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Detecting Stress During Real-World Driving Tasks
Using Physiological Sensors

Jennifer A. Healey and Rosalind W. Picard

Abstract—This paper presents methods for collecting and an-
alyzing physiological data during real-world driving tasks to
determine a driver’s relative stress level. Electrocardiogram, elec-
tromyogram, skin conductance, and respiration were recorded
continuously while drivers followed a set route through open roads
in the greater Boston area. Data from 24 drives of at least 50-min
duration were collected for analysis. The data were analyzed in
two ways. Analysis I used features from 5-min intervals of data
during the rest, highway, and city driving conditions to distinguish
three levels of driver stress with an accuracy of over 97% across
multiple drivers and driving days. Analysis II compared contin-
uous features, calculated at 1-s intervals throughout the entire
drive, with a metric of observable stressors created by independent
coders from videotapes. The results show that for most drivers
studied, skin conductivity and heart rate metrics are most closely
correlated with driver stress level. These findings indicate that
physiological signals can provide a metric of driver stress in future
cars capable of physiological monitoring. Such a metric could be
used to help manage noncritical in-vehicle information systems
and could also provide a continuous measure of how different road
and traffic conditions affect drivers.

Index Terms—Affect, automobile, classification, computer, cor-
relate, driver, electrocardiogram, electromyogram, physiology,
recognition, respiration, sensor, signal, skin conductance, stress,
traffic.

I. INTRODUCTION

THE increasing use of on-board electronics and in-vehicle
information systems has made the evaluation of driver task

demand an area of increasing importance to both government
and industry [1], and understanding driver frustration has been
listed by international research groups as one of the key areas
for improving intelligent transportation systems [2]. Protocols
to measure driver workload have been developed using eye
glance and on-road metrics, but these have been criticized as
very costly and difficult to obtain [3], and uniform heuristics,
such as the 15-s rule for total task time, designed to provide
an upper limit for the total time allowed for completing a
navigation system task, do not provide flexibility to account for
changes in the driver’s environment [3]. As an alternative, this
study shows how physiological sensors can be used to obtain
electronic signals that can be processed automatically by an
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on-board computer to give dynamic indications of a driver’s
internal state under natural driving conditions. Such metrics
have been proposed for fighter pilots [4] and have been used
in simulations [5], but they have not been tested on stress levels
approximating a normal daily commute using sensors that do
not obstruct drivers’ perception of the road.

This experiment was designed to monitor drivers’ phys-
iologic reactions during real-world driving situations under
normal conditions. Performing an experiment in real traffic
situations ensures that the results will be more directly applica-
ble to use in these situations; however, it imposes constraints
on the kinds of sensors that can be used and the degree
to which experimental conditions can be controlled. Within
these constraints, two types of analysis were performed on
the collected signals. Analysis I was designed to recognize
three general stress levels: low, medium, and high, using 5-min
intervals of data from well-defined segments of rest, city, and
highway driving. For this analysis, features from all sensors
were combined using a pattern recognition technique and the
different types of segments were recognized. Analysis II was
designed to give a more detailed account of how individual
physiological features vary with driver stress at each second
of the drive, including those segments of the drive between the
rest, city, and highway segments. For this analysis, a continuous
metric of observed stressors was created by scoring videotapes
from individual drives. This metric was then correlated with
features derived from each of the sensors on a continuous basis.

Historically, stress has been defined as a reaction from a
calm state to an excited state for the purpose of preserving the
integrity of the organism. For an organism as highly developed
and independent of the natural environment as socialized man,
most stressors are intellectual, emotional, and perceptual [6].
Some researchers make a distinction between “eustress” and
“distress,” where eustress is a good stress, such as joy, or a
stress leading to an eventual state which is more beneficial
to the organism [7]; however, in this paper, we will refer to
stress only as distress, stress with a negative bias, particularly
distress caused by an increase in driver workload. There have
been a number of studies that link highly aroused stress states
with impaired decision-making capabilities [8], decreased sit-
uational awareness [9], and degraded performance [10] which
could impair driving ability.

This paper presents a method for measuring stress using
physiological signals. Physiological signals are a useful metric
for providing feedback about a driver’s state because they
can be collected continuously and without interfering with
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the driver’s task performance. This information could then be
used automatically by adaptive systems in various ways to
help the driver better cope with stress. Some examples of this
might include automatic management of noncritical in-vehicle
information systems such as radios, cell phones, and on-board
navigation aids [2]. During high-stress situations, cell phone
calls could be diverted to voice mail and navigation systems
could be programmed to present the driver with only the most
critical information to help reduce driver workload. In addition,
the music selection agent might lower the volume or offer a
greater selection of relaxing tunes to help the driver cope with
their feelings of stress. Conversely, in low-stress situations, the
car might recognize that more driver distractions could be tol-
erated and provide the driver with more entertainment options.

