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Abstract—In this paper, we propose a new approach for heart-
beat classification based on a combination of morphological and
dynamic features. Wavelet transform and independent component
analysis (ICA) are applied separately to each heartbeat to extract
morphological features. In addition, RR interval information is
computed to provide dynamic features. These two different types of
features are concatenated and a support vector machine classifier
is utilized for the classification of heartbeats into one of 16 classes.
The procedure is independently applied to the data from two ECG
leads and the two decisions are fused for the final classification
decision. The proposed method is validated on the baseline MIT-
BIH arrhythmia database and it yields an overall accuracy (i.e., the
percentage of heartbeats correctly classified) of 99.3% (99.7 % with
2.4% rejection) in the “class-oriented” evaluation and an accuracy
of 86.4% in the “subject-oriented” evaluation, comparable to the
state-of-the-art results for automatic heartbeat classification.

Index Terms—Heartbeat classification, independent component
analysis, support vector machine, wavelet transform.

I. INTRODUCTION

OMPUTER-ASSISTED electrocardiogram (ECG or
C EKG) interpretation has been an intense research focus
for decades. Research advances in automatic ECG analysis have
made positive contributions to the timely detection and better
management of cardiac disorders in clinical situations.

Cardiac arrhythmias refer to a large group of conditions in
which there is abnormal activity or behavior in heart [1]. Some
types of arrhythmia are life-threatening medical emergencies
that can trigger cardiac arrest and sudden death, such as ventric-
ular fibrillation and tachycardia. Detection of such arrhythmias
has been well investigated [2]—[4].
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In this study, we have investigated the detection of an-
other group of arrhythmias, which might not be critically life-
threatening but still need attention and therapy to avoid de-
terioration. An essential step toward detecting and classifying
arrhythmias is the classification of heartbeats, given that heart
rhythm category can be determined by the recognition of classes
of consecutive heartbeats [5]. Beat-by-beat human-based exam-
ination can be very time-consuming and tedious to be practical
in many scenarios. Besides, automatic ECG analysis is signifi-
cantin long-term online monitoring of cardiac activity for timely
detection of abnormal heart conditions, in which case the hu-
man monitoring and interpretation is unable to satisfy real-time
diagnosis requirements. Therefore, automatic heartbeat classi-
fication of ECG signals can be instrumental in the diagnosis
of cardiac arrhythmias and is the focus of investigation in this
paper.

In the recent past, there have been numerous works [6]-[17]
reported on automatic heartbeat classification. These works ex-
plored the characterization of heartbeats using a variety of fea-
tures, including Hermite coefficients [6], [9], [13], high-order
statistics features [9], [17], wavelet features [11], [14], wave-
form shape features [8], [10], [12], [15]- [17], etc. A number of
machine learning algorithms have been proposed for classifica-
tion, such as self-organizing map (SOM) [6], linear discriminats
(LDs) [8], [12], [15], decision tree [10], support vector machine
(SVM) [9], [11], artificial neural network (ANN) [13], [14],
dynamic Bayesian network (DBN) [16], conditional random
field (CRF) [17], etc. The algorithms were validated through
the baseline MIT-BIH arrhythmia database [18].

The relevant literature [6]—-[17] can be categorized into two
different types based on the adopted evaluation scheme, namely,
“class-oriented” and “subject-oriented.” The “class-oriented”
evaluation was adopted in most works, such as [6], [7], [9]-[11],
[16]. The heartbeat segments were extracted from all or a few
selected records of the MIT-BIH arrhythmias database and were
clustered, based on the categorization of heartbeats. A certain
fraction of each cluster (i.e., class) was selected as the training
dataset and the remaining heartbeats were used as the testing
dataset. Although it has been widely used for evaluation in the
literature, it is worth noting that the “class-oriented” evaluation
scheme is not a realistic measure of performance of automatic
heartbeat classifier in real applications, leading to optimistic
results since interindividual variation in ECG characteristics is
less in such tests due to the fact that the training and testing
datasets contain heartbeats from the same subjects, i.e., a sim-
ilar beat might be included in the training dataset. However, in
real applications, an ECG heartbeat classifier that performs well
for a given training database could fail in predicting ECG signals
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TABLE I
COMPARISON OF THE RESULTS FROM THE PROPOSED METHOD WITH PUBLISHED RESULTS [6]-[11]

Reference Classes Data Size Features Classifier Fusion E;aluatlon Auton}atlc

cheme Classifier
Lagerholm [6] 16 109,963 Hermite Self-Organizing Map No class-oriented Yes
Prasad [7] 13 105,423 Wavelet + RR Neural Network No class-oriented Yes
De Chazal [8] 5(16) 109,492 Waveform + RR Linear Discriminants Yes subject-oriented Yes
Osowski [9] 13 12,785 HOS + Hermite Support Vector Machine No class-oriented Yes
Rodriguez [10] 14 85,263 ‘Waveform Decision Tree No class-oriented Yes
Jiang [11] 14 103,898 Wavelet + ICA Support Vector Machine No class-oriented Yes
De Chazal [12] 5(16) 109,492 Waveform + RR Linear Discriminants Yes subject-oriented No
Jiang [13] 5(16) 109,492 Hermite + RR Block-based NN No subject-oriented No
Ince [14] 5(16) 109,492 Wavelet + RR Evolutionary ANN No subject-oriented No
Llamedo [15] 5(16) 109,492 Waveform + RR Linear Discriminants Yes subject-oriented Yes
Oliveira [16] 2 14,080 Waveform + RR Dynamic Bayesian Network No class-oriented Yes
Lannoy [17] 5(16) 109,492 Waveform + HOS + RR Conditional Random Field No subject-oriented Yes
Proposed Method  5(16) 110,109  Wavelet + ICA + RR  Support Vector Machine ~ Yes ~_Class-oriented, Yes

