 
data than the bad. Will this work the way he hopes? 



C H A P T E R  7 
Square root filtering 

7.1 INTRODUCTION 

The two previous chapters discussed the Kalman filter in substantial detail. 
Although this is the optimal solution to the filtering problem posed in Section 
5.2 (with respect to essentially all viable optimality criteria), the algorithm 
itself is prone to serious numerical difficulties. As noted in Section 5.6, rneasure- 
ment updating of the covariance matrix requires rather long wordlength to 
maintain acceptable numerical accuracy : for onboard computers, double preci- 
sion computations are usually required. In fact, without double precision 
arithmetic, these numerical characteristics can easily become the dominant 
error source corrupting estimation precision, and unfortunately an error source 
usually not included in designers’ error budgets. 

The difficulties encountered in converting a tuned Kalman filter on a long 
wordlength, large computer system used for engineering design to an effective 
algorithm on a smaller wordlength online computer are well documented 
[7, 221. For instance, although it is theoretically impossible for the covariance 
matrix to have negative eigenvalues, such a condition can, and often does, 
result due to numerical’computation using finite wordlength, especially when 
( I )  the measurements are very accurate [eigenvalues of R(ri) are small relative 
to those of P(ti-), this being accentuated by large eigenvalues in Po] or (2) a 
linear combination of state vector components is known with great precision 
while other combinations are nearly unobservable (i.e., there is a large range of 
magnitudes of state covariance eigenvalues). Such a condition can lead to 
subsequent divergence or total failure of the recursion. On close inspection, 
even Kalman filters that maintain adequate estimation accuracy exhibit in- 
stances of negative covariance diagonal terms [7]. 
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To circumvent these problems in numerics inherent to the Kalman filter 
algorithm, alternate recursion relationships [24] have been developed to propa- 
gate and update a state estimate and error covariance square root or inverse 
covariance square root instead of the covariance or its inverse themselves. 
Although equivalent algebraically to the conventional Kalman filter recursion, 
these square root j l t e r s  exhibit improved numerical precision and stability, 
particularly in ill-conditioned problems (i.e., the cases described that yield 
erroneous results due to finite wordlength). The square root approach can 
yield twice the effective precision of the conventional filter in ill-conditioned 
problems. In other words, the same precision can be achieved with approxi- 
mately half the wordlength. Moreover, this method is completely successful in 
maintaining the positive semidefiniteness of the error covariance. 

These excellent numerical characteristics, combined with modest additional 
computation cycle time and memory storage requirements, make the square 
root filter approach a viable alternative to the conventional filter in many 
applications, especially when computer wordlength is limited or the estimation 
problem is ill conditioned. The formulation of the square root filter for the case 
of no dynamic noise is especially attractive because of its computational sim- 
plicity, and its outstanding numerical characteristics led to its implementation 
in the Apollo spacecraft navigation filters. 

A number of practitioners have argued, with considerable logic, that square 
root filters should always be adopted in preference to the standard Kalman 
filter recursion, rather than switching to these more accurate and stable algo- 
rithms when and if numerical problems occur [7]. Even though Kalman 
algorithms can be made to work in most applications, by using double preci- 
sion mathematics or scaling variables to reduce dynamic range or employing 
ad hoc modifications, numerics degrade performance from that achievable by 
numerically better conditioned recursions. Recent investigations tend to support 
an approach of designing and tuning an optimal filter by the methods of the 
two previous chapters, ignoring the errors caused by numerics, but then im- 
plementing the square root equivalent for online operation. Nevertheless, one 
can expect conventional Kalman algorithms to be applied rather extensively 
as well. 

Section 7.2 introduces the concept of matrix square roots, and then Section 7.3 
develops the initially designed and simplest covariance square root filter, 
applicable to the case of no dynamic driving noise and scalar measurements. 
The succeeding two sections generalize these results, first incorporating vector- 
valued measurements and then allowing dynamic driving noise. In Section 7.6, 
the square root counterpart to the inverse covariance formulation of the optimal 
filter is considered. Although it is not actually a square root filter, the U-D 
covariance factorization filter is very closely related to square root filtering, 
and it is depicted in Section 7.7. Finally, Section 7.8 presents the tradeoff of 
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numerical advantages and increased computational burden of the square root 
filters. 

7.2 MATRIX SQUARE ROOTS 

exists at least one n-by-n "square root" matrix, denoted as v%, such that 
Let A be an n-by-n, symmetric, positive semidefinite matrix. Then there 

f i p  = A  (7-1) 

In fact, there are many matrices f i  which satisfy (7-1) in general. The essential 
idea of square root filters is to replace the recursion for the error covariance P 
with a recursion for its square root, JP, and to compute the state estimate 
using an optimal gain calculated in terms of @ instead of P itself. To motivate 
this, consider the scalar case: if dynamic range numerical precision problems 
are encountered in a filter that propagates the variance P = 02, the problem 
can be reduced by expressing the result in terms of the standard deviation G 

since the dynamic range will be effectively reduced to half the original range. 
This basic idea can be generalized to the vector case by defining the state error 
covariance square roots, before and after measurement incorporation at time 
ti ,  as S(ti-) and S(t i ' )  respectively, via: 

s ( t i - ) sT( t i - )  P(t,-) (7-2) 

S(ti')ST(ti') 4 P(ti+) (7-3) 

Similarly, define the square root of the covariances depicting the strengths of 
discrete-time white Gaussian noises wd(', .) and v(.,  .) as 

Wd(ti)WdT(ti) "Qd(fi) ' E{Wd(ti)WdT(fi)} (7-4) 

V(ti)VT(ti) R(ti) 2 E{v(ti)vT(ti)} (7-5) 

The covariance square roots are not uniquely defined by (7-2)-(7-5), and square 
root filters can be formulated in terms of general matrix square roots. One 
means of exploiting this fact is to develop algorithms which maintain a par- 
ticularly attractive square root form, namely an upper or lower triangular 
matrix (with all zeros below or above the main diagonal, respectively), thereby 
requiring computation and storage of only n(n + 1)/2 instead of n2 scalar 
variables. 

This lack of uniqueness does not cause difficulties in converting from a 
problem description in terms of initial Po and time histories of Qd(fi) and R(ti) 
to corresponding So, Wd(ti), and V(L) values, as might first appear to be the 
case. The reason is that any positive semidefinite matrix can be factored into 
the product of a lower triangular matrix and its transpose by the Cholesky 
decomposition [13] algorithm. Although (7-1) does not uniquely define fi, 
a unique Cholesky lower triangular square root fl can be defined such that 
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f i f i T  = A :  

A l l  A 1 2  . ' .  A h  

- - 

A 2 n  . ' ' A n n  

The elements of the Cholesky square root matrix can be generated sequentially, 
row by row, from the recursion: for i = 1,2.. . . ,n, compute 

[ l / $ i j j ) [ ~ ~ ~  - C a ~ i  f i i k f i j k l  j = ~ 2 , .  . . , i  - 1 

- c;:: f i i ) 1 ' 2  j =  j (7-6) 
0 j > i  

Thus, A is scanned and 6 is generated in the order depicted in Fig. 7.1. 

A and 4'A 
FIG. 7.1 Scanning of A and generation of g ' x  
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EXAMPLE 7.1 Let A be given as 

A =  I' 2 8 :] 
3 2 14 

Then the elements of ~ ' 2  are generated row by row as 

a 'Al l  = ,/T= 1, d21z = 0, dAI3 = 0 

OZ1 = (1/1)[2 ~ 01 = 2, $Liz' = JrT = 2, & = 0 

i/z3 I = (li1)[3 - 01 = 3, i / ' A 3 z  = (1/2)[2 ~ (3)(2)] = - 2, $'x3 = [ 14 - (3)' - ( - 2)'] = 1 

Note that the summation term in (7-6) for j = i becomes effective only for i > 1 and involves 
the sum of squares of previously generated 3% elements in that row. Furthermore, the sum term 
for j < i is effective only for i > 1, and involves terms from thejth and ith rows. From above, 6 is 

<Li= i' 2 :gl 
3 -2 1 

and it is readily seen that &A;,&' = A. 

Later in the Carlson filter [ 111 of Section 7.5, we will have occasion to seek 
an upper triangular Cholesky square root fi such that *VAT = A. Such 
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a matrix can be found by operating (7-6) backwards, or specifically, for j = n, 
n - 1,. . . ,1, perform the following computations: 

{ ( ~ / c + i ~ ~ ) [ ~ ~ ~  - xiz j+  c f l i k E / Z l j , ]  i = j - 1,j - 2, . . . , I  

f i  is thus generated column by column, from the nth column to the first 
and from the bottom to top within each column, as in Fig. 7.2. 

0 i > j  
$iij = ( A j j  - 1 f l j p  i = j  (7-7) 

7.3 COVARIANCE SQUARE ROOT FILTER FOR Q d  = 0 

In 1964, Potter [26] developed a square root filter implementation for space 
navigation applications in which there was no dynamic driving noise in the 
system model, i.e., Q d ( t i )  = 0 for all time, motivated by restricted wordlength 
in the Apollo guidance computer. For this case, the time propagation in a 
conventional Kalman filter would be (neglecting control inputs): 

(7-8a) n(tt+ 1 )  = @(ti. 1, ti)?(ti') 

P(ti, 1) = @(ti+ 1 3  ti)P(Ti+)aT(ti+ 1 9  ti) (7-8b) 

By letting P(ti+) = S(ti+)ST(ti+) and P(t, 1)  = S ( t ,  l)ST(t;+ 
rewritten as 

(7-8b) can be 

[s(t~+ ,)I [sT(ti+ I)] = [@(ti+ 1 ,  ti)s(ti+)I[sT(ti+)@T(ti+ 1, ti)] 

From this it is evident that the appropriate time propagation relations for the 
square root filter would be 

(7-9a) 

(7-9b) 

Because of his particular application, Potter confined his attention to scalar 
measurements. The covariance measurement update for this case is, since H(ti) 
is a row vector, 

Therefore, one can write this as 

S( r i  + )ST(ti +) = s(ti -) [I - b( ti)a(ti)aT( ri)]ST(ti- ) (7-1 1) 

where by n-by-1 a(ti) and scalar b(ti) are defined by 

a(ti) = ST(ti-)HT(ri) 

l /b ( t i )  = aT(ti)a(ti) + R(t i )  

(7-12a) 

(7-12b) 
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Potter showed that the bracketed term in (7-11) can be factored into 

[I - baaT] = [I - byaaT][I - hyaaTlT (7-13) 

where y is a scalar defined by 

y = 1/(1 + (7-14) 

Substituting this into (7-11) yields the covariance update as 

S( ti +) = S( t i - )  [I - b(ti )y( ti)a(ti)aT( ti)] 

= s(ti-) - b(ti)y(ti)s(ti-)a(ti)aT(ti) (7-15) 

The state estimate measurement update is of the conventional form, but with 
the Kalman gain evaluated as [b(ti)S( ti-)a( ti)]. Thus, the measurement update 
becomes 

a(t,) = ST(ti-)HT(ti) 

b(t i )  = l/[aT(ti)a(ti) + R(ti)] 

;)(ti) = 1/[1 + (b(ti)R(ti);  liZ] 

K( t i )  = b(t,)S(tip)a(ti) 
%(ti') = % ( t i - )  + K(ti)[zi - H(ti)R(ti-)] 

S(t , ' )  = S(ti-)  - Y(ti)K(ti)aT(ti) 

(7-16) 

An equivalent form that is often employed is 

a(ti) = ST(ti-)HT(ti) 

a(ti) = [aT(ri)a(ti) + R(ti)]1'2 

a(t i )  = G ( f i )  f v(ti) 

B( t i )  = 1/[a(ti)a(ti)] (7-17) 

g(ti) = B(ti)[s(ti-)aQi)] 
n(ti') = % ( t i - )  + g(fi){[cc(fi)/G(ti)][,-i - H(ti)a(ti-)]f 

S ( t i + )  = S ( t , - )  - g(ri)aT(ti) 

An example using both (7-16) and (7-17) will be presented in Section 7.5. 
Note that, even ifS(ti-) is lower triangular, S ( t i + )  will generally not be lower 

triangular when this update form is used. A method that preserves the lower 
triangular nature of the covariance square root will be discussed later. 

7.4 VECTOR-VALUED MEASUREMENTS 

The preceding section considered scalar measurement updates. Bellantoni 
and Dodge [3] extended these results to the vector measurement case by using 
eigenvalue decompositions, but their algorithm is inefficient for the typical 
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case in which the measurement vector dimension m is significantly less than 
the state dimension n. Andrews [2] also developed an update that processed 
an m-dimensional measurement vector in a single update, without requiring 
diagonalization : 

A(ti) = ST(ti-)HT(ti) 

(7-18) 
Z(tJ = d-aqij 

%(ti') = %(ti-)  + S(ti-)A(ti)[Z-l(ti)]TZ-l(ti)[zi - H ( t i ) j i ( t i - ) ]  

S( t i ' )  = S ( t i - )  - S(t,-)A(ti)[Z-l(ti)]TIZ(ti) + V(ti)]- 'AT(ti) 

This can be seen to be a direct extension of (7-17), and it is more efficient com- 
putationally than the Bellantoni and Dodge algorithm. Processing a measure- 
ment entails a Cholesky decomposition of an m-by-m matrix to generate Z(ti), 
[the extension of a(ti)] and inversion of two triangular m-by-m matrices, 
Z(ti) and [Z(ti) + V ( t i ) ] .  