The recognition algorithm presented in Analysis I could
be run in real time by having the on-board computer keep a
continuously updated record of the data from the last 5 min of
the drive in memory and performing the analysis continuously
on this window of data. Although none of the physiological
signals monitored here react quickly enough to contribute to
automatic vehicle control, this kind of continuous monitoring,
with a 1- to 3-min lag in driver state assessment, is fast enough
to initiate customized changes to the driver’s in-vehicle environ-
ment to help mitigate emotional distress. For example, in high-
stress situations, some users might prefer visual navigation
prompts to turn off or dim, since these types of warnings have
been found to have a negative impact on situational awareness
[9]. Alternatively, if intelligent collision avoidance were safely
available in low-velocity traffic jams, driving could become
completely automated in such situations and a frustrated driver
could relax by watching a movie or by working on their laptop.

A real-time implementation would have been difficult to test
on this driving route because the stress levels for the driving
conditions outside of the rest, city, and highway segments was
not well defined by the design. To better assess the stress
conditions of the entire drive, Analysis II looked at 16 drives
individually and created a continuous record of observable
stressors from videotapes of the entire drive. This analysis also
calculated continuous variables for each of the sensors and
compared them to a continuous metric stress indicators scored
throughout the entire drive. These variables were evaluated to
determine which features provided the best single continuous
indicator of driver stress. In new concept cars, such as the
Toyota Pod car, continuous signals that correlate highly with
stress level could be used to control the expressive changes in
the car’s lights and color [11], perhaps alerting others to the
extra load on that driver. Furthermore, using aggregate contin-
uous records of driver stress over a common commuting path,
city planners could help quantify the emotional toll of traffic
“trouble spots,” which could help prioritize road improvements.

II. DRIVING PROTOCOL

The driving protocol consisted of a set path through over
20 mi of open roads in the greater Boston area and a set
of instructions for drivers to follow. Although stressful events

could not be specifically controlled on the open road, the
route was planned to take the driver through situations where
different levels of stress were likely to occur, specifically, the
drive included periods of rest, highway, and city driving that
were assumed to produce low, medium, and high levels of
stress. These assumptions were validated by two methods: a
driver questionnaire and a score derived from observable events
and actions coded from videotape taken during the drives. The
route was designed to reflect a typical daily commute so that
the recorded stress reactions would all be within the range of
normal daily stress.

To participate in the experiment, drivers were required to
have a valid driver’s license and to consent to having video
and the physiological signals recorded during the drive. Before
beginning, drivers were shown a map of the driving route and
given instructions designed to keep the drives consistent; for
example, instructions were given to obey speed limits and not to
listen to the radio. During the drive, an observer accompanied
the driver in the car to answer any of the driver’s questions,
to monitor physiological signal integrity, and to mark driving
events in the video record. The observer sat in the rear seat
diagonally in back of the driver to avoid interfering with the
drivers’ natural behavior.

All drives were conducted in midmorning or midafternoon
when there was only light traffic on the highway. Two 15-
min rest periods occurred at the beginning and end of the
drive. During these periods, the driver sat in the garage with
eyes closed and with the car in idle. The rest periods were
used to gather baseline measurements and to create a low-
stress situation. After the first rest period, drivers exited the
garage through a narrow, winding ramp and drove through
side streets until they reached a busy main street in the city.
This main street was included to provide a high-stress situ-
ation, where the drivers encountered stop-and-go traffic and
had to contend with unexpected hazards such as cyclists and
jaywalking pedestrians. The route then led drivers away from
the city, over a bridge, and onto a highway. Between a toll at
the on-ramp and a toll preceding the specified off-ramp, drivers
experienced uninterrupted highway driving. This driving was
included to create a medium-stress condition. After the exit
toll, drivers followed the off-ramp to a turnaround and reentered
the highway heading in the opposite direction. After exiting the
highway, the drivers returned through the city, down the same
busy main street, and back to the starting point. The relative
duration of these events can be seen in Fig. 3. The total duration
of the drive, including rest periods, varied from approximately
50 min to 1.5 h, depending on traffic conditions. Immediately
after each drive, subjects were asked to fill out the subjective
ratings questionnaires.

