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Abstract – This work presents an investigation of the 

potential benefits of customizing the analysis of long-term 

ECG signals, collected from individuals using wearable 

sensors, by incorporating small amount of data from these 

individuals in the training set of our classifiers. The 

global training dataset selected was from the MIT-BIH 

Arrhythmias Database. This proposal is validated on 

long-term ECG recordings collected via wearable 

technology in unsupervised environments, as well on the 

MIT-BIH Normal Sinus Rhythm Database. Results 

illustrate that heartbeat classification performance could 

improve significantly if short periods of data (e.g., data 

from the first 5-minutes of every 2 hours) from the 

specific individual are regularly selected and incorporated 

into the global training dataset for training a customized 

classifier.  
 

I. Introduction 
 

As life expectancies increase, improvements in quality 

and efficiency of healthcare and telemedicine, both at home 

and in hospital, are becoming more and more necessary. 

Wearable technology is widely viewed as having the 

potential to revolutionize the healthcare industry, by 

providing low-cost solutions for ubiquitous, continuous, 

unobtrusive personal health monitoring. Such continuous 

monitoring can lead to better healthcare for the elderly 

population, patients suffering from chronic diseases (such 

as cardiovascular disease and diabetes), people working in 

harsh environments (such as soldiers and firemen), and 

even for the common population [1].  

Recent advances in the miniaturization of biosensors, 

wearable technology and microelectronics have enabled 

continuous ambulatory monitoring of physiological signals 

through the deployment of wearable sensors. These 

biosensors can come in different forms, including skin 

patches, sensors embedded into wearable devices such as 

clothing, wrist devices, arm bands, chest belts, shoes, etc.  

One good example of such wearable devices is 

VitalJacket® (VJ), shown in Fig.1, from BioDevices S.A.
1
. 

This user-friendly designed smart textile is as light-weight, 

wearable and inconspicuous as a normal T-shirt. However, 

based on miniature biosensors, VJ is capable of 

continuously recording high-quality electrocardiogram 

                                                 
1 BioDevices S.A.:  http://www.biodevices.pt/ 

(ECG) signals in different clinical and regular life scenarios, 

in hospitals, home or on the move. The collected data could 

either be stored in a SD memory card for offline analysis, 

or preferably in most cases, be transmitted using Bluetooth 

technology to mobile devices or a PC for online processing 

and analysis, so as to enable real-time monitoring of 

cardiac activity.  
 

 
 

 

Figure 1: VitalJacket: real-time ECG monitor. 
 

During the past decade, there has been significant 

research on heart arrhythmia detection and classification 

based on ECG signals [2-7]. These works explored 

characterization of heartbeats using a variety of features, 

including wavelets [2][3], autoregressive features [3][6], 

and waveform shape features [4][5]. In addition, a number 

of machine learning algorithms have been proposed for 

classification, such as neural networks [2], linear 

discriminant functions [4] decision trees [5] and support 

vector machines [3][6][7].  Most of the work focused on 

traditional scenarios where ECG signals are collected in 

hospitals using conventional ECG recorders and where 

patients are usually required to stay immobilized. Besides, 

beat classification performance is typically reported on the 

baseline MIT-BIH Arrhythmias Database. However, none 

of these seems to have addressed this interesting, yet 

unexplored question, i.e., analysis of long-term ECG 

signals collected via wearable devices in unsupervised 

environments. Our contribution in this paper is an initial 

exploration of the potential of customizing classifiers 

trained using a reference database, by incorporating small 

amounts of data for a specific individual in the training set 

of the resulting classifiers. This work serves as a 

preliminary investigation for the ultimate research question, 

i.e., the development of an individual and context adaptable 

ECG heartbeat classifier, for online analysis of long-term 

ECG signals collected via wearable devices, so as to realize 

real-time health monitoring in unsupervised environments 

based on bio-sensing technology. 
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II. Methodologies 
 

The basic heartbeat feature extraction and classification 

methodologies were adapted from our previous work [8], 

which reported the best published performance 

heartbeat classification on the MIT-BIH Arrhythmias 

Database [9], to the best of our knowledge. 

an overview on the framework of methodology flow. 
 
 

 

Figure 2: Methodology overview.
 