For the covariance square root filter, the most efficient means of performing 
a vector measurement update is to employ the Potter scalar update, (7-16) or 
(7-1 7), repeatedly m times. An rn-dimensional measurement vector zi can always 
be processed equivalently as rn scalar measurements. If R(ti) is diagonal, the 
m components can be treated as independent measurements and processed 
sequentially. If R(ti) is not diagonal, the procedure is somewhat more com- 
plicated. First the Cholesky decomposition of R(ti) is computed, yielding 
-;lRCtl., as a lower triangular matrix. Then a transformation of variables is 
used to convert 

z(t i)  = H(ti)x(ti) + v(ti) (7-19) 

into 

z*(ti) = H * ( t i ) x ( t i )  + v*(ti) (7-20) 

where 

a z * ( t i )  = z(t i)  (7-21a) 

a ) H * ( t i )  = H(ti) (7-2 1 b) 

$ q g V * ( t i )  = V ( t i )  (7-21~) 

Note that (7-21c) implies that v*(., .) is a unit power white Gaussian noise, 
i.e., E{v*(ti)v*T(ti)} = I, since 

E{v(ti)VT(ti)} = R(ti) = E { ~ v * ( t i ) V * T ( t i ) ~ ) T )  
= - ; l R C t l . , E { v * ( t i ) V * T ( t i ) } ~ T  

Thus, the components of z*( t i ,wj )  = zi* can be processed one at a time se- 
quentially. Moreover, (7-21a) and (7-21b) can be solved to yield zi* and H*(ti) 
by simple back substitution rather than matrix inversion, because is 
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lower triangular and thus the j th  component of zi* is a linear combination of 
the first j components of zi. 

EXAMPLE 7.2 
measurement, with 

Consider a four-state estimation problem with a three-dimensional vector 

H(ti) = [' 0 1 0 '1. R(t i )  = 

0 0 1 -1 

1 2 - 3  

2 8  2 

3 2 14 

Let the realized value of the measurement (7-19) be 

2 ( t i , W j )  = zi =[;I 
From Example 7.1, the Cholesky square root of R(ti)  is 

The problem is equivalent to one in which a measurement of the form of (7-20) is made available, 
in which v*(ti) is a unit power noise. Equation (7-21a) yields 

Back substitution yields, sequentially: 

ZT1 = Z i l  

ziz * 2 4  + 2z;2 = Zt2 

zi3 z i l  3zT1 - 2z,*, + zF3 = zi3 

Z;l = Z i l ,  Zi*Z =I[=;, - 2ZTl], ZT3 = zi3 - 327, + 2z;2 

Back substitution can also be used to solve 

HT, HT, HT3 H f 4  1 0 0 

H:,  HTZ H ; 3  Hg4 = 0 1 0 

HT1 HT2 H j ,  H:4 I [. 0 1 -3 
row by row as 

HTj. = H l j  

H;j = f [ H z j  - 2HTj] 

HZj = H 3 j  - 3HTj f 2HZ; 

,j = 1, 2, 3, 4 

j = 1, 2, 3, 4 

j = 1, 2, 3, 4 

or 

Using the transformed measurements, (7-16) or (7-17) can be applied iteratively three times to 
perform the update. 
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As noted in the previous section, the S ( t , + )  matrix generated by these update 
forms is generally not lower triangular, even if S( t i - )  is. 

7.5 COVARIANCE SQUARE ROOT FILTER FOR Qd # 0 

If dynamic driving noise enters the system model, the conventional Kalman 
filtcr propagatcs the covariance matrix from one mcasuremcnt time to the 
next by means of 

p(tL+ 1) = @(ti+ 1 7  t i ) P ( t i + ) Q T ( t i +  1 7  t i )  + G,(f i )Qd(t i )GdT(t i )  (7-22) 

where this might be an equivalent discrete-time representation of a continuous- 
time system with sampled output (in which case Gd(fi) = I). Now we wish to 
develop an analogous recursion to yield S(t;+,) in terms of S ( r i + ) .  It would 
be desirable to generate a lower triangular S(tL:+,) since then only $n(n + 1) 
elements would require computation rather than n2. 

One means of achieving the desired result is called the mutrirv RSS (roor- 
sum-square) method [ 1 I] : 

X(ti,,) = @(ti,1,ti)S(tif) 

S(tL+ 1 )  = d r n  
P(tL+ 1 )  = X(ti+ l ) X T ( f i +  1 )  [ C d ( f , ) Q d ( f i ) c d T ( t i ) ]  (7-23) 

This method actually computes P(ti, as its lower 
triangular Cholesky square root. Although this is a rapid method, it does 
suffer in having only the same numerical precision as the conventional filter 
time propagation. Nevertheless, since it is the measurement update and not 
the time propagation that causes the critical numerical problems in the filter, 
(7-23) may well be acceptable for many applications. 

and then generates S ( t 2  

EXAMPLE 7.3 Let 

Note that [cDS(ti')] has purposely been chosen as nontriangular. Equation (7-23) yields, evaluating 
the Cholesky square root by (7-6), 

S , ,  = $ = 3 ,  S,,=O, S , , = f . 9 = 3 ,  S 2 2 = , , f 1 3 - 3 2 = 4 = 2  

Thus 
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The other means of establishing the time propagation relations is called 
the triangularization method [18]. In Section 7.3, the desired result (7-9b) was 
established by writing both sides of the covariance propagation (7-8b) in terms 
of a factor times its own transpose, and then equating the individual factors. 
Let us attempt to apply the same logic to (7-22). Assume that the square roots 
of P(ti+) and Qd(t i )  are available: for Po and Qd(ti) for all t i ,  a Cholesky de- 
composition could be used, and for P(ti+) in general, assume the square root 
has been propagated and updated by the filter algorithm. Thus, we have 

P(fi+) = S(ti')ST(ti') (7-24a) 

Qd(ti) = Wd(fi)WdT(ti) (7-24b) 

Note that S ( t i + )  need not be lower triangular (important in view of the pre- 
ceding section). Equation (7-22) can therefore be written as 

p(ti,l) = <o(ti+l,ti)s(ti+)sT(ti+)<oT(ti+l,ti) 
+ Gd (ti) wd (ti>WdT(ti)GdT(fi) (7-25) 

Now it is desired to find the propagation equation for the square root of P(t;+ 1): 

to find the relation to yield S ( t ,  such that S(t;+ ,)ST(tI; 1) is equal to the 
right hand side of (7-25). 

One such matrix would be S(t;+ defined by 

g(tL 1) = [ @ ( t i + l ,  ti)s(ti') I Gd(ti)Wd(ti)] (7-26) 

However, ifS(ti+) is n-by-n, then [@(ti+ 1 ,  ti)S(ti+)] is n-by-n and [Gd(ti)Wd(fi)] 
is n-by-s, so S(t;+ would be an n-by-(n + s) square root of P(t;+ ]). Since this 
type of square root increases the dimension of the covariance square root 
matrix for each propagation interval, it must be rejected as computationally 
impractical. 

However, this does in fact provide a fruitful insight. If S(r;+ 1) is a square 
root of P(t;+l), then so is [S(t;+,)T] if T is an orthogonal (n + s)-by-(n + s) 
matrix, i.e., T T ~  = I, since 

S(t; l)TTTST(r:+,) = g{ti+ l)ST(ti+ 1 )  (7-27) 

Therefore, if an orthogonal matrix T can be found such that 

S(ti+l)T = [S( t ;+ , )  ~ 0 ] > ~ l r o w s  (7-28) - -  
I I  columii? F columns 

then in fact an n-by-n square root matrix S( t1Ql )  will have been found which 
satisfies the desired relationship. If, in addition, this S( tI ; , )  were lower tri- 
angular, the result would be especially advantageous. Two methods [22] of 
generating such a S(t;+ 1), known as triangularization algorithms, are the 
Gram-Schmidt orthogonalization [ 13, 281 procedure and the Householder 
transformation 113, 201 technique. Note that the same procedure could also 
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be applied to 

P(ti+) = [I - K(ti)H(ti)]P(ti-)[I - K(ti)H(ti)IT + K(ti)R(ti)KT(ti) 

or 

P-l(ti+) = P-I( t i - )  + HT(ti)R:'(ti)H(ti) 

for vector measurement updates; the latter of these will be discussed 
subsequently. 

First let us demonstrate that the Gram-Schmidt procedure yields the 
desired result'. Let ek denote the n-dimensional vector composed of all zeros 
except for a one as the kth component, so that el,  e2, . . . , en form the standard 
basis for n-dimensional space. Then [ST(t;+I)ek] is just the kth column of 
ST(t;+ ), of dimension ( n  + s): 

P( t>  1) = (7-29) 

n columns 

where 

(7-30) 
I 

S" = sT(t;+ ,)en 

Construct the orthonormal basis vectors b', b2, . . . , b" [each of dimension 
(n + s)] by the Gram-Schmidt procedure as: 

b' = unit (P) 

b3 = unit (P - [33Tb13b1 - [g3Tb2]b2) 
bZ = unit (S2 - [Kzrb']b') (7-31) 

If P(ti+) is positive aefinite, then ST(& is of rank n, so n such orthogonal unit 
basis vectors can be obtained. Now the desired orthogonal transformation 
matrix T can be defined as the (n + s)-by-(n + s) matrix 

T = [bl, b2 , .  . . , b", b"", . . . , b""] (7-32) 

where b', b 2 , .  . . , b" have been computed as in (7-31) and the remaining s 
columns, b"+l, . . . , b"+' , are additional orthogonal unit basis vectors of 
(n + s)-dimensional space. However, it will be shown that they do not have to 
be computed to obtain S(&+ l)r so their generation will not be specified explicitly. 
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At this point, TTST(t;+ 1 )  can be written as 

(7-33) 

However, since the rank of ST(t;+l) is n and {b', b2 , .  . . , bn} span its range 
space while (b"+l , .  . . , bn+'> are orthogonal to this spanning set, it follows 
that the last s rows in (7-33) are all zeros. By the manner in which the basis 
vectors were chosen, it is also true that 

bkTlj = 0, k > j 
by the same reasoning. Thus, (7-33) becomes 

blTg1 b1Tg2 . . . blTgn 
\\ b2Tg2 . . . b2TgR 

I 0 

n rows 

3 rows 

(7-34) 

n columns 

The upper n-by-n partition of this matrix is just the ST(t;+l) we have been 
seeking, so that S( t ,  1 )  is in fact an n-by-n lower triangular matrix: 

(7-35) 

An efficient computational form of the Gram-Schmidt orthogonalization 
called the modijied Gram-Schmidt (MGS) [22,  281 algorithm has been shown 
to be numerically superior to the straightforward classical procedure, is., less 
susceptible to roundoff errors [9,27]. Moreover, it requires no more arithmetic 
operations than the conventional Gram-Schmidt procedure, uses less storage, 
and has been shown [21] to have numerical accuracy comparable to House- 
holder [19,23] and Givens [15] transformations. Generation of S(t;+ 1 )  through 
this recursion proceeds as follows. Define the initial condition on Ak, an (n  + s)- 
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by-n matrix, as 

A' = ST(ti+ 1) = [@(ti+ l ,  t i)S(ti ')  Gd(ti)Wd(ti)IT (7-36) 

Notationally let Ajk denote the jth column of Ak. Perform the n-step recursion, 
for k = 1 , 2 , .  . . , n: 

ak = J A ~ ~ A , ~  

j =  1, . . . ,  k -  1 
ckj = ak j = k  (7-37) (" [( 1 /ak)ALT]Ajk j =  k + 1,.  . . , n 

j = k + 1 , .  . . , n 

Note that on successive iterations, the new A:" vectors can be "written over" 
the Ajk vectors to conserve memory. At the end of this recursion, 

A:" = bjk - Ckj[(l/ak)Al] 

S(t;+,) = CT (7-38) 

T'Jotice that the computational algorithm never calculates or stores T explicitly 
in generating S ( t ;  l). 

EXAMPLE 7.4 As in Example 7.3, let 

so that 

By (7-36), the initial condition is 

The first pass through the recursion (7-37) yields: 

a' F [(2)' + (2)' + + (o)~]'!' = JG = 3 

c,, ==a' = 3, c,, = f [ 2 . 1 +  2 . 3  + 1 . 1  + o .  $1 =3[9] = 3 

The second iteration of (7-37) produces: 

u2 = [(- 1)2 + ( 1 ) 2  + (0)' + ( 4 ) 2 ] l ' *  = $ = 2 

C*' =o.  C" = 2  

A,, = not computed 
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Finally, (7-38) generates S(r, as 

which agrees with the result of Example 7.3. Moreover 

which agrees with a conventional Kalman filter covariance time propagation computation for 
this problem. 

A Householder transformation [20] can also be used to solve (7-28) for the 
square root matrix S(t;+ Conceptually, it generates T as 

T = T"T("- l ) .  . , T' 

where Tk is generated recursively as 

Tk = 1 - dkukuk1 

with the scalar dk and the (n  + s)-vector uk defined in the following. However, 
the computational algorithm never calculates these Tk's or T explicitly. The 
initial condition on the (n  + s)-by-n Ak is 

A' = ST(ti+') = [@(t i+  t i ) S ( t i + )  I Gd(ti)Wd(ti)IT (7-39) 

Again, letting A: represent the j th  column of Ak, perform the n-step recursion, 
for k = 1,2, .  . . , n:  

uk = [A$]' . sgn{Ai,j 

j < k  

j = ( k +  11, . . . , (  n + s )  

j < k  
yjk = 1 j = k  

(7-40) 

i" dkUkTA k j = ( k +  l), . . . ,  n 
Ak+1 = Ak - ~ k y k T  

At stage k,  the first ( k  - 1) columns of Ak are zero below the diagonal of the 
upper square partition, and uk has been chosen so that the subdiagonal ele- 
ments of A;+' will be zero. After the n iterations of (7-40), 

(7-41) 
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and then S(t,> 1)  is generated as 

s(t;+ 1 )  = CT 

EXAMPLE 7.5 Consider the same problem as in Example 7.4. By (7-39), 

383 

(7-42) 

The first iteration of (7-40) yields 

a1 = (2’ + 2’ + 1’ + 0 2 ) ” 2 ,  sgn{2] = ,,h = 3, tf’ = 1/[3(3 + 2)] = 1 15 

u l l  = (3 + 2) = 5, u2’ = 2, u3’ = 1, u4’ = 0 

4’1’ = 1, y2’ =(1/15)[5. 1 + 2 .  3 + 1 . 1  + O . & ]  =4/5 

The second iteration of (7-40) produces 

u2 = [(7/5)’ + (1/5)2 + J32] ’ ’2  sgn(7/5) = fi = 2, d2 = l/{2[2 + (71511) = 5/34 

u 1 2  = 0, u22 = 2 + (715) = 1715, u3’ = 115, ~ 4 ’  = J2 

y l z  =o. y2’= 1 

Therefore, from (7-41) and (7-42), S ( t ,  is identified as the transpose of the upper 2-by-2 partition 
of A ~ :  

S ( t ,  ,) = [-3 01 
-3  -2  

This is just the negative .of the previous results, and thus is also a valid covariance square 
root. 