subject-oriented

from an “unobserved” individual, due to wild variations in ECG
characteristics among different subjects and subject groups. A
more realistic evaluation scheme, namely, the “subject-oriented”
evaluation scheme, was proposed by De Chazal et al. [8] and
adopted by recent works [15], [17]. The full database was di-
vided into the training and the testing set based on records;
the records in the training set were excluded from the testing
set so that interindividual variation in ECG characteristics were
taken into account, providing a more realistic estimate regarding
the performance of heartbeat classifiers. The works [12]-[14]
also adopted the “subject-oriented” evaluation. However, these
works propose to build patient-specific heartbeat classifier. The
beginning part (e.g., the first 5 min) of the particular individ-
ual record, termed as the individual training period, along with
the manual beat annotations, is used for adapting the pretrained
global classifier into a customized classifier. Although it usually
yields significantly better performance with such adaptation,
we have to note that manual labels of the individual training
period require the external intervention, i.e., beat-by-beat an-
notation from cardiologists. Such external intervention makes
the heartbeat classifier not fully automatic. Besides, the beat-
by-beat annotation is expensive and time-consuming, making it
impractical in most real applications. In this paper, both “class-
oriented” and “subject-oriented” evaluation schemes are inves-
tigated. The design of “patient-specific” heartbeat classifier is
not the focus and will not be discussed in this work. In summary,
the “class-oriented” method is evaluated as a comparison with
the literature results; the “subject-oriented” evaluation scheme
is investigated as an estimate of potential performance of the
proposed algorithm in clinical practice.

A comparative summary of these algorithms [6]-[17] as well
as our proposed method can be seen in Table I. The primary dif-
ferences derive from the following three aspects: feature extrac-
tion, classification, and two-lead fusion. For instance, in terms of
feature extraction, wavelet, and ICA features have been utilized
in [11]. In contrast with [11], where only approximation coeffi-
cients at level 4 are extracted as the wavelet features, we propose
to utilize a combination of approximation coefficients at level 4
and detail coefficients at levels 3 and 4 as the wavelet features of
heartbeats, since it corresponds to the frequency range of ECG
signals, i.e., 0.5-40 Hz, as will be discussed in Section III. Jiang
et al. [11] trained ICA components using 10 000 normal heart-
beats, while in this study we have used hundreds of heartbeats

from all of 16 classes, in order to improve our ability to describe
the morphology of arrhythmias using these coefficients.

RR features has been widely employed in the literature, pro-
viding the characterization of temporal information of heart-
beats. For most of the previous works [7], [13], [14], [16],
two instantaneous RR features, also regarded as heartbeat in-
terval features, were utilized namely, previous RR and post-RR
features. De Chazal et al. [8] proposed another two RR fea-
tures, i.e., local RR and average RR features, in addition to the
two instantaneous RR features; this configuration was followed
in [12], [17]. Although this idea is an interesting compact way
to describe dynamic differences between beats, we will explain
in Section III-F that some of these features, especially aver-
age RR, are not only unrealistic for online monitoring but also
biased providing optimistic results.

In this work, the SVM is employed as the machine classifi-
cation method. The probability estimates of each prediction are
utilized to fuse the classification results from the two lead signals
to make the final decision for each heartbeat, which turns out to
be effective in making significant improvement over single-lead
performance. In the literature, this was only done in [8], [12],
[15], where the probability estimates from the two linear dis-
criminant classifiers were utilized to fuse the prediction results
from the two leads.

Motivated by this critical review of the previously most suc-
cessful algorithms for heartbeat classification, this work pro-
poses a new representation of heartbeats using a combination of
improved morphological and dynamic features extracted from
ECG signals. The motivation comes from a rule of thumb in
clinical practice that ectopic heartbeats (arrhythmia heartbeats)
can be distinguished from normal heartbeats in terms of both
“morphology” and “dynamics” differences, as depicted in Fig. 1.
Ectopic heartbeats can usually be characterized by various dif-
ferent abnormal or distorted patterns in the waveform shape
(e.g., distorted QRS complex) or missing some important com-
ponents (e.g., P wave) in one heart cycle. Besides, cardiac ar-
rhythmias can typically be associated with and identified by var-
ious irregularities in heart rhythm. Based on this observation,
we hereby propose to utilize the combination of morphologi-
cal and dynamic features as the representation of the heartbeat,
providing the characterization of the morphology of and the dy-
namics around the given heartbeat. It is worth noting that the
morphological features used in this work are rather different
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Fig. 1. Example for the illustration of the morphological and the dynamic
differences between a normal beat and an ectopic beat.

from the waveform shape related features utilized in [8], [10],
[12], and [15]-[17], which are defined as the duration or the
interval between fiducial points, e.g., QRS duration, PR inter-
val, etc. Instead, the morphological features investigated are
obtained by expanding the heartbeat segment into two feature
spaces, characterized by wavelets and ICA components as basis
functions. Compared with the waveform shape-related features,
the proposed morphological features provide a more complete
representation regarding the morphology of the given heartbeat;
moreover, the computation of waveform shape-related features
requires the additional detection of other fiducial points besides
R peak location, such as the onset and offset of T wave and P
wave, which are usually sensitive to noise, possibly rendering
this type of feature vulnerable in some ambulatory scenarios.
Specifically, the resulting morphological features consist of the
wavelet features (approximation coefficients at level 4 and de-
tail coefficients at levels 3 and 4) and the ICA features, i.e.,
the weights on the trained ICA components. In addition to the
morphological features, four improved RR interval related fea-
tures are derived for each heartbeat to represent the dynamic
characteristics in various scales. Consequently, each heartbeat
is represented by the combined morphological and dynamic fea-
tures. As we will see in Section 1V, this proposed novel feature
representation provides superior classification performance in
distinguishing heartbeats from a variety of classes.

This paper extends our previous study [20] in the following
aspects: 1) a more reasonable and realistic definition of local and
average RR interval feature is utilized; 2) a new probabilistic
estimate-based two-lead fusion approach is proposed to incor-
porate the two independent answers from the two single-lead
SVM classifiers so as to determine the final classification an-
swer; 3) both leave-one-out “record-by-record” cross validation
and “subject-oriented” approaches are employed to evaluate the
proposed method, providing a more realistic estimate of the
performance in practice.

The rest of the paper is organized as follows: in Section II,
the ECG dataset and the evaluation schemes are discussed;
Section III presents theoretical background of the methodolo-
gies used and details of the experimental procedure; the ex-
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perimental results, discussion as well as comparison with the
published results are shown in Section IV; and conclusions are
provided in Section V.