The MIT-BIH Arrhythmias Database includes 48 half

hour two-lead ECG recordings, sampled at 360 Hz. T

raw ECG signals were first preprocessed to correct baseline 

wander and band-pass filtered to remove 

high-frequency artifacts. Heartbeat segment

preprocessing. Each heartbeat segment is normalized, by 

dividing the values by its absolute peak value. The basic 

assumption behind is that morphological information, such 

as shape of QRS complex waveform, rather than absolute 

physical magnitude information, is important 

decision of the heartbeat classification. 

normalization also allows us to not worry about amplifier 

gains, analog-to-digital converter (ADC) settings, etc.

We are motivated by the observation that arrhythmia 

heartbeats are different from the normal heartbeats in both 

morphology and dynamics. Two categories of fe

extracted for each heartbeat to represent the 

and dynamic information of the heartbeat. 

Transform (WT) and Independent Component Analysis

(ICA) are applied separately to each heartbeat

extract corresponding coefficients, categorized as 

morphological features. In addition, as shown in Fig.3, four 

RR interval features are computed as dynamic features, to 

characterize the heartbeat rhythm. Principal 

Analysis (PCA) is employed to reduce the feature 

dimensionality. The final representation for each heartbeat 

consists of 26 morphological features and 4 dynamic 

features, i.e., a total of 30 features. The features were scaled 

into [0, 1] before classification.  
 

 

Figure 3: The previous RR, post RR, local RR and average RR 

features for one particular heartbeat

The basic heartbeat feature extraction and classification 

previous work [8], 

performance so far in 

BIH Arrhythmias 

, to the best of our knowledge. Fig. 2 provides 

an overview on the framework of methodology flow.  

 

Figure 2: Methodology overview. 

BIH Arrhythmias Database includes 48 half-

lead ECG recordings, sampled at 360 Hz. The 

to correct baseline 

pass filtered to remove other low and 

segmentation follows 

Each heartbeat segment is normalized, by 

peak value. The basic 

assumption behind is that morphological information, such 

as shape of QRS complex waveform, rather than absolute 

is important for the 

decision of the heartbeat classification. This peak 

lso allows us to not worry about amplifier 

digital converter (ADC) settings, etc. 

We are motivated by the observation that arrhythmia 

heartbeats are different from the normal heartbeats in both 

Two categories of features are 

represent the morphological 

and dynamic information of the heartbeat. Wavelet 

pendent Component Analysis 

are applied separately to each heartbeat segment to 

categorized as 

as shown in Fig.3, four 

as dynamic features, to 

incipal Component 

to reduce the feature 

inal representation for each heartbeat 

tures and 4 dynamic 

a total of 30 features. The features were scaled 

 

previous RR, post RR, local RR and average RR 

features for one particular heartbeat.  

Following feature extraction, a S

(SVM) classifier is utilized for classif

16 classes, defined in the baseline database

is independently applied to signals from the 

the lower-lead, such that two independent

made for each heartbeat. For each single

probabilities of being any of 16 classes are estimated and 

the most probable class is selected. If the two single

decisions give out different answers, the final decision is

select the answer that corresponds to

The entire MIT-BIH Arrhythmias Database

for the selection of the global training dataset. 

[8], approximately 13% of normal 

each of the other 15 arrhythmia 

selected, for a total 21.8% of about

database, to constitute a representative global dataset 

covering a variety of arrhythmias. 

to train a global SVM classifier. 

trained based on the training dataset, including ICA bases, 

PCA bases and SVM classifier, etc.

the baseline database results in 

accuracy of 99.61%, the best reported to our knowledge

 
III. Dataset & Configuration

 

    In this work, we explored the deployment of the 

determined global settings to both long

collected via Vital Jacket in unsupervi

well as collected in a conventional way in hospital (from 

the MIT-BIH Normal Sinus Rhythm Database

NSRDB).  The Vital Jacket ECG data

hour single-lead ECG recording sampled at 

collected in unsupervised settings 

first-responder professional) was doing routine work. The 

long-term ECG data from NSRDB was used to supplement 

validation due to the limited availa

VJ ECG signals. The NSRDB recordings are two

signals sampled at 128Hz. The records 16265, 16272 and 

16483 were selected and the first 20 hours of each was 

utilized due to the availability of beat

Basic information of the dataset is

Although the ECG recordings were found to 

significant arrhythmias, this preliminary investigation

provides some interesting insights into deploying a 

classifier based on pre-determined global

analysis of long-term ECGs collecte
  
Index Name Source Duration

(Hours)