The Householder triangularization requires [4n3 + 6n2(s + 1) + 2n]/6 mul- 
tiplies, [4n3 + 6sn2 + 8n]/6 adds, n divides, and n square roots. This is 
[2n3 - 8n]/6 fewer multiples and [2n3 + 3n2 - lln]/6 fewer adds than 
required by the modified Gram-Schmidt algorithm. However, the MGS 
algorithm becomes slightly more precise numerically as the residual size in- 
creases [22], and thus is a viable alternative. 

A Householder transformation method has also been proposed for per- 
forming measurement updates [12,22]. However, this has been shown to be 
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equivalent to the Potter method described previously, but not as efficient 
computationally [4]. 

Thus, the covariance square rootJilter (Pot ter j l ter )  algorithm can be specified 
as follows. The propagation of the state estimate from one sample time to the 
next is given by (7-9a). Covariance square root time propagations are cal- 
culated by means of the matrix RSS method (7-23), the MGS algorithm given 
by (7-36)-(7-38), or the Householder transformation as in (7-39)-(7-42). Of 
these, the latter two are preferable since they are more accurate numerically 
than the computationally efficient first method, and numerics are the basic 
motivation for square root forms. Measurement updates would be processed 
through m iterations of the Potter algorithm (7-16) or (7-17). If the R(tJ matrix 
is not diagonal, the transformation of variables given by (7-19)-(7-21) must 
first be performed. 

EXAMPLE 7.6 
and the corresponding P(t,-) = S ( t , - ) S T ( t , - )  be 

This example illustrates one complete recursion of the Potter filter. Let S ( t , - )  

as computed by the time propagation of Examples 7.3, 7.4, or 7.5. Now let a scalar measurement 
be taken such that H(ci) = [1/3 11 and R(ri) = 4. A conventional Kalman update would yield 

K ( t i )  = P(ti-)HT(ti)[H(ti)P(ti-)HT(ti) + R(t i ) ]  

P(ti+) = P(ti-) - K(ti)H(ti)P(ri-) 

%(t i+)  = % ( t i - )  + K(fi)[zi  - H(t,)%(ti-)] 

The corresponding result given by (7-16) is: 

h ( t i )  = 1/[42 + 22 + 41 = 1/24 

?iti) = 1/11 + 4ipq(4)] = 1/[1 + J*I 

%(ti') = % ( t i - )  + K(ti)[zi - H(ti)%(ti-)] 
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Note that the computed gains K(tJ agree and that 

which agrees with P(ti'). 
By comparison, (7-17) yields: 

o(t;) = (42 + 22 + 4)"Z = Jz4 = 2 4  

d((ti) F 2J6 + 2 

B(ti) = 1/ [ (2&)(24  + 2)] = 1/[24 + 4&] 

1 

[24 + 4$] 
= 

- '  1 -'[ - 1 + 3 0  

1 + d'@ (1/3) + 3JG 12/3) + 2 m  

The S ( t , + )  agrees with that just obtained. Moreover, if g(ti)[cc(ti)/a(ti)] were computed instead of 
the more efficient multiplication of the residual by the scalar [ ~ [ ( t ~ ) / o ( t ~ ) ]  followed by multiplica- 
tion by g ( t i ) ,  the result would be identical to the K(ti) previously computed. 

One significant drawback of the covariance square root filter just described 
is that the triangularity of the square root matrix is generally destroyed during 
the measurement updating. Consequently, all n2 elements must be computed 
and stored. A more recent algorithm, the Carlson Jilter [ll], provides sub- 
stantial improvement in both computational speed and required storage by 
maintaining the covariance square root matrix in triangular form. By doing 
so, only n(n + 1)/2 memory locations need be allocated for S(ti'), and the 
product [@(ti+ t i ) S ( t i + ) ]  for the subsequent time propagation requires only 
half the usual number of computations. 

Like the Potter measurement update, the Carlson algorithm processes 
vector measurements iteratively as scalars. Therefore, consider the general 
square root solution to (7-1 1): 

S ( t , + )  = S ( t i - ) [ I  - ! ~ ( t ~ ) a ( t ~ ) a ~ ( t ~ ) ] " ~  
= S(ri-)[l - a(ti)aT(ti)/d(ti)]''2 (7-43) 

where, for convenience, &ti) has been defined as @(ti). Assuming S ( t , - )  to be 
upper triangular, we seek a matrix [I - a(ti)aT(ti)/d(ti)]'i2 such that the S(ti+) 
computed in (7-43) is also upper triangular. The choice between upper and 
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lower triangular form is arbitrary, governed by selecting either forward or 
backward recursion algorithms for the Cholesky, Householder, and Gram- 
Schmidt procedures. Upper triangular forms are motivated to some extent by 
state vector partitioning, discussed in Problem 7.13. 

The desired square root matrix is in fact derived by means of an analytic 
Cholesky decomposition, and can be expressed as 

i"' b2 

0 L 'n 1 
where a, is the kth component of a(t,), and bk and ck for k = 1,2, .  . . , IZ will be 
described presently. However, th,e computational algorithm neither computes 
this square root explicitly nor requires a matrix multiplication as in (7-43) to 
generate S(t,'). The algorithm is initialized by setting the scalar do and n- 
vectors e,  and a as 

do = R(ti ) ,  e, = 0, a = ST(ti-)HT(ti) (7-44) 

and iterating for k = 1,2, . . . , n on 

(7-45) 

In the recursion, S k -  denotes the kth column of S ( t , - ) ,  and both it and ek 
consist of zeros below the kth element. After the n iterations, S(t i ' )  is produced 
as 

s(ti+)= [Sl' s,+ . . .  S,,'] (7-46) 

which is an upper triangular matrix. The state vector update is then given by 

%(ti') = %(ti-)  + e,{[zi  - H ( t i ) % ( t i - ) ] / d , }  (7-47) 

EXAMPLE 7.7 Consider the same problem as in Example 7.6, but now assume S ( r , - )  to be 
upper triangular and such that S ( t i - ) S T ( r i - )  is equal to 
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The upper triangular Cholesky square root is found through (7-7) as: 

The initialization of (7-44) yields 

The first recursion of (7-45) yields 

The second iteration yields 

d 2 = - + - = -  56 256 312 b - - -  (56,/312)"'= [z= 
13 13 1 3 '  '- 13 13 312 39 

Thus, S(t, ' )  and %(ti+) are given by (7-46) and (7-47) as 

Note that the value of [el/d2J not calculated explicitly above. agrees with K(r,) of Example 7.6. 
Moreover, !3rC+)ST(tc+) is equal to the P(ri+)  in that example. 

For time propagations, Carlson suggested the matrix RSS method, (7-231, 
but with an upper triangular Cholesky square root as generated in (7-7) replacing 
the lower triangular form in (7-23). However, the triangularization methods 
could also be employed, thereby sacrificing some computational speed for 
increased numerical precision. A modified Gram-Schmidt algorithm [29] can 
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be written by initializing A according to (7-36) and then iterating for k = n, 
n - 1, .  . . , 1 on 

s k k ( t c +  1 )  = 4- 

where +- denotes replacement by means of "writing over" old variables. 

7.6 INVERSE COVARIANCE SQUARE ROOT FILTER 

In Section 5.7, the inverse covariance formulation of the optimal filter was 
presented, an algorithm which is algebraically equivalent to the Kalman 
filter but has substantially different characteristics, such as being able to 
incorporate unknown initial conditions and being more efficient if the measure- 
ment vector is very large in dimension (m  > n). Now we consider the square 
root filter analog of such a formulation. 

If we define the covariance square root matrix S( t i ' )  through 

P(ti') s(tj+)sT(ti+) (7-49) 

then it is consistent that an inverse covariance square root S-'(ti+) be defined 
through 

P-'(ti+) g s-T(ri+)s-l(ri+) (7-50a) 

where ST denotes [!!-'IT = [ST]-l. Similarly, S - ' ( t i - )  would be defined 
through 

p-I ( t i - )  G s - ' j r i - )S - l ( r i - )  (7-50b) 

To develop the inverse covariance square root filter 15,221, first consider 
the measurement update equation in the inverse covariance filter: 

P-l(ri+) = P-'(ri-) + HT(ti)R-'(ti)H(ti) (7-5 1) 

Using (7-5) and (7-SO), this can be written as 

P-'(ti+) = ST(ti-)S-'(ti-) + HT(ti)V-T(ti)V-l(ti)H(ti) (7-52) 

We now seek an update relation for S - ' ( t , + )  such that {[S-'(tif)]TIS-l(tit)]) 
is equivalent to the right hand side of (7-52). One such matrix would be the 
(n + m)-by-n matrix 

(7-53) 
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As in the previous section, such an % ' ( r i + )  would be unacceptable due to the 
increasing matrix dimensions it would cause. However, if an orthogonal 
matrix T can be constructed such that 

or 

S-T(ti')T = [ S T ( t i + )  I 01 

(7-54) 

(7-54) 

then the resulting n-by-n S-l(ti+) is the desired square root matrix. In analogy 
to the previous development, it would be especially beneficial if the S - l ( t i + )  so 
generated were upper triangular. Either the modified Gram-Schmidt orthog- 
onalization procedure or the Householder transformation algorithm can be 
employed to solve for the desired S- ' ( t i+) ,  and this will be developed in detail 
after the state estimate is discussed. 

Recall from Section 5.7 that the inverse covariance filter did not compute 
a state estimate directly, but rather 

(7-55a) 

(7-5 5 b) 

which were related by 

y(t i+)  = ?( t i - )  + ~ ~ ( t ~ ) ~ - l ( t ~ ) z ~  (7-56) 

Analogously, the inverse covariance square root filter does not generate an 
estimate of the state explicitly, but instead calculates 

and 

$(ti') LA s - ' ( l i+)2( t i+)  (7-5 7b) 

The update relationship between these estimates can be shown to be 

(7-58) 

where T is the same orthogonal matrix as in (7-54), and jj(ti) is an m-dimensional 
vector (the residual after processing the measurement, [ z i  - H(ti)%( t i ' ) ] )  that 
need not be calculated. Since the first n rows of TT are the result of an n-step 
Gram-Schmidt or Householder process, &(ti+) can be computed without 
knowledge of any additional portion of TT than that generated by either of 
the triangularization algorithms discussed previously. 
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The modified Gram-Schmidt (MGS) measurement update initializes an 
( n  + m)-by-n matrix Ak and an n-vector bk as 

(7-59a) 

b '=O (7-59b) 
Then an n-step recursion is performed that is identical to (7-37) except for 
two additional equations for eventual generation of &(ti'); for k = 1,2, . . . , n, 

Uk = JW 
j = l ,  . . . ,  k - 1  

ckj = ak j = k  (" [(l/ak)AiT]Ajk j = k + 1,. . . , n 

ek = [(l/ak)AiT]bk 

A:'' = Ajk - Ckj[(l/ak)A,k] J = k + 1,. . . , n 
bk+1 = b k - ek[(l/ak)A,k] 

(7-60) 

At the end of this recursion, 

A Householder measurement update [lo, 181 can also be employed. The 
(n  + m)-by-n matrix Ak and (n + m)-vector bk (note the different dimension on 
bk) are initialized as in (7-59). Subsequently an n-step recursion identical in 
form to (7-40) except for auxiliary steps to calculate &(ti+) is performed [22]; 
fork = 1, 2,. . . , n, 

U k  = J ~ j " ~ ~  [A;kI2 ' SgIl(&) 

(7-62) 
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After the n iterations of (7-62), S - ' ( t i + )  and G ( t i + )  are obtained from 

(7-63) 

For time propagations in which the dynamic driving noise is s dimensional, s 
scalar recursions analogous to the Potter measurement update in the covariance 
square root filter are performed. Thus Qd(ti) is assumed diagonal, perhaps after 
a change of variables (as explicitly described in the next section), and the effects 
of wd(',.) are incorporated component by component. Letting Gdk be the 
kth column of Gd(ti) and Qdk be the kth diagonal element of Qd(ti), the algorithm 
becomes, for k = 1 , 2 , .  . . , s, 

(7-64) 

Note the order of the time indices on the state transition matrix and that 
@(ti ,  ti+ 
is replaced by the identity matrix and S - ' ( t i + )  and &(t i+)  are replaced by the 
S-' and & computed in the previous iteration. In analogy to the covariance 
square root filter, a Householder transformation has also been proposed for 
performing the time propagation, but it has been shown to be equivalent to, 
but less efficient than, the Potter-type algorithm given in (7-64) [4]. 