II. DATASET
A. Materials

The MIT-BIH arrhythmia database [18] was developed as
the standard test material for the evaluation of arrhythmia de-
tectors. The database is regarded as the benchmark database in
arrhythmia detection and classification and has been extensively
utilized for algorithm validation [6]-[17]. In this study, the per-
formance of the proposed approach is also reported on this
baseline database, allowing a direct comparison with published
results.

The database contains 48 half-hour two-lead ambulatory ECG
signals (denoted as lead A and lead B) from 47 subjects. Sig-
nals were band-pass filtered at 0.1-100 Hz and digitized at
360 Hz. Twenty-three records were chosen to contain normal
sinus thythm (NSR) and a representative set of routine arrhyth-
mias; the other 25 records were selected to include less common
but clinically significant cardiac abnormalities. In 45 recordings,
the lead A signal is a modified limb lead II (MLII); the lead B
signal is usually a modified lead V1 (occasionally V2 or V5,
and in one instance V4). In the other three recordings, the lead
A is V5 and the lead B is V2 (two instances) or MLII (one
instance, i.e., signals were reversed). More detailed information
regarding routine ECG lead placements can be found in [21].

We observe that the waveform shape varies among different
lead configurations, i.e., sensor locations. For instance, heart-
beats tend to have more prominent peaks in lead A signal than
lead B signal. In addition, it is also noticed that ectopic beats
seem to be more discernible than normal beats in lead B signal
(e.g., in record 106). These observations motivate us to utilize
both lead signals to make the decision, so as to improve the
classification confidence.

There is an annotation file associated with each record, pro-
viding the reference annotations for each heartbeat, such as the
location of the QRS complex and the category of the heartbeat.
The category annotations are utilized as the ground truth for
algorithm evaluation. The manual annotations of QRS locations
are utilized for the segmentation of ECG signals, following the
practice in the literature, so as to obtain heartbeat segments.
Besides, an additional experiment is conducted by introducing
certain artificial jitter to the annotated QRS locations, as an
estimate of the potential error introduced by using a QRS de-
tector, instead of using manual QRS annotations. The details of
heartbeat segmentation will be discussed in Section III.

B. Evaluation Strategy

Two types of evaluation approaches are investigated in this
paper, namely, “class-oriented” and “subject-oriented.”

The “class-oriented” evaluation is conducted, to allow for the
direct comparison with most published works, such as [6], [7],
[9]-[11], [16]. In the “class-oriented” evaluation, all 48 records
are used and heartbeat segments are obtained by segmenting



YE et al.: HEARTBEAT CLASSIFICATION USING MORPHOLOGICAL AND DYNAMIC FEATURES OF ECG SIGNALS

2933

TABLE II
SUMMARY OF THE INFORMATION OF THE TRAINING AND TEST DATASETS IN CLASS-BY-CLASS EVALUATION SCHEME
Heartbeat Type Annotation Total # Training Ratio Training #  Test #
Normal Beat (NOR) N 75017 13% 9753 65264
Left Bundle Branch Block (LBBB) L 8072 40% 3229 4843
Right Bundle Branch Block (RBBB) R 7255 40% 2902 4353
Atrial Premature Contraction (APC) A 2546 40% 1019 1527
Premature Ventricular Contraction (PVC) \' 7129 40% 2852 4277
Paced Beat (PACE) P 7024 40% 2810 4214
Aberrated Atrial Premature Beat (AP) a 150 50% 75 75
Ventricular Flutter Wave (VF) ! 472 50% 236 236
Fusion of Ventricular and Normal Beat (VFN) F 802 50% 401 401
Blocked Atrial Premature Beat (BAP) X 193 50% 97 96
Nodal (Junctional) Escape Beat (NE) j 229 50% 115 114
Fusion of Paced and Normal Beat (FPN) f 982 50% 491 491
Ventricular Escape Beat (VE) E 106 50% 53 53
Nodal (Junctional) Premature Beat (NP) J 83 50% 42 41
Atrial Escape Beat (AE) e 16 50% 8 8
Unclassifiable Beat (UN) Q 33 50% 17 16
Total 16 110109 21.89% 24100 86009
TABLE III

ECG signals using the annotations of QRS location. The re-
sulting heartbeat dataset are clustered into 16 clusters, each
corresponding to one heartbeat class. The entire dataset was
then split into training and testing datasets by randomly select-
ing a certain fraction from each of the 16 classes. Specifically,
13% of the beats from the normal class, 40% of the beats from
each of five bigger arrhythmia classes (i.e., “L,” “R,” “A,)” “V,”
“P”), and 50% of the beats from each of ten smaller arrhyth-
mias classes were randomly selected to constitute the training
dataset, for a total of 21.89% beats of the whole dataset. The re-
maining heartbeats are utilized as the test dataset. The details of
the 16 heartbeat classes as well as the datasets are summarized
in Table II.

As discussed in Section I, the “class-oriented” evaluation
leads to optimistic results. Therefore, the “subject-oriented”
evaluation is conducted in addition as a more realistic estimate
of generalization ability of the algorithm in practice. Accord-
ing to ANSI/AAMI EC57:1998 standard [19], the four paced
records (i.e., the records 102, 104, 107, and 217) are excluded
for experiments. The remaining 44 records are divided into the
training and testing dataset, each consisting of 22 records, fol-
lowing the database division used in [8], [12], [15], and [17].
For the “subject-oriented” evaluation, the performance was re-
ported in the five-class scheme recommended by ANSI/AAMI
EC57:1998 standard [19], allowing direct comparison with pub-
lished results. The original 16 heartbeat classes are reclustered
into the five bigger classes, namely “N” (i.e., any heartbeat
notin S, V, F, or Q classes), “S” (i.e., supraventricular ectopic
beat), “V” (i.e., ventricular ectopic beat), “F” (i.e., fusion beat),
and “Q” (i.e., unknown beat). The mapping from the MIT-BIH
arrhythmia database heartbeat classes to the AAMI heartbeat
classes is shown in Table III. In addition, the record-by-record
cross validation is also conducted; basically, the dataset com-
posed of 44 records is divided into 44 folds, with each fold
consisting of heartbeat segments from one record. For each
fold, the classifier is trained on the remaining 43 folds, and is
utilized to predict the heartbeat data from the given fold. The
process is iterated through all 44 folds.