1 16265 NSRDB 20 

2 16272 NSRDB 20 

3 16483 NSRDB 20 

4 VJ VJ 13 
 

 Table 1: Information summary of the four

three were from NSRDB and one 

Following feature extraction, a Support Vector Machine 

is utilized for classifying heartbeats into 

, defined in the baseline database. This procedure 

signals from the upper-lead and 

independent ‘decisions’ are 

made for each heartbeat. For each single-lead decision, 

probabilities of being any of 16 classes are estimated and 

e class is selected. If the two single-lead 

ferent answers, the final decision is to 

that corresponds to higher probability.  

Arrhythmias Database was utilized 

for the selection of the global training dataset. Following 

normal heartbeats and 50% of 

 classes were randomly 

about 110,000 beats from the 

representative global dataset 

covering a variety of arrhythmias. This dataset was utilized 

to train a global SVM classifier. All relevant settings are 

trained based on the training dataset, including ICA bases, 

es and SVM classifier, etc. The test on the rest of 

 heartbeat classification 

, the best reported to our knowledge. 

set & Configuration 

the deployment of the pre-

to both long-term ECG signals 

in unsupervised environments as 

collected in a conventional way in hospital (from 

BIH Normal Sinus Rhythm Database [10], i.e., 

The Vital Jacket ECG data used for test is a 13-

lead ECG recording sampled at 200 Hz, 

settings when the subject (one 

responder professional) was doing routine work. The 

term ECG data from NSRDB was used to supplement 

validation due to the limited availability of fully-annotated 

NSRDB recordings are two-lead ECG 

The records 16265, 16272 and 

16483 were selected and the first 20 hours of each was 

utilized due to the availability of beat-by-beat annotation. 

is summarized in Table 1. 

Although the ECG recordings were found to contain no 

preliminary investigation 

ting insights into deploying a 

determined global settings for the 

term ECGs collected in unsupervised envi- 

Duration 

(Hours) 

Sampling 

Rate (Hz) 

Leads 

Number 

128 2 

128 2 

128 2 

200 1 

four long-term ECG recordings: 

 were collected via VJ. 
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ronment, namely in the worrying number of false positives 

that traditional setups tend to produce when applied in these. 

The long-term ECGs were at first re-sampled to 360 Hz 

and preprocessed to remove artifacts; R peaks were 

localized using WFDB tool [11]. Heartbeat segmentation, 

feature extraction and classification basically followed the 

procedure described in Section II. The global settings are 

pre-trained based on the global training dataset, including 

ICA bases, PCA bases, scaling vectors, etc. These settings 

actually characterize a certain feature space, for which the 

global SVM classifier has been ‘optimized’. The basic idea 

is to project new data into the feature space and apply the 

corresponding optimum SVM classifier for classification.  

Three testing configurations are under investigation. In 

Test A, the pre-determined global settings and classifier are 

directly applied to the individual ECG data. In Test B and 

C, certain small portion data from the individual long-term 

recording is selected as the ‘individual’ training dataset, 

which are combined with the ‘global’ training dataset for 

retraining to obtain a set of customized settings, including 

new PCA bases, ICA bases, scaling vectors, SVM classifier, 

etc. The customized settings are tested on the rest of the 

individual ECG data. In Test B, the first N minutes data is 

selected as the individual training dataset, while in Test C, 

the first N minutes data of every M hours is chosen to adapt 

the global settings. The difference between Test A, B and C 

lies in the training dataset of the resulting classifier. In Test 

B and C, the global settings as well as the classifier are 

customized by incorporating individual training dataset, so 

as the characterized feature space; the SVM classifier is re-

trained and adapted accordingly.  

 

 Training Dataset 

Test A Global 

Test B Global + Individual (First N-min) 

Test C Global + Individual (First N-min of every M hrs) 
 

Table 2: The summary of training datasets of Test A, B, C. 