Thus, in the inverse covariance square root filter, measurement updates are 
conducted in vector form through a triangularization procedure, and time 
propagations involve iterative applications of a Potter-type scalar incorpora- 
tion algorithm. This is in direct opposition to the covariance square root filter. 
As a result, its time propagations are more efficient than those of the covariance 
square root filter for the typical case in which the state dimension is much 
greater than the dynamic noise dimension s. On the other hand, its measurement 
update is more efficient only when the measurement dimension m is considerably 
greater than n. Alternative, efficient forms of this filter, also known as square 
root information filters, have been developed and used extensively for certain 
applications [ S ,  81. Although most applications have shown the covariance 
square root filter to be more efficient computationally, there are circumstances 
(rn >> n >> s) under which the inverse covariance square root formulation is 
preferable. Section 7.8 will compare the various forms explicitly. 

= @-'(ti+ ti). After the first of the s iterations of (7-64), @(ti ,  t i+ 
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7.7 U-D COVARIANCE FACTORIZATION FILTER 

Another approach to enhancing the numerical characteristics of the optimal 
filter algorithm is known as "U-D covariance factorization," developed by 
Bierman and Thornton [l, 6-8, 14-17, 29, 301. Rather than decomposing the 
covariance into its square root factors as in (7-2) and (7-3), this method expresses 
the covariances before and after measurement incoporation as 

P( t i  - ) = U( ti -)D(ti -)UT( ti - ) 

P(ti+) = U(ti')D(ti ')UT( t i + )  

(7-65) 

(7-66) 

where the U matrices are upper triangular and unitary (with ones along the 
diagonal) and the D matrices are diagonal. Although covariance square roots 
are never explicitly evaluated in this method, this filter algorithm is included 
in this chapter because (1) UD1'2 corresponds directly to the covariance square 
root of the Carlson filter in Section 7.5, and the Carlson filter in fact partially 
motivated this filter development, and (2) the U-D covariance factorization 
filter shares the advantages of the square root filters discussed previously: 
guaranteeing nonnegativity of the computed covariance and being numerically 
accurate and stable. (Merely being a square root filter is not a sufficient condition 
for numerical accuracy and stability, but the algorithms discussed previously 
do have these attributes.) Like the Carlson filter, triangular forms are maintained 
so that this algorithm is considerably more efficient in terms of computations 
and storage than the Potter filter. Though similar in concept and computation 
to the Carlson filter, this algorithm does not require any of the (nm + s) compu- 
tationally expensive scalar square roots as processed in the former. 

Before considering the filter algorithm itself, let us demonstrate that, given 
some P as an n-by-n symmetric, positive semidefinite matrix, a unit upper 
triangular factor U and diagonal factor D such that P = UDUT can always be 
generated. Although such U and D matrices are not unique, a uniquely defined 
pair can in fact be generated through an algorithm closely related to the back- 
ward running Cholesky decomposition algorithm, (7-7). This will be shown by 
explicitly displaying the result. First, for the nth column 

D n n  = P n n  

u i n  = { 1 i = n  (7-67a) 

Pin/Dnn i = n - 1,n - 2 , .  . . , 1 

Then for the remaining columns, for j = n - 1, n - 2, . . . , 1, compute 

D . .  = p . .  - c" 
J J  .JJ k = j + l  Dkkufk 

i > j  
i = j  

(7-67b) 



7.7 U-D COVARIANCE FACTORIZATION FILTER 393 

This is useful for defining therequired U-D factors of Po and the Qd time 
history for a given application. 

To develop the filter algorithm itself, first consider a scalar measurement 
update, for which H(ti) is 1-by-n. For convenience, we drop the time index and 
let P(ti-) = P-,  P(tit) = P', and so forth. The Kalman update 

P+ = P- - (P-HT)(l/a)(HP-), u = HP-HT + R (7-68) 

can be factored as 

U+D+U'T = U-D-U-T - (l/a)(U-D-U-THT)HU-D-U-T 

= U - [ID - ( l/a)( D - U -THT)( D - U -THT)T] U -T (7-69) 

Note that UPT is (L- )T ,  as distinct from ST = (S-')T in the previous section. 
Defining the n-vectors f and v as 

f = U-THT (7-70a) 

v = D-f;  i.e., iij = DJ<f, ,  , j  = 1, 2 , .  . . , n (7-70b) 

and substituting into (7-69) yields 

U + D f U + T  = U-[D- - ( l / a ) ~ v ~ ] U - ~  (7-71) 

Now let U and D be the U-D factors of [ID- - (l/u)vvT]: 

UDOT = [D- - ( I / U ) V V ~ ]  (7-72) 

so that (7-71) can be written as 

U+D+U+T = [U-U]D[U-U]' (7-73) 

Since U-  and U are unit upper triangular, this then yields 

U +  = u - U  (7-74a) 

D + = D  (7-74b) 

In this manner, the problem of factoring the Kalman filter measurement update 
has been reduced to the problem of factoring a symmetric matrix, [D - ( l/u)vvT] 
into r3 and D = D + .  These factors can be generated [6,14-161 recursively by 
letting uo = R and computing, for j = 1, 2, . . . , n, 

j 

u j  = Dkk.f,2 + 
k =  1 

D . .  = D . . a .  l a .  - 
1 J  J.1 J -  1 J 

i = 1,2, . . . , j - 1 

i = j + 1, j + 2, . . . , n 
i = j  

0 

(7-75) 
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Thus, [D - (l/a)vvT] is scanned and U is generated column by column, as 
depicted in Fig. 7.3. The validity of the terms generated in (7-75) can be demon- 
strated by substituting them into (7-67) and showing that the resulting [Pij] 
matrix is in fact [D - (l/a)vvT]. 

The scalar measurement update for the U-D covariance factorization filter 
can now be specified. At time t i ,  U(t , - )  and D ( t i - )  are available from a previous 
time propagation (to be discussed). Using the measurement value zi and the 
known l-by-n H(ti) and scalar R(ti), one computes 

f = UT(ti-)HT(ti) 

uj  = ojj(ti-)f, j = 1, 2,. . . , n (7-76) 

a, = R 

Then, for k = 1,2, . . . , n, calculate the results of (7-75), but in a more efficient 
manner as 

(7-77) 

In (7-77), t denotes replacement, exploiting the technique of “writing over” 
old variables for efficiency. For k = 1, only the first three equations need be 
processed. After the n iterations of (7-77), U(ti’) and D(ti’) have been computed, 
and the filter gain K(ti) can be calculated in terms of the n-vector b made up of 
components bl, b 2 , .  . . , b, computed in the last iteration of (7-77), and the 
state updated as 

K(ti) = b/a, 
(7-78) 

2(ti’) 4 %(ti-)  + K(ti)[~i  - H(ti)g(ti-)] 

Vector measurement updates would be performed component by component, 
requiring a transformation of variables as in Section 7.4 if R(ti) is not originally 
diagonal. 

EXAMPLE 7.8 Consider the same problem treated previously, such that 

P(/ , - l=  [; 13. H(rij = [i I]. R(t,)  = 4 
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Start 

[D - ( I /tr)vv ] and 0 
FIG. 7.3 Scanning of [D - (l/a)vvT] and generation of u. 

The factors of P(ti-) are obtained from (7-67) as 

DY2 = P y 2  = 13 

= 1, UT2 = PF2/DY2 = 9/13 

D;, = P ; ,  - DY2CJ;; = 9 - 13(92/132) = 36/13 

u;, = 0, u,, = I 

Thus 

Initialization by (7-76) yields 

395 

U ,  = [36/13][1/3] = 12/13 

tl2 = [13][16/13] = 16 

a,, = 4 
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The first iteration of(7-77) produces 

U ,  = 4 + [1/3][12/13] = 56/18 

Dtl(ti ') = [36/13][4]/[56/13] = 18/7 

h ,  t 1 2 / 1 3  

The second iteration yields 

a2 = [56/13] + [16/13][16] = 24 

D , , ( f , + )  = [13][56/13]/[24] = 7/3 

h, t 1 6  

p2 = -[16/13]/[56/13] = -2/7 

UIZ(fi+) = [9/13] + [12/13][-2/71 = 3/7 

b,  t[12/13] + [9/13][16] = 12 

Finally, (7-78) generates 

%(ti+) =%(fa-) + K(ri)[zi - H(t,)%(ti-)] 

Note that the gain K(r,) agrees with previous results and that 

which is also consistent with the earlier computations. 

The time propagation of the U-D factors employs a generalized Gram- 
Schmidt orthogonalization to preserve numerical accuracy while attaining 
computational efficiency [29]. Given the covariance time propagation relation 

p(tr+ 1 )  = @ ( t i +  1 9  ti)P(ti+)@'(ti+ 1, ti) + Gd(ti)Qd(ri)GdT(ti) (7-79) 

and the U-D factors of P(ti+), we desire the factors U(t, and D(t;+l) such 
that [U(t;+ l)D(rL> l)UT(tif ,)I equals the right hand side of (7-79). Without 
loss of generality, Qd(ti) is assumed diagonal, since, given the n-by-n matrix 
[Gd(ti)Qd(ti)GdT(ti)], (7-67) can be used to generate Gd(ti) as its U-factor and 
Qd(fi) as its D-factor. 

If an n-by-(iz + s) matrix Y(t;+,) and an (n  + s)-by-(ii + s) diagonal matrix 
fi (ti+ ) are defined as 

(7-80a) y(rG 1) = [@(t i+ l?  t i ) U ( t i + )  1 Gd(fi)] 

(7-80b) 

then it can be seen that [Y(t;+ l)6(t;l)YT(r;+ 1)] satisfies (7-79). Similar to the 
development of (7-29)-(7-55) of Section 7.5, the desired result can be generated 
through a Gram-Schmidt procedure applied to Y(t; l ) .  The only significant 
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modification is that the inner products used in the procedure are weighted inner 
products: whereas in (7-31) the inner product of Sj [a column of ST(t;+ ,)I and a 
basis vector bk was written as [SjTbk], here the inner product of yj [a column of 
YT(t;+ ,)I and a basis vector bk would be written as [yjTd(t;+ l)bk]. When an 
analogous development is made, D(ti+) and U(ti+).can be identified as, for 
j = 1,2, .  . . , nand k = j ,  j + 1,. . . , n, 

(7- 8 1 a) Djj(ti+ 1) = [b'lTD(ti+ I)bj 

(7-8 1 b) 

As in Section 7.5, the actual computational algorithm is the efficient, numeri- 
cally superior modified weighted Gram-Schmidt (M WGS) method. Thus, the 
time propagation relations are to compute Y(t;+ 1) and fi(r; 1) as in (7-80), and 
initialize n vectors, each of dimension (n + s), through 

[al a2 j . . . I a,] = YT(t;+l) (7-82) 

and then to iterate on the following relations for k = n, n - 1, . . . , 1 : 
- 

ck = D(fs l)ak (ckj = Djj(t;+ l)akj, j = 1, 2, . . . , n)  

Dkk(t;+ 1) = akTCk 

ak = Ck/Dkk(t;+ 1) (7-83) 

As before, +- denotes replacement, or "writing over" old variables to reduce 
storage requirements. On the last iteration, for k = 1, only the first two relations 
need be computed. The state estimate is given by 

?(t, 1) = @(ti .  1, f i ) ? ( f i + )  (7-84) 
EXAMPLE 7.9 Consider the same time propagation as in Examples 7.3, 7.4, and 7.5; let 

For the sake of this example, let 

so that [QP(tif)CpT] is as given above. The U-D factors of P(t,') would be given by a previous 
measurement update; for this problem, they can be computed from (7-67) as 
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Finally, since Qd is assumed to be diagonal, [GdQdGdT] can be factored by (7-67) into 

The time propagation computations are initialized by (7-80) as 

so that (7-82) yields 

a,  = 

The first iteration of (7-83), for k = n = 2, produces 

d2 = 

. .  
2 
6 

0 

3 . .  

2/ 1 3' 

13 

3/13. 

= 13 
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The second iteration, for k = 1, generates 

~ D C L I F F F  

D l l ( t i + l )  = [17/26 - 1/26 1 - 14/39] = 36/13 

Thus, U(t;+ and D(t;+ ,) have been generated as 

Note that 

as found in the earlier examples or by adding [@P(ti+)mT] and [G,QdGdT] directly. 

7.8 FILTER PERFORMANCE AND REQUIREMENTS 

The algorithms of this chapter have been investigated in order to implement 
the optimal filtering solution given by the Kalman filter, but without the numeri- 
cal instability and inaccuracy of that algorithm when processed with finite 
wordlength. In this section, both the numerical advantages and the increased 
computational burden of these filters, will be delineated. 

An algorithm can be said to be numerically stable if the computed result of 
the algorithm corresponds to an exactly computed solution to a problem that 
is only slightly perturbed from the original one [31]. By this criterion, the 
Kalmanfilter is numerically unstable [ 6 ] ,  in both the conventional and Joseph 
formulations. In contrast, all of thefilters described in this chapter can be shown 
to be numerically stable. 

The numerical conditioning of a set of computations can be described in 
part by what is called’a “condition number,” a concept which is often used to 
analyze the effects of perturbations in linear equations. If A is a matrix, not 
necessarily square, then the condition number k(A) associated with A is defined 
by [22]: 

k(A) = Omaxbmin (7-85) 

where oiax and o$,, are the maximum and minimum eigenvalues of A’A, 
respectively. When computing in base 10 (or base 2) arithmetic with N significant 
digits (or bits), numerical difficulties may be expected as k(A) approaches loN 
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(or 2N) .  For instance, if the maximum and minimum numbers of interest, cmax 
and omin, were 100000 and 000001 (in base 10 or 2), then to add these values 
together and obtain 100001 without numerical difficulties would require at 
least six significant figures (digits or bits). But, 

k(P) = k(SST) = [k(S)]' (7-86) 

Therefore, while numerical operations on the covariance P may encounter 
difficulties when k(P) = lW (or 2N) ,  those same numerical problems would 
arise when k(S)  = loN/' (or 2"') according to (7-86): the same numerical precision 
is achieved with half the wordlength. 