MAPPING FROM MIT-BIH ARRHYTHMIAS HEARTBEAT CLASSES TO AAMI
HEARTBEAT CLASSES

AAMI Classes MIT-BIH Classes Total #
N NOR, LBBB, RBBB, AE, NE 90083
S APC, AP, BAP, NP 2972
\Y% PVC, VE, VF 7480
F VEN 802
Q FPN, UN 15

III. METHODOLOGIES

Following the brief introduction of the proposed automatic
heartbeat classification approach in Section I, we provide in this
section a detailed description of the process and the theoretical
background of the utilized techniques. Fig. 2 depicts the full
process of the proposed method, which basically consists of five
steps, namely, preprocessing, heartbeat segmentation, feature
extraction, classification as well as two-lead fusion.

The raw ECG signals are first preprocessed to remove arti-
facts. Following the preprocessing, the ECG signals are subse-
quently divided into heartbeat segments, using provided R peak
locations. Wavelet transform (WT) and independent component
analysis (ICA) are separately applied to each heartbeat; and
corresponding coefficients are concatenated and represented in
a lower dimensional space using principal component analy-
sis (PCA). The resulting principal components that account for
most of the variance are selected, which are utilized to obtain
a morphological descriptor of the heartbeat. In addition, a set
of RR interval features are derived to obtain a characterization
of the dynamics information around the particular heartbeat.
Following the feature extraction, an SVM classifier is used for
classifying heartbeats into 16 different classes. Given that the
data from [18] contains two-lead ECG signals (denoted as lead
A and lead B), the aforementioned procedure is independently
applied to the signals from lead A and lead B. The two inde-
pendent decisions derived for each heartbeat, are fused (using
associated probabilities) to make the final decision of heart-
beat classification. The classification confidence is improved by
incorporating the signals from both leads for the final decision.
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A. ECG Signal Preprocessing

The preprocessing of raw ECG signals is necessary to reduce
various types of noise that can be present in ECG signals, in
order to improve the signal-to-noise ratio (SNR), which can be
beneficial to the subsequent fiducial point (e.g., the location of
QRS complex) detection and heartbeat classification. Typical
sources of noise degrading ECG signals include power-line in-
terference, baseline wander, artifacts due to muscle contraction,
and electrode movement [21].

In this study, the preprocessing of ECG signals follows the
previous literature and consists of baseline wander correction
and band-pass filtering. The raw ECG signal was first pro-
cessed to correct the baseline wander using a wavelets-based ap-
proach [22]. Following [23], the signal was band-pass filtered at
5-12 Hz to maximize the energy of QRS complex, removing
high-frequency and low-frequency artifacts. The filtered signals
were used in subsequent processing.

B. Heartbeat Segmentation

One heart cycle of ECG signal typically consists of three
basic waveform components, namely, P wave, QRS complex,
and T wave. The complete segmentation of ECG signal usually
requires the accurate detection of boundaries and peak locations
of the three waves, termed as fiducial points. The provided
annotations of R-peak locations from the database were utilized
to obtain heartbeat segments. The manual annotations were also
utilized in the reference work [6]-[17], allowing us to directly
compare our results and focus on measuring the performance of
the novel proposed heartbeat classification method.

Inreal applications, the automatic R peak detection is required
to fully automate the proposed heartbeat classification method.
The incorporation of the automatic R peak detector might
slightly degrade performance from two aspects. First, missed
and erroneous detected heartbeats cannot be correctly classi-
fied. However, the heartbeat detection is a well-investigated
problem and a number of existing schemes [24]-[26] are capa-
ble of detecting heartbeat with less than 0.5% error rate, on the
MIT-BIH arrhythmia database. Second, the RR interval features
will be deteriorated to some extent by the error caused by the
R peak detector. In order to assess the impact of this type of
error, an additional experiment is conducted by introducing a
Gaussian-distributed artificial jitter (with zero mean and certain
variance) to the annotated QRS locations. The performance will
be presented and discussed in Section IV.

—_—0
Lead II Signal == 00 filtaine —P>  Segmentation

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 59, NO. 10, OCTOBER 2012

Feature

Extraction
=P Wavelets, ICA and RR

Interval Features

vy

l Classification
‘— Support Vector Machine

Heartbeat

Two-Leads
Fusion
Probabilistic Metric

Overview of the proposed automatic heartbeat classification methodology.

Given the sampling rate of 360 Hz, each heartbeat segment
consists of 100 samples before the R peak location as the pre-
R segment, and 200 samples after the R peak as the pro-R
segment, i.e., a total of 300 samples corresponding to 0.83 s.
The segment size is selected to include most, if not all, of the
information in one heart cycle. In addition, the ratio of lengths
of the pre-R segment and the pro-R segment is designed to be
commensurate with that of typical lengths of the PR interval
and the QT interval. The advantage of using a fixed heartbeat
segment size lies in that it can avoid the detection of the fiducial
points related with other waveform components (e.g., P wave
and T wave), which usually are more sensitive to noise, due to
their relatively lower magnitudes.

The limitation of using a fixed heartbeat segment size comes
from that, in the case where the heart is beating much faster,
the interval between two consecutive beats is shortened and the
heartbeat segment may then contain information from neigh-
boring beats, which could potentially result in the increase of
false alarms of such an arrhythmia detector. For instance, heart
rate changes can occur when the subject is doing intense exer-
cise (e.g., running), or the subject is from a certain population
(e.g., infants). In future study, we will investigate the effects of
adapting heartbeat segment size to heart rthythm.

C. Wavelet Transform

Biomedical signals usually exhibit statistical characteristics
that change over time or position. Due to this nonstationary na-
ture, classical Fourier transform (FT) is unsatisfactory for the
analysis as the FT provides a global characterization of the heart-
beats frequency content. In contrast, wavelet transform (WT)
provides a characterization in both temporal and frequency do-
mains. This time-frequency analysis capability allows WT to
be effective in analyzing nonstationary signals, such as ECG
signals [27]. WT has been utilized in ECG signal processing
for different purposes, including denoising [22], heartbeat de-
tection [26], and feature extraction [7].

