
A simple method for reliable footstep detection on

embedded sensor platforms

Ryan Libby

June 25, 2008

Abstract

Classification of human activity in real-time enables automatic health monitoring
and other applications that require accurate and rapid feedback of activity. Classifiers
vary in design and efficacy for particular tasks and data sets, but generally benefit
from using features which correlate well with classes. For at least the classes walking,
running, and bicycling, one set of such features is based on footsteps; when they occur,
at what rate, etc. I present a method for reliable step detection suitable for use on
embedded sensor platforms equipped with 3-dimensional accelerometers, such as are
available now in specialty devices or will soon be incorporated into some mobile phones.
Performance on a set of data collected by our group is discussed. Further, step detection
enables the extraction of intra-step features by providing delimiting events.

1 Introduction

Step detection is the automatic determination of the moments in time at which footsteps
occur, such as is performed by pedometers to generate step counts. Accelerometers are
becoming increasingly ubiquitous in commercially sold devices, such as mobile phones like
the Apple iPhone or the Nokia N95. While previous work is able to detect steps from
foot-mounted accelerometers, this paper demonstrates step detection working reliably from
hip-mounted accelerometers, a conceivable location for a device such as a mobile phone. In
addition, the sensor platform used is no more powerful than many modern mobile phones.
More than enabling pedometer functionality on mobile-phone-like devices, the step detection
algorithm presented here could lead to more accurate automatic classification of bipedal
human activities.

Inferring human activities in real-time is a major goal of health applications. One general
approach is to train a classifier to recognize activities. The input may be generated by sensors
on an embedded device. The raw data are featurized before being fed to the classifier.

When inferring common human activities such as walking or running, features related to
bipedal motion are especially useful in distinguishing classes.

1

Some accelerometer-based features are already used to aid activity recognition, such as
the spectral distribution of the signal over a window. Using accelerometers to detect steps
opens up not only some of the more obvious step features, such as step count and stride
length, but also features that use steps to delimit sections of the signal. Features delimited
by detected steps can be called intra-step features. One such feature might be the quality of
a match between a time-normalized step and a template signal.

The step detection algorithm is new, but simple. It uses an adaptive filtering technique
to smooth the acceleration signal and locate steps. This technique is demonstrated to work
while subjects walk or run at a range of paces from 1.9 to 2.8 Hz. Bicycling performance is
not yet as reliable.

2 Related work

Accelerometer signals have previously been shown to be useful for step detection[1]. In 2007,
Ying et al evaluated three different step detection algorithms for a 2-axis, fixed-orientation,
foot-mounted acceleration sensor. One of them, the Pan-Tompkins method, was the starting
point for the work presented in this paper. All three of the algorithms presented by Ying et al
are online and potentially suitable for use on embedded sensing systems. However, a direct
comparison of the algorithms, performance on their data set, and the actual embedded
implementation were all left to future work.

Apart from step detection, accelerometer features have been used successfully for clas-
sification of human activities, both offline[2] and in real-time[3]. Using a variety of simple
features from accelerometer, barometer, and microphone input, Lester et al were able to clas-
sify distinct human activities with high accuracy. Consolvo et al used real-time classification
of human activities to provide rapid-feedback health monitoring for a fitness application.
The eventual goal of the work presented here is to enable the generation of features that will
allow a finer-grain classification of human activities.

Lester et al and Consolvo et al used the same sensor hardware as this step detection
algorithm, although they sampled the accelerometer at different rates.

3 Sensors

Input was collected using the Mobile Sensing Platform (MSP) developed by the University
of Washington and Intel Research Seattle, shown in Figure 1. The MSP is an embedded
sensing platform consisting of the Multi-Modal Sensor Board 2 (MSB2), a small sensor
package, stacked on the IMote2, a small mobile-phone-like computing device. The MSP and
related software comprise a comprehensive system for sensing, analyzing, and classifying the
physical environment. They are described in detail elsewhere[4].