A. Data Collection

Four types of physiological sensors were used during the ex-
periment: electrocardiogram (EKG); electromyogram (EMG);
skin conductivity (also known as EDA, electrodermal acti-
vation, and galvanic skin response); and respiration (through



158 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 6, NO. 2, JUNE 2005

Fig. 1. The subject wore five physiological sensors, an electrocardiogram (EKG) on the chest, an electromyogram (EMG) on the left shoulder, a chest cavity
expansion respiration sensor (Resp.) around the diaphragm, and two skin conductivity (SC) sensors, one on the left hand and one on the left foot. The sensors were
attached to a computer in the rear of the vehicle.

chest cavity expansion). These sensors were connected to a
FlexComp [12] analog-to-digital converter, which kept the sub-
ject optically isolated from the power supply. The FlexComp
unit was connected to an embedded computer in a modified
Volvo S70 series station wagon. The EKG electrodes were
placed in a modified lead II configuration to minimize motion
artifacts and to maximize the amplitude of the R-waves, since
both the heart rate [13] and heart rate variability (HRV) [14],
[15] algorithms used in this analysis depend on R-wave peak
detection. The EMG was placed on the trapezius (shoulder),
which has been used as an indicator of emotional stress [16].
The skin conductance was measured in two locations: on the
palm of the left hand using electrodes placed on the first and
middle finger and on the sole of the left foot using electrodes
placed at each end of the arch of the foot. Respiration was
measured through chest cavity expansion using an elastic Hall
effect sensor strapped around the driver’s diaphragm. Fig. 1
shows the general placement of sensors with respect to the
automotive system.

The physiologic monitoring sensors were chosen based on
measures previously recorded in real-world driving and flight
experiments. Helander [17] used an EKG, skin conductivity,
and two EMG sensors to monitor drivers on rural roads. Heart
rate and skin conductance have been used to monitor task
demand on pilots [18]–[21] as have EMG [20] and respiration
[5], [20]. EMG [16], skin conductivity [22], and HRV [23] have
also been studied as general indicators of stress.

Each signal was sampled at a rate appropriate for capturing
the information contained in the signal constrained by the sam-
pling rates available on the FlexComp system. The EKG was
sampled at 496 Hz, the skin conductivity and respiration sensor
were sampled at 31 Hz, and the EMG was sampled at 15.5 Hz
after first passing through a 0.5 s averaging filter. The signals
were collected by an embedded computer in a modified car.
The experimenter visually monitored the physiological signals
as they were collected using a laptop PC running a remote

Fig. 2. A sample frame from the quad split video collected during the
experiment. The upper left panel shows the driver facial expression, collected
from a camera mounted on the steering column. The upper right panel shows the
camera used for experimenter annotations where a “stop” annotation is shown.
The lower left panel shows road conditions and the lower right panel shows a
visual trace of the physiological signals as they were being recorded.

display program. The video output from this laptop, displaying
the physiological signals, was fed into a quad splitter to create
a composite video record together with the video output from
three digital cameras: a small Elmo camera mounted on the
steering wheel, a Sony digital video camera with a wide angle
(0.42) lens mounted on the dashboard, and a third camera
used for event. This record was used to create the continuous
stress metric. A sample frame from one of the composite video
records is shown in Fig. 2.

Fig. 3 shows an example of the signals collected on a typical
day’s drive along with markings showing driving periods and
events. In total, 27 drives were completed, six by drivers who
completed the course only once, and seven each from three
drivers who repeated the course on multiple days. In the first
analysis, 24 complete data sets were used. Of the initial 27,
one data set was incomplete because the hand skin conductivity
sensor fell off, one data set could not be used because the EKG
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Fig. 3. This figure shows an illustration of the physiological data collected from the respiration, heart rate, L100 spectral ratio, the skin conductivity (SC) from
the hand, and the electromyogram (EMG). This figure does not show vertical units because each signal is scaled and offset to be shown with an illustrative amount
of detail.

signal was very noisy to extract the R–R intervals necessary
for the heart rate and HRV metrics, and one data set was lost
because it was accidentally overwritten. In the second analysis,
all 16 drives were used for which video records were created
(see Section V).

III. QUESTIONNAIRE ANALYSIS

The questionnaire analysis was used to validate a perception
of low, medium, and high stress during the rest, highway, and
city driving periods. Two kinds of ratings were used: a free scale
and a forced ranking of events. The free-scale section asked
drivers to rate driving events on a scale of “1” to “5,” where
a rating of “1” was used to represent a feeling of “no stress”
and a “5” was used to represent a feeling of “high stress.” The
forced-scale section required drivers to rank events on a scale of
“1” to “7,” where “1” was assigned to the least stressful driving
event and “7” to the most stressful driving event. Using this
scale, drivers were asked to rate a number of events including
encountering toll booths, merging, and exiting as well as the
rest, city, and highway driving tasks. The extra categories were
used to help drivers define the scale, but they were not used in
the questionnaire analysis.