In our paper, WT is used as a feature extraction method.
Daubechies wavelets of order 8 were selected due to their
similarity with most characteristic QRS waveform. Given the
sampling frequency of 360 Hz, the highest possible frequency
presented is 180 Hz. It has been found that the energy of ECG
signals is concentrated in the frequency range of 0.5-40 Hz [28].
After applying the four-level wavelet decomposition, this fre-
quency range corresponds to the detail coefficients at level 3 (i.e.,
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D3) and 4 (i.e., D4) as well as the approximation coefficients
at level 4 (i.e., A4). The dyadic decimation (down-sampling)
is used and only the even indexed elements are kept, yielding
the discrete WT (DWT). These 114 coefficients (32 from A4,
32 from D4, and 50 from D3) are thus extracted as the wavelet
features for each heartbeat.

In Fig. 3, two example heartbeats (i.e., one normal beat and
the other APC beat) are shown, along with their respective re-
constructed signals based on the extracted coefficients D3, D4,
and A4. It seems that the reconstructed signals almost coincide
with original heartbeat, indicating that these wavelet features
contain most of the energy of the original heartbeat, provid-
ing a good representation of temporal waveform and frequency
characteristics of the given heartbeat.

D. Independent Component Analysis

Independent component analysis (ICA) was originally pro-
posed to solve the blind source separation (BSS) problem, the
goal of which is to recover independent source signals from
a set of observed signals, given little prior information [29].
ICA has been utilized in ECG signal analysis for blind source
separation [30] and feature extraction [11].

ICA assumes that, at time instant ¢, the N observed signals
x1(t),...,zx(t) are modeled as a linear combination of M
underlying independent source signals sy (¢), . . ., sp/ (t), termed
as ICA components. Hence, ICA can be formulated in vector-
matrix notation as

x(t) = A - s(t) (1)

where x(t) = [z1(t),...,zn ()], s(t)=[s1(t),...,su (1)]F
and the matrix A is referred as the mixture matrix. ICA aims to
estimate both s(¢) and A, assuming that the underlying source
signals s1(t), ..., sy (t) are statistically independent and non-
Gaussianly distributed. The independent components are esti-
mated by maximizing a certain quantitative metric of the statis-
tical independence, such as kurtosis and negentropy [29].

In this study, ICA is employed as one of the tools for fea-
ture extraction. The implementation of a fast fixed-point algo-
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Fig. 4. Tenfold cross validation for selection of the number of ICs.

rithm [31] was used to estimate underlying independent compo-
nents (ICs). In order to compute ICs from the predefined training
set, five sample beats were randomly selected out of every class
in each recording (if the actual number is less than five, then
all the beats were used). As such, a total of 626 beats cover-
ing all of 16 classes were obtained from the training dataset
for estimating the ICs. The trained ICs are applied to both the
training and test dataset so that 14 ICA coefficients are derived
as features for each heartbeat. In order to study the effect of the
number of ICs on heartbeat classification and select the “op-
timum” number of ICs, tenfold cross validation was evaluated
on the training dataset, varying the number of ICs from 10 to
30; only the resulting ICA coefficients are used as features of
heartbeats fed into SVM classifier. Since the fast ICA algo-
rithm uses a random initialization, the calculated ICs depend
on the initialization. Thus, the process is repeated for five it-
erations and the average performance is reported. The results
are shown in Fig. 4; as we can see, the average cross validation
accuracy tends to increase when the number of ICs increases
from 10 to 14 and decreases afterward. Hence, 14 seems to
be a good choice of the number of ICs. Therefore, 14 ICs were
trained using the predefined training dataset, containing approx-
imate 95% of the sum of nonzero eigenvalues of the estimated
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Histograms of the second ICA feature of eight heartbeat classes, including the normal and other seven arrhythmias classes; approximately 1000 heartbeats

from each of eight classes were used to compute the histogram. (The number of beats from the other eight classes are much smaller than 1000; we did not show

the histograms of the other eight classes to avoid unfair comparison.)

covariance matrix. Finally, 14 ICA coefficients are extracted
as the ICA features for each heartbeat. The resulting 14 ICA
features can be understood as “coordinates,” determining the
“location” of heartbeat data in the corresponding feature space.

Fig. 5 shows the histograms of the second ICA feature (i.e.,
the weight on the second IC) from the normal heartbeat class
and seven arrhythmia classes (approximately 1000 heartbeats
from each of eight classes are used to calculate the correspond-
ing histogram). As we can see, the distributions of the selected
ICA coefficient vary significantly between different classes, in-
dicating that this ICA feature is good at distinguishing these
eight classes. The behavior is also repeated similarly for the
other ICA coefficients and classes.

E. Principal Component Analysis

One-hundred and fourteen wavelets features and 14 ICA fea-
tures have been obtained for each heartbeat, referred as the “mor-
phological features,” providing the characterization of wave-
form shape of the heartbeat. These two types of features are
first concatenated and PCA is applied to reduce the feature di-
mensionality. The tenfold cross validation was performed on the
lead A signals of the selected training dataset, in order to select
dimensionality of the final morphological features, as depicted
in Fig. 6. Eighteen principal components are obtained based
on the training dataset are selected corresponding to retaining
approximately 90% of the variance in the training dataset. Fi-
nally, 18 morphological features are derived accordingly for
the representation of each heartbeat. PCA is introduced before
the concatenation of morphological and dynamic features since
these two sets of features focus on different characteristics (i.e.,
inside the heartbeat and between the heartbeats). On the other
hand, feature dimension reduction is applied to morphological
features in order to balance the importance of the two types of
features, since unbalanced numbers of morphological and dy-
namic features could bias SVM classifier, leading to degraded
classification performance.

10-Fold Cross Validation on number of morphological features

Accuracy (%)

1 1 i i ; : i
10 12 14 16 18 0 2 24 %6 28 30
Number of morphological features

Fig. 6.
features.