The MSB2 features a sensor board with a 3-axis accelerometer, which was sampled at
512 Hz (the STMicro LIS3L02DS). Each sample gives a 3-dimensional acceleration vector.
The sensor board was worn clipped to clothing at the hip. It is therefore in position to sense

2

(a) (b)

Figure 1: The MSP is shown without a protective case or battery in (a). The
upper daughter board is the MSB2. Photo credit University of Washington,
http://ubi.cs.washington.edu/wiki/index.php/Sensor Boards. The MSP is shown in (b)
(black box) worn clipped to clothing at the right hip (in this case, a belt).

hip acceleration during bipedal motion.
The juxtaposition of sensing platform (MSB2) and moderate computing power (IMote2)

opens the possibility of processing and analyzing data sensed from the environment in real-
time.

4 Characteristics of the step detection algorithm

An important goal was to have steps be detected online. Online step detection is most
easily run on the device, near where the sensor data are collected. The eventual goal of
using step detection-derived features to inform a classifier also relies on step detection being
accomplished on the device, near where other features are computed.

Live detection on the device implies several constraints.
Available computational resources are limited. The ARM processor of the IMote2 has

32 MB of RAM available to it and runs at a 400 MHz clockrate. This put a practical limit on,
for example, the amount of time over which the algorithm can “look ahead.” (Look ahead is
also limited by the desire to minimize detection latency.) It also lacks hardware for integer
division and floating point operations. These facts influenced the choices for representations
and transformations of the data.

Online step detection is subject to real-time considerations; if newly sensed data are not
serviced in time, they are lost. (For reference, new data are introduced at an average of
almost every 2 ms.)

The Library for the Inference of Real-time Activities (LIRA), developed by Intel Research
Seattle, provides a data-processing framework for use with the IMote2. The key advantage it
offers is the infrastructure for processing streaming data, such as continuous sensor readings.
LIRA helps to address the real-time issues by managing sensor input and the dataflow

3

between logical steps of the algorithm.
The end result with respect to performance is that the entire system, including the step

detection algorithm and basic feature generation, runs on the MSP at 25% CPU usage.
The latency between physical impulse and output of a detected step is never more than ten
seconds. There is enough excess processing power for more advanced feature extraction and
running a classifier.

5 Design process

The algorithm was developed over a period of months during which several approaches were
considered. The initial implementation was done in Matlab and closely followed Ying et al’s
description of the Pan-Tompkins Method. The other two algorithms described by Ying et al
were not attempted. The Template Matching Method was avoided for its complexity. The
Peak-detection method based on combined dual-axial signals relied on assumptions about
the correlation between vertical and lateral accelerations of the foot which could not be
demonstrated on the hip.

The Pan-Tompkins implementation did not work on our data set because the sensor
setups were different. Ying et al collected data from foot-mounted accelerometers and pre-
determined the orientation of the accelerometers. In contrast, no assumptions were made
about the orientation of our accelerometers. Moreover, the device in our case was clipped to
clothing at the hip. (In practice, the clip did enforce an orientation of the device, but use of
this fact was deliberately avoided.)

Several attempts were made to make simple modifications which would enable the use of
the Pan-Tompkins method. These attempts were largely confounded by difficulties designing
a low-pass filter. Some of the filters applied were a simple average over a sliding window
with various choices of window size, and several Butterworth filters.

Their performance was not found to be satisfactory. They were generally unable to
remove components of the signal which were at frequencies only moderately higher than the
dominant ones. The result was that rather than there being one or two peaks per step in
the Pan-Tompkins output, there would be several more.

The excess peaks often had different characteristics, such as being of generally lower
amplitude. This led to attempts to address the excess peaks directly, by, for example, only
accepting peaks of a certain relative size within a window. This approach did not work
well when peaks from one foot were much bigger than peaks from the other, a common
occurrence.

The accumulation of small adaptations led to seeing the problem in a different light: as
an attempt to develop a low-pass filter that would leave the rest of the algorithm trivial.
The Pan-Tompkins method was abandoned for one that did most of its work at the low-pass
filter.