EXAMPLE 7.10 This example and the next illustrate the improved numerical characteristics 
of the square root filters. To simulate roundoff, let r << 1 be such that 

l + e # l  

l + e z L 1  

where 
problem, with 

means equal due to rounding. Consider a scalar measurement update of a two-state 

P(ri-) = [i :I, H(ti) = [l 01, R(ri) = ez 

and compare the computed results of the filters of Chapter 5 and of this chapter. Note that 

P(ri-) = P-'(ri-) = S(t,-) = S-'(t,-) = LJ(r i - )  = D(ti-) = I 

and that the exact covariance P(ti') for this example is: 

The computed results are 
(a) conventional Kalman 

P(ti+)"O 0 0  

(b) Joseph form, Kalman 

P(fi+) 6 [a' 3 
(c) Potter covariance square root 

(d) Carlson covariance square root 

S(C,+) '[I f] 



7.8 FILTER PERFORMANCE AND REQUIREMENTS 401 

inverse covariance 

inverse covariance square root 

U-D factor 

For this example, all but the conventional Kalman filter yield nonsingular and nearly exact 
answers. Although the difference between 0 and e2 in the upper left element of P(ti') may seem 
insignificant, it can have grave consequences. For instance, assume no dynamics and let a second 
measurement of the same form be taken. The gain K computed by the conventional Kalman filter 
would be 

whereas the correct value is 

K(t,?+) = ___ e2 [ '1 /{L + ez} Z A [ '1 
1 + e 2  O 1 + e 2  2 0  

as would be calculated correctly by the Joseph form in this case. 

EXAMPLE 7.11 Consider the same problem as in Example 7.10, but let H(ti) now be [l  13 
instead of [I 01. In this case, the exact answer is 

The computed results are 
(a) conventional Kalman 

1 1  

2 - 1  P(ti') L - [ 
- 3 

(b) Joseph form Kalman 

P(f,+)T-[ 1 -:7 
2 - 1  

(c) Potter covariance square root 



402 7. SQUARE ROOT FILTERING 

(d) Carlson covariance square root 

(e) inverse covariance 

( f )  inverse covariance square root 

(9) U-D factor 

In this case, only the square root and U-D implementations yield nonsingular results. Such 
singular P(tit)  or P-'(ti+) matrices would again yield a zero gain K if a second measurement of 
the same form were processed. while the square root and U-D factor filters compute a gain which 
is nearly exact. Moreover, even though S, S',  U, and D are nonsingular, the associated value of 
P(ti') or P - ' ( t i + )  found by multiplication would be rounded to a singular matrix; thus it is better 
not to perform such computations explicitly, and the time propagations based on triangularization 
are to be preferred over the RSS method which performs such multiplication. 

The improved numerical characteristics of the square root and U-D fac- 
torization filters are achieved at the expense of increased computational burden. 
Letting n be the dimension of the state vector x, s be the dimension of the 
dynamic driving noise w, and m be the dimension of the measurement z and its 
corruptive noise v, we now determine the number of mathematical operations 
required by the various filters, assuming that 

W 

(1) all implementations take advantage of symmetry and zeros as they 

(2) R(ti) and Qd(ti) are diagonal, and 
(3) the inverse covariance and inverse covariance square root filters gen- 

erate explicit state estimates, %(ti-)  and %(ti') .  

Table 7.1 presents the number of operations for one time propagation and one 
measurement update required by 

appear in general forms, 

(1) Kalman filter-with conventional and Joseph form measurement 
update, 

(2) Potter covariance square root filter-with MGS and Householder time 
propagations, 

(3) Carlson covariance square root filter-with matrix RSS and MGS time 
propagations, 

(4) inverse covariance filter [using (5-91) for time propagation], 
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TABLE 7.1 

Operations Required for One Time Propagation 
and One Measurement Update 

Adds Multiplies Square 
Filter (all times f )  (all times 4) Divides roots 

Conventional 
Kalman 

Joseph form 
Kalman 

Potter covariance 
square root 

Potter covariance 
square root 
(Householder) 

Carlson covariance 
square root 
W S )  

square root 
(MGS) 

( M W  

Carlson covariance 

9n3 + 3n2(3m + s - 1 )  
+ n(15m + 3s - 6 )  

18n3 + 3nz(5m + s - 10) 
+ n(9m2 + 6m + 3s) 
+ 3m3 - 6m2 + 3m 

12n3 + 3n2(6m + 2s) 
+ n(6m - 6 )  + 6m 

10n3 + 3n2(6m + 2s - 1 )  
+ n(6m + 5 )  + 6m 

5n3 + 3n2(3m + s + I) 
+ n(9m + 3s - 14) 
+ 2s3 + 4s 

9n3 + 3nz(3m + s - 1) 
+ 3n(3m + 3s - 8) 
+ 2s3 + 6s’ + 4s 

9n3 + 3n2(3m + s + 3) m 0 

18n3 + 3n2(5m + s + 4 )  

+ n(27m + 9s) 

+ n(9m2 + 24m + 9s) 
+ 3 r d  + 9m2 - 6m 

12n3 + 3n2(6m + 2s + 2) 
+ n(24m + 6s) + 12m 

2m - 1 0 

n + 2m n + m  

10n3 + 3n2(6m + 2s + 2) n + 2m n + m  
+ n(24m + 6s + 8 )  + 12m 

5n3 + 3n2(4m + s + 3) 2mn+s m n + s  
+ n(30m + 9s - 2) 
+ 2s3 + 6s’ - 2s 

+ 3n(10m + 5s - 7 )  
9n3 + 3nz(4m + s + 2) 2mn+s m n + s  

+ 2s3 + 12s2 + 4s 

Inverse covariance 10n3 + 3n2(m + 3s + 2 )  10n3 + 3nz(m + 3s + 6 )  2s - 1 0 

Inverse covariance 9n3 + 3n2(2m + 6s + 5 )  9n3 + 3n2(2m + 6s + 6 )  2n + 2s n + s  

+ n(9m + 9s - 16) + n(15m + 21s - 10) 

square root + n(12m + 6s - 6)  + n(l2m + 24s + 3) + 6s 

U-D factor 9n3 + 3n2(3m + 2s + 2) 9n3 + 3n2(3m - 2s + 7) n(m + 1 )  - 1 O 
+ 3n(3m + 1) + 3n(m + 4s - 4) - 6s 

( 5 )  inverse covariance square root filter (MGS update), and 
(6) U-D covariance factorization filter. 

This table can be used to project the computation time required by each filter 
formulation for a given application. Note that if, instead of assuming Qd(ti) to 
be diagonal, we were to assume that the n-by-n [Gd(ti)Qd(ti)Gd’(ti)] or the 
n-by-s [Gd(ti)Wd(ti)] were known, there would be )ns(n + 3) fewer multiplies 
and i n ( n  + l)(s - 1) fewer adds in filter forms 1, 3 with RSS time propagation, 
and 4, or ns fewer multiplies in forms 2 and 3 with MGS time propagation. 
Problem 7.13 extends this table to account for taking advantage of matrix 
sparsity and structure in typical estimation problems. 

To put the algebraic expressions of Table 7.1 into perspective, Table 7.2 
presents the number of operations required for one time propagation and one measurement up- 
date for the case of n = 10, s = 10, and m = 2. The noise dimension s was intentionally set equal 

EXAMPLE 7.12 
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TABLE 1.2 

Operations for One Total Filter Recursion" 

Square Time 
Filter Adds Multiplies Divides . roots (msec) 

Conventional Kalman 2340 2690 2 0 11.36 

Joseph form Kalman 3631 4498 3 0 28.21 

Potter covariance 3612 3884 14 12 26.49 

Potter covariance 3241 3564 14 12 24.19 

Carlson covariance 2080 2560 50 30 18.24 

Carlson covariance 2830 3355 50 30 23.53 

square root (MGS) 

square root (Householder) 

square root (RSS) 

square root (MGS) 

Inverse covariance 3520 3950 19 0 25.82 

Inverse covariance 5080 5455 40 20 31.55 
square root 

U-D factor 2935 3330 29 0 21.11 

' n  = s = 10 and rn = 2. 

to n to correspond to the n-by-n [G,(t ,)  Qd(ti)GdT(ti)] being of full rank, typical of an equivalent 
discrete-time model. The last column in Table 1.2 portrays computer time required for one total 
filter recursion, neglecting the computations associated with the various subscripting and storage 
operations for each filter (roughly the same fur each), and using single precision instruction times 
typical of the IBM 360 and some smaller state-of-the-art computers: 

time for addition = 2.7 p e c  

time for multiplication = 4.1 psec 

time for division = 6.6 psec 

time for square root = 60.0 p e c  

As can be seen from Table 7.2, the covariance square root filters and the U-D covariance 
factorization filter involve a computational load greater than the conventional Kalman filter, but 
not so great as to be prohibitive. In fact, the increase is less than that caused by employing the 
Joseph form of the update equation, which is inferior to these filters in performance. Moreover, 
since the Kalman filter would probably require double precision operations instead of the single 
precision assumed to establish Table 1.2, these filters are even more competitive with the Kalman 
filter than indicated in the table. 

Of the square root type filters, the Carlson covariance square root and the U-D covariance 
factorization filters are the most efficient computationally. The Carlson filter with matrix RSS 
time propagations requires the least computer time, but this is offset by the degraded numerical 
accuracy of the matrix RSS method. Thus, the U-D covariance factorization filter would appear 
to be an exceptionally efficient and numerically advantageous alternative to the conventional 
Kalman filter for this particular application. 
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7.9 SUMMARY 

This chapter presented the concept of square root filters and the closely 
related U-D covariance factorization filter as viable alternatives to conventional 
Kalman filters. For a modest increase in computati.ona1 loading, one obtains 
optimal filter algorithms equivalent to the Kalman filter if infinite wordlength 
is assumed, but with vastly superior numerical characteristics with finite word- 
length. From a numerical analysis standpoint, this is at least as good a solution 
to troublesome measurement update computations as implementing a Kalman 
filter in double precision, since the Kalman filter inherently involves unstable 
numerics. 

Of the covariance square root forms, the Carlson filter is more efficient than 
the Potter form computationally, and it also maintains triangularity of the 
square root matrices. The U-D covariance factorization filter is comparable to 
the Carlson filter and does not require square root computations. In com- 
parison, the inverse covariance square root filter is often considerably more 
burdensome computationally, although it too becomes competitive if the mea- 
surement dimension rn is very large. 

Chandrasekhar-type square root algorithms have also been reported in the 
literature [25]. However, these have been omitted because they do not appear 
to be computationally competitive with algorithms presented herein for the 
nonstationary linear discrete-time estimation problem. 
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PROBLEMS 

7.1 Generate both the lower and upper Cholesky square root matrices of 

7.2 Show the equivalence of Eqs. (7-16) and (7-17) for the Potter measurement update 
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7.3 Let S ( t , - )  be given as in Example 7.6, but let the measurement at time ti be described as 

with 

Show that incorporating z,(ti, w j )  by a second iteration of the Potter algorithm upon the result 
of Example 7.6 yields a solution equivalent to the Andrews vector update given by (7-18). 

7.4 Consider an application in which a three-state filter is to be updated with two measure- 
ments each sample time. Let 

Explicitly convert this into a form compatible with iterative scalar measurement updating in a 
Potter covariance square root filter. 

7.5 Let a system of interest be described by 

where the a priori knowledge of x( to)  is that it can be modeled as a Gaussian random vector with 
mean R, and covariance P, given by 

Let wd(.;) and v(.;) be independent white Gaussian noises, each independent of x ( t o )  and of 
mean zero, and having covariances 

Let z , ( t i )  = 6 and z2(ti) = 4. 

covariance square root filter. For the time propagation, use 
Perform the first time propagation from to  to r l ,  and the update at time t , ,  for the Potter 

(a) the matrix root sum squared (RSS) method, 
(b) the modified Gram-Schmidt (MGS) technique, 
( c )  the Householder transformation algorithm. 

7.6 Repeat the previous problem, but generate the Carlson filter (using both matrix RSS and 

7.7 Generate the inverse covariance square root filter for the application given in Problem 7.5. 

7.8 Generate the U-D covariance factorization filter for the application given in Problem 7.5. 

7.9 Generate the U-D factors of the matrices in Problem 7.1. 

7.10 You are confronted with an engineer who tells you that he has been investigating square 
root filters as an alternative to conventional filters. The general problem requires a Gram-Schmidt 
orthogonalization or a Householder transformation, but the square root covariance filter does not 

MGS time propagations). 

Use both the MGS and Householder measurement updates. 
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require such computation for the case of Q = 0, or no dynamic noise. He suggests using very 
accurate measurements, modeled as essentially perfect, and then using a square root inverse co- 
variance filter. This, he claims, will similarly not require a Gram-Schmidt or Householder algo- 
rithm in the filter computations. What is your response to him? 

Explicitly derive the numerical results depicted in Examples 7.10 and 7.11. 

Repeat the calculations of Example 7.12 for 
7.11 
7.12 
(a) n = 10, s = 10, m = 5 ;  
(b) n = 15, s = 15, m = 2; 
(c) n =  15,s= 1 0 , m = 2 ;  
(d) n = 20, s = 20, m = 2; 
(e) n = 20, s = 20, m = 5. 
7.13 Often the state variables estimated by a filter can be classified in two general categories: 

primary system states (as position, velocity, and misalignment error states in navigation filters) and 
secondary states-for shaping filters to generate outputs affecting either state dynamics or mea- 
sured outputs. Thus, the state can be partitioned as ( n ,  + n,  = n):  

Usually, the propagation of x2(.;) is independent of x1 so that the state transition matrix CP can 
be partitioned as 

where CP, , is typically dense, CP,, is often diagonal, and CP, ,  typically contains one or two nonzero 
elements per column. 