Tenfold cross validation for selection of the number of morphological

F. RR Interval Features

Besides morphological features, RR interval features are
computed for characterizing the dynamic information of the
heartbeat, termed as “dynamic” features. Four RR features are
derived to represent the rhythm of the heartbeat at various scales,
namely, previous RR, post RR, local RR, and average RR inter-
val features.

The previous RR feature is calculated as the interval between
a given R peak and its previous R peak, and the post RR fea-
ture as that of the current R peak and the following one. They
are combined to provide instantaneous rhythm information of
the heartbeat. The local RR interval is computed by averaging
all the RR intervals within a sliding window covering the past
10-s episode of the given heartbeat; hence the local RR feature
characterizes the average rhythm in the past 10-s local dura-
tion. Similarly, the average RR interval is obtained as the aver-
age of RR intervals within a sliding window covering the past
5-min episode of the heartbeat, reflecting the background
rhythm information in the past 5-min episode.

It is worth noting that the local RR and the average RR are
different from that used in [8], [12], [17], in which the local
RR feature was calculated as the average of RR intervals of
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Fig.7. Previous RR, local RR, and average RR features of the heartbeats from

the record 100 in MIT database, plotted sequentially over time.

ten heartbeats centered at the given beat, and the average RR
feature was obtained by averaging RR intervals of the all heart-
beats from the same record, making this feature identical for
every single heartbeat in the same ECG recording. Such an es-
timate of the average RR feature is not only unrealistic in a
real-time application, but also a biased estimate of background
dynamic information. In our paper, the local RR and the average
RR features are adapted as the average of RR intervals within
the corresponding past episodes of the given heartbeat, so that
more realistic estimates are obtained regarding the local and the
background dynamic information of heartbeat and the real-time
feature extraction is ensured.

Fig. 7 shows three RR interval features, i.e., the previous RR,
local RR, and average RR features, of the heartbeats from the
record 100 in MIT database, plotted sequentially over time. This
serves as an illustration that how the three RR interval features
reflects the rhythm information at different scales.

G. Support Vector Machine

In this study, an SVM classifier is considered for classifying
heartbeats into one of the 16 classes or the 5 classes. The SVM,
proposed by Vapnik [32], basically consists of building an opti-
mal hyperplane that maximizes the separation margin between
two different classes. This margin-based approach typically con-
structs classification models with excellent generalization abil-
ity, making it a powerful tool in various applications [33].

For a two-class classification problem, let the training set
consists of N examples {(x;,y;),i =1,..., N}, where x; €
R denotes the d-dimensional feature vector of the ith example
and the y; € R denotes its class label, y; € {£1}. The problem
is to construct a decision function f(x) based on the training set
that can be used to predict the output class label of future test
example based on its input feature vector. Following [34], it can
be formulated as an optimal problem, and the resultant decision
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function is given as

f(x) = sign ( Z oy K (xi, %) + b) 2)
i€SVs

where the function K (., .) is the kernel function that map the data
into a higher dimensional space. «; is the Lagrange multiplier
for each training data sample and usually only a few «; are
nonzero. Those training examples whose «; are nonzero, are
termed as support vectors (SVs). The final decision function
f(z) is actually only determined by these few SVs.

Support vector machines are intrinsically binary classifiers.
A number of multiclass classification strategies have been de-
veloped to extend SVM to address multiclass classification
problem [34], such as heartbeat classification problem. The
most popular approaches include the one-against-all (OAA)
and the one-against-one (OAO) methods, essentially decom-
posing the multiclass problem into a set of binary classification
problem [35].

In addition to the predicted labels, probabilistic estimates can
also be obtained for each prediction following [36]. Given K-
class data, for any input feature vector x, the probability of x
being from the ¢th class is denoted as

pi =Py =1i|x). 3)

In the OAO approach, the classifier provides pairwise class
probabilities given by

rij = P(y =i or j,x). “

The pairwise posterior probabilities can be estimated approx-
imately using a sigmoid function as follows:

1
Ti;i = =
7 1+exp(Af + B)

(&)

where f is the decision value (i.e., output of the decision func-
tion) at x; A and B are estimated by maximizing the log likeli-
hood of the training data using their labels and decision values.
In this paper, the SVM with the radial basis function (RBF)
kernel is used. First, the model parameters (i.e., the regulariza-
tion parameter C' of the SVM and the width parameter o of the
kernel) were selected using the tenfold cross validation on the
training dataset (as defined in Section II). Following the model
parameter selection, the SVM classifier was trained using the
training dataset. In the classification phase, the resulting SVM
classifier was used to predict class labels as well as the probabil-
ity estimates of the heartbeats from the testing dataset. All SVM
algorithms are implemented using the LIBSVM [37] package.

H. Two-Lead Fusion

Each heartbeat segment consists of two signals derived from
the lead A and lead B. These two signals can be treated as two
observations on the same cardiac activity from two different
positions. The information from the two signals can be fused to
make the final decision, so that the classification confidence is
enhanced.

The same procedure was independently applied to the two
signals, including feature extraction and classification. Two
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individual SVM classifiers were trained separately using the lead
A and the lead B signals of heartbeats from the training dataset.
The two classifiers are applied, respectively, to the lead A and
the lead B signals of each test heartbeat, so that two independent
answers are derived from the two classifiers for each heartbeat,
which are combined to make the final decision on the beat
category.

Two different approaches are adopted to combine the two
independent answers from the individual classifiers. The first
method, termed as rejection approach, is simply to compare
the independent classification answers from the two individual
classifiers. Ideally, the two answers should be the same for a
given heartbeat. In the case that an inconsistency occurs, at
least one of the two classification results is incorrect, which can
possibly be caused by the loss of quality for the signal from the
corresponding lead, perhaps due to artifacts caused by muscle
movement, electrode contraction, etc. In such circumstances, the
inconsistency can be resolved simply by rejecting the heartbeat,
i.e., no final decision is made. The price paid for this rejection
approach is that no decision is made for a small portion of
heartbeats. The rejected heartbeat can possibly be reserved for
later manually review by physicians.