4

6 Algorithm

The algorithm to detect peaks is simple in concept. It uses an obvious technique to find local
maxima in the magnitude of the sensed acceleration vector. The local maxima are assumed
to correlate to footfalls.

First a low-pass filter is applied to the acceleration magnitude signal, giving the smoothed
acceleration signal (Figure 2b to Figure 2c). Then a function approximating a derivative is
applied to the smoothed acceleration, giving the jerk (Figure 2c to Figure 2d). When the
jerk crosses zero from positive to negative, the smoothed acceleration is at a local maximum.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

4

time (seconds)

ac
ce

le
ra

tio
n

(a) Raw accelerometer readings.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
x 10

4

time (seconds)

ac
ce

le
ra

tio
n

(b) Magnitude of the 3D accelerometer vector.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2000

0

2000

4000

6000

8000

10000

12000

14000

time (seconds)

ac
ce

le
ra

tio
n

(c) Output of the low-pass filter.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2000

−1500

−1000

−500

0

500

1000

1500

2000

2500

time (seconds)

je
rk

(d) Derivative of the low-pass filter.

Figure 2: A short section of a typical trace at the major stages of the step-detection algo-
rithm.

5

6.1 Input

Data are sampled from the three orthogonal accelerometers at 512 Hz (see Figure 2a for
an example). The three accelerometer readings compose a three-dimensional acceleration
vector. The algorithm considers only the magnitude of that vector. It is therefore not
sensitive to the orientation of the sensors, and so has no dependence on any particular
orientation.

Determining the magnitude of the vector is simple and relatively cheap, but it has a dis-
advantage. It has the potential to introduce high-frequency artifacts when one of the com-
ponents periodically crosses zero. (Consider sin(x) vs. |sin(x)|.) High-frequency artifacts,
noise, and acceleration not obviously correlated with bipedal motion give the motivation for
the low-pass filter.

6.2 Low-pass filter

The ideal output of the low-pass filter is one where every local maximum corresponds to
a footfall. Its input is far from that. The general shape is apparent, but there are many
departures. They are of varying amplitudes, but they tend to be short in duration. Therefore
a filter which discards high-frequency events while retaining the general shape of the signal
was desired.

A simple solution would be a standard FIR filter to pass a low-frequency band. The
biggest problem with such an approach is choosing the cutoff frequency. A typical walking
pace may be under 2 Hz, while a running or bicycling one may be double that. A choice of
cutoff frequency that accommodates faster paces may leave high-frequency components in a
signal collected from a slow-paced activity. Conversely, a choice that removes high-frequency
components from a signal from a slow-paced activity may not faithfully preserve important
aspects of a signal collected from a faster-paced one.

Although in both cases a low-pass filter with a certain cutoff frequency is desired, the
choice of that frequency may discard either too much or too little of the signal. One way to
quantify the portion of a signal in a given frequency band is the portion of energy in that
band.

The signal energy of a discrete-time signal is the sum of the squares of its time-domain
values, i.e.

∑

x(t)2. Parseval’s theorem says that this quantity is the same as the sum of the
squares its frequency-domain values, i.e.

∑

X(f)2, where X is the discrete Fourier transform
(DFT) of x.

A signal from a faster-paced activity should have relatively more energy in higher fre-
quencies bands than a signal from a slower-paced activity.

The low-pass filter was therefore designed to preserve a certain portion of the energy
of the input signal. It does this by using the lowest frequency cutoff that preserves some
portion of the total energy of a window of the signal.

The low-pass filter utilizes the DFT of its input to implement a hard frequency cutoff. The
underlying idea is to utilize the DFT as an expression of a time-domain input as a frequency-
domain output. The frequency-domain representation is useful for direct manipulation of

6

the components to produce the final output of the filter.
Although transforming the acceleration magnitude signal from the time domain to the

frequency domain is an expensive operation, it is useful for more than the low-pass filter.
Classifiers using accelerometer-based features such as those used by Lester et al and Con-
solvo et al already compute the DFT of the magnitude of the acceleration. In such an
environment, this operation alone incurs no additional computational penalty. Unfortu-
nately, the need to operate on overlapping windows, explained below, means that the DFT
is actually computed more often than it might be under the feature generation scheme alone.