(a) Show that if S(t , ' )  is upper triangular, only the upper left nl-by-n, partition of [@S(ti')] 
is nontriangular and requires retriangularization in a Carlson-type filter. (This in fact motivated 
the choice of upper triangular forms for this filter.) 

Recalculate the entries of Table 7.1 as a function of n ,  and n, instead of n, assuming 0 
to be the form just described. 

Repeat the calculations of Example 7.12 for n ,  = n2 = 5, and for the case of n ,  = 3, n, = 7. 
In Monte Carlo analyses and other types of system simulations, it is often desired to 

generate samples of a discrete-time white Gaussian noise vector process, described by mean of 
zero and covariance 

(b) 

(c) 
7.14 

E{Wd(ti)WdT(ti)} = 

with Q d ( t i )  nondiagonal. Independent scalar white Gaussian noises can be simulated readily 
through use of pseudorandom codes, but the question remains, how does one properly provide 
for cross-correlations of the scalar noises? 

Let w,(.;) be a vector process composed of independent scalar white Gaussian noises of 
zero mean and unit variance: 

(a) 

properly models the desired characteristics. 
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(b) If Uo(t,) and D,(ti)  are the U-D factors of Q d ( t i ) .  show that 

wd(ti:) = UQ(ri)w2(t,;) for all i 

also provides the desired model if w2(.;) is a vector process composed of independent scalar 
white Gaussian noises of mean zero and variance 

E { W L @ i ) )  = D Q k k  

(c) Show the means of simulating wd(.;) if Qd is given by 
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Index 

Averager, 290, 3 16 
Axioms (probability), 60 

Absolutely continuous probability distribution 

Accelerometer error model, 322 
Adaptive filtering, 230, 291 
Adaptive noise estimation, 230,291 
Additive set function, 63 

countably, 63 
Adequate model, 1, 101,289,322, 325, 341, 351 
Adjoint, 55,341 
Aided inertial system, 291 
Algebra, 61 

Algebraic operations on random variables, 84, 

Algorithms, see Filter 
Alignment of INS, 3 17 
Almost surely, 151 
A posteriori probability, 76, 110, 117, 207 
Approximations, 2,289,322,341,348,356,357 
A priori probability, 60, 114, 204 
Asymptotic, 223, 235, 273. 
Asymptotic behavior, 223,235,273 
Asymptotic efficiency, 235 
Asymptotic normality, 235 
Asymptotic unbiasedness, 235 
Atom, 67 
Augmentation, see State 
Au tocorrelation 

estimate of, 129, 191 
function, 137, 140 
kernel, 137, 140 
matrix, 90, 137 

ensemble, 88, 129 

function, 72 

u-algebra, 61 

111 

Average, see Expectation; Time average 

B 

Backward filter, 238 
Baire function, 84 
Bandpass, 8 
Bandwidth, 184,267, 273 
Batch processing, 119, 374 
Bayes’ rule, 81 
Bayesian estimation, 5, 114, 205 
Best, see Optimal criteria 
Bias, 129, 184,226, 235, 329 
Bierman-Thornton filter, 392 
Block diagram, 27,29 
Bode plot, 8, 177, 303 
Bode-Shannon technique, 270 
Bore1 field, 62 
Bounded input-bounded output (BIBO) sta- 

biliry, 242 
Bounded matrix, 243 
Bounded variation, 152 
Brownian motion (Wiener process), 148, 154, 

Budget, error, 339, 366 
155, 184 

C 

Canonical form, 3 1, 34 
Carlson filter, 385 
Cauchy sequence, 158 
Cayley-Hamilton theorem, 5s 
Central limit theorem. 109 

41 1 
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Central moments, 90, 107 
CEP, 366 
Certain event, 60, 63 
Chandrasekhar algorithm, 405 
Characteristic function, 99 

conditional, 99, 11 1 
for Gaussian distribution, 104, 11 1 
joint, 101 
moment-generating property, 100 
for sum of independent vectors, 101 

Characteristic polynomial, 21, 28, 31 
Characterization of stochastic process, 135, 136 
Characterization of random vector, 70 
Chebychev inequality, 151 
Cholesky square root, 370 
Circular error probability, 366 
Coefficient, correlation, 91 
Collapse of density function, 104 
Colored measurement noise, 248 
Colored noise, 8, 146, 180 
Combining states, 322, 348 
Companion form matrix, 28 
Complement, 61 
Complete, 158, 159 
Composite mapping, 84 
Compound event, 62 
Computational aspects, 11 8, 119, 207, 236, 260, 

Computed covariance, 331, 337, 358 
Computed state estimate, 331 
Computer 

289, 322, 351, 399 

constraints, 351, 399 
loading, 322, 351, 403 
memory, 322, 351,355 
requirements, 351, 355, 399 

Condition number, 399 
Conditional characteristic function, 99, 11 1 
Conditional covariance matrix, 97, 207, 209 

for continuous-time state with continuous 

with discrete measurements, 217, 219, 275 
for discrete-time state with discrete measure- 

for Gaussian random vector, 110, 117 

definition, 80 
for Gaussian random vector, 110, 116 
for Gauss-Markov process, 207, 209, 215 

measurements, 259 , 

ments, 220, 275 

Conditional density function 

259 
Conditional distribution function, 76 
Conditional expectation, 95 

in estimation, 117, 232 

of function of random vector, 95 
Gaussian, properties, 11 1 
properties of, 95 

Conditional Gaussian density, 110 
Conditional mean, 7, 95, 97, 117, 207, 209, 232 

for continuous-time state with continuous 

with discrete measurements, 217, 219, 275 
for discrete-time state with discrete measure- 

for Gaussian random vector, 110, 117 

measurements, 259 

ments, 220,275 

Conditional mode, 7, 234 
Conditional moments, 95, 97 
Conditional probability, 76 

definition, 76 
density, 80 
distribution, 76 

Conditional variance, 97 
Confidence, see Information ; Uncertainties 
Conservative filter, 339 
Consistent estimator, 235 
Constant gain approximation, 224, 273, 324 
Constant likelihood, surface of, 104, 124, 366 
Continuity, 151 
Continuous parameter random process, 134 
Continuous random variable (vector), 72 
Continuous sample space, 61 
Continuous-time 

control, 26, 35, 168, 333 
estimation, 257 
linear system model, 25, 35 
measurements 36, 175,257 

Control, 26, 35, 168, 170, 332, 333 
Controllability, 43 

complete, 43 
continuous-time, 44 
discrete-time, 45 
stochastic, 243 

Controlled member or platform, 51, 199, 291 
Convergence, 150 

in the mean (mean square), 150 
in probability, 151 
with probability 1 (almost sure), 151 

Convolution integral, 101 
Convolution summation, 191 
Correlated measurement and system noises, 246 
Correlated noise, 138, 145, 155 

Correlation 
simulation, 408 

autocorrelation, 90, 137 
between dynamic noise and measurement 

noise, 246 
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coefficient, 91 
cross-correlation, 93, 138 
definition, 90 
distance, 345 
estimate of, 130, 191 
function, 137, 140, 166, 176 
independence, relation to, 95 
kernel, 137, 140, 166, 176 
matrix, 90, 137, 165 
between random vectors, 93 
time, 138, 185 
in time, 138 

Corruption, measurement, 174 
Cost function, 121, 232 
Countably infinite, 61 
Covariance 

analysis, 329, 335 
conditional, 97 
cross-covariance, 93, 137 
error, 118,226 
estimate of, 129, 130, 191 
factorization, 370, 392 
function, 136, 140, 166, 177 
Kalman filter, 207,209, 259,275 
kernel, 136, 140, 166, 177 
matrix, 90, 136, 165, 167, 172 
notation, xvii 
true error, 328, 335 

Criteria, optimality, 231 
Cross-correlation, 93, 138 
Cross-covariance, 93, 137 
Cross-spectral density, 144 
Curve fitting, 120, 131, 224, 273, 324 

Design model, 330 
Desired output, 327 
Deterministic control inputs, 26, 35, 168, 170, 

332,333 - 

Deterministic system model, 25 
Deyst filter, 263 
Difference equations, 43, see also Propagation 

stochastic, 170 
Differentiable, 152 
Differential, 162 
Differential equations, 26, 35, 36, 37, see also 

Propagation 
stochastic, 163 

Diffusion, 149, 154, 155 
Dimension, I7 
Direct filter, 294 
Discrete sample space, 61 
Discrete-time, 42, 134, 170, 174 
Discrete-time measurements, 42, 174 
Discrete-time model, equivalent, 43, 170 
Discrete-time reset, 293, 332 
Discrete-valued random vector, 67, 76 
Discretization, 43, 170, 260, 353, 356 
Disjoint events, 63 
Distance measure, 158, 159 
Distribution, 68, see also Density function 
Disturbance, 2, 114, 145, 174 
Divergence, 338 
Doppler-aided INS, 305 
Double precision, 238 
Duality, 48 
Dummy variable, xvii, 65, 66 
Dynamic system model, 25, 145, 174 
Dynamics noise, 145, 153, 155, 163, 171 

D 
E 

Data 
processing, see Measurement update 
spurious, 230 

Decoupled states, 31, 324 
Deletion of states, 322, 348 
Delta function, 84 
Density function, 72 

conditional, 80 
Gaussian, 102, 110 
induced, 85 
joint, 72, 73, 135 
marginal, 73 

Density, power spectral, 140 
Design, filter, 341 

Efficient, 235 
Eigenvalue, 21, 31, 104 
Eigenvector, 2 1, 104 
Elementary outcome, 60 
Ellipsoid, 104, 124, 366, see also Surface of 

constant likelihood 
Empirical, 60, 129, 190 
Ensemble average, 88 
Equivalent discrete-time model, 43, 170 
Ergodic, 144 
Error 

analysis, 118, 226, 325 
bounds, 235 
budget, 339, 366 
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Error (continued) 
compensation, 180, 186,229, 322,337 
covariance, 118,226 
ellipsoid, 104, 124, 366 
model, 39, 180, 186,296, 322 
sensitivity, 340 
states, 39, 296 
true, 328 

asymptotically efficient, 235 
asymptotically unbiased, 235 
Bayes, 5, 114,205, 206,231 
best linear, 235 
bias, 129, 184,226,235, 329 
computed, 289, 322, 341, 356, 357 
conditional mean, 7, 95, 110, 117, 205, 207 

consistent, 235 
continuous-time, continuous measurement, 

continuous-time, discrete measurement, 21 7, 

in correlated noise, 246, 248, 263 
covariance, 118, 130,226 
discrete-time, 220, 275 
error, 117, 226, 326, 328 
filter, 207, 209, 219 
least squares, 120,232 
linear, 110, 117, 217, 235 
maximum a posteriori (MAP), 7, 234 
maximum likelihood, 234, 235 
of mean, 129, 132 
minimum error variance, unbiased, 235 
of moments, 129, 191 
notation, xvii, 86 
parameter, 114, 184,230 
predicted, 12, 114, 209, 211, 228 
properties, 226, 231, 399 
recursive, 4, 119, 374 
smoothed, 238,268 
of statistical parameters, 129; 191 
unbiased linear, 235 
of variance, 129, 130, 132 
weighted least squares, 120, 232 

Estimate, see also Filter 

209,232 

259 

219,275 

Estimator, see Estimate 
Euclidean space, 17, 37, 62 
Events, 60 

disjoint, 63 
independent, 83 
mutually exclusive, 63, 83 
null (empty), 61 
probability of, 60, 63 
sure (certain), 60 

Existence, 38, 72, 98, 147, 150, 152, 156, 259 
Expectation, 88 

Expected value, see Expectation 
Experiment, 60, 88, 129 
Exponentially time-correlated process, 137,143, 

conditional, 95 

173, 178, 184, 190 

F 

Factorization, 188, 270, 370, 392 
Failure detection, 229 
Fast Fourier transform (FFT), 191 
Feedback control, 332, 333 
Feedback filter, 297 
Feedforward filter, 296 
Filter,* see also Estimate 

Bierman-Thornton, 392, (7-67), (7-76)- 

Carlson, 385, (7-23), (7-44)-(7-48) 
classical, 5, 232, 235, 305 
with control inputs, 219, 275 
correlated dynamic and measurement noises, 

Deyst, 263, (5-153)-(5-154) 
inverse covariance, 238, (5-85), (5-89)-(5-96) 
Joseph form, 237, 365, (5-82) 
Kalman, 206, 217, 219, 236, 238, 246, 257, 

(7-78). (7-80), (7-82)-(7-84) 

246, (5- 1 12)-(5- 1 1 7) 

259, 275, (5-36)-(5-42), (5-46)-(5-48), 
(5-5 I )-(5-52) 

Kalman-Bucy, 257, 259, (5-144-(5-147) 
Potter, 373,375,377,384, (7-9), (7-16), (7-17). 

square root, 368 
I.-D covariance factorization, 392, (7-67), 

Wiener, 267, (5-159)-(5-160) 

(7-21), (7-23), (7-36)-(7-42) 

(7-76)-(7-78), (7-80), (7-82)-(7-84) 

Filter design, 341 
Filter divergence, 338 
Filter error, 226, 232, 328 
Filter gain, 12, 14, 117, 217, 247, 259, 374, 

Filter model, 174, 203, 217, 260, 289, 322, 326, 

Filter tuning, 224, 337 
Finite dimensional, 4, 17, 135 
First moment, see Expectation; Mean 
First order density, 135 
First order lag, 173, 178 