 

IV. Results 
 

Fig. 4 shows Test A, B and C performance for the four 

long-term ECG signals, including both the single-lead (i.e., 

upper-lead) performance as well as the one after the two-

lead fusion. From Fig. 4(a), we observe that classification 

performance improves significantly, by incorporating the 

first 5-minute data (i.e., N=5) from the specific long-term 

recording into the training set of the resulting customized 

classifier for the subject. It seems that the global classifier 

trained on the reference database generalized poorly to 

some ‘unobserved’ data (record 16265 and 16272). Such 

underperformance could most probably be attributed to the 

large inter-individual variation of the morphologies of ECG 

waveforms. The small amount (i.e., the first 5-minute) of 

data selected seems to have tackled such ‘inter-individual 

difference’ and customized the training dataset as well as 

the resulting classifier. Besides, interestingly, we notice 

that, when more individual data are incorporated for the 

training (i.e., the N increased from 5 to 10, 15, etc.), the 

performance degraded for the three NSRDB recordings, 

namely, number of false positives increased. First, this 

observation seems to indicate that continuously adding 

more and more normal heartbeats of the individual to the 

training set does not seem to be beneficial after a certain 

amount of individual data is incorporated. Secondly, such 

degraded performance could possibly be explained by Fig. 

5, supporting the existence of influence of another type of 

difference, i.e., ‘context difference’. Subject switching from 

one context to another is inevitable, when it comes to the 

scenario of long-term and ubiquitous health monitoring in 

unsupervised environments. In Fig.5, the upper three sub-

figures present the number of false positives over time, for 

three different cases (i.e., N=0,5,10) of record 16483 based 

on the first-lead performance. As we can see, when N 

increased from 0 to 5, the number of false positives was 

reduced over the whole period of the recording; while N 

increased to 10, the degraded performance is mainly caused 

by the increased number of error at the latter period of the

 

 
 

Figure 4: Test A, B & C results for the four long-term ECG signals, including the first-lead performance and the two-lead fusion  

performance (The VJ ECG recording contains only one-lead signal, thus no fusion was made). 
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Figure 5: The analysis of error histograms the heart rate plot over time  

based on first-lead performance of record 16483. 

record. Relating with the heart rate sub-figure, the heart rate 

dynamics of this period is very different from that of the 

beginning period. The averagely lower heart rate of the 

latter period could possibly be associated with a different 

context where the subject tends to act more ‘quietly’, e.g., 

sleeping. In other words, by adding the first 10-minute 

period instead of the first 5-minute, the resulting classifier 

has actually been ‘specialized’ too much to a single context.  

Therefore, to cope with the dynamic and morphological 

difference brought by the ‘context’ difference, the classifier 

is regularly re-trained, by incorporating small amount of 

data consistently (e.g., the first 5-minute of every M hour) 

to the training dataset of the resulting context-customized 

classifier. The results are presented in Fig. 4(b), from which, 

we find that, more frequently the classifier is customized, 

better it is capable to cope with the context difference, so is 

the resulted heartbeat classification performance, which 

could also been seen in the two bottom error histograms 

over time in Fig.5. Besides, we observe in Fig. 4, the two-

lead fusion generally tends to generate better performance 

than using only single lead, since classification confidence 

has been boosted by the fusion between the two leads of 

ECG signals. However, when the classifier is adapted 

frequently ‘enough’ (e.g., M=1 in Fig.4(b), that is, every 

one hour), even the single-lead performance tends to 

produce very good results. In real-time applications such as 

Vital Jacket, it might be adequate to utilize only the single-

lead signal, to halve the computational cost of the algorithm 

while still providing sufficient accuracy.  

 
V. Conclusion & Discussion 

 

Given that the scenario of long-term, real-time and 

ubiquitous health monitoring in unsupervised environments 

is concerned, our study hints that the long-term ECG signal 

analysis requires frequent adaptation of the pre-determined 

global settings to tackle both the individual and context 

differences. This preliminary investigation shows that, 

regular re-training of the classifier, by consistently 

incorporating consistently short periods of data as 

individual training dataset, can significantly reduce the 

number of false positives. However, such re-training 

procedure is never meant to be the final answer, for two 

obvious reasons: the first is that regular re-training of a 

huge classifier is undesired as far as real-time application is 

concerned; the other is that the shift from context to context 

is unpredictable in unsupervised environments, thus making 

constant adaptation a non-ideal solution. In future work, it 

will be desirable to develop a self-adaptable classifier to 

cope with these variations.  
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