First the real FFT of a window of the input is taken. Then, an “energy filter” is applied.
Figure 3 visualizes an example input to and output of the energy filter.

The energy filter first considers the total energy inside the window. To find this quantity,
the energy of each of the bins (except the DC) is summed. Again, by Parseval’s theorem,
this sum is equivalent to the total energy of the window less its mean.

The total energy is multiplied by a parameter to the filter, the “relative energy threshold,”
to attain a threshold energy. Then, starting from the bin representing the lowest frequency,
the value of the bin is either passed through or set to zero. It is set to zero if the sum of
the energies of the lower frequency bins is at least the threshold energy. In effect, the filter
chooses to pass through the fewest number of low-frequency bins that explains at least the
portion of the total energy specified by the relative energy threshold.

It is important to note that the above method leads to a dynamic choice of the cutoff
frequency; that is, a potentially different filter is applied to every window. For a given
window, recovering a time-domain representation is as simple as taking the inverse FFT,
but the output signal cannot be expected to be smooth at window boundaries. Further, the
dynamic frequency cutoff precludes some common convolution techniques.

The solution used is to apply the energy filter to windows that overlap by half. The value
of a given point is then determined by a weighted average of the two values covering it. The
weight function increases linearly toward the center of a window (i.e. it is a triangle weight
function). The function used is equivalent to

w
x

=

{

2x + 1 x ≤ n/2
2n − (2x + 1) x > n/2

where x is the zero-based index into a window, and n is the number of samples in a window.
Triangular weights which overlap by half have the property that the sum of the weights is
constant (see Figure 4 for a visualization). Particular choices of the window size (n) allow
the overlapping weighted average to be computed cheaply with two multiplies, an add, and
a shift for every point. For the above function, when n is a power of 2, the sum of weights
is also a power of 2.

7

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

frequency (Hz)

m
a

g
n

it
u

d
e

 o
f

b
in

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

frequency (Hz)

m
a

g
n

it
u

d
e

 o
f

b
in

(b)

Figure 3: An example window of data samples passes through the energy filter. (a) shows
the full spectrum while (b) focuses on the lower 1

8
of frequencies. The energy filter either

passes bins through unchanged (black) or removes them entirely (red) and sets them to zero.
The adaptive nature of the energy filter causes the cutoff frequency to vary with the relative
energy distribution.

8

Figure 4: A visualization of the triangle weight function showing how the sum of the weights
of overlapping windows is constant. Five windows (triangles) are shown. Each sample
is covered by two windows. The vertical distance from the base to the border with the
adjacent triangle is proportional to that window’s contribution to the output value of the
point at that time.

6.3 Derivative

The derivative operation applied is almost exactly that described by Ying et al in their eqn.
(2).

y(n) =
1

8
[2x(n) + x(n − 1) − x(n − 3) − 2x(n − 4)]

The one difference is that the division by 8 was omitted since no downstream operations
depend on the scale of the derivative in this algorithm.

7 Methodology

7.1 Data collection

Three members of our group wore the MSP and collected raw sensor data from several
activities. In addition to the accelerometers, several other sensors that were not used for
step detection were sampled and logged. These data are the unmanipulated readings from
the sensors, sampled at fixed intervals. From the logged sensor readings it is possible to
reconstruct all of the physical environmental information availabe to software running live
on the device. At all times during data collection, the MSP was worn clipped to clothing at
the right hip, usually a belt or waistband (see Figure 1b).

Data were collected over short periods of time during which primarily only one activity
was performed. The sensor data logs from such a period are referred to as a “trace.” Over
8 hours of traces in total were collected by our group.

The activities included bicycling, sitting and standing, walking, and several variation on
walking. Table 1 summarizes the activities and durations of collected data. Due to some

9

Table 1: A summary of collected data.