The second approach, namely, Bayesian approach, incorpo-
rates the probability estimates from the two individual classifiers
to make the final decision. Given K -class data, assuming that the
outputs from two classifiers to be combined, the final probability
estimates P(y =i | {x1,Xs}) can be calculated based on indi-
vidual probabilities P (y = i|x;), [ = 1,2, that are obtained
from the corresponding individual (i.e., single-lead) classifier,
using a Bayesian product approach, as follows:

. , I, Py =i|x)
Ply=1i|{x1,x2}) =
v . /) Z;il]._[?:lpl(y:j‘xl)

where x; is the feature representation of the heartbeat on the /th
lead, feeding into the /th individual classifier, [ = 1, 2. Hence,
the probability of the heartbeat being from the sth class is given
as the joint probability of the lead A signal and the lead B signal
being from the ith class; the joint probability is normalized into
the range of [0, 1] to be a valid probability estimate. Finally, the
winning class k is determined to correspond to the highest final
probability estimate in M classes, given by

(6)

k = argmax Py =i|{x1,%2}). @)

IV. RESULTS
A. Class-Oriented Evaluation

In the “class-oriented” evaluation, two individual classifiers
were trained separately using the lead A signals and the lead B
signals of the training dataset defined in Section II. The trained
individual classifiers were utilized to predict the lead A signal
and the lead B signal of each test heartbeat, respectively. Based
on the lead A signals, 84908 heartbeats were correctly classi-
fied out of 86009 test beats with an accuracy of 98.72%. Using
the lead B signals, the heartbeat classification performance got
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slightly worse, with 84805 heartbeats being correctly recog-
nized, corresponding to an accuracy of 98.60%.

As discussed in Section III-H, the two fusion approaches,
namely, the rejection approach and the Bayesian approach were
investigated to combine the two classification results from both
lead signals to make the final decision for each heartbeat. The
rejection approach resulted in an accuracy of 99.71% with a
price of rejecting 2054 heartbeats (i.e., set aside for physi-
cian review). The Bayesian approach, based on the fusion of
probability estimates, yielded an average accuracy of 99.32%.
Both approaches show significant improvement in performance
over that using individual lead signals. The rejection approach
yielded a slightly better performance, at the price of rejecting a
small portion of heartbeats. The performance on each individual
heartbeat class is evaluated using two metrics, namely, the sen-
sitivity (Se) and positive predictivity (4P), which are calculated
based on the number of true positive (TP), false negative (FN),
and false positive (FP), as follows:

TP

¢ = TP T EN ®)
tpo 1P )
" TP+ FP

where TP is defined as the instance from the given class cor-
rectly classified as from that class; FN is given as the instances
from the given class (any of the 16 classes or the 5 classes) be-
ing incorrectly classified as from other classes; FP is defined as
the instance from the other class incorrectly classified as from
the given class. The sensitivity and positive predictivity of each
individual class are summarized in Table IV. As we can see,
the both approaches exhibited reasonable individual-class per-
formances, showing good sensitivity and positive predictivity,
except on a few small heartbeat classes, e.g., “e” and “Q.” The
final confusion matrices for using the two fusion approaches are
presented in Fig. 8.

Table V provides a comparison of classification accuracies be-
tween the proposed approach and earlier published results [6],
[7], [9]-[11], [16], based on the “class-oriented” evaluation
scheme. We observe that the proposed approach obtained im-
provement in heartbeat classification accuracy over the literature
paper. The improved results indicate that the proposed feature
representation of heartbeats, based on a combination of morpho-
logical and dynamic features, exhibits a superior performance
for discriminating heartbeat segments from a variety of heart-
beat classes. In addition, the proposed two-lead fusion strategy
enhances the classification confidence and improves the heart-
beat classification performance. Based on these results, we can
conclude that the proposed method offers improvement over
earlier approaches.

Regarding the contribution of different types of features, by
using wavelets and ICA features alone, the resulting average
classification accuracy is 95.32% and 94.25%, respectively. By
using WT and ICA features together (with PCA), the resulting
classification accuracy is 98.46%. By adding RR features, the
resulting classification accuracy improves to 99.32%.

Finally, we need to note that the “class-oriented” evalua-
tion is not a realistic measure of classifier performance in real
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TABLE IV
PERFORMANCE SUMMARY ON EACH INDIVIDUAL CLASS IN THE “CLASS-ORIENTED”” EVALUATION
Heartbeat Train Test Rn TP Se (%) +P (%) TP Se (%) +P (%)
Class Num. Num. MethodI MethodI Method I Method I Method I Method I Method II

NOR (‘N’) 9753 65264 1222 63949 99.85 99.85 64978 99.56 99.71
LBBB (‘L) 3229 4843 45 4798 100 99.85 4838 99.90 99.65
RBBB (‘R) 2902 4353 52 4292 99.79 100 4340 99.70 99.95
APC (‘A" 1019 1527 166 1315 96.62 96.62 1435 93.98 91.87
PVC (‘V) 2852 4277 350 3899 99.29 98.96 4203 98.27 97.20
PACE (‘P’) 2810 4214 22 4192 100 99.98 4208 99.86 99.93
AP (‘a’) 75 75 27 43 89.58 91.49 60 80.00 85.71
VF (‘1) 236 236 32 203 99.51 98.54 231 97.88 88.85
VEN (‘F’) 401 401 54 326 93.95 96.17 365 91.02 89.46
BAP (‘x") 97 96 18 77 98.72 100 86 89.58 100
NE (‘§°) 115 114 17 90 92.78 92.78 101 88.60 82.79
FPN (‘") 491 491 34 453 99.12 98.91 481 97.96 97.57
VE (‘E’) 53 53 0 52 98.11 100 53 100 100
NP (‘J") 42 41 6 33 94.29 97.06 38 92.68 90.48
AE (‘e’) 8 8 3 3 60 100 5 62.50 62.50
UN (‘Q) 17 16 6 4 40 100 5 31.25 71.43
Total 24100 86009 2054 83712 99.71 99.71 85424 99.32 99.32

The table includes the following information (from left to right): heartbeat class, number of training beats, number of testing beats;
number of rejected beats (Rn), true positive (TP), sensitivity (Se), positive predictivity (+P) when the rejection fusion approach is
utilized; Rn, TP, Se, +P when the Bayesian fusion approach is utilized.
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Fig. 8.

using the Bayesian fusion approach.