For each questionnaire, the values for both stress ratings
were normalized using a z-score [z = (x − µ)/σ] [24], then
the average and standard deviation were calculated and back-
transformed. The results (see Table I) show that subjects found
the rest periods to be the least stressful, the highway driving to
be more stressful, and the city driving to be the most stressful.
Analysis of variance (ANOVA) on the z-score transformed vari-
ables to determine that the means were significantly different at

TABLE I
THE OVERALL AND COMPARATIVE QUESTIONNAIRE RATING RESULTS

AFTER USING A z-SCORE AND BACK TRANSFORMATION. THE
RESULTS OF ANOVA ANALYSIS FOUND THE THREE STATES TO

BE SIGNIFICANTLY DIFFERENT AT THE 95% CONFIDENCE
LEVEL WITH p > 0.001 FOR BOTH THE RATINGS

the 95% confidence level with p > 0.001 for both the overall
and comparative ratings. These results support the assumptions
of the experimental design.

IV. VIDEO CODING

The composite video record of the drives were coded to
help assess driver stress levels. Two video coders scored each
videotape record based on a list of observable actions and
events that might correspond to an increase in driver stress. This
list of potential stress indicators included stops, turning, bumps
in the road, head turning, and gaze changes. The coders were
also allowed to use their judgment and score any number of
additional events in “other” column. The two coders analyzed
the videotapes by advancing them at 1-s intervals and recording
the number of stress indicators in each frame. For each drive,
an average of over 25,000 frames were scored. Due to time
limitations, this process was only completed for 16 of the 24
drives. The two coders were not involved in other aspects of
the analysis. To test the intercoder reliability, Cronbach’s alpha
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TABLE II
THE AVERAGE NUMBER OF STRESS INDICATORS PER MINUTE DURING

EACH OF THE THREE DRIVING CONDITIONS: REST, HIGHWAY, AND CITY

[25] was calculated for a drive that was scored independently
by both coders. These results were α = 1.0 for the highway
segments, α = 0.91 for the city segments, and α = 0.97 for
the highway segments. Since a coefficient of 0.80 is considered
acceptable for most applications, these scores show that the
rating system yielded consistent results between coders.

To create a stress metric, the number of stress indicators was
first summed over each second of the drive. For example, if
the driver was turning the steering wheel, changing gaze, and
turning his or her body during a frame, that frame would get a
score of “3.” If the driver was driving straight and only looking
around for a turn, the frame would get a score of “1.” If no stress
indicator was observed, the score was entered as “0.” The sum
of stress indicators at each second n of the drive was recorded
in a time series Id(n) for each drive d.

To further validate the assumption of low-, medium-, and
high-stress conditions during the rest, highway, and city seg-
ments, the time series Id(n) were averaged over each type of
segment for all 16 drives d and divided by the time of each
segment time T to obtain an estimate of the number of stressors
per minute for each type of driving. The results (shown in
Table II) support the assumption of the design by showing
that the greatest concentration of stress indicators occurred
during the city driving condition, followed by fewer stress
indicators during highway driving, and the least during the rest
conditions. As shown by the results, the rest conditions were not
completely free of stress. During these periods, some drivers
would display restlessness by moving around, shifting position,
and reacting to noises from a nearby road. Some fidgeting
may also have come from the initial discomfort of wearing
the sensors, boredom, or anticipation of either the beginning
or end of the experiment. In one case, the driver needed to use
the rest room during the end rest period. The rest periods were
not designed to keep the subject entirely free from stress, but to
provide a lower-stress situation just as city driving was designed
to provide a higher-stress situation.

V. CREATING A CONTINUOUS STRESS METRIC

A continuous stress metric was created to develop a finer-
grain picture of the stressors encountered throughout the drives
on various days. Although each drive contained 30 min of
driving within the rest, city, and highway conditions, it also con-
tained approximately 40 min of driving under other conditions
that were not well defined by the experimental design. Unlike
laboratory experiments where repeatable stress conditions can
be created and controlled, the real-world driving conditions
encountered in this experiment were largely unpredictable and
uncontrollable. The stress metric was designed to give a rough

approximation of driver task load by counting the number of
stress indicators at each second of the drive and smoothing the
signal to incorporate the effect of anticipation and past events.