Activity Minutes collected Minutes usable
Sitting/Standing 86 47
Walking 199 108
Bicycling 82 65
Vehicle passenger 129 60

issues with software beyond the scope of the project, not all of the logs were usable. Corrupt
or missing data from some sections of the traces lessened the amount available for analysis.
Although most of the lost data would probably be recoverable with some effort, they were
instead simply discounted.

In addition, a related project collected running data with a compatible sensor setup,
some of which was use in the analysis.

7.2 Evaluating performance

Determining the accuracy of step detection is complicated by the question of “ground truth.”
The only data collected directly related to bipedal motion were from the accelerometers; no
independent scheme is used to assess accuracy. As such, determining the accuracy of a
detected step, in the sense of how near in time the detected moment is to the true one, is
not feasible with our data.

The correctness of step detection can still be assessed on a large scale. A bipedal activity
conducted at a steady pace will have a narrowly-focused step period distribution. (The
length of time between two detected steps is here called a step period.) If a step fails to be
detected, the result will be a step period which is roughly two or more times the expected
period. If a step is detected when none occurred, the result will be one or more unusually
short step periods.

This still leaves the problem of the expected step period. Much of our data were collected
in natural settings where the expected period was not known, calculated, or measured. Still,
if step detection is reasonably good, it can be expected that the expected period is near the
center of the step period distribution.

The median is chosen to represent the center of the distribution. Two other simple choices
for the center might be the mode or the mean. The problem with the mode is that many
of the step period distributions turn out to be bimodal, and there is no obvious reason to
choose one mode over the other. The median is chosen over the mean to avoid sensitivity to
outliers.

Using these observations, it is possible to devise a quantitative scheme for characterizing
false detections. Step periods less than .6 times the median period likely represent false
positives. (.6 is used instead of half because one conceivable failure mode is a section of
slightly slower steps being double-counted.) Steps periods greater than 1.5 times the median

10

period likely represent false negatives. (1.5 is used instead of 2 to reveal the case where
slightly faster steps are half-counted.)

It is important to note that there is not a one-to-one correspondence between unusually
short or long steps and false positives or negatives. For example, in a section of a trace where
steps are double-counted, every two unusually short periods may actually only represent one
false positive. Conversely a step period three times the expected value may represent two
false negatives, rather that one.

8 Results

The major results of running the step detection algorithm on our data set are presented in
Table 2, which summarizes the detected step period distributions from a number of sections
of sensor traces.

Of the 18 walking and running segments examined, in only 4 do less than 90% of the step
periods fall between .6 times the median and 1.5 times the median. The lowest percentage
in the middle for walking and running is 75.39%.

Detected step periods from bicycling vary much more. Never more than 70% of the
detected step periods fall in the middle. Significant portions of the step period distributions
for bicycling segments fall both in the “unusually short” and “unusually long” categories.

Figure 5 gives a visualization of the data presented in Table 2 using segment 22 as an
example. Figure 5 also demonstrates a typical characteristic of the step period distribution:
bimodality.

Many but not all of the step period distributions are bimodal. The bimodality is caused
by alternating short and long periods in the detected steps, as shown by Figure 6.

Step detection was also run on data collected when no bipedal motion was occurring,
such as when the subject was sitting or was a passenger in a vehicle. No steps were detected
in these cases.

9 Discussion

The step detection algorithm is quite consistent when operating on running or walking data.
Step detection of bicycling data works, but suffers both from under- and over-counting steps.
Under-counting happens especially when the energy filter is satisfied by the energy in the
two-step period.

9.1 Bimodal step period distribution

The distribution of stride lengths is in many cases bimodal. There are two possible expla-
nations: the subject may be exhibiting an uneven gait; or it may be an artifact of the step
detection algorithm.