386,394 

330 

* Numbers in parentheses are equation numbers. 
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First order Markov model, 173, 178, 184, 190 
First variation, 39, 237, 269 
Fisher information matrix, 238,240 
Fixed gain approximation, 224,273,324 
Forward filter, 238 
Fourier transform, 140, 187 

discrete (DFT), 191 
fast (FFT), 191 

Fourth-product moment, 91, 94, 107 
Frequency domain, 25, 140, 183, 187, 191,267, 

Fubini theorem, 97 
Function 

characteristic, 99 

270,297, 301 

discrete-time, 170, 175 
mean for, 165, 166, 169, 172, 176 
measurement for, 174 
system dynamics for, 163, 170 

Gauss-Markov theorem, 238,240,284 
Global Positioning System (GPS), 342 
GPS-aided INS, 342 
Gramian matrix, 44, 47 
Gram-Schmidt orthogonalization, 378 

Gyro error model, 322 
modified, 380 

H 

density, 72 
Half-power frequency, 8, 183, 185 distribution, 68, 71 

probability, 63 Hilbert space, 158 
Histogram, 60, 72 
History 

Function of random vector, 84 
Functional analysis, xi, 97, 158 
Functional dependence, 83 measurement, 206 

Fundamental theorem of differential equations, 
residual, 229 
state, 26, 37, 146 38 

Householder transformation, 382 

G 

Gain matrix, 12, 14, 117, 217, 247, 259, 374, 

Gaussian probability density, 102 
conditional, 110 

Gaussian process, 139 
white, 7, 139, 147 

Gaussian random vector, 101 
characteristic function of, 104 
conditional covariance of, 11 0 
conditional density, 110 
conditional expectation, properties, 1 11 
conditional mean of, 110 
correlation of, 107, 108 
density function of, 102, 107 
independence of, 108 
jointly Gaussian vectors, 108, 110 
linear combinations of, 112 
linear transformations of, I 1  1 

Gaussian stochastic process, 139 
Gaussian white noise, 139, 147 
Gauss-Markov process model, 146, 163, 170, 

174, 180, see also Stochastic process 

386,394 

characteristic function, 99 
continuous-time, 163, 174, 175 
control input included, 169, 171 
covariance matrix for, 165, 167, 172, 177 
covariance kernel for, 166, 177 

Hypercube, 73 
Hypothesis testing, 229 

I 

Identity matrix, 16 
Implementation, 341, 351, 399 
Impulse, 84,268, 272 
Impulsive corrections, 306, 309, 332 
Inaccuracies, model, 1, 101,289, 322, 325, 341, 

351 
noise, 203 
numerical, 236, 238, 356, 399 

Increments, 42, 73, 148, 356 
independent, 148 

Independent events, 83 
Independent experiments, 129 
Independent increments, 148 
Independent processes, 138 
Independent random vectors, 82,94, 100, 108 
Independent stochastic processes, 138 
Independent in time, 138 
Independent and uncorrelated, 94, I08 
Indirect filter, 296 
Induced probability, 85 
Inequality, xvii, 21, 62, 243 

Inertial navigation system, 29 1 
Chebychev, 15 1 

aiding, 292 
alignment, 3 17 
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Infinitesimal, 73 
Information, 240, 241 
Information filter, 238, 388, see also Inverse 

covariance filter 
Information matrix, 240 
Initial conditions, 40, 162, 163, 172, 204, 217, 

219,370, 392 
covariance, 165,204,217,219,370,392 
state estimate, 204, 217, 219 

Inner product, 19, 158 
Innovations, 288, see also Residual 
Input, 169,217 

deterministic control, 26, 35, 168, 170, 332, 
333 

Instrument Landing System (ILS), 362 
Integral 

238,246, 275 
gain, 12, 14, 117,217,247,259,275 
sensitivity analysis, 325, 337, 339 
stability, 242, 399 

approximations, 322, 324, 341 
steady state, 223, 225, 273, 325, 341 

Kalman gain, 12, 14, 117, 217, 247, 259, 275 

Kalman-Bucy filter, 257,259 
Kernel 

correlation, 137, 140, 166, 176 
covariance, 136, 140, 166, 177 
cross-correlation, 138 
cross-covariance, 137 

L 

Lebesgue-Stieltjes, 88, 98 
Riemann, 40,72,88,95, 156 
stochastic, 156 

Integral equation, 163 
Integration methods, 55,172,219,261,284,356 
Intersection, 62, 63 
Inverse, 19 
Inverse covariance filter, 238 
Inverse covariance square root filter, 388 
Inverse image, 66 
Inversion lemma, matrix, 127, 213, 239, 280 
Invertibility, 19 
Iterative scalar measurement updating, 1 19, 

127, 375 

J 

Jacobian, 124 
Joint density, 72, 78 
Joint distribution, 68 
Joint event, 62 
Joint probability, 64, 77 
Jointly Gaussian, 108, 110 
Jordan canonical form, 33 
Joseph form update, 237, 365 

Laplace transform, 26, 36, 42, 55, 187, 270, 301 
Least squares estimation, 120,232 

Least squares fit, 120, 131,232 
Lebesgue-Stieltjes integral, 88, 98 
Leibnitz’ rule, 41, 166, 171 
Likelihood function, 229,234 
Limit in mean (l.i.m.), 150, 160, 161 
Linear combination, 17, 112 
Linear dependence, 20 
Linear filter, 110, 117, 217, 235, see also Filter 
Linear function, 18 
Linear independence, 20 
Linear operations, 17, 11 1 
Linear space, 17 
Linear stochastic differential equation, 163 
Linear system model, 25, 114, 163, 170, 174, 

180, 186, 190, see also System model 
Linear transformation, 18, 11 1 
Linear unbiased minimum variance estimator, 

235 
Linearization, 39 
Lipschitz, 38 
Lower triangular matrix, 17, 370, 374, 377 
Low-pass filter, 173, 178, 297, 302 
Luenberger observer, 255 
Lyapunov stability, 242 

weighted, 120, 232 

K 

Kalman filter 
continuous-time, continuous measurement, 

discrete measurement, 206, 217, 219, 236, 

discrete-time, discrete measurement, 220,236, 

257,259 

238,246,275 

MAP estimate, 7, 234 
Mapping, 18, 63, 65, 84 
Marginal probability 

density, 73 
distribution, 71 
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Markov process, 146 
Martingale, 259 
Matrix 

adjoint, 20 
algebra, 16 
analysis, 16 
block diagonal, 17 
Cholesky square root, 370 
control input, 35, 36, 169, 171 
correlation, 90, 137, 165 
covariance, 90, 136, 165, 167, 172 
cross-correlation, 93, 138 
cross-covariance, 93, 137 
determinant, 19 
diagonal, 16 
differentiation, 22 
expectation of, 88, 89 
factorization, 188, 270, 370, 392 
filtergain, 12, 14,117,217,247,259,374,386, 

gain, 12, 14, 117, 217,247, 259, 374, 386, 394 
Gramian, 44,47 
identity, 16 
information, 240 
integration, 22 
inverse, 19 
inversion lemma, 127, 213, 239, 280 
invertible, 19 
Kalman gain, 12, 14, 117, 217, 247, 259, 275 
lower triangular, 17, 370, 374, 377 
measurement, 35, 36,42 
noise input, 163, 172 
nonsingular, 19 

operations, 16 
orthogonal, 20, 105 
partition, 17 
positive definite, 21 
positive semidefinite, 21 
rank, 20 
rectangular, 16 
root sum square (RSS), 377 
similarity transformation, 22, 27 
singular, 19 
square, 16 
square root, 238,370 
state transition, 40 
symmetric, 17 
trace of, 22 
transformation, 18,21,22 
transpose, 19 
triangularization, 378 

394 

, null, 16 

unitary, 392 
upper triangular, 17, 372, 385, 389, 392, 408 
Vandermonde, 33 
zero, 16 

Maximum a posteriori (MAP), 7, 234 
Maximum likelihood estimate (MLE), 234,235 
Mean, 88, 89, 136, see also Expectation 

conditional, 7, 95, 97, 110, 117, 205, 207, 
209,232 

Mean square, 90, 137,232 
Mean value, 88 
Mean value function, 136 
Mean vector, 88, 89 
Measurable, 63, 66 
Measure theory, 63,66, 76, 85, 88,98 
Measurement 

averaging, 290, 316 
continuous-time, 36, 175, 257 
differencing, 255,294,296,299 
differentiation, 265, 303 
discrete-time, 42, 174, 205, 217 
equation, 115, 174,257 
error, 11 5, 174, 257 
history, 206 
iterative scalar update, 119, 127, 375 
matrix, 35, 36, 42 
noise, 115, 174, 257 
residual, 117, 120,218,228 
statistical description, 1 15, 174, 176,211,257 
spurious, 230, 317 
time correlated noise, 248, 263 
update, 117,118,217,236,240,247,334,374, 

vector, 115, 174, 206, 257 
375, 386, 388, 394, see also Filter 

Median, 7 
Memory requirements, 118, 215,236, 322, 351, 

Metric, 158, 159 
MGS, see Modified Gram-Schmidt method 
Minimal a-algebra, 65, 98 
Minimum mean square error (MMSE), 232 
Minimum phase, 190 
Minimum variance estimate, 232, 235 
Mismodelling, 2, 289, 313, 322, 341, 348 
Mode, 7,234 
Models, see also System model, linear; System 

355 

model, nonlinear 
dynamics, 25, 145, 163, 170,204 
effect of errors, 114, 145, 163, 170, 174, 204 
equivalent discrete-time, 42, 170 
error models for sensors, 180, 186, 190, 298, 

307, 309, 316, 321, 322, 343, 348 
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Models (continued) 
measurement, 35, 36, 42, 115, 145, 174, 205 
process, 180, 186, 190 
reduced order, 2,289, 322, 341, 348, 351 
simplified, 2, 224, 273, 289, 322, 324, 341, 

348, 351, 356 
system, 25, 35, 36,42, 145, 174, 190, 217, 259 

Modified canonical form, 34 
Modified Gram-Schmidt method (MGS), 380 
Modified Jordan canonical form, 34 
Modified weighted Gram-Schmidt method 

Moment 
(MWGS), 397 

central, 90, 97, 107, 136, 137 
estimate of, 129, 191 
first, 88, 89, 95, 97, 136 
fourth central, 107 
noncentral, 90, 107, 137 
second, 90, 93,97, 136, 137 

Moment generating function, 99 
Monitoring, residual, 229, 317 
Monotone, 71 
Monte Carlo analysis, 325, 329, 335 
Moving window, 229 
Mutually exclusive, 63, 64, 83 
MWGS, see Modified weighted Gram-Schmidt 

method 

N 

Navigation, 291 
Navigation satellite-aided INS, 342 
Neglecting terms, 324 
New information, 228 
Noise 

correlated (in time), 138, 145, 180, 186 
Gaussian, 139, 335, 408 
white, 138, 147,335,408 

Nominal, 39 
Noncentral moment, 90, 107 
Nondifferentiability, 152 
Nonlinearities, 37, 39, 43, 84, 329, 341 
Normal, see Gaussian 
Notation, xvii 
Notch filter, 194 
nth order, 26 
Null, 16, 47 
Numerical precision, 237, 238, 368, 399 
Numerical stability, 399 
n-vector, 17, 26 

0 

Observability 
complete, 46 
continuous-time, 47 
discrete-time, 47 - 

stochastic, 243 
Observations, see Measurement 
Observer, 255 
Observer-estimator, 255 
Off-diagonal, 17, 91, 93, 108, 120 
Off-nominal, 39, 229, 337, 340 
Omega (w), 60 
On-line, 11 8, 222, 224, 273, 289, 322, 324, 341, 

Optimal criteria, 231 
Optimal estimate, 87, 114, 115, 117, 205, 217, 

Optimal filter, 203, 217, 231, 238, 246, 248, 

Optimal prediction, 207,209,217,219,220,268, 

Optimal smoothing, 238, 268 
Optimally aided inertial system, 291 
Orthogonal, 19,95, 105, 124,228,235, 378 
Orthogonal projection, 124,228, 235 
Orthogonalization, 378, 380, 387, 390, 396, see 

also Gram-Schmidt orthogonalization 
Outcome of experiment, 60 

351, 399 

23 I 

257,267, 268, 368 

284 

P 

Parameter 
estimation, 114, 184, 230, 291 
identification, 230,291 
sensitivity, 224, 340 

Parameterization of density function, 88, 91, 

Partial fraction expansion, 32, 270 
Partition, 17, 108, 110, 112, 116, 181, 206, 248, 

250, 333,408 
Perfect knowledge, 204 
Perfect measurements, 248, 263 
Performance analysis 

covariance, 325, 329, 335,341 
error, 326, 328,335 
error budget, 339 
filter tuning, 224, 337 
Monte Carlo, 325, 329, 335, 341 

136 
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sensitivity, 325, 339, 340 
truth model, 326, 329 

Performance criteria, 231, 325, 326, 329, 337, 

Periodic process, 185 
Perturbation model, 39, 296 
Physically realizable, 186, 268 
PID controller, 57 
Pinson error model of INS, 305, 343,344 
Position-aided INS, 297, 362 
Positive definite, 21, 205, 257 

Positive semidefinite, 21, 204 
Potter filter, 373, 375, 377, 384 
Power spectral density, 140, 183, 187, 267 

339, 340 

property of P, 216, 236, 368, 399 

cross-power spectral density, 144 
estimate of, 191, 192 

Practical aspects, 2, 118, 119, 129, 190, 207, 
224, 236, 260, 273, 289, 322, 337, 339, 341, 
351, 399,403 

Precision 
estimation, 118, 224, 226, 325 
knowledge, 204,248,263 
numerical, 237, 238, 368, 399 