The video code scores captured a continuous record of all
stress indicators that occurred throughout the drive, reflecting
individual differences in driver reactions and varying traffic
conditions. A continuous stress metric was developed from
these scores to be correlated with each of the time series of
physiological features calculated for that drive. To create this
metric, each stressor was convolved with a simple model of
its assumed stress effect. The stress effect was modeled as
having both anticipatory and persistence effects. In a model for
pilot workload, Sheridan and Simpson identified several types
of mental workload tasks that preceded each observed task:
operating tasks, monitoring tasks, and planning tasks. They
modeled the effect of each of these as a continuous workload
function spanning a period of time between when the pilot
anticipated the task and when the task was completed [26].
This model implies that before a stressor is observed, there is
an increase in driver stress due to anticipatory, monitoring, and
planning effects. In addition, the expected physiological effect
of a stressor occurs slightly after the stimulus and may take
several seconds or several minutes to recover, depending on the
type of stimulus event [27]. It is also known that physiological
reactions add nonlinearly and depend on habituation effects and
components of the individual’s physiology [27].

To precisely model the effect of each observed stressor, the
anticipatory components of mental workload and the expected
persistence of the physiological effect would have to be indi-
vidually modeled for each observation, taking into account all
previous and concurrent events and a model of each driver’s
physiology. Such a model would have been very complex for
this analysis. Instead, each observed event was modeled by
using a 100-s Hanning window H, centered on the observation
to approximate these effects.

The 100-s window was chosen for several reasons: it approx-
imates the time needed for autonomic signals such as the skin
conductivity to extinguish, it is the same window as the shortest
window used for HRV, and it provides a level of smoothing that
allows the essentially discrete stressor metric to approximate a
continuous signal.

This window was convolved with the metric of events for
each drive Id to create a signal Vd that represented the modeled
effect of the stressors as stated in (1)

Vd(n) = Id(n) ⊗ H. (1)

For each of the 16 drives d, the stress effect signal Vd(n)
was correlated with each of the physiological time series. The
results are shown in Table IV and are discussed in Section VI-B.

VI. DATA ANALYSIS

The collected data were subject to two types of analy-
sis. Analysis I used 5-min intervals of data from well-
defined segments of the drive, where drivers experienced
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Fig. 4. An example of three orienting responses occurring in a 1-min segment of the skin conductance signal. The onset as marked by the detection algorithm is
marked with an “×” and peak is marked with an “◦.” The magnitude OM and duration OD features are measured as shown.

low-, medium-, and high-stress situations to train an automatic
recognition algorithm. Analysis II investigated how continuous
physiological features, calculated at 1-s intervals throughout the
entire drive, correlated with a metric of driver stress derived
from videotape records.

A. Analysis I: Recognizing General Stress Levels

The algorithm for general level stress recognition was de-
veloped using features derived from 5-min nonoverlapping
segments of data taken from each of the rest, city, and high-
way driving periods. Each of these segments was designed to
represent a period of low, medium, or high stress. To ensure
consistency in the stress conditions, the data segments were
taken from specific parts of the drive. The segments for the
low-stress condition were taken from the last 5 min of the rest
periods, giving subjects enough time to relax from the previous
task. The segments for the medium-stress condition were taken
from a stretch of uninterrupted highway driving between two
toll booths, after the driver had completed a merge onto the
highway and was safely in the right-hand lane. The segments
for the high-stress condition were taken after the driver turned
onto a busy main street in the city.

Nine statistical features were calculated for each segment:
the normalized mean of the EMG and the normalized mean
and variance for respiration, heart rate, and skin conductivity on
the hand and on the foot. The EMG, respiration, and heart rate
signals were normalized by subtracting the mean of the first rest

period before each drive. The skin conductivity signals were
normalized by subtracting the baseline minimum and dividing
by the baseline range [16]. Heart rate was uniformly sampled
and smoothed using a heart rate tachometer [13], [28].

Four spectral power features were calculated from the respi-
ration signal representing the energy in each of four bands. The
power spectrum was calculated using 2048 data points from the
middle of each segment. A Hanning window was applied and
an implementation of Welch’s averaged, modified periodogram
method [29] was used to calculated the normalized power spec-
trum. Four spectral power density features were calculated by
summing the energy in the bands 0–0.1, 0.1–0.2, 0.2–0.3, and
0.3–0.4 Hz. These features were found useful for discriminating
emotion in previous work [30].

Eight additional skin conductivity features were calculated
to characterize orienting responses. An orienting response is
a sudden rise in the skin conductance due to ionic filling of
the skin’s sweat glands in response to sympathetic nervous
activation. A series of three orienting responses is shown in
Fig. 4, along with the marks indicating the onset and peak
of the response and the measurements of the magnitude OM

and duration OD of the response. The algorithm detected the
onsets and peaks of the orienting responses by first detecting
slopes exceeding a critical threshold and then finding the local
minimum preceding that point (onset) and the local maximum
following that point (peak) [31]. Using this algorithm, four
orienting response features were calculated: the total number of
such responses in the segment, the sum of the startle magnitudes
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ΣOM, the sum of the response durations ΣOD and a sum
of the estimated areas under the responses Σ(1/2 OM × OD).
These four features were calculated for both the hand skin
conductance and the foot skin conductance signals.