It would be possible to determine which effect was dominant with a simple experiment.
Step detection would have to be run with the device attached to both hips. It could then

11

Table 2: A summary of the step period distribution of detected steps in segments of traces.
“n steps” is the number of steps detected in the segment; “% fast” is the percentage of
“unusually short” step periods (those less than or equal to .6 times the median); “% slow”
is the percentage of “unusually long” step periods (those greater than or equal to 1.5 times
the median); “% middle” is the percentage of remaining step periods.

segment activity length (s) n steps median (s) % fast % middle % slow
1 bicycle 516 1029 .354 12.73 57.63 29.64
2 bicycle 516 769 .606 31.73 65.93 2.34
3 bicycle 256 430 .354 10.00 61.40 28.60
4 bicycle 516 687 .391 4.95 61.72 33.33
5 bicycle 516 1028 .381 4.18 63.04 32.78
6 run-treadmill 175 431 .408 1.62 98.14 0.24
7 run-treadmill 171 432 .398 2.31 99.77 0.00
8 run-treadmill 224 711 .359 24.61 75.39 0.00
9 run-treadmill 126 380 .357 13.16 86.84 0.00
10 run-treadmill 175 432 .416 3.70 96.30 0.00
11 walk 516 913 .529 1.20 96.17 2.63
12 walk 338 695 .509 5.32 94.68 0.00
13 walk 203 403 .506 0.50 99.50 0.00
14 walk 222 356 .520 1.69 92.70 5.62
15 walk 278 591 .494 6.43 93.40 1.69
16 walk 516 637 .506 8.95 82.26 8.79
17 walk 367 750 .486 0.53 99.33 0.13
18 walk 418 864 .488 0.58 99.31 0.12
19 walk 516 1015 .498 1.77 98.23 0.00
20 walk-treadmill 516 984 .498 0.91 96.75 2.34
21 walk-treadmill 256 517 .480 1.93 96.91 1.16
22 walk-treadmill 516 1025 .496 1.37 98.15 0.49
23 walk-treadmill 516 1070 .529 15.42 83.93 0.65

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

step period (seconds)

fr
eq

ue
nc

y

Figure 5: Histogram of the step period distribution of segment 22. A green vertical line is
drawn at the median of the distribution. A red vertical line is drawn at .6 times the median;
and all step periods shorter than that value are considered “unusually short” (probably false
positives). A magenta line is drawn at 1.5 times the median; and all step periods longer
than that value are considered “unusually long” (probably false negatives).

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

fr
eq

ue
nc

y

bin (seconds)

(a)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

5

10

15

20

25

30

35

40

45

bin (seconds)

fr
eq

ue
nc

y

(b)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

5

10

15

20

25

30

35

40

45

50

bin (seconds)

fr
eq

ue
nc

y

(c)

Figure 6: The bimodal characteristic of the step period distribution is due to alternating
short and long periods. (a) is the step period distribution of a section of segment 22. (b)
is the period distribution when every other detected step is skipped. (c) is the same as (b)
but starting on the opposite step. (b) and (c) could be said to represent the two-step period
distribution.

be determined whether the short (or long) period is associated with the left or right leg or
with being near the same leg as the device.

Bimodality has implications for further feature extraction. If it cannot be avoided, then
it may not be possible to treat all steps the same. Right and left steps could be examined
separately, or the step could be examined over a two-step period.

9.2 Improvements to the evaluation

An independent method for verifying the results of the step detection algorithm is desirable.
One possibility would be to use an off-the-shelf pedometer to maintain a step count which
could be used as a sanity check. A similar concept could be used to count bicycle pedal
revolutions. Neither would allow an examination of the accuracy of the timing of detected
steps.

A major weakness of the analysis used is that the number of detected step periods outside
the middle range does not actually give the number of mistakes. Many short periods may
represent many mistakes over only a short stretch of the trace; and only a single long period
may represent a failure to detect steps over a large stretch of the trace.

The bicycling data is particularly hard to evaluate. Most of the mistakes appear to be in
failing to detect “steps” (pedaling). The problem is that it is unknown whether the absences
of detection reflect real gaps (such as if the subject were coasting) or if they are in fact false
negatives. More controlled bicycling data is needed in order to determine which is the case.
Ways to collect bicycling data without coasting gaps might be using a stationary bicycle,
riding in a velodrome, or riding on an otherwise unobstructed course.