Precomputable, 118, 172, 219, 222, 226, 260, 

Prediction, 207, 209, 217, 219, 220, 268, 284 
Predictor-corrector, 13, 117,208,217,275 
Prefiltering, 229, 290, 316 
Primary states, 408 
Principal axes, 21,31, 104, 124,366 
Prior knowledge, 60, 114,204 
Prior statistics, 114, 204 
Probabilistic approach to filtering, 5, 115, 205, 

23 1 
Probability 

273,290, 324,325,337 

a posteriori, 76, 110, 117, 207 
a priori, 60, 114, 204 
axioms, 60 
conditional, 76 
density, 72, see also Density function 
distribution, 68, 71 
function (measure), 60, 63 
induced, 85 
joint, 64, 77 
law, 135 
marginal, 71, 73 
model, 60, 64, 68, 71, 72, 73, 76, 84, 88, 95, 

101, 114 
space, 64 
theory, 59 

Procedure, filter design, 289,341 
Process, stochastic, see Stochastic process 
Process noise, see Dynamics noise 
Product space, 17,37, 133 
Projection, see Orthogonal projection 
Propagation, see also Filter 

covariance, 165, 167, 177 
filter equations, 209, 217, 219, 220, 239, 246, 

mean, 163, 165, 166, 169, 176 
state process, 164, 169, 171 

259, 373, 377, 381, 382, 391, 396 

Pseudonoise, 184, 224, 337 

Q 

Quadratic, 21, 102, 121, 232 
Quantization, 237, 238, 352, 353, 364, 368, 399 
Quasi-static, 172, 224, 324 

R 

Radar-aided INS, 297 
Radiometric Area Correlation Guidance 

(RACG), 283 
Radon-Nikodym theorem, 98 
Random bias, 184 
Random constant, 184 
Random noise, 183, 335, 408 
Random process, see Stochastic process 
Random sample, 60, 129 
Random sequence, 134 
Random variable, see Random vector 
Random vector 

conditional mean of, 95 
continuous, 72 
correlated, 91, 93 
covariance of, 90, 93 
definition of, 66 
discrete, 72 
expected value of function of, 88 
function of, 84 
Gaussian, 73, 101 
independent, 82 
jointly Gaussian, 108, 110 
mean vector of, 88, 89 
normal, 73, 101 
orthogonal, 95 
realization, 66 
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Random vector (continued) 
uncorrelated, 93 
uniform, 73 

Random walk, 184 
Range, 44 
Rank, 20 
Rational, 187, 188 
Realizable, 186, 268 
Realization of random vector, 66 
Reasonableness checking, 230,317 
Recursive estimation, 4, 119, 127, 374 
Reduced-order filter, 289, 322, 325, 341, 348, 

Redundant measurements, 2,5, 251 
Redundant states, 27,45, 324 
Regression line, mean-square, 13 1 
Relative frequency of occurrence, 60 
Rescaling of variables, 364 
Residual, 131, 218, 228 

monitoring, 229, 317 
Residue, 32, 198 
Resolvent matrix, 27, 42 
Resymmetrization, 238 
Riccati equation, 259,260,264 
Riemann integral, 75, 88, 147, 156, 163 
RMS, see Root mean square 
Root mean square (RMS), 90 
Root sum square (RSS), 339, 377 

Roundoff errors, 237, 238, 352, 353, 364, 368, 

RSS, see Root sum square 

351,3.56 

matrix, 377 

399 

S 

Sample, stochastic process, 134 
Sample autocorrelation, 131, 191, 192 
Sample correlation, 131 
Sample covariance, 130 
Sample mean, 129, 132 
Sample space, 60 
Sample time, measurement, 42, 170, 174 
Sample variance, 129, 132 
Sampled data, 42, 170, 174 
Sampling theorem, 295 
Scalar measurement updating, iterative, 1 19, 

Scatter diagram, 13 1 
Schuler oscillation, 296, 313, 348 
Second moment, 90,93,97, 136, 137 
Second order density, 135, 136, 137 

127, 37.5 

Second order Markov process, 185, 200 
Secondary states, 408 
Semigroup property, 41 
Sensitivity, 224, 325, 337, 339, 340 

Sequence, see plso Discrete-time 
analysis, 325, 339, 340 

control, 43, 171 
Gaussian, 139, 147, 171 
Gauss-Markov, 146, 147, 171 
measurement, 42, 119 
noise, 134, 171, 174 
residual, 131, 218, 228 
state vector, 42, 171 
system output, 42, 174 

function, 63 
Set, 60 

Shaping filter, 8, 180, 186, 316, 321, 322, 343 
Sigma(cr), see Standard deviation 
cr-algebra, 61 
Signal, 267 
Similarity transformation, 22, 27, 28 
Simple function, 157 
Simulation, see also Monte Carlo analysis 

of correlated noise, 170, 180, 186, 316, 321, 

of white Gaussian noise, 335, 408 
322,343 

Singular, 19 
Smoothing, 238, 268 
Solution 

to deterministic differential equation, 37 
to stochastic differential equation, 163, 169 

control, 35, 169 
finite dimensional linear, 4, 17, 135 
Hjlbert, 158 
linear, 17 
measurement, 114, 174,206 
state, 26 
vector, 17 

Space 

Spectral analysis, 140, 183, 187, 191, 267, 270 
Spectral density, 140, 183, 187, 191, 270 
Spectral factorization, 188, 270 
Spurious data, 230 
Square root, matrix, 370 

Cholesky, 370, 372 
covariance, 238, 370 
inverse covariance, 388 
rectangular, 378, 388 

Carlson, 385 
covariance, 373, 375, 377, 385 

Square root filter, 368, see also Filter 
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inverse covariance, 388 
Potter, 373, 375, 377, 384 

of filter, 242 
numerical, 399 

Stability 

Stable platform, 51, 199, 291 
Standard controllable form, 28 
Standard deviation, 90 
Standard observable form, 30 
State 

augmented, 146, 180, 333 
concept, 26 
controllable, 43, 243 
equation, 26, 35, 36, 37, 43, 145, 163, 171 
error, 39, 296 
estimate, 114, 117, 207, 209, 219 
notation, xvii, 26 
observable, 46, 243 
primary, 408 
secondary, 408 
space, 26 
total, 294 
variables, choice, 27 
vector, 26, 36, 37, 145, 163, 171 

canonical, 3 1 
Jordan canonical, 34 
modified Jordan canonical, 34 
phase variable, 28 
physical, 28 
standard controllable, 28 
standard observable, 30 

State transition matrix, 40 
Static estimation, 114 
Static model, 59, 114 
Stationarity 

strict sense, 139 
wide sense, 140 

estimates of, 129, 191 
first order, 88, 89, 95, 97, 135, 136 
methods, 88, 114, 129, 136, 180, 186, 190, 

partial description of density, 88, 136 
second order, 90, 93, 97, 135, 136, 137 

State space representations 

Statistics 

231,267, 325 

Steady state filter, 223,224, 273, 324 
Stochastic difference equations, 170 
Stochastic differential, 162 
Stochastic differential equations, 163 
Stochastic integral, 156 
Stochastic model, 145, 174, 203 

Stochastic process 
bias, 184 
Brownian motion, 148, 184 
colored, 138, see also Stochastic process, 

correlated 
continuous parameter, 134 
continuous time, 134 
correlated, 138, 180, 186, 316, 321, 322, 343 
correlation kernel of, 137 
correlation matrix of, 137 
covariance kernel of, 136 
covariance matrix of, 136 
cross-correlation of, 138 
cross-covariance of, 137 
definition of, 133 
description of, 134, 136 
discrete-parameter, 134 
discrete-time, 134 
exponentially time correlated, 137, 143, 173, 

178, 184, 190 
first order Markov, 137, 143, 173, 178, 184, 

190 
Gaussian, 139 
Gauss-Markov, 146 
independent, 138 
independent increment, 148 
Markov, 146 
mean of, 136 
nonstationary, 139, 155 
normal, 139 
periodic, 184, 200 
probability laws for, 135, 139, 146 
random bias, 184 
random constant, 184 
random walk, 148, 184 
second order Markov, 184,200 
simulation, 170, 180, 186, 316, 321, 322, 329, 

stationary, 139 
strict-sense stationary, 139 
uncorrelated, 138 
white, 138 
white Gaussian, 147, 335, 408 
wide-sense stationary, 140 
Wiener, 148, 184 

335, 343,408 

Storage, 118,215,236, 322, 351, 355 
Strength of white noise, 154, 155 
Strict-sense stationary, 139 
Structural model, 26, 35, 36, 37, 42, 43, 114, 

Subintervals, integration, 220, 284, 357 
145, 163, 169, 171, 172, 174 
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Suboptimal filter, see Approximations; 

Subset, 61, 63 
Subspace, 17, 104, 124,228,235 
Superposition, 18, 26, 34, 35, 89, 97 
Sure event, 60 
Surface of constant likelihood, 104, 124, 366 
Sylvester expansion theorem, 55 
Symmetric, 17 
System model, linear, see also Stochastic model 

constant coefficient, 26, 35 
continuous-time, 25, 163, 169, 175, 204, 257 
discrete-time, 42, 43, 170, 174, 205, 293, 332 
dynamics equation, 26, 35, 36, 37, 145, 163, 

equivalent discrete-time, 42, 170 
frequency domain, 26, 27, 187, 270, 301 
impulse response function, 186, 268 
matrices, 26, 35, 36, 42, 145, 163, 169, 171, 

measurement equation, 26, 35, 36, 42, 174, 

noise, 36, 145, 155, 163, 171, 174, 180, 204 
pseudonoise, 145, 184, 224, 337 
state, 26, 35, 36, 37, 145, 163, 169, 171, 204 
time domain, 25,26, 35, 36,37, 145, 163, 169, 

time-invariant, 26, 35, 180, 186, 223, 224, 

time-varying, 36, 145, 163, 169, 171, 174, 204 
transfer function, 26,27, 187,270,301 , 
uncertainty, 36, 145, 155, 163, 171, 174, 180, 

Reduced-order filter 

169, 171, 204 

174,204 

175, 205,257 

171, 174, 204 

273, 324 

204 
System model, nonlinear, 37,42 

T 

Taylor series, 39, 55, 258 
Time average, 144,290,3 16 
Time-correlated measurement noise, filter, 248, 

Time-correlated noise, 138 
Time-correlated noise models, 8, 180, 186, 316, 

Time-domain analysis, 25, 26, 35, 36, 37, 145, 

Time history, see History 
Time-invariant system, 26, 35, 180, 186, 223, 

Time propagation, see Propagation 

263 

321, 322, 343 

163, 169, 171, 174,204,226,325 

224, 273, 324 

Time series analysis, 190, 229 
Time-varying system, 36,145,163,169,171, 174, 

Total state, 294 
Trace, 22 
Tradeoff, 1, 101, 289, 322, 325, 339, 341, 351, 

Transformation 

204 

369,399 

Householder, 382 
matrix, 18,21, 22 
orthogonal, 20, 105 
similarity, 22 

Transient, 177, 223,224, 261,273, 324, 325 
Transition matrix, 40 
Transition probability, 146 
Transpose, 19 
Trial, 41, 60, 88, 129, 164 
Triangular matrix, 17, 370, 378, 385, 392, 408 
Triangularization algorithm, 378 
True errors, 290, 325, 328 

covariance, 329, 335 
Truncation errors, 237,238, 352, 353, 364, 368, 

Truth model, 326, 329 
Tuning, filter, 224, 337 

399 

U 

U-D covariance factorization filter, 392 
Unbiased estimator, 129, 184, 226, 235, 329 
Unbounded variation, 152 
Uncertain parameter, 114, 184, 224, 230, 291, 

Uncertainties, model for, see Models; Noise; 

Uncorrelated random vectors, 91, 93 

Uncorrelated stochastic process, 138 
Uniformly asymptotically globally stable, 244 
Uniformly distributed random vector, 73, 364 
Unimodal, 102,233 
Union, 62 
Uniqueness, 38, 39,40, 98, 164, 370 
Unitary matrix, 392 
Unmodelled effects, 2, 289, 322, 341, 348, 356 
Update, filter, see Filter; Measurement 
Upper triangular matrix, 17, 372, 385, 389,392, 

337, 340 

Random vector; Stochastic process 

cross-covariance of, 91 

408 
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V 

Variable, random, see Random vector 
Variance, see also Covariance 

cross-variance, 91, 93, 130, 137 
estimator of, 129, 132 

Variation, unbounded, 152 
Variational approach, 39, 237, 269 
Vector 

component, 17 
control input, 26, 35, 168, 170, 332, 333 
dynamics noise, 145, 153, 155, 163, 171 
mean, 88, 89, 136 
measurement, 1 15, 174,206,257 
measurement noise, 115, 174, 257 
n-vector, 17 
process, 133, 145, 155, 161, 162, 163, 170 
random, see Random vector 
space, 17 
state, 26, 28, 37, 145, 163, 171 

Velocity-aided INS, 305 

W 

Weight, probability, 6, see also Filter gain 

Weighted Gram-Schmidt (WGS method), 397 
Weighted least squares, 120, 232 
White, 7, 138 
White Gaussian noise process, 7, 139, 147 

White noise process, 7, 138 
Wide-sense stationary, 140 
Wiener filter, 267 
Wiener-Hopf equation, 269 
Wiener process, 148, 154, 155, 184 
Window function, 192 
With probability one, 151, see also Convergence 
Wordlength, 237, 238, 352, 353, 364, 368, 399 

simulation, 335, 408 

Z 

Zero input stability, 242 
Zero matrix, 16 
Zero-mean noise, 115, 155, 163, 171, 174, 176, 

Zero order hold, 56 
204,205,330, 331 
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