The final feature was a HRV feature which has been used
to represent sympathetic tone. The parasympathetic nervous
system is able to modulate heart rate effectively at all frequen-
cies between 0 and 0.5 Hz, whereas the sympathetic system
modulates heart rate with significant gain only below 0.1 Hz
[32]. By taking the ratio of the low-frequency heart rate spectral
energy to the high-frequency heart rate spectral energy, we
derive a feature that represents the ratio of the sympathetic to
parasympathetic influence on the heart. Our hypothesis is that
increased stress will lead to an increase in sympathetic nervous
activity and an increase in this ratio.

To calculate the HRV feature, we used the instantaneous
heart rate time series derived from the EKG. A Lomb peri-
odogram [15] was used to calculate the power spectrum [33],
[34] of the heart rate time series because it can directly use
unevenly sampled interbeat interval data and because it is robust
to missed beats [35]. The total energy in the low-frequency
(LF) band (0–0.08 Hz) and in the high-frequency (HF) band
(0.15–0.5 Hz) were calculated and the ratio LF/HF was used as
the final feature. In Analysis II, another suggested sympatho-
vagal balance ratio, (LF + MF)/HF, using the midfrequency
(MF) range (0.08–0.15 Hz) was also used along with a shorter
window size.

These 22 features were used to create a single vector repre-
senting each of the segments used in the recognition analysis. A
total of 112 segments was used: 36 from rest periods, 38 from
highway driving, and 38 from city driving. The resulting 112
feature vectors were then used to train and test the recognition
algorithm. Each vector was sequentially excluded from the
training set, and the recognition algorithm was trained using
the remaining 111 vectors. The training vectors were used to
create a Fisher projection matrix and a linear discriminant. The
Fisher projection was determined by solving a factorization for
the generalized eigenvectors of the covariance matrices for the
between class scatter and the within class scatter of the labeled
training vectors [36]. The generalized eigenvectors correspond-
ing to the two greatest eigenvalues were used to project the
22-dimensional feature vectors onto a two-dimensional space,
where the between class scatter was maximized and the within
class scatter was minimized. Using the projection determined
by the training data the test vector y was projected into a two-
dimensional vector ŷ. In the two-dimensional space, a linear
discriminant function gc( ŷ) was determined using the sample
mean (mc) and the a priori probability Pr[wc] for each class c
and pooled covariance K of the training vectors. The test vector
was classified as belonging to the class for which gc(ŷ) was the
greatest.

gc(ŷ) = 2mT
c K−1ŷ − mT

c K−1mc + 2 ln (Pr[wc]) . (2)

Table III is a confusion matrix for the recognition algorithm
in which all correctly classified segments are shown along

TABLE III
THE CONFUSION MATRIX FOR THE RECOGNITION ALGORITHM.
CORRECTLY RECOGNIZED SEGMENTS ARE FOUND ALONG THE
DIAGONAL. THIS CLASSIFIER MISTAKENLY CLASSIFIED TWO

MEDIUM-STRESS SEGMENTS AS HIGH STRESS AND ONE
HIGH-STRESS SEGMENT AS MEDIUM STRESS

the diagonal and all incorrectly classified segments are off
diagonal. As this table shows, all low-stress segments were
correctly recognized; however, two periods that were labeled
as medium stress were recognized as being high stress and one
period labeled as high stress was classified as medium stress.
The results thus show very good discrimination between the
classes. These physiologically based results also show a perfect
discrimination between the low-stress rest period and the two
driving periods which agrees with both the perception of stress
as evaluated by the questionnaire and the scoring of observed
stressors obtained from the videotape analysis, suggesting that
these features accurately represent a driver’s general stress
level.

B. Analysis II: Continuous Correlations

The recognition algorithm gives good separation between
three general types of driving stress, but it does not account for
variations in the drives and it does not give a fine-grain assess-
ment of stressors. An ideal indicator of stress would be a physi-
ological variable that continuously varied, proportional to every
driver’s internal stress. To determine which features might be
the best candidates for such a variable, continuous calculations
were made on each of the physiological sensor signals at
1-s intervals throughout the entire drive for each of the 16 drives
for which the video was scored. These calculations included the
mean and variance of the EMG (µE, σ2

E), hand skin conductivity
(µS, σ2

S), respiration (µR, σ2
R), and the mean of the tachometer

heart rate (µH) over 1-s intervals throughout the drive.
For this analysis, four metrics of HRV were calculated.