On the other hand, the large portions of bicycling step periods which seemed too fast are
likely real mistakes. Segment 2, the one with the highest percentage of “unusually short”
periods is an interesting case which may not be evidence of the above point. The median of
the distribution is .606 seconds, higher than any other segment examined, which means any

14

period of .364 seconds or less would contribute to its short-period category. .364 seconds is
higher than the median of two of the other bicycling segments, leaving open the possibility
that many of the “short” periods are actually not unusual. Segment 2 may then be more
indicative of a weakness with the analysis than with the algorithm.

9.3 Improvements to the algorithm

A number of improvements to the algorithm are possible. As it stands, the algorithm is
simple, fast, and works well for walking and running. A few small changes might avoid some
of the failure modes.

The first step of the algorithm takes the magnitude of the acceleration vector. It might be
better instead to select the component of the acceleration in the vertical direction. This would
avoid high-frequency artifacts introduced by lateral accelerations. Orienting the device could
still be avoided by keeping a running estimate of the direction of the acceleration of gravity.
(Such a capability already exists in LIRA.) Removing high-frequency artifacts simplifies the
job of the low-pass filter.

The low-pass filter could use refinement in general. The key property that made it
perform well from walking at 1.9 Hz to running at 2.8 Hz was an adaptive cutoff frequency.
Now that that concept and an application of it has been explored some, it would be worth
trying it with a cutoff that isn’t so dramatic.

A problem that contributes to step detection working at half the proper rate on some
traces is asymmetric contributions to the energy in the signal from the left and right steps. If
it is uneven enough, the energy filter passes through the signal at half the desired frequency.
Refinements of the low-pass filter should consider how to address this.

10 Conclusion

The method for step detection here presented is simple, effective, and capable of running
on embedded hardware. It opens up the possibility of extracting intra-step features, such
as the shape of the accelerometer signal normalized over a step, which could in turn be
used to characterize steps from different activities. In more specific terms, choosing a set of
delimiters opens up a set of features which are not shift-invariant, unlike features such as
band energy used heretofore.

While this algorithm is a reasonable start, more work must be done to bring it to full
effectiveness on some activities, such as bicycling. Important prerequisites for those improve-
ments are understanding under which conditions it fails, some of which are presented here
and some of which need more carefully controlled input to uncover.

References

[1] H. Ying, C. Silex, A. Schnitzer, S. Leonhardt, M.Schiek, “Automatic Step Detection in
the Accelerometer Signal,” 4th International Workshop on Wearable and Implantable

15

Body Sensor Networks, Springer Berlin Heidelberg, 2007.

[2] Jonathan Lester, Tanzeem Choudhury, Gaetano Borriello, “A Practical Approach to
Recognizing Physical Activities,” In Proceedings of Pervasive 2006, pp. 1-16, May 7,
2006.

[3] Sunny Consolvo, David W. McDonald, Tammy Toscos, Mike Y. Chen, Jon Froehlich,
Beverly Harrison, Predrag V. Klasnja, Anthony LaMarca, Louis LeGrand, Ryan Libby,
Ian E. Smith, James A. Landay, “Activity Sensing in the Wild: A Field Trial of UbiFit
Garden,” CHI 2008: 1797-1806.

[4] Tanzeem Choudhury, Gaetano Borriello, Sunny Consolvo, Dirk Haehnel, Beverly Harri-
son, Bruce Hemingway, Jeffrey Hightower, Predrag “Pedja” Klasnja, Karl Koscher, An-
thony LaMarca, James A. Landay, Louis LeGrand, Jonathan Lester, Ali Rahimi, Adam
Rea, Danny Wyatt, “The Mobile Sensing Platform: An Embedded Activity Recognition
System,” IEEE Pervasive Computing, vol. 7, no. 2, pp. 32-41, Apr-Jun, 2008.

16