TABLE V
COMPARISON OF CLASSIFICATION ACCURACIES BETWEEN THE PROPOSED
METHOD AND THE REFERENCE WORK [6], [7], [9]-[11], [16], USING THE
BIASED CLASS-ORIENTED VALIDATION

Reference Features Accuracy (%)
Lagerholm([6] Hermite 98.49
Prasad([7] Wavelet + RR 96.77
Osowski[9] HOS + Hermite 98.18
Rodriguez[10] Waveform 96.13
Jiang[11] Wavelet+ ICA 98.86
Oliveira[16] Waveform + RR 98
Proposed Method  Wavelet + ICA + RR 99.32(99.71)

applications. It provides a quantification of capability of the clas-
sifier and features for separation among different beat classes
when they are perfectly modeled. This evaluation is conducted
in order to make a comparison with previous works.

B. Subject-Oriented Evaluation

Besides the ‘“class-oriented” evaluation, the “subject-
oriented” evaluation is employed to estimate the performance of
the proposed method in practice. As discussed in Section II-B,
the same database division is adopted as in the literature [8],
[15], [17], i.e., the 22 records used as the training set and the
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Final confusion matrices of using the two fusion approaches. (a) Final confusion matrix using the rejection fusion approach. (b) Final confusion matrix

other 22 records as the testing set. The results are reported in
the ANSI/AAMI defined five-class division; the average perfor-
mance is shown in Table VI. In addition, the record-by-record
cross validation is performed. For each record, the model is
trained on the data from the other 43 records and is subsequently
used to test the heartbeats of the given record; the procedure is
repeated for all 44 records. The performance is averaged and
presented in Table VI. The confusion matrices of the two above-
mentioned tests are shown in Tables VII and VIII, respectively.

We compare the observed results with the results in [8], [15],
and [17] based on the following metrics, namely, classification
accuracy, Se and +P of the supraventricular ectopic class (the
class “S”), as well as that of the ventricular ectopic class (the
class “V”). The comparison is presented in Table VI. As we
can observe, the proposed method yielded comparable perfor-
mances, in terms of general accuracy, as well as on the class “S”
and class “V.” The worse performance on the class “S” can pos-
sibly be attributed to fewer data samples of class “S” than class
“V.” As expected, the performance of the ‘“‘subject-oriented”
evaluation shows worse results than that of the “class-oriented”
evaluation, due to interindividual variability in physiological
characteristics.
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TABLE VI
COMPARISON OF “SUBJECT-ORIENTED” EVALUATION RESULTS BETWEEN THE PROPOSED METHOD
AND THE REFERENCE WORKS [8], [15]

Metric De Chazal [8] Llamedo [15] Proposed Method Proposed Method CV?*
Accuracy (%) 81.9 93 86.4 88.2
Se of class ‘S’ (%) 75.9 77 60.8 56.4
+P of class ‘S’ (%) 38.5 39 52.3 55.2
Se of class ‘V’ (%) 71.7 81 81.5 84.7
+P of class ‘V’ (%) 81.9 87 63.1 60.3

4 Cross Validation

TABLE VII
CONFUSION MATRIX USING THE SUBJECT-ORIENTED TEST

Predicted Label
n S v f q
39157 931 1284 2816 50
502 1199 252 12 7
284 160 2624 139 13
199 1 110 76 2
2 0 5 0 0

Reference
om<wnzZ

TABLE VIII
CONFUSION MATRIX OF CROSS-VALIDATION USING
THE SUBJECT-ORIENTED TEST

Predicted Label

n S \ f q

o N 81068 1079 3631 4217 88
2 s 733 1677 536 19 7
§ V429 281 6335 407 28
2 F 36l 2 147 287 5
Q 5 2 7 1 0

C. Feature Extraction Robustness Test

As discussed in Section III-B, in real applications, the auto-
matic QRS detection should be incorporated to fully automate
the proposed heartbeat classification method. The automatic R
peak detection can introduce error in RR interval features, as
well as the computation of other features, since there could
exist a shift between the actual and the detected R peak loca-
tions. In order to test the robustness of the proposed feature
extraction method, one experiment is conducted by introduc-
ing a Gaussian-distributed artificial jitter (with zero mean and a
standard deviation of five samples) to the annotated QRS loca-
tions. The “five-sample” is a typical amount of shift introduced
by the QRS detector. It yielded a general accuracy of 99.01%
(99.28% with 3.2% rejections), based on the “class-oriented”
evaluation, compared with the original performance of 99.32%
(99.71% with 2.4% rejections), using the actual annotated R
peak locations. This serves as a proof of the robustness of the
proposed feature extraction methodology.

V. CONCLUSION

In this paper, we presented a systematic approach for auto-
matic heartbeat classification. One novel feature representation
of heartbeat segments is proposed, based on a combination of
a set of derived morphological and dynamic features. Improved
wavelets, ICA and RR interval features are utilized. The clas-
sification is finally done using 18 PCA projection coefficients

computed from the concatenated wavelet and ICA features, plus
four RR interval features. Besides, two fusion approaches are
developed to fuse the information of both lead signals to make
the classification decision, using the probability estimates given
by SVM classifiers. On the benchmark MIT-BIH arrhythmia
database, the proposed method yields an accuracy of 99.3%
(99.7% with 2.4% rejections) in the “class-oriented” evaluation
and an accuracy of 86.4% in the “subject-oriented” evaluation.
The results of “class-oriented” evaluation can be interpreted as
a measurement of performance achievable if the classifier could
be trained using the beats from the patients to be analyzed. The
results of the “subject-oriented” evaluation can be deemed as a
more realistic estimate of potential performance of the proposed
method in real applications.

In the future, it is of interest to investigate certain automatic
patient customization scheme, allowing the proposed heartbeat
classification method being capable of adapting to individual
physiological characteristics. In addition, it is interesting to ex-
plore potential benefits of adapting heartbeat segmentation to
heart rhythm, avoiding the increase of false alarms caused by
wild heart rhythm variability in some scenarios, or for certain
population.
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