In addition to the 300-s window LF/HF used in Analysis I,
a 100-s window and a (LF + MF)/HF were also calculated
for comparison. These time series are denoted: L100, M100,
L300, and M300 for the LF/HF (L) and (LF + MF)/HF (M)
power ratios in the 100- and 300-s periodograms, respectively.
To create a continuous time series, Lomb periodograms were
calculated using both 100- and 300-s windows (Hanning) of
instantaneous heart rate data, centered on the second of interest,
advanced by 1 s for each second of the drive. The 150 s at the
beginning and end of the drive were excluded because there
would not have been enough data for the periodogram.

For each of the drives d, the video stress metric Vd(n) was
correlated with each of the feature time series and a correlation
coefficient rd was calculated:

rd =
KVP

σVVσPP
(3)
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TABLE IV
CORRELATION COEFFICIENTS “rd” BETWEEN THE STRESS METRIC CREATED FROM THE VIDEO AND VARIABLES FROM THE SENSORS INDICATING

HOW CLOSELY THE SENSOR FEATURE VARIES WITH THE STRESS METRIC. AS A NULL HYPOTHESIS, A SET OF RANDOM NUMBERS “w” WAS
ALSO CORRELATED WITH THE VIDEO METRIC FOR EACH DRIVE. THE LAST ROWS SHOW THE MEAN OVER ALL DAYS AS CALCULATED

BY USING THE z-SCORE AND z-TRANSFORM METHODS, RESPECTIVELY

where KVP is the covariance of the time series Vd(n) with one
of the physiological time series for the same drive d, and σVV

and σPP are the standard deviations for Vd(n) and physiological
time series, respectively.

If the feature time series were independent of the stress
metric, the correlation coefficient would be zero. To test this
null hypothesis, each of the stress metrics was also correlated
with a white noise signal w. Table IV shows the results for
each time series for all 16 drives. As expected, the correlation
coefficients with white noise w were all close to zero. The
variance of the EMG σ2

E and the mean of the respiration µR

were also close to zero. This was also expected since the EMG
signal was preprocessed with a smoothing filter, and the res-
piration mean primarily represents the baseline stretch of the
sensor which varies mostly with sensor movement (slippage)
with respect to the chest cavity. The variance of the respiration
σ2

R and the variance of the skin conductivity σ2
G also did not

correlate well with the stress metric, most likely because the
variance over 1-s intervals in these signals has a large noise
component.

To determine which sensors might be most useful for use as
a real time indicator of stress, the averages of the correlation
coefficients were calculated in two ways: first, by calculating
a z-score for each day’s scores, averaging, and then back
transforming to get the result shown in row “µ-zs,” and second,
by using the normalizing z-transform zd = 0.5[ln (1 + rd ) −
ln (1 − rd )] and averaging to get the result shown in row “µ-zt.”
The z-score transformed data is more likely to be robust against
a poor stress metric on a given drive and the z-transformed
data creates a more normal distribution of the data, which may
give a better estimate of the true mean. Both transformations
yield similar results suggesting that skin conductivity is the
best real time correlate of stress followed by the HRV and
heart rate measures. In general, the skin conductance performed
well (with the notable exceptions of drives S2-2 and R4-1)

and the HRV measures performed similarly to each other,
with the exception of drive R4-1, where the two metrics using
(LF + MF)/HF ratio correlated differently than the two metrics
using the LF/HF ratio. The 100- and 300-s windows for HRV
performed similarly, suggesting that it is possible to use the
shorter 100-s window to derive features for HRV, although this
window excludes some of the low-frequency power typically
used in HRV calculations. The mean heart rate µR was the best
correlated measure for only one of the drives.

There were individual differences in how drivers responded.
In Drive S3-2, there were very high correlations for both the
mean skin conductivity and for the average HRV measures.
However, Drive S2-4 showed a much stronger correlation with
skin conductivity and heart rate than with HRV measures, and
Drive S2-2 showed a weak correlation with skin conductance
and stronger correlations heart rate and HRV measures. For
all drivers studied, the lowest correlation between either the
heart rate or skin conductance metrics was 0.49, suggesting that
between these two sensors, a reliable metric can be obtained.
These correlations were performed over approximately 25,000
sample points per drive. It is not clear from these results if indi-
viduals consistently respond to stress with similar physiological
reactions. For S1 and S3, there was less variance in mean skin
conductance response for the same subject over many drives
than for all subjects over all drives, and for S1, the same was
also true of HRV. We performed ANOVA on the correlation
coefficients and found significant individual differences in the
mean of the skin conductance µG (p = 0.0007) and the mean
of the respiration µR (p = 0.0001). The difference in the mean
skin conductance is most observable for subject S3. This may
be due to a physiological difference in the number of sweat
glands on the palm or from a difference in electrode contact
due to the way the subject gripped the steering wheel. The
differences in the respiration means are most likely due to
physical differences in chest size.
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Fig. 5. This figure shows an illustration of the physiological data collected from the respiration, heart rate, L100 spectral ratio, the skin conductivity (SC) from
the hand, and the electromyogram (EMG) along with the stress metric derived from the videotapes for this drive. This figure does not show vertical units because
each signal is scaled and offset to be shown with an illustrative amount of detail.

Fig. 5 shows an example of the stress metric plotted against
signals from drive R2-1. For this drive, the best correlating sig-
nal shown is the mean of the skin conductivity (0.47) followed
by L100 (0.41) and heart rate (0.30). This graph shows qualita-
tively how well each of the signals reflects the stress metric.
During this drive, the subject was unusually agitated during
the second rest period due to a need to use the restroom. This
agitation is reflected in the stress metric, but would not have
been taken into account by using the task based categorization.

VII. DISCUSSION

In the future, we may want vehicles to be more intelligent
and responsive, managing information delivery in the context
of the driver’s situation. Physiological sensing is one method of
accomplishing this goal. This study tested the applicability of
physiological sensing for determining a driver’s overall stress
level in a real environment using a set of sensors that do not
interfere with the driver’s perception of the road. The results
showed that three stress levels could be recognized with an
overall accuracy of 97.4% using 5-min intervals of data and that
heart rate and skin conductivity metrics provided the highest
overall correlations with continuous driver stress levels.

Using a continuously updated record of the last 5 min of a
driver’s physiology, the stress recognition algorithm might be
used to manage real-time noncritical applications such as music
selection and distraction management (cell phones, navigation
aids, etc.), which could tolerate a delay in updating the user’s

state precisely. The original 5-min time window was chosen
because it was the interval recommended for calculating HRV
using the spectrograms [23] and because the limiting time factor
for the driving segments, the uninterrupted highway segment
between the two toll booths, was just over 5 min long. In
a similar study, Wilson et al. [5] trained an artificial neural
network to recognize three levels of pilot task demand using
5-min intervals of rest and low and high levels of difficulty
on the National Aeronautics and Space Administration multiple
attribute task battery during a simulation. For this experiment,
heart rate, electroencephalographic, electrooculographic, and
respiration data were used. The algorithm was first tested on
the 5-min training segments, then it was run continuously
to detect stress in real time. When a high-stress level was
detected, the simulation was adapted by turning off two of the
subtasks, enabling a 33% reduction in errors. A similar test
could be performed with the algorithm developed in Analysis
I if road conditions could be made constant and drivers could
be allowed to make safe errors while talking on the cell phone
or using visual navigation aids. If a high-stress condition were
detected using the algorithm on the last 5 min of data, the driver
distractions could be turned off until the driver recovered to a
medium-stress level. The level of driver error for drivers using
this adaptive aid could then be compared to a set of control
drivers who did not have this feedback.

Although the original experiment was not designed to test
how the 5-min algorithm would perform in a real-time sce-
nario, the second analysis compared near real-time features



HEALEY AND PICARD: DETECTING STRESS DURING REAL-WORLD DRIVING TASKS VIA PHYSIOLOGICAL SENSORS 165

to a continuous stress metric to determine how well these
signals reflected driver stress on a continuous basis. Driver’s
reaction time to specific stressors was not measured because
the latencies involved fall beneath the resolution of the coding
metric. For example, the skin conductivity latency is on the
order of 1.4 s [37] and anticipatory EMG has been measured
in the laboratory at 30 ms [38]. In this experiment, the video
was scored at 1-s intervals and the video clock and sensor
clock were not synchronized to be sensitive to time differences
within a few seconds. The latency measurements would also be
confounded by the open-road conditions, where many stressors
occurred concurrently and before the effects of previous stress-
ors had extinguished.

Despite these limitations, these experiments show that physi-
ological signals provide a viable method of measuring a driver’s
stress level. Although physiological sensing systems have not
yet developed to the point where they are as inexpensive and
convenient to use as on-board cameras, sensors are becoming
smaller and researchers are developing new ways to integrate
them into existing devices. The results of the second analysis
suggest that the first sensors that should be integrated into a
car, or a mobile-wearable device that communicates with a
car, should be skin conductance and heart rate sensors. These
measures could be used in future intelligent transportation
systems to improve safety and to manage in-vehicle information
systems cooperatively with the driver.

Additionally, future computer vision algorithms and car sen-
sors might be able to automatically calculate a stress metric
similar to the one created by video-coding analysis. Such
methods might provide an automatic noncontact method for
predicting or otherwise anticipating changing levels of driver
stress related to cognitive or emotional load